线性规划的基本定理

合集下载

1-线性规划的基本性质

1-线性规划的基本性质
对于n 维空间的一组向量 P1, P2 , , Pm ,若在数
域 F中有一组不全为 0的数 ai (i 1,2, , m) 使 a1P1 a2P2 L amPm 0
成立,则称这组向量在 F上线性相关,否则称 这组向量在 F上线性无关。
37
基本概念与基本定理
2. 秩:
设A是m n矩阵。若A的n个列向量中有r个线
日销量
产品
B1=3
A1=5
4
A2=7
1
A3=8
7
B2=4
11 9 4
B3=5 B4=8
3
10
2
8
10
5
6
线性规划的数学模型
设从生产点i到销售点j的调运数量为 xij 吨,
则目标函mi数n z为: 4x11 11x12 3xm13inz10x41x41111x12 3x13 10x14
min z x42x111911xx2212 23xx1233108xx1244x721x391 x224x232x23 8x24 7x31 4x32
39
基本概念与基本定理
线性规划的基本概念:
1. 可行解:满足上述约束条件(1.3.1)和 (1.3.2)的解。
2. 最优解:满足上述约束条件(1.3.3)的
可行解。 AX b
(1.3.1)
X 0
(1.3.2)
min z CX (1.3.3)
40
基本概念与基本定理
3. 基:已知A是约束条件的m n 系数矩阵, 其秩为m。若B是A中 mm非奇异子矩阵 (即可逆矩阵,有 B 0 ),则称B是线性 规划问题的一个基,B是由A中m个线性 无关的系数列向量组成的。
2. 若原模型中约束条件为不等式,如何化为 等式:

线性规划的基本定理-最优化方法

线性规划的基本定理-最优化方法

j 1
j 1
现构造两个点X(1),X(2),使满足
X(1)=(x1+αλ1,…, xk+αλk ,0,…,0)T X(2)=(x1-αλ1,…, xk-αλk ,0,…,0)T
线性规划解的基本定理
定理2:设X是可行域D的极点,那么,X最多有m个 正分量。
证明:设X=(x1,···xk,0,···,0)T,若k>m,由
z=λx+(1-λ)y
这说明当0 ≤ λ ≤1 时,λx+(1λ)y 表示以x.y为端点的直线段上的所 有点,因而它代表以 x.y为端点的直线 段。
一般地,如果x.y是n维欧氏空间Rn中的两点,则 有如下定义:
如果 x=(x1…xn)T,y=(y1…yn)T是Rn中任意两点,定 义z=λx+(1-λ)y(0≤λ≤1),z=(z1…zn)T 的点 所构成的集合为以x,y为端点的线段,对应λ=0, λ=1的点 x, y叫做这线段的端点,而对应 0<λ<1的点叫做这线段的内点。
表明X不是D的极点,与已知条件矛盾,故k≤m。
线性规划解的基本定理
定理1.4:对标准形式的线性规划,基可行解与可行 域的极点一一对应。
证明:首先证明极点必是基可行解。设X是极点, 由定理1.3,可设X=(x1,…xk,0,…,0)T xj>0,k≤m 若X不是基可行解,由定理1.2,向P1,P2,…,Pk应 线性相关。仿照定理1.3的证明过程,可推导出X 不是极点,与已知条件矛盾。故可知X是基可行解。
其次证明充分性。设X的正分量为x1,x2,…,xk,其对 应的列向量P1,P2,…,Pk线性无关。显然k≤m。
若k=m,则P1,P2,…,Pk可用来构成一个基,所 以X是基本解。而已知X是可行解,故X又是基可行 解。

运筹学基础-对偶线性规划(2)

运筹学基础-对偶线性规划(2)

用单纯形法同时求解原问题和对偶问题
原问题是:
maxZ=2x1 +x2 5x2 ≤15 6x1 + 2x2 ≤ 24 x1 + x2 ≤ 5 x1 , x2 ≥0
5x2 +x3 =15 6x1 + 2x2 +x4 = 24 x1 + x2 +x5 = 5 xi ≥0
原问题的标准型是:maxZ=2x1 +x2+0x3+0x4 +0x5
b
15 24 5 0
x1 0 6 1 2
比 值
-
24/6=4
5/1=5
检验数j
对偶问题剩余变量 y4、y5
对偶问题变量 y1、y2 、y3
检验数行的- (cj-zj)值是其对偶问题的一个基本解yi ;
原问题变量
0 2
原问题松驰变量
1 0 0 0 0 1/6 -1/6 -1/3 0 0 1 0
3
x3 x1
x2 1 检验数j= cj-zj
-1/4 -1/2
对偶问题剩余变量 y4、y5
对偶问题变量 y1、y2 、y3
此时得原问题最优解:X*=(7/2,3/2,15/2,0,0)T,Z*=17/2 则对偶问题最优解:Y*=(0,1/4,1/2,0,0)T,S*=17/2
又例:用单纯形法同时求解原问题和对偶问题
定理6(互补松弛定理)
在线性规划问题的最优解中,如果对应某一约束条件的 对偶变量值为非零,则该约束条件取严格等式;反之如果约 束条件取严格不等式,则其对应的对偶变量一定为零。
注:证明过程参见教材59页性质5证明
讨论:
互补松弛定理也称松紧定理,它描述了线性规划达到最

线性规划标准型以及定义

线性规划标准型以及定义

0
B6


2
1
B7


2
0 B8 6 1 B9 0 1
解的定义
2x1 x2 x3 x4 3 例: x1 x2 x3 x5 2
xi 0
解:A=

2 1
-1 -1
-1 1
-1 0
0 -1


P1
P2
min Z 2 x1 x2 3 x3

5 x1 x2 x3 7

x1 x2 4 x3 2 3 x1 x2 2 x3 5
x1 , x2 0, x3无约束
解:(1)因为x3无符号要求 ,即x3取正值也可取负值,标准 型中要求变量非负,所以
解的定义
B4 P1
P5


2 1
0 -1
非奇异,
B31b

1 2
1 1
0 3
-2


2


1 2
3 -1
,


3 2
0
0
0

1 2
T

是基解,但非基可行解。
解的定义
类似可得所有基解。 代入目标函数,通过比较可得最优解。
思考: 线性规划的基解最多有多少个?基可行解呢?
可 行 解
非可行解
基解
基可行解
例1.4 求线性规划问题的所有基矩阵。
max Z 4 x1 2x2 x3
5x110x1x2
x3 x4 3 6x2 2x3 x5

2

x

第2章 线性规划

第2章 线性规划

目标函数下降
MAXZ=4X1-3X2 S.T. X1+2X210 X16 X24 X11 X1,X20
X2=4
B A
目标函数上升
C
X2 0
E
D
X1 X1=6
4X1-3X2=0
X1=1
对解的讨论: .唯一解 .无穷解 .无解: 可行域空集 可行域无界
X2 X1+2X2=10 X2=4
X1 0
a11 a12 a1n 约束方程组 A P1 , P2 , Pn 系数矩阵 a m1 a m 2 a mn
A为m ×n矩阵( m为约束方程个数,n为变量个数)
a11 a12 a1n A P1 , P2 , Pn a m1 a m 2 a mn
消除负的右端常数项
MAXZ=-X1-3(X3-X4) S.T. 6X1+7(X3-X4)8 X1-3(X3-X4) ≥6 X1-(X3-X4)=3 X1、X3、X4 0
约束方程还不是等式约束
人为添加变量,成为等式约束
对于“≤”约束,添加松弛变量 对于“≥”约束,添加剩余变量
6X1=5X1+3X2 S.T. 3X1+5X215
max Z 5 x1 3 x 2 3 x1 5 x 2 x 3 15 5 x1 3 x 2 x 4 10 x1 , x 2 , x 3 , x 4 0
5X1+2X210
X1,X20
2、给出基本可行解
• 6.基本可行解:满足非负条件
对于D1 ,基变量为X4、X5,X1、X2、X3为非基变量,令 X1、X2、X3=0, X4 = 8、X5 = 1 对于D2 ,基变量为X1、X2,X3、X4、X5为非基变量,令 X3、X4、X5 =0, X1 = -13/4 、X2=15/4

2 线性规划

2 线性规划

第一节 线性规划问题及其数学模型
可加性假定:每个决策变量对目标函数和约
束方程的影响是独立于其他变量的,目标函 数值是每个决策变量对目标函数贡献的总和 连续性假定:线性规划问题中的决策变量应 取连续值。 确定性假定:线性规划问题中的所有参数都 是确定的参数。线性规划问题不包含随机因 素。
约 束 方 程
约束条件
变量约束
第一节 线性规划问题及其数学模型
线性规划问题隐含的假定: 比例性假定 可加性假定 连续性假定 确定性假定
比例性假定:决策变量变化引起的目标函数
的改变量和决策变量的改变量成比例,同样, 每个决策变量的变化引起约束方程左端值的 改变量和该变量的改变量成比例
≥0
=
≥0
第一节 线性规划问题及其数学模型
标准型的简缩形式
max Z
c x
j j 1
n
j
s .t
n aij x j bi , i 1,2 , , m j 1 x j 0 , i 1,2 , , m

第一节 线性规划问题及其数学模型

松弛变量
a i 1 x 1 a i 2 x 2 a in x n bi
a i 1 x1 a i 2 x 2 a in x n x p bi , x p 0
剩余变量
练习
例:将下列线性规划问题划为标准形式: min Z = x1+3x2
s.t.
6x1+7x28 -x1+3x2-6 x1-x2=3 x10
可行域无界
x1+2x2 10 x2 0 x1
可行域无界
x2
x1 0

最优化方法-线性规划的基本定理

最优化方法-线性规划的基本定理
其次证明充分性。设X的正分量为x1,x2,…,xk,其对 应的列向量P1,P2,…,Pk线性无关。显然k≤m。
若k=m,则P1,P2,…,Pk可用来构成一个基,所以X是基 本解。而已知X是可行解,故X又是基可行解。
若k<m,由于A的秩为m,比可从A中再挑出m-k个列向 量,与P1,P2,…,Pk ,一起构成一个线性无关极大组,即 为一个基,由此可知X是基可行解。
定义1.7:设集合S是n维欧式空间En中的闭凸 集,d是En中的非零向量。如果对于S的每 个点X,以及一切非负的数λ,都有
X+λd∈S,λ≥0
则称向量d是凸集S的一个方向。如果d1, d2是S的方向,且d1≠αd2, ∀ α>0,则d1, d2是两个不同的方向。
进一步,如果d是凸集S的一个方向,且 不能表示为S的另外两个不同的方向的正组 合,则称d是S的一个极方向。
约定A是行满秩的m行n列矩阵。
2、基、基向量、基变量、基本解、基本可 行解、可行基、最优解、最优基
基:矩阵A中一个m阶非奇异子矩阵 基向量:基的列向量 基变量:基向量对应的变量 基本解:非基变量全为零的解
基本可行解:非基变量为零,基变量都大 于等于零的解
可行基:基可行解对应的基 最优解:基本解中使目标函数最大的解 最优基:最优解对应的基
X=λX(1)+(1-λ)X(2)
上式的分量表达形式为 显然,当j>m时,有
x
j
xj
xj1 xj1x j2
1 0

xj2
,
j

1,
2,
,n
m
再由于X(1),X(2)均是可行点,故可推知 xjiPj b,i 1, 2
两式相减,得

最优化方法:第2章 线性规划

最优化方法:第2章 线性规划

Z=CBB-1b+(σm+1,
σm+k ,
xm+1
σn
)
CB B-1b+σ m+k
xn
因为 m+k 0,故当λ→+∞时,Z→+∞。
用初等变换求改进了的基本可行解
假设B是线性规划 maxZ=CX,AX=b,X 0的可行基,则
AX=b
(BN)
XB XN
b
(I,B-1 N)
➢ 若在化标准形式前,m个约束方程都是“≤”的形式, 那么在化标准形时只需在一个约束不等式左端都加上一个松弛变 量xn+i (i=12…m)。
➢ 若在化标准形式前,约束方程中有“≥”不等式, 那么在化标准形时除了在方程式左端减去剩余变量使不等式变 成等式以外,还必须在左端再加上一个非负新变量,称为 人工变量.
单纯形法简介
考虑到如下线性规划问题 maxZ=CX AX=b X 0
其中A一个m×n矩阵,且秩为m,b总可以被调整为一 个m维非负列向量,C为n维行向量,X为n维列向量。
根据线性规划基本定理: 如果可行域D={ X∈Rn / AX=b,X≥0}非空有界, 则D上的最优目标函数值Z=CX一定可以在D的一个顶 点上达到。 这个重要的定理启发了Dantzig的单纯形法, 即将寻优的目标集中在D的各个顶点上。
非基变量所对应的价值系数子向量。
要判定 Z=CBB-1b 是否已经达到最大值,只需将
XB =B-1b-B-1NX N 代入目标函数,使目标函数用非基变量
表示,即:
Z=CX=(CBCN
)
XB XN
=CBXB +CNXN =CB (B-1b-B-1NXN )+CNXN

第一章_线性规划

第一章_线性规划

第 一 节 线性规划问题及其数学模型
一、线性规划问题的数学模型
线性规划问题主要解决以下两类问题: 1、任务确定后,如何统筹安排,做到应用尽量少的人 力和物力资源来完成任务; 2、在一定量的人力、物力资源的条件下,如何安排、 使用他们,使完成的任务最多。
在生产管理和经济活动中,经常会遇到线性规划问 题,如何利用线性规划的方法来进行分析,下面举例 来加以说明。
表1-2
成分
产品来源
分析:很明显,该厂可以有多种不同的方案从A,B 两处采购原油,但最优方案应是使购买成本最小的一 个,即在满足供应合同单位的前提下,使成本最小的 一个采购方案。
解:设分别表示从A,B两处采购的原油量(单位:万 吨),建立的数学模型为:
m in S 200 x1 290 x2
3. 若存在无非负要求的变量。即有某一个变 量 xj 取正值或负值都可以。这时为了满足标准型 对变量的非负要求,可令 xj = xjˊ- xj〞, 其中: xjˊ、 xj〞 0 ,由于xjˊ可能大于也可能小于xj〞,故 xj 可以为正也可以为负。
上述的标准型具有如下特点: (1)目标函数求最大值; (2)所求的变量都要求是非负的; (3)所有的约束条件都是等式; (4)常数项非负。 综合以上的讨论可以说明任何形式的线
max Z x1 2x2 3x4 3x5 0x6 0x7
x1 x2 x4 x5 x6 7
x13x1x2
x4 x2
x5 2x4
x7 2 2x5 5
x1, x2, x4, , x7 0
第二节 线性规划问题的图解法及几何意义
例1-1:(计划安排问题)某工厂在计划期内安排 生产Ⅰ、Ⅱ两种产品,已知生产单位产品所占用的 设备A、B的台时、原材料的消耗及两种产品每件 可获利润见表所示:

线性规划问题的图解法

线性规划问题的图解法
bm 0 1 am ,m 1 amn m
j
0 0 j c j c i a ij
bi 其中: i a kj 0 a kj
单纯形法的计算步骤
例1.8 用单纯形法求下列线性规划的最优解
max Z 3 x1 4 x 2 2 x1 x 2 40 x1 3 x 2 30 x , x 0 1 2
A
0
E
| 5
| 6
| 7
| 8
| 9
x1
图解法
9— 8—
目标函数 Max Z = 2x1 + 3x2
约束条件 x1 + 2x2 8
4x1 16 4x2 12 x1、 x2 0
x2
7—
6— 5—
4x1 16
C 4 x2 16
4 —B
3— 2— 1—
D
| 1 | 2 | 3 | 4
4—
3— 2— 1— 0
x1
图解法
9— 8—
目标函数 Max Z = 2x1 + 3x2
约束条件 x1 + 2x2 8
4x1 16 4x2 12 x1、 x2 0
x2
7—
6— 5—
4x1 16 4 x2 12 x1 + 2x2 8
4—
3— 2— 1— 0
可行域
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
x2
X1 + 1.9X2 = 11.4 (≤)
8=5X1+4X2 此点是唯一最优解 ( 0, 2)
D
43=5X1+4X2
可行域

运筹学课程讲义

运筹学课程讲义

运筹学课程讲义第一部分线性规划第一章线性规划的基本性质1.1 线性规划的数学模型一、线性规划问题的特点胜利家具厂生产桌子和椅子两种家具。

桌子售价50 元/个,椅子售价30 元/个。

生产桌子和椅子需木工和油漆工两种工种。

生产一个桌子需要木工4 小时,油漆工2小时。

生产一个椅子需要木工3 小时,油漆工1 小时。

该厂每月可用木工工时为120 小时,油漆工工时为50 小时。

问该厂如何组织生产才能使每月的销售收入最大?max z 50x1 30x24x1 3x2 1202x1 x2 50x1,x2 0 例:某工厂生产某一种型号的机床。

每台机床上需要 2.9m、2.1m、1.5m的轴,分别为1根、2根和1根。

这些轴需用同一种圆钢制作,圆钢的长度为74m。

如果要生产100台机床,问应如何安排下料,才能用料最省?二、数学模型的标准型1. 繁写形式2. 缩写形式3. 向量形式4. 矩阵形式若原模型中变量 x j 有上下界,如何化为非负变量?三、 任一模型如何化为标准型?1. 若原模型要求目标函数实现最大化,如何将其化为最小化问题?2. 若原模型中约束条件为不等式,如何化为等式?3. 若原模型中变量 x k 是自由变量,如何化为非负变量?1. 2 图解法该法简单直观,平面作图适于求解二维问题。

使用该法求解线性规划问题时,不必把原模型化为标准型。

一、 图解法步骤1. 由全部约束条件作图求出可行域2. 作出一条目标函数的等值线3. 平移目标函数等值线,作图求解最优点,再算出最优值 max z 5x 1 6x 2 7x 3x 1 5x 23x 3 15 5x 1 6x 210x 3 20 x 1 x 2 x 3 5x 1 0,x 2 0,x 3无约束令 x 1' x 1,x 3 x 3' x 3'',x 3' ,x 3'' 0, Z 1Z ' 1 1 min z ' 5x 1' 6x 2 7x 3' 7x 3'' 0x 5 Mx 6 1 x 1' 5x 2 1 11 3x 3' 3x 3'' x 4 x 6 15 1 5x 1' 6x 2 10x 3' 10x 3'' x 5 20 1 x ' x 1 ' II '' 54.Mx 7 x 1, x 2 , x 3, x 3, x 4 , x 5 ,x 6, x 7 0从图解法看线性规划问题解的几种情况1. 有唯一最优解2. 有无穷多组最优解3. 无可行解4. 无有限最优解(无界解)min z 6x1 4x?2x〔X2 13 最优解(1,0),最优值33x14x2 22x1, x20直观结论:1)线性规划问题的可行域为凸集,特殊情况下为无界域(但有有限个顶点)或空集;2)线性规划问题若有最优解,一定可以在其可行域的顶点上得到。

运筹学—104线性规划的基本定理

运筹学—104线性规划的基本定理

0
1
信息系刘康泽
由线性代数知,基矩阵B必为非奇异矩阵并且 | B |≠0。当 矩阵B的行列式等式零,即 | B |=0 时就不是基。
例如:B10
5 10
1
2
,
B10
0 , B10不是基。
2、基向量: 当确定某一矩阵为基矩阵时,则基矩阵对应
的列向量称为 基向量,其余列向量称为非基向量。
m
n

Pj x j b Pj x j
j 1
i m1
m
令非基变量为0,则
Pj x j b
j 1
利用克莱姆法则可得一个基解:x (x1, x2, , xm,0, ,0)T
这个解的非零分量的个数不大于方程个数 m.
x1
特别的: 若
x2
a1m1xm1 a2m1xm1
xm amm1xm1
【注3】若K,L都是凸集,则 K L 也是凸集。
K L { x | x , K , L}
【注4】若K,L都是凸集,则 K L 不一定是凸集。
K
不是凸集
L
信息系刘康泽
2、凸组合:设 x , x(1) , x(2) , , x(K ) 是 Rn 中的点,若
K
存在1,2, K ,且 i 1 ,i 0,使得: i 1 K x i xi 1x1 2 x2 K xK i 1
(它不超过 Cnm个),
【推论1】 若LP问题的可行解集非空且有界,则最 优解一定可以在可行解域的极点达到。
若可行解集无界,则LP问题可能有最优解,也可能 没有最优解。
【推论2】若LP问题的最优解在可行解域的 t 个极点 达到,则在这些极点的凸组合上也达到最优解。
信息系刘康泽

第1章 线性规划问题

第1章  线性规划问题

7连续加工问题
一工厂在第一车间用一单位M可加工成3单位产品 A,2单位产品B,A可以按每单位售价8元出售, 也可以在第二车间继续加工,每单位生产费用增 加6元,加工后每单位售价为16元;B可以按每 单位售价7元出售,也可以在第三车间继续加工, 每单位生产费用增加4元,加工后每单位售价为 12元.原料M的单位购入价为2元。上述生产费用 不包括工资在内.三个车间每月最多有20万工时, 每工时工资0.5元.每加工一单位M需1.5工时,如 A继续加工,每单位需3工时;如B继续加工,每 单位需1工时。每月最多能得到的原料M为10万 单位。问如何安排生产,使工厂获利最大?
23





三、线性规划标准型及解的概念
• 线性规划的一般形式 max (min) z = c1 x1 + c2 x2 + … + cn xn s.t. a11 x1 + a12 x2 + … + a1n xn ≤ ( =, ≥ )b1 a21 x1 + a22 x2 + … + a2n xn ≤ ( =, ≥ )b2
xj 0
x j ; j 1,2,...,n
c (c1 , c 2 , , c n )
( j 1,2, , n)
为待定的决策变量,
为价值向量, c j ; j 1, 2,...,n 为价值系数,
b ( b1 , b 2 ,...,b m ) 为右端向量,
矩阵
a 11 a 21 A a m1 a 12 a 22 am2 a mn a1n a 2n
线性规划理论与模型应用
授课人 葛金辉

线性规划的基本定理

线性规划的基本定理

01
最优极点 观察上例,最优解在极点(15,2.5)达到,我们 现在来证明这一事实:线性规划若存在最优解, 则最优解一定可在某极点上达到.
பைடு நூலகம்02
3.线性规划的基本性质
3.线性规划的基本性质
根据表示定理,任意可行点x可表示为
考察线性规划的标准形式(3. 2)
3.线性规划的基本性质
把x的表达式代入(3. 2),得等价的线性规划:
3.线性规划的基本性质
称为一组可行基.
B b>0,称基本可行解是非退化的,若
-

B b0,
-
且至少有一个分量为0,称基本可行解是退化的.
3.线性规划的基本性质
3.线性规划的基本性质
3.线性规划的基本性质
3.线性规划的基本性质
容易知道,基矩阵的个数是有限的,因此基本解从而基本可行解的个数也是有限的, 不超过
3.线性规划的基本性质
证明: (提纲) 设x是K的极点,则x是Ax=b,x0的基本可行解. 设x是Ax=b,x0的基本可行解,则x是K的极点.
定理3. 3 令K={x| Ax=b,x0},A是m×n矩阵,r(A)=m 则K的极点集与Ax=b,x0的基本可行解集合等价.
3.线性规划的基本性质
,先证极点x的正分量所对应的A的列线性无关.
3.线性规划的基本性质
于是,问题简化成
在(3.6)中令
1
显然,当
2
时目标函数取极小值.
3
3.线性规划的基本性质
3.线性规划的基本性质
(p)
x
因此极点
是问题(3.2)的最优解.
即(3.5)和(3.8)是(3.4)的最优解,此时
3.线性规划的基本性质

§1.3 线性规划的基本概念和基本定理

§1.3 线性规划的基本概念和基本定理
p16-5
6. 基变量 —— 与基向量相对应的变量, 共有m个. 7. 非基变量 ——与非基向量相对应的变量,ห้องสมุดไป่ตู้共有n-m个.
p16-1
§3 线性规划的基本概念与基本定理
一、线性规划问题的基与解
设有标准型:
AX b X O min z CX (1 1 ) (1 2 ) (1 3 )
运筹学
运筹学
1. 可行解 —— 满足约束条件(1-1)(1-2)的解. 2. 最优解 —— 满足(1-3)式的可行解.
3. 基 —— 设r(Amn)=m , 若B是A的mm非奇异矩阵, 则称
B是线性规划问题的一个基. 4. 基向量 —— 基B的每一列向量, 共有m个.
5. 非基向量 ——A的不属于B的每一列向量, 共有n-m个.
min z x 1 x 2 x 3 s .t . x 1 3 x 2 x 3 4 x2 x3 x4 8 x j 0 , j 1, ,4
p16-3
运筹学
3. 基 —— 设r(Amn)=m , 若B是A的mm非奇异矩阵, 则称 B是线性规划问题的一个基. 4. 基向量 — 基B的每一列向量, 共有m个. 5. 非基向量 —A的不属于B的每一列向量, 共有n-m个. 6. 基变量 — 与基向量相对应的变量, 共有m个. 7. 非基变量 —与非基向量相对应的变量, 共有n-m个. 8. 基本解 — 令所有非基变量=0, 求出的满足约束条件(1-1)的解. 9. 基本可行解 — 满足约束条件(1-2)的基本解. 10. 最优基本可行解 — 满足约束条件(1-3)的基本可行解.
3. 基 —— 设r(Amn)=m , 若B是A的mm非奇异矩阵, 则称 B是线性规划问题的一个基. 4. 基向量 — 基B的每一列向量, 共有m个. 5. 非基向量 —A的不属于B的每一列向量, 共有n-m个. 6. 基变量 — 与基向量相对应的变量, 共有m个. 7. 非基变量 —与非基向量相对应的变量, 共有n-m个. 8. 基本解 — 令所有非基变量=0, 求出的满足约束条件(1-1)的解. 9. 基本可行解 — 满足约束条件(1-2)的基本解. 10. 最优基本可行解 — 满足约束条件(1-3)的基本可行解. 例 找出所有基本解, 并指出其 中的基本可行解和最优解.

第一章 线性规划

第一章 线性规划
对于标准形式的线性规划问题若约束方程系数矩阵中不存在现成的初始可行基则不能简单的用上述单纯形法而通常采用所谓的人工变量法
第一章 线性规划
(Linear Programming, LP)
概述
• 线性规划问题的提出最早是1939年由前苏联 数学家康托洛维奇在研究铁路运输的组织问题、 工业生产的管理问题时提出来的。
(5)若bi < 0,则-bi > 0
举例: 化下列线性规划为标准形
max z=2x1+2x2-4x3 x1 + 3x2-3x3 ≥30 x1 + 2x2-4x3≤80 x1、x2≥0,x3无限制
max z=2x1+2x2-4x3’+4x3” x1 + 3x2-3x3’+3x3” –x4 = 30 x1 + 2x2-4x3+ 4x3” + x5 = 80 x1、x2 、x3’、x3” 、x4、x5 ≥0
称X0为该线性规划对应与基B的一个基本解。
同样,在A中任选m个线性无关的列向量都可以组成一个基, 对应基一个基本解。对于一个LP最多有多少呢?从n个中 选m个进行组合,即:
Cnm=n!/[(n-m)!m!] 因此,基本解是有限的。
举例:找出下列LP所有的基及其对应的基本解 max z=6x1+4x2 2x1 + 3x2≤100 4x1 + 2x2≤120 x1、x2≥0
资源
产品

乙 资源限制
A
1
B
2
C
0
单位产品利润(元/件) 50
1
300kg
1
400kg
1
250kg
100
• 决策变量:x1、x2——分别代表甲、乙两

farkas定理

farkas定理

farkas定理
Farkas定理,也被称为Farkas引理或Farkas定理,是线性规划和凸几何中的一个基本结果。

它是以匈牙利数学家Gyula Farkas的名字命名的。

Farkas定理建立了一个线性不等式系统存在解的必要和充分条件。

该引理可以表述如下:
考虑一个线性不等式系统:
A*x ≤b
其中A是一个m×n的矩阵,x是一个n维向量,b是一个m维向量。

Farkas定理指出,以下两个条件中必定成立一个:
1. 存在一个向量x满足不等式系统A*x ≤b。

2. 存在一个向量y,使得y非负(y ≥0),且y^T * A = 0,但y^T * b < 0。

简单来说,Farkas定理告诉我们,线性不等式系统要么是可行的(存在解),要么存在一个不可行的证明(一个向量y),证明该系统无解。

这个证明向量满足y^T * A = 0且y^T * b < 0,表示该不等式系统无解。

Farkas定理在数学、优化理论和经济学等领域具有重要的应用,特别是在线性规划和凸分析中。

它为研究线性规划的可行性和最优性提供了强大的工具,广泛应用于运筹学、博弈论和计算机科学等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时目标函数取极小值.
3.线性规划的基本性质
即(3.5)和(3.8)是(3.4)的最优解,此时
cx (cx(i)) i (cd(i))i
i=1 k i=1 k来自kt (cx(i)) i (cx(p )) i
i=1 i=1
=cx(p )
因此极点 x(p) 是问题(3.2)的最优解.
3.线性规划的基本性质
定理3.2 设线性规划(3.2)的可行域非空,则 1,(3. 2)存在最优解的充要条件是所有 cd(j) 非负,其中 d
(j)
是可行域的极方向
2,若(3. 2)存在有限最优解,则目标数的最优值 可在某极点达到.
3.线性规划的基本性质
• 3最优基本可行解
前面讨论知道们最优解可在极点达到,而极点 是一几何概念,下面从代数的角度来考虑。
Min 3x +2.5y s.t. 2x + 4y 40 3x + 2y 50 x, y 0.
3.线性规划的基本性质
y 50 40 30 3x+2y50 20 10 2x+4y40 0 3x +2.5y 可行区域的极点: (0, 25) (15, 2.5) 最优解
(20, 0)
(15, 2.5)
其中A是mn矩阵,c是n维行向量, b是m维列 向量。
评注:为计算需要,一般假设b0.否则,可在 方程两端乘以(-1)即可化为非负。
3.线性规划的基本性质
任意非标准形式均可划为标准形式,如
min c1x1 c 2 x 2 ... c n x n s.t. a11x1 a12 x 2 ... a1n x n b1 a 21x1 a 22 x 2 ... a 2n x n b2 ............................... a m1x1 a m2 x 2 ... a mn x n bm x j 0, j 1, 2,...n
10 20 30 40 50 x
3.线性规划的基本性质
• 2 基本性质
– 2.1 线性规划的可行域
定理 3.1 线性规划的可行域是凸集.
– 2.2 最优极点
观察上例,最优解在极点(15,2.5)达到,我们 现在来证明这一事实:线性规划若存在最优解, 则最优解一定可在某极点上达到.
3.线性规划的基本性质
min cx s.t. Ax b, x 0, i=1,2,...m (3.2)
不失一般性,设rank(A)=m,A=[B,N],B是m阶可逆的.

xB x xN
x B的分量与B中列对应; x N的分量与N中列对应
3.线性规划的基本性质
于是,Ax=b可写为 xB (B, N) b xN
即 Bx B Nx N b (3.9)
于是
x B B-1b B-1Nx N
x B B-1b x xN 0
特别的令 x N=0,则
(3.10)
3.线性规划的基本性质
定义3.1
x B B-1b x x N 0 称为方程组Ax=b的一个基本解.
又x (x1 , x 2 ,..., x s ,0,0,...,0) T 是K的极点, 所以满足 Ax b, x 0, 于是 x1p1 x 2 p 2 ... x s ps 0ps 1 ... 0p m b 即 Bx B b, 且 x B B1b 0 xB xB 从而x 是基本可行解 xN 0
3.线性规划的基本性质
1, 若有某j, 使得cd(j) 0, 则有 cd(j) j ( j ) 从而问题的目标函数值可以无限小( )。 此时我们称该问题是无界的或不存在有限最优解。
2, 若对任意的j, 有cd (j) 0, 则为极小化目标函数, 必有 j=0,j=, ..t ( 5) 1 2, .,. 3.
j1 j1
s
同理 Ax (2) b
从而当 >0充分小, 有x (1) x (2)是可行点, 1 (1) 但我们又有x= (x x (2) ).此与x为极点相矛盾. 2
3.线性规划的基本性质
于是, p1 , p 2 ,..., ps线性无关,s m r(A), 从而可将其 扩充为A的一组基, 记做B (p1 , p 2 ,..., p s , p s 1,..., p m ). 我们得到可逆阵B
于是,问题简化成
3.线性规划的基本性质
min (cx(i)) i
i 1 = k k
(3.6)

i 1 =
i
1
在(3.6)中令 显然,当
i 0, i 1,2,..., k
cx(p ) min cx (i)
1i k
(3.7)
p 1, j 0, j p
(3.8)
i 0, i 1,2,..., k i 0, i 1,2,..., t.
3.线性规划的基本性质
把x的表达式代入(3. 2),得等价的线性规划:
min (cx(i)) i (cd(i))i
i=1 i=1 k t
(3.4)

i=1
k
i
1
i 0, i 1,2,..., k i 0, i 1,2,..., t.
3.线性规划的基本性质
2)设x是Ax=b,x0的基本可行解,记
xB xB x 0 xN 0
假设存在两点x (1) ,x (2) 及某 (0,1), 使得 x x (1) +(1 )x (2) (1) (2) x B (2) x B (1) 记 x (1) , x ( 2 ) . x x N N (1) (2) -1 xB xB B b 则 (1) (1 ) ( 2 ) . x x 0 N N
3.线性规划的基本性质
若某变量xj无非负限制,则引入xj = xj ' - xj ' ' ,
xj ', xj ' ' 0 若有上下界限制,比如xj lj, 令xj ' = xj - lj, , 有 xj ' 0
3.线性规划的基本性质
– 1.2. 图解法 当自变量个数少于3时,我们可以用较简便的 方法求解。 例如,考虑食谱问题
于是,容易知道,A仅有两个一元矩阵(1)从而得所有 1 0 的基本解为x = , x = , 它们都是基本可行解. 0 1
3.线性规划的基本性质
例2, 求出约束为 x1 +x2 +x3 =1 x1 -x2 1/ 2 的所有基本可行解. x ,x , x 0 1 2 3
1)设x是K的极点,则x是Ax=b,x0的基本可行解.
2)设x是Ax=b,x0的基本可行解,则x是K的极点.
3.线性规划的基本性质
1),先证极点x的正分量所对应的A的列线性无关.
设x (x1 , x 2 ,..., x s ,0,0,...,0) T , 其中x j 0, j 1, 2,...s, 记 A (p1 , p 2 ,..., ps , ps1 , ps2 ,..., p n ) 设x1 , x 2 ,..., x s所对应的列为p1 , p 2 ,..., ps .假设p1, p 2 ,..., p s
线性相关, 则存在一组不全为零的数 j , j 1, 2,..,s使得
p
j1 j
s
j
0
记x j
(1)
x j j , j 1, 2,..,s x j j , j 1, 2,..,s (2) , xj 0, j s 1, 2,..., n 0, j s 1, 2,..., n
1
从而不是基本可行解.
3.线性规划的基本性质
• 容易知道,基矩阵的个数是有限的,因此基本解 从而基本可行解的个数也是有限的, 不超过 n n! m m!(n m)!
(0,1)
x1 +x2 +x3 =1
(1,0)
基本可行解
极点
3.线性规划的基本性质
定理3. 3 令K={x| Ax=b,x0},A是m×n矩阵,r(A)=m 则K的极点集与Ax=b,x0的基本可行解集合等价. 证明: (提纲)
1 1 解:A 1 1 1 1 B1 ,B2 1 1
1 1 ,b 1/ 2 0 1 1 1 1 ,B3 1 0 均可逆. 1 0
3.线性规划的基本性质
1/ 2 1/ 2 B 1/ 2 1/ 2 1/ 2 1/ 2 1 3/ 4 1 1 x B1 b 1/ 2 1/ 4 0 1/ 2 1/ 2 0 1 1 B2 1 1
3.线性规划的基本性质
由于x j 0, j 1, 2,..,s故可取充分小的 >0,使得 x j(1) 0, x j(2) 0, j 1, 2,..,s
则 Ax (1) x j p j (x j j )p j
(1)
n
n
j1
j1 s
x jp j jp j b
B称为基矩阵, xB 的各分量称为基变量. 基变量的全体x B1 , x B2 ,..., x Bm 称为一组基.
又若B1b 0, 则称
xN 的各分量称为基变量.
x B B-1b x xN 0
为约束条件Ax=b,x0的一个基本可行解. B称为 可行基矩阵
相关文档
最新文档