线性规划的基本定理
1-线性规划的基本性质
域 F中有一组不全为 0的数 ai (i 1,2, , m) 使 a1P1 a2P2 L amPm 0
成立,则称这组向量在 F上线性相关,否则称 这组向量在 F上线性无关。
37
基本概念与基本定理
2. 秩:
设A是m n矩阵。若A的n个列向量中有r个线
日销量
产品
B1=3
A1=5
4
A2=7
1
A3=8
7
B2=4
11 9 4
B3=5 B4=8
3
10
2
8
10
5
6
线性规划的数学模型
设从生产点i到销售点j的调运数量为 xij 吨,
则目标函mi数n z为: 4x11 11x12 3xm13inz10x41x41111x12 3x13 10x14
min z x42x111911xx2212 23xx1233108xx1244x721x391 x224x232x23 8x24 7x31 4x32
39
基本概念与基本定理
线性规划的基本概念:
1. 可行解:满足上述约束条件(1.3.1)和 (1.3.2)的解。
2. 最优解:满足上述约束条件(1.3.3)的
可行解。 AX b
(1.3.1)
X 0
(1.3.2)
min z CX (1.3.3)
40
基本概念与基本定理
3. 基:已知A是约束条件的m n 系数矩阵, 其秩为m。若B是A中 mm非奇异子矩阵 (即可逆矩阵,有 B 0 ),则称B是线性 规划问题的一个基,B是由A中m个线性 无关的系数列向量组成的。
2. 若原模型中约束条件为不等式,如何化为 等式:
线性规划的基本定理-最优化方法
j 1
j 1
现构造两个点X(1),X(2),使满足
X(1)=(x1+αλ1,…, xk+αλk ,0,…,0)T X(2)=(x1-αλ1,…, xk-αλk ,0,…,0)T
线性规划解的基本定理
定理2:设X是可行域D的极点,那么,X最多有m个 正分量。
证明:设X=(x1,···xk,0,···,0)T,若k>m,由
z=λx+(1-λ)y
这说明当0 ≤ λ ≤1 时,λx+(1λ)y 表示以x.y为端点的直线段上的所 有点,因而它代表以 x.y为端点的直线 段。
一般地,如果x.y是n维欧氏空间Rn中的两点,则 有如下定义:
如果 x=(x1…xn)T,y=(y1…yn)T是Rn中任意两点,定 义z=λx+(1-λ)y(0≤λ≤1),z=(z1…zn)T 的点 所构成的集合为以x,y为端点的线段,对应λ=0, λ=1的点 x, y叫做这线段的端点,而对应 0<λ<1的点叫做这线段的内点。
表明X不是D的极点,与已知条件矛盾,故k≤m。
线性规划解的基本定理
定理1.4:对标准形式的线性规划,基可行解与可行 域的极点一一对应。
证明:首先证明极点必是基可行解。设X是极点, 由定理1.3,可设X=(x1,…xk,0,…,0)T xj>0,k≤m 若X不是基可行解,由定理1.2,向P1,P2,…,Pk应 线性相关。仿照定理1.3的证明过程,可推导出X 不是极点,与已知条件矛盾。故可知X是基可行解。
其次证明充分性。设X的正分量为x1,x2,…,xk,其对 应的列向量P1,P2,…,Pk线性无关。显然k≤m。
若k=m,则P1,P2,…,Pk可用来构成一个基,所 以X是基本解。而已知X是可行解,故X又是基可行 解。
运筹学基础-对偶线性规划(2)
用单纯形法同时求解原问题和对偶问题
原问题是:
maxZ=2x1 +x2 5x2 ≤15 6x1 + 2x2 ≤ 24 x1 + x2 ≤ 5 x1 , x2 ≥0
5x2 +x3 =15 6x1 + 2x2 +x4 = 24 x1 + x2 +x5 = 5 xi ≥0
原问题的标准型是:maxZ=2x1 +x2+0x3+0x4 +0x5
b
15 24 5 0
x1 0 6 1 2
比 值
-
24/6=4
5/1=5
检验数j
对偶问题剩余变量 y4、y5
对偶问题变量 y1、y2 、y3
检验数行的- (cj-zj)值是其对偶问题的一个基本解yi ;
原问题变量
0 2
原问题松驰变量
1 0 0 0 0 1/6 -1/6 -1/3 0 0 1 0
3
x3 x1
x2 1 检验数j= cj-zj
-1/4 -1/2
对偶问题剩余变量 y4、y5
对偶问题变量 y1、y2 、y3
此时得原问题最优解:X*=(7/2,3/2,15/2,0,0)T,Z*=17/2 则对偶问题最优解:Y*=(0,1/4,1/2,0,0)T,S*=17/2
又例:用单纯形法同时求解原问题和对偶问题
定理6(互补松弛定理)
在线性规划问题的最优解中,如果对应某一约束条件的 对偶变量值为非零,则该约束条件取严格等式;反之如果约 束条件取严格不等式,则其对应的对偶变量一定为零。
注:证明过程参见教材59页性质5证明
讨论:
互补松弛定理也称松紧定理,它描述了线性规划达到最
线性规划标准型以及定义
0
B6
2
1
B7
2
0 B8 6 1 B9 0 1
解的定义
2x1 x2 x3 x4 3 例: x1 x2 x3 x5 2
xi 0
解:A=
2 1
-1 -1
-1 1
-1 0
0 -1
P1
P2
min Z 2 x1 x2 3 x3
5 x1 x2 x3 7
x1 x2 4 x3 2 3 x1 x2 2 x3 5
x1 , x2 0, x3无约束
解:(1)因为x3无符号要求 ,即x3取正值也可取负值,标准 型中要求变量非负,所以
解的定义
B4 P1
P5
=
2 1
0 -1
非奇异,
B31b
1 2
1 1
0 3
-2
2
1 2
3 -1
,
解
3 2
0
0
0
-
1 2
T
是基解,但非基可行解。
解的定义
类似可得所有基解。 代入目标函数,通过比较可得最优解。
思考: 线性规划的基解最多有多少个?基可行解呢?
可 行 解
非可行解
基解
基可行解
例1.4 求线性规划问题的所有基矩阵。
max Z 4 x1 2x2 x3
5x110x1x2
x3 x4 3 6x2 2x3 x5
2
x
第2章 线性规划
目标函数下降
MAXZ=4X1-3X2 S.T. X1+2X210 X16 X24 X11 X1,X20
X2=4
B A
目标函数上升
C
X2 0
E
D
X1 X1=6
4X1-3X2=0
X1=1
对解的讨论: .唯一解 .无穷解 .无解: 可行域空集 可行域无界
X2 X1+2X2=10 X2=4
X1 0
a11 a12 a1n 约束方程组 A P1 , P2 , Pn 系数矩阵 a m1 a m 2 a mn
A为m ×n矩阵( m为约束方程个数,n为变量个数)
a11 a12 a1n A P1 , P2 , Pn a m1 a m 2 a mn
消除负的右端常数项
MAXZ=-X1-3(X3-X4) S.T. 6X1+7(X3-X4)8 X1-3(X3-X4) ≥6 X1-(X3-X4)=3 X1、X3、X4 0
约束方程还不是等式约束
人为添加变量,成为等式约束
对于“≤”约束,添加松弛变量 对于“≥”约束,添加剩余变量
6X1=5X1+3X2 S.T. 3X1+5X215
max Z 5 x1 3 x 2 3 x1 5 x 2 x 3 15 5 x1 3 x 2 x 4 10 x1 , x 2 , x 3 , x 4 0
5X1+2X210
X1,X20
2、给出基本可行解
• 6.基本可行解:满足非负条件
对于D1 ,基变量为X4、X5,X1、X2、X3为非基变量,令 X1、X2、X3=0, X4 = 8、X5 = 1 对于D2 ,基变量为X1、X2,X3、X4、X5为非基变量,令 X3、X4、X5 =0, X1 = -13/4 、X2=15/4
2 线性规划
第一节 线性规划问题及其数学模型
可加性假定:每个决策变量对目标函数和约
束方程的影响是独立于其他变量的,目标函 数值是每个决策变量对目标函数贡献的总和 连续性假定:线性规划问题中的决策变量应 取连续值。 确定性假定:线性规划问题中的所有参数都 是确定的参数。线性规划问题不包含随机因 素。
约 束 方 程
约束条件
变量约束
第一节 线性规划问题及其数学模型
线性规划问题隐含的假定: 比例性假定 可加性假定 连续性假定 确定性假定
比例性假定:决策变量变化引起的目标函数
的改变量和决策变量的改变量成比例,同样, 每个决策变量的变化引起约束方程左端值的 改变量和该变量的改变量成比例
≥0
=
≥0
第一节 线性规划问题及其数学模型
标准型的简缩形式
max Z
c x
j j 1
n
j
s .t
n aij x j bi , i 1,2 , , m j 1 x j 0 , i 1,2 , , m
第一节 线性规划问题及其数学模型
或
松弛变量
a i 1 x 1 a i 2 x 2 a in x n bi
a i 1 x1 a i 2 x 2 a in x n x p bi , x p 0
剩余变量
练习
例:将下列线性规划问题划为标准形式: min Z = x1+3x2
s.t.
6x1+7x28 -x1+3x2-6 x1-x2=3 x10
可行域无界
x1+2x2 10 x2 0 x1
可行域无界
x2
x1 0
最优化方法-线性规划的基本定理
若k=m,则P1,P2,…,Pk可用来构成一个基,所以X是基 本解。而已知X是可行解,故X又是基可行解。
若k<m,由于A的秩为m,比可从A中再挑出m-k个列向 量,与P1,P2,…,Pk ,一起构成一个线性无关极大组,即 为一个基,由此可知X是基可行解。
定义1.7:设集合S是n维欧式空间En中的闭凸 集,d是En中的非零向量。如果对于S的每 个点X,以及一切非负的数λ,都有
X+λd∈S,λ≥0
则称向量d是凸集S的一个方向。如果d1, d2是S的方向,且d1≠αd2, ∀ α>0,则d1, d2是两个不同的方向。
进一步,如果d是凸集S的一个方向,且 不能表示为S的另外两个不同的方向的正组 合,则称d是S的一个极方向。
约定A是行满秩的m行n列矩阵。
2、基、基向量、基变量、基本解、基本可 行解、可行基、最优解、最优基
基:矩阵A中一个m阶非奇异子矩阵 基向量:基的列向量 基变量:基向量对应的变量 基本解:非基变量全为零的解
基本可行解:非基变量为零,基变量都大 于等于零的解
可行基:基可行解对应的基 最优解:基本解中使目标函数最大的解 最优基:最优解对应的基
X=λX(1)+(1-λ)X(2)
上式的分量表达形式为 显然,当j>m时,有
x
j
xj
xj1 xj1x j2
1 0
xj2
,
j
1,
2,
,n
m
再由于X(1),X(2)均是可行点,故可推知 xjiPj b,i 1, 2
两式相减,得
最优化方法:第2章 线性规划
Z=CBB-1b+(σm+1,
σm+k ,
xm+1
σn
)
CB B-1b+σ m+k
xn
因为 m+k 0,故当λ→+∞时,Z→+∞。
用初等变换求改进了的基本可行解
假设B是线性规划 maxZ=CX,AX=b,X 0的可行基,则
AX=b
(BN)
XB XN
b
(I,B-1 N)
➢ 若在化标准形式前,m个约束方程都是“≤”的形式, 那么在化标准形时只需在一个约束不等式左端都加上一个松弛变 量xn+i (i=12…m)。
➢ 若在化标准形式前,约束方程中有“≥”不等式, 那么在化标准形时除了在方程式左端减去剩余变量使不等式变 成等式以外,还必须在左端再加上一个非负新变量,称为 人工变量.
单纯形法简介
考虑到如下线性规划问题 maxZ=CX AX=b X 0
其中A一个m×n矩阵,且秩为m,b总可以被调整为一 个m维非负列向量,C为n维行向量,X为n维列向量。
根据线性规划基本定理: 如果可行域D={ X∈Rn / AX=b,X≥0}非空有界, 则D上的最优目标函数值Z=CX一定可以在D的一个顶 点上达到。 这个重要的定理启发了Dantzig的单纯形法, 即将寻优的目标集中在D的各个顶点上。
非基变量所对应的价值系数子向量。
要判定 Z=CBB-1b 是否已经达到最大值,只需将
XB =B-1b-B-1NX N 代入目标函数,使目标函数用非基变量
表示,即:
Z=CX=(CBCN
)
XB XN
=CBXB +CNXN =CB (B-1b-B-1NXN )+CNXN
第一章_线性规划
第 一 节 线性规划问题及其数学模型
一、线性规划问题的数学模型
线性规划问题主要解决以下两类问题: 1、任务确定后,如何统筹安排,做到应用尽量少的人 力和物力资源来完成任务; 2、在一定量的人力、物力资源的条件下,如何安排、 使用他们,使完成的任务最多。
在生产管理和经济活动中,经常会遇到线性规划问 题,如何利用线性规划的方法来进行分析,下面举例 来加以说明。
表1-2
成分
产品来源
分析:很明显,该厂可以有多种不同的方案从A,B 两处采购原油,但最优方案应是使购买成本最小的一 个,即在满足供应合同单位的前提下,使成本最小的 一个采购方案。
解:设分别表示从A,B两处采购的原油量(单位:万 吨),建立的数学模型为:
m in S 200 x1 290 x2
3. 若存在无非负要求的变量。即有某一个变 量 xj 取正值或负值都可以。这时为了满足标准型 对变量的非负要求,可令 xj = xjˊ- xj〞, 其中: xjˊ、 xj〞 0 ,由于xjˊ可能大于也可能小于xj〞,故 xj 可以为正也可以为负。
上述的标准型具有如下特点: (1)目标函数求最大值; (2)所求的变量都要求是非负的; (3)所有的约束条件都是等式; (4)常数项非负。 综合以上的讨论可以说明任何形式的线
max Z x1 2x2 3x4 3x5 0x6 0x7
x1 x2 x4 x5 x6 7
x13x1x2
x4 x2
x5 2x4
x7 2 2x5 5
x1, x2, x4, , x7 0
第二节 线性规划问题的图解法及几何意义
例1-1:(计划安排问题)某工厂在计划期内安排 生产Ⅰ、Ⅱ两种产品,已知生产单位产品所占用的 设备A、B的台时、原材料的消耗及两种产品每件 可获利润见表所示:
线性规划问题的图解法
j
0 0 j c j c i a ij
bi 其中: i a kj 0 a kj
单纯形法的计算步骤
例1.8 用单纯形法求下列线性规划的最优解
max Z 3 x1 4 x 2 2 x1 x 2 40 x1 3 x 2 30 x , x 0 1 2
A
0
E
| 5
| 6
| 7
| 8
| 9
x1
图解法
9— 8—
目标函数 Max Z = 2x1 + 3x2
约束条件 x1 + 2x2 8
4x1 16 4x2 12 x1、 x2 0
x2
7—
6— 5—
4x1 16
C 4 x2 16
4 —B
3— 2— 1—
D
| 1 | 2 | 3 | 4
4—
3— 2— 1— 0
x1
图解法
9— 8—
目标函数 Max Z = 2x1 + 3x2
约束条件 x1 + 2x2 8
4x1 16 4x2 12 x1、 x2 0
x2
7—
6— 5—
4x1 16 4 x2 12 x1 + 2x2 8
4—
3— 2— 1— 0
可行域
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
x2
X1 + 1.9X2 = 11.4 (≤)
8=5X1+4X2 此点是唯一最优解 ( 0, 2)
D
43=5X1+4X2
可行域
运筹学课程讲义
运筹学课程讲义第一部分线性规划第一章线性规划的基本性质1.1 线性规划的数学模型一、线性规划问题的特点胜利家具厂生产桌子和椅子两种家具。
桌子售价50 元/个,椅子售价30 元/个。
生产桌子和椅子需木工和油漆工两种工种。
生产一个桌子需要木工4 小时,油漆工2小时。
生产一个椅子需要木工3 小时,油漆工1 小时。
该厂每月可用木工工时为120 小时,油漆工工时为50 小时。
问该厂如何组织生产才能使每月的销售收入最大?max z 50x1 30x24x1 3x2 1202x1 x2 50x1,x2 0 例:某工厂生产某一种型号的机床。
每台机床上需要 2.9m、2.1m、1.5m的轴,分别为1根、2根和1根。
这些轴需用同一种圆钢制作,圆钢的长度为74m。
如果要生产100台机床,问应如何安排下料,才能用料最省?二、数学模型的标准型1. 繁写形式2. 缩写形式3. 向量形式4. 矩阵形式若原模型中变量 x j 有上下界,如何化为非负变量?三、 任一模型如何化为标准型?1. 若原模型要求目标函数实现最大化,如何将其化为最小化问题?2. 若原模型中约束条件为不等式,如何化为等式?3. 若原模型中变量 x k 是自由变量,如何化为非负变量?1. 2 图解法该法简单直观,平面作图适于求解二维问题。
使用该法求解线性规划问题时,不必把原模型化为标准型。
一、 图解法步骤1. 由全部约束条件作图求出可行域2. 作出一条目标函数的等值线3. 平移目标函数等值线,作图求解最优点,再算出最优值 max z 5x 1 6x 2 7x 3x 1 5x 23x 3 15 5x 1 6x 210x 3 20 x 1 x 2 x 3 5x 1 0,x 2 0,x 3无约束令 x 1' x 1,x 3 x 3' x 3'',x 3' ,x 3'' 0, Z 1Z ' 1 1 min z ' 5x 1' 6x 2 7x 3' 7x 3'' 0x 5 Mx 6 1 x 1' 5x 2 1 11 3x 3' 3x 3'' x 4 x 6 15 1 5x 1' 6x 2 10x 3' 10x 3'' x 5 20 1 x ' x 1 ' II '' 54.Mx 7 x 1, x 2 , x 3, x 3, x 4 , x 5 ,x 6, x 7 0从图解法看线性规划问题解的几种情况1. 有唯一最优解2. 有无穷多组最优解3. 无可行解4. 无有限最优解(无界解)min z 6x1 4x?2x〔X2 13 最优解(1,0),最优值33x14x2 22x1, x20直观结论:1)线性规划问题的可行域为凸集,特殊情况下为无界域(但有有限个顶点)或空集;2)线性规划问题若有最优解,一定可以在其可行域的顶点上得到。
运筹学—104线性规划的基本定理
0
1
信息系刘康泽
由线性代数知,基矩阵B必为非奇异矩阵并且 | B |≠0。当 矩阵B的行列式等式零,即 | B |=0 时就不是基。
例如:B10
5 10
1
2
,
B10
0 , B10不是基。
2、基向量: 当确定某一矩阵为基矩阵时,则基矩阵对应
的列向量称为 基向量,其余列向量称为非基向量。
m
n
或
Pj x j b Pj x j
j 1
i m1
m
令非基变量为0,则
Pj x j b
j 1
利用克莱姆法则可得一个基解:x (x1, x2, , xm,0, ,0)T
这个解的非零分量的个数不大于方程个数 m.
x1
特别的: 若
x2
a1m1xm1 a2m1xm1
xm amm1xm1
【注3】若K,L都是凸集,则 K L 也是凸集。
K L { x | x , K , L}
【注4】若K,L都是凸集,则 K L 不一定是凸集。
K
不是凸集
L
信息系刘康泽
2、凸组合:设 x , x(1) , x(2) , , x(K ) 是 Rn 中的点,若
K
存在1,2, K ,且 i 1 ,i 0,使得: i 1 K x i xi 1x1 2 x2 K xK i 1
(它不超过 Cnm个),
【推论1】 若LP问题的可行解集非空且有界,则最 优解一定可以在可行解域的极点达到。
若可行解集无界,则LP问题可能有最优解,也可能 没有最优解。
【推论2】若LP问题的最优解在可行解域的 t 个极点 达到,则在这些极点的凸组合上也达到最优解。
信息系刘康泽
第1章 线性规划问题
7连续加工问题
一工厂在第一车间用一单位M可加工成3单位产品 A,2单位产品B,A可以按每单位售价8元出售, 也可以在第二车间继续加工,每单位生产费用增 加6元,加工后每单位售价为16元;B可以按每 单位售价7元出售,也可以在第三车间继续加工, 每单位生产费用增加4元,加工后每单位售价为 12元.原料M的单位购入价为2元。上述生产费用 不包括工资在内.三个车间每月最多有20万工时, 每工时工资0.5元.每加工一单位M需1.5工时,如 A继续加工,每单位需3工时;如B继续加工,每 单位需1工时。每月最多能得到的原料M为10万 单位。问如何安排生产,使工厂获利最大?
23
管
理
运
筹
学
三、线性规划标准型及解的概念
• 线性规划的一般形式 max (min) z = c1 x1 + c2 x2 + … + cn xn s.t. a11 x1 + a12 x2 + … + a1n xn ≤ ( =, ≥ )b1 a21 x1 + a22 x2 + … + a2n xn ≤ ( =, ≥ )b2
xj 0
x j ; j 1,2,...,n
c (c1 , c 2 , , c n )
( j 1,2, , n)
为待定的决策变量,
为价值向量, c j ; j 1, 2,...,n 为价值系数,
b ( b1 , b 2 ,...,b m ) 为右端向量,
矩阵
a 11 a 21 A a m1 a 12 a 22 am2 a mn a1n a 2n
线性规划理论与模型应用
授课人 葛金辉
线性规划的基本定理
01
最优极点 观察上例,最优解在极点(15,2.5)达到,我们 现在来证明这一事实:线性规划若存在最优解, 则最优解一定可在某极点上达到.
பைடு நூலகம்02
3.线性规划的基本性质
3.线性规划的基本性质
根据表示定理,任意可行点x可表示为
考察线性规划的标准形式(3. 2)
3.线性规划的基本性质
把x的表达式代入(3. 2),得等价的线性规划:
3.线性规划的基本性质
称为一组可行基.
B b>0,称基本可行解是非退化的,若
-
若
B b0,
-
且至少有一个分量为0,称基本可行解是退化的.
3.线性规划的基本性质
3.线性规划的基本性质
3.线性规划的基本性质
3.线性规划的基本性质
容易知道,基矩阵的个数是有限的,因此基本解从而基本可行解的个数也是有限的, 不超过
3.线性规划的基本性质
证明: (提纲) 设x是K的极点,则x是Ax=b,x0的基本可行解. 设x是Ax=b,x0的基本可行解,则x是K的极点.
定理3. 3 令K={x| Ax=b,x0},A是m×n矩阵,r(A)=m 则K的极点集与Ax=b,x0的基本可行解集合等价.
3.线性规划的基本性质
,先证极点x的正分量所对应的A的列线性无关.
3.线性规划的基本性质
于是,问题简化成
在(3.6)中令
1
显然,当
2
时目标函数取极小值.
3
3.线性规划的基本性质
3.线性规划的基本性质
(p)
x
因此极点
是问题(3.2)的最优解.
即(3.5)和(3.8)是(3.4)的最优解,此时
3.线性规划的基本性质
§1.3 线性规划的基本概念和基本定理
6. 基变量 —— 与基向量相对应的变量, 共有m个. 7. 非基变量 ——与非基向量相对应的变量,ห้องสมุดไป่ตู้共有n-m个.
p16-1
§3 线性规划的基本概念与基本定理
一、线性规划问题的基与解
设有标准型:
AX b X O min z CX (1 1 ) (1 2 ) (1 3 )
运筹学
运筹学
1. 可行解 —— 满足约束条件(1-1)(1-2)的解. 2. 最优解 —— 满足(1-3)式的可行解.
3. 基 —— 设r(Amn)=m , 若B是A的mm非奇异矩阵, 则称
B是线性规划问题的一个基. 4. 基向量 —— 基B的每一列向量, 共有m个.
5. 非基向量 ——A的不属于B的每一列向量, 共有n-m个.
min z x 1 x 2 x 3 s .t . x 1 3 x 2 x 3 4 x2 x3 x4 8 x j 0 , j 1, ,4
p16-3
运筹学
3. 基 —— 设r(Amn)=m , 若B是A的mm非奇异矩阵, 则称 B是线性规划问题的一个基. 4. 基向量 — 基B的每一列向量, 共有m个. 5. 非基向量 —A的不属于B的每一列向量, 共有n-m个. 6. 基变量 — 与基向量相对应的变量, 共有m个. 7. 非基变量 —与非基向量相对应的变量, 共有n-m个. 8. 基本解 — 令所有非基变量=0, 求出的满足约束条件(1-1)的解. 9. 基本可行解 — 满足约束条件(1-2)的基本解. 10. 最优基本可行解 — 满足约束条件(1-3)的基本可行解.
3. 基 —— 设r(Amn)=m , 若B是A的mm非奇异矩阵, 则称 B是线性规划问题的一个基. 4. 基向量 — 基B的每一列向量, 共有m个. 5. 非基向量 —A的不属于B的每一列向量, 共有n-m个. 6. 基变量 — 与基向量相对应的变量, 共有m个. 7. 非基变量 —与非基向量相对应的变量, 共有n-m个. 8. 基本解 — 令所有非基变量=0, 求出的满足约束条件(1-1)的解. 9. 基本可行解 — 满足约束条件(1-2)的基本解. 10. 最优基本可行解 — 满足约束条件(1-3)的基本可行解. 例 找出所有基本解, 并指出其 中的基本可行解和最优解.
第一章 线性规划
第一章 线性规划
(Linear Programming, LP)
概述
• 线性规划问题的提出最早是1939年由前苏联 数学家康托洛维奇在研究铁路运输的组织问题、 工业生产的管理问题时提出来的。
(5)若bi < 0,则-bi > 0
举例: 化下列线性规划为标准形
max z=2x1+2x2-4x3 x1 + 3x2-3x3 ≥30 x1 + 2x2-4x3≤80 x1、x2≥0,x3无限制
max z=2x1+2x2-4x3’+4x3” x1 + 3x2-3x3’+3x3” –x4 = 30 x1 + 2x2-4x3+ 4x3” + x5 = 80 x1、x2 、x3’、x3” 、x4、x5 ≥0
称X0为该线性规划对应与基B的一个基本解。
同样,在A中任选m个线性无关的列向量都可以组成一个基, 对应基一个基本解。对于一个LP最多有多少呢?从n个中 选m个进行组合,即:
Cnm=n!/[(n-m)!m!] 因此,基本解是有限的。
举例:找出下列LP所有的基及其对应的基本解 max z=6x1+4x2 2x1 + 3x2≤100 4x1 + 2x2≤120 x1、x2≥0
资源
产品
甲
乙 资源限制
A
1
B
2
C
0
单位产品利润(元/件) 50
1
300kg
1
400kg
1
250kg
100
• 决策变量:x1、x2——分别代表甲、乙两
farkas定理
farkas定理
Farkas定理,也被称为Farkas引理或Farkas定理,是线性规划和凸几何中的一个基本结果。
它是以匈牙利数学家Gyula Farkas的名字命名的。
Farkas定理建立了一个线性不等式系统存在解的必要和充分条件。
该引理可以表述如下:
考虑一个线性不等式系统:
A*x ≤b
其中A是一个m×n的矩阵,x是一个n维向量,b是一个m维向量。
Farkas定理指出,以下两个条件中必定成立一个:
1. 存在一个向量x满足不等式系统A*x ≤b。
2. 存在一个向量y,使得y非负(y ≥0),且y^T * A = 0,但y^T * b < 0。
简单来说,Farkas定理告诉我们,线性不等式系统要么是可行的(存在解),要么存在一个不可行的证明(一个向量y),证明该系统无解。
这个证明向量满足y^T * A = 0且y^T * b < 0,表示该不等式系统无解。
Farkas定理在数学、优化理论和经济学等领域具有重要的应用,特别是在线性规划和凸分析中。
它为研究线性规划的可行性和最优性提供了强大的工具,广泛应用于运筹学、博弈论和计算机科学等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时目标函数取极小值.
3.线性规划的基本性质
即(3.5)和(3.8)是(3.4)的最优解,此时
cx (cx(i)) i (cd(i))i
i=1 k i=1 k来自kt (cx(i)) i (cx(p )) i
i=1 i=1
=cx(p )
因此极点 x(p) 是问题(3.2)的最优解.
3.线性规划的基本性质
定理3.2 设线性规划(3.2)的可行域非空,则 1,(3. 2)存在最优解的充要条件是所有 cd(j) 非负,其中 d
(j)
是可行域的极方向
2,若(3. 2)存在有限最优解,则目标数的最优值 可在某极点达到.
3.线性规划的基本性质
• 3最优基本可行解
前面讨论知道们最优解可在极点达到,而极点 是一几何概念,下面从代数的角度来考虑。
Min 3x +2.5y s.t. 2x + 4y 40 3x + 2y 50 x, y 0.
3.线性规划的基本性质
y 50 40 30 3x+2y50 20 10 2x+4y40 0 3x +2.5y 可行区域的极点: (0, 25) (15, 2.5) 最优解
(20, 0)
(15, 2.5)
其中A是mn矩阵,c是n维行向量, b是m维列 向量。
评注:为计算需要,一般假设b0.否则,可在 方程两端乘以(-1)即可化为非负。
3.线性规划的基本性质
任意非标准形式均可划为标准形式,如
min c1x1 c 2 x 2 ... c n x n s.t. a11x1 a12 x 2 ... a1n x n b1 a 21x1 a 22 x 2 ... a 2n x n b2 ............................... a m1x1 a m2 x 2 ... a mn x n bm x j 0, j 1, 2,...n
10 20 30 40 50 x
3.线性规划的基本性质
• 2 基本性质
– 2.1 线性规划的可行域
定理 3.1 线性规划的可行域是凸集.
– 2.2 最优极点
观察上例,最优解在极点(15,2.5)达到,我们 现在来证明这一事实:线性规划若存在最优解, 则最优解一定可在某极点上达到.
3.线性规划的基本性质
min cx s.t. Ax b, x 0, i=1,2,...m (3.2)
不失一般性,设rank(A)=m,A=[B,N],B是m阶可逆的.
设
xB x xN
x B的分量与B中列对应; x N的分量与N中列对应
3.线性规划的基本性质
于是,Ax=b可写为 xB (B, N) b xN
即 Bx B Nx N b (3.9)
于是
x B B-1b B-1Nx N
x B B-1b x xN 0
特别的令 x N=0,则
(3.10)
3.线性规划的基本性质
定义3.1
x B B-1b x x N 0 称为方程组Ax=b的一个基本解.
又x (x1 , x 2 ,..., x s ,0,0,...,0) T 是K的极点, 所以满足 Ax b, x 0, 于是 x1p1 x 2 p 2 ... x s ps 0ps 1 ... 0p m b 即 Bx B b, 且 x B B1b 0 xB xB 从而x 是基本可行解 xN 0
3.线性规划的基本性质
1, 若有某j, 使得cd(j) 0, 则有 cd(j) j ( j ) 从而问题的目标函数值可以无限小( )。 此时我们称该问题是无界的或不存在有限最优解。
2, 若对任意的j, 有cd (j) 0, 则为极小化目标函数, 必有 j=0,j=, ..t ( 5) 1 2, .,. 3.
j1 j1
s
同理 Ax (2) b
从而当 >0充分小, 有x (1) x (2)是可行点, 1 (1) 但我们又有x= (x x (2) ).此与x为极点相矛盾. 2
3.线性规划的基本性质
于是, p1 , p 2 ,..., ps线性无关,s m r(A), 从而可将其 扩充为A的一组基, 记做B (p1 , p 2 ,..., p s , p s 1,..., p m ). 我们得到可逆阵B
于是,问题简化成
3.线性规划的基本性质
min (cx(i)) i
i 1 = k k
(3.6)
i 1 =
i
1
在(3.6)中令 显然,当
i 0, i 1,2,..., k
cx(p ) min cx (i)
1i k
(3.7)
p 1, j 0, j p
(3.8)
i 0, i 1,2,..., k i 0, i 1,2,..., t.
3.线性规划的基本性质
把x的表达式代入(3. 2),得等价的线性规划:
min (cx(i)) i (cd(i))i
i=1 i=1 k t
(3.4)
i=1
k
i
1
i 0, i 1,2,..., k i 0, i 1,2,..., t.
3.线性规划的基本性质
2)设x是Ax=b,x0的基本可行解,记
xB xB x 0 xN 0
假设存在两点x (1) ,x (2) 及某 (0,1), 使得 x x (1) +(1 )x (2) (1) (2) x B (2) x B (1) 记 x (1) , x ( 2 ) . x x N N (1) (2) -1 xB xB B b 则 (1) (1 ) ( 2 ) . x x 0 N N
3.线性规划的基本性质
若某变量xj无非负限制,则引入xj = xj ' - xj ' ' ,
xj ', xj ' ' 0 若有上下界限制,比如xj lj, 令xj ' = xj - lj, , 有 xj ' 0
3.线性规划的基本性质
– 1.2. 图解法 当自变量个数少于3时,我们可以用较简便的 方法求解。 例如,考虑食谱问题
于是,容易知道,A仅有两个一元矩阵(1)从而得所有 1 0 的基本解为x = , x = , 它们都是基本可行解. 0 1
3.线性规划的基本性质
例2, 求出约束为 x1 +x2 +x3 =1 x1 -x2 1/ 2 的所有基本可行解. x ,x , x 0 1 2 3
1)设x是K的极点,则x是Ax=b,x0的基本可行解.
2)设x是Ax=b,x0的基本可行解,则x是K的极点.
3.线性规划的基本性质
1),先证极点x的正分量所对应的A的列线性无关.
设x (x1 , x 2 ,..., x s ,0,0,...,0) T , 其中x j 0, j 1, 2,...s, 记 A (p1 , p 2 ,..., ps , ps1 , ps2 ,..., p n ) 设x1 , x 2 ,..., x s所对应的列为p1 , p 2 ,..., ps .假设p1, p 2 ,..., p s
线性相关, 则存在一组不全为零的数 j , j 1, 2,..,s使得
p
j1 j
s
j
0
记x j
(1)
x j j , j 1, 2,..,s x j j , j 1, 2,..,s (2) , xj 0, j s 1, 2,..., n 0, j s 1, 2,..., n
1
从而不是基本可行解.
3.线性规划的基本性质
• 容易知道,基矩阵的个数是有限的,因此基本解 从而基本可行解的个数也是有限的, 不超过 n n! m m!(n m)!
(0,1)
x1 +x2 +x3 =1
(1,0)
基本可行解
极点
3.线性规划的基本性质
定理3. 3 令K={x| Ax=b,x0},A是m×n矩阵,r(A)=m 则K的极点集与Ax=b,x0的基本可行解集合等价. 证明: (提纲)
1 1 解:A 1 1 1 1 B1 ,B2 1 1
1 1 ,b 1/ 2 0 1 1 1 1 ,B3 1 0 均可逆. 1 0
3.线性规划的基本性质
1/ 2 1/ 2 B 1/ 2 1/ 2 1/ 2 1/ 2 1 3/ 4 1 1 x B1 b 1/ 2 1/ 4 0 1/ 2 1/ 2 0 1 1 B2 1 1
3.线性规划的基本性质
由于x j 0, j 1, 2,..,s故可取充分小的 >0,使得 x j(1) 0, x j(2) 0, j 1, 2,..,s
则 Ax (1) x j p j (x j j )p j
(1)
n
n
j1
j1 s
x jp j jp j b
B称为基矩阵, xB 的各分量称为基变量. 基变量的全体x B1 , x B2 ,..., x Bm 称为一组基.
又若B1b 0, 则称
xN 的各分量称为基变量.
x B B-1b x xN 0
为约束条件Ax=b,x0的一个基本可行解. B称为 可行基矩阵