杆柱受力分析
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
振动载荷 惯性载荷 冲击载荷 摩擦载荷
P振
P惯 P冲 P摩
动载荷是由杆柱和液杆的变速运动 以及由液—液、固—液、固—固的相对 运动而产生的载荷。其大小受多种因素 影响,其方向也是不断变化的。就某一 点的受力来说,分析计算动载荷是非常 复杂的,只能做定性的描述。
振动载荷
抽油杆本身是一种弹性体,由 于抽油杆柱作变速运动和液柱载荷 周期性地作用于抽油杆柱上,从而 引起抽油杆柱的弹性振动而产生的 附加载荷。
惯性载荷
惯性载荷是由于运动着的物体在发生速 度变化时而产生的一种力,抽油机在运转 时,驴头带着抽油杆柱和液柱作变速运动, 因而产生抽油杆柱和液柱的惯性力。
P惯 P杆惯 P液惯
由于悬点加速度的大小和方向是变化的,故作 用在杆柱上的惯性载荷的大小和方向也将随着悬点 加速度的变化而变化。在上冲程中,前半个冲程加 速度方向与运动方向相同,即加速度向上,则惯性 力向下,从而增加杆柱载荷,后半冲程,加速度方 向与运动方向相反,即加速度向下,惯性力向上, 从而减小光杆载荷,在下冲程中,情况恰好相反, 前半冲程惯性力向上,减小杆柱载荷,后半冲程惯 性力向下,将增加杆柱载荷,因在下冲程中液柱不 随杆柱运动,因此无液柱惯性载荷。
从杆柱的受力分析不难看出,杆柱下行时的 阻力主要包括:(1)液流阻力,(2)浮力, (3)柱塞磨擦力,(4)杆柱在液体中下行产生 的粘滞阻力。对于稠油油田,粘滞阻力的存在, 是导致抽油杆失稳的主要原因。
杆柱失稳弯曲产生的危害
增大冲程损失,降低泵效。
造成抽油杆偏磨,损坏泵杆和油管。
使交变负荷增大,从而产生越应力破坏。 容易造成抽油杆断脱。
L(x)
在整个抽油杆柱上,主要受三种力的作用,在 这三种力中只有P杆的自身重力始终向下的,使抽 油杆呈拉伸状态,不使抽油杆发生弯曲变形。P惯 载荷,在下冲程的前半个冲程是向上的,从而增大 下行阻力,只有在后半个冲程才是向下的,使下行 阻力减弱。故在抽油杆整个下行过程中,抽油杆失 稳发生在下冲程的前半个冲程中。如果摩擦阻力足 够大,抽油杆柱弯曲变形严重,失稳现象在下半个 冲程中也不会完全消失。
静 载 荷
抽油杆柱自身的重量而产生的重力载荷 活塞上的液柱载荷 沉没压力 井口回压
P杆
P液 P液 P回
抽油杆
杆柱重力载荷
油管
上冲程中光杆所 承受载荷为抽油杆柱 在空气中的重量:
泵筒
凡尔球
P杆 ( x) q杆 L( x)
下冲程中,光杆所 承受载荷为抽油杆柱在 液体中的重量:
活塞
凡尔球
P ( x) q L( x) q杆bL( x)
在稠油井中,由于液体的粘度比较大, 所产生的磨擦载荷是非常大的,不但可以大 大增加杆柱的负荷,而且可以完全阻止杆柱 下行,这就是我们常说的光杆“打架”现象。 从以上分析不难看出,光杆和接泵杆 是承受各种交变负荷最大的受力点。
抽油机在上行过程中,各种阻力 阻止光杆上行,光杆产生最大载荷, 使杆柱始终呈拉伸状态。杆柱上的每 一点L(x),均产生拉应力,不存在光杆 失稳的现象;在下行过程中,各种阻 力阻止光杆下行,光杆产生最小载荷。 下行速度越快,则产生的阻力也越大。 当这种阻力足够大,能够抵消抽油杆 柱自身重量时,就会使杆柱受压,从 而产生压应力,随着压应力的逐渐增 大,能够完全抵消抽油杆柱的弹性形 变,这时,抽油杆柱就会发生弯曲变 形。这种弯曲变形在油管内径的约束 下,呈类螺旋状。
hr液 10
P 套
P吸 P沉 P损
P回
井口回压
井口回压始终作用在活塞上, 使光杆载荷增加,只不过在下行 过程中,游动凡尔打开,井口回 压加载到油管柱上,使杆柱减载; 如果不能及时卸载,活塞上仍然 要承受一部分回压。
P
上 杆回
p回 ( F活 f杆 )
P
下 杆回
p回 f 杆
动 载 荷
P P
上 惯
上 杆惯
P
上 液惯
P下 P下 惯 杆惯
冲击载荷
如果泵筒受供液不足影响,充满程 度差,就会发生活塞与泵内液体的撞击, 将产生较大的冲击载荷,若泵杆挂或防 冲距过小,也会产生较大的冲击载荷。
摩擦载荷
由于存在着相对运动,表现在液—液 之间、液—固之间和固—固之间,必然产生 各种摩擦阻力,其方向总是和物体的运动方 向相反的,以阻止物体间的相对运动,在抽 油机工作过程中,摩擦载荷由以下六部分组 成:
Pf
0.94d p
140
从上式可以看到,更换小泵后,降低了柱塞与 泵筒间的半干磨擦力,从而减小了泵杆的下行阻力。
6.通过调整泵的配合间隙的方法。就是由一 级泵降为二级泵或者是由二级泵降为三级泵。泵 降级以后,半干磨擦力随之减小,下行阻力也减 小。 7.通过加深泵挂的方法。泵挂加深以后,增 大了杆柱的拉应力,同时也使得中和点下移。由 于地温梯度的存在,越往下,流体的温度越高, 液体的粘滞阻力越小,杆柱越容易下行,杆柱越 不容易发生弯曲形变。比如羊3-13-2井就是采取 加深泵挂的方法,解决了抽油杆的失稳问题。
邳进仕
在常规有杆泵抽油过程中,抽油杆柱受上、 下交变负荷的作用,其各点的受力的大小和方 向是不同的,随其位移的变化而变化。在整个 抽油杆柱全程上,光杆承受最大的拉应力,与 活塞相连的抽油杆承受最大的压应力。为了更 好地对抽油杆柱进行全面的受力分析,首先必 须了解杆柱都承受哪些载荷以及这些载荷的作 用方向。
Fra Baidu bibliotek
一、抽油杆和油管间的摩擦力,上行增大载荷, 下行减小载荷,与抽油杆长度、井斜度及扶正块数 量有关。
二、柱塞与衬套之间的摩擦力。上行增大载荷, 下行减小载荷,其大小与活塞长度、配合间隙以及 介质的粘度有关。
三、 液柱与抽油杆之间的摩擦力(或称粘滞阻 力),在上行过程中,不存在相对运动,不产生摩擦 载荷,只有在下行过程中。才产生摩擦阻力,使杆 柱载荷减小,除了与抽油杆长度和运动速度有关外, 主要取决于液体的粘度。
4.采取降低S*N值的方法。现场常用降低抽油机 冲次的方法,主要通过各种电机调速技术来改变驴 头悬点的运行速度。当悬点的运行速度降低以后, 通过游动阀的局部水力损失减小,同时,下行时的 粘滞阻力也得到大大的降低。
5.采取变换泵径的方法,即由大泵更换为小泵。 我们知道,柱塞和衬套间的半干磨擦力的大小由下 面的公式确定:
假设杆柱离开井口的距离为 x,随着x的增加,该点所受到的 下部杆柱的重力减小。当杆柱重 量被在下行过程中产生的阻力抵 消后,杆柱上就会产生一个中和 点X中,中和点以下的杆柱处于受 压状态。该点也是抽油杆最容易 断脱的部位。x继续增大,杆柱 压应力也增大,在其下端达到最 大。
中和 点
由于受压应力逐渐增大的影响,受压杆段发 生三种形态的过渡。靠近中和点部分,由于杆柱 的刚度和较小的压应力,杆柱保持挺直,不会弯 曲;向下随着压应力的增大,抽油杆发生弹性弯 曲变形,再向下,当压应力超过弹性极限后,杆 柱将发生塑性弯曲变形。当然,如果下行时阻力 不够大,或者抽油杆的材料结构性能较好,杆柱 就可能不会发生塑性变形。
/ 杆 / 杆
液柱载荷
活塞上的液柱载荷全程 加载到抽油杆柱上,使得杆 柱上的每一点均承受到相等 的因液柱而产生的拉应力。
P液
P液 ( F活 f 杆 ) Lr液
沉没压力
就是液体进泵时,作 用在活塞底部上的压力, 是由套管内的压力和环形 空间内的液柱压力(或者 叫地层流压)产生的。
P沉
P 沉
四、液柱与油管之间,除了与液流速度有关外, 主要取决于液体的粘度,在上行过程中产生,增大杆 柱载荷。 五、液体通过游动凡尔产生的磨擦力,除了与凡 尔结构有关外,主要取决于液体的粘度和液流速度。 六、盘根密封部分与光杆之间的磨擦力,其大小 与盘根盒的松紧程度有关,它仅作用光杆部分,对悬 点载荷产生影响,对井下杆柱不产生作用。
根据抽油杆全程受力分析,找到影响抽 油杆失稳的各种因素,从而找到解决抽油杆 失稳的方法:
1.应用抽油杆扶正技术。在抽油杆的失稳段, 采用抽油杆扶正器,可修正杆柱弯曲变形。不过, 采用扶正块以后,就会增大杆柱的磨擦阻力,增大 拉应力,并使中和点上移。对于油稠的井,不宜采 用此方法。
2.应用加重杆加重技术。就是在杆柱的最下 部采用一段加重杆,从而增大杆柱重量。使用加 重杆是解决抽油杆柱弯曲变形的有效方法。可以 减轻或避免下部抽油杆柱受压应力作用而发生弯 曲变形象,从而改善抽油杆柱的工作状况,提高 抽油杆的工作寿命和泵效。 3.采取泵下掺水降粘工艺技术。通过此种方 法,可以大大降低液体的粘度,改善液体的流动 性能,从而降低磨擦阻力和液流阻力。