第4章 生物质热解技术
生物质热解技术
以生物质为载体的能量。 生物质能直接或间接地来源于绿色植物的光合作用,可转化为
常规的固态、液态和气态燃料,取之不尽、用之不竭,是一种 可再生能源。
2、生物质能的分类
传统生物质能
在发展中国家小规模应用的生物质能,主要包括农村生活用能 (薪柴、秸秆、稻草、稻壳及其它农业生产的废弃物和畜禽粪便 等);
③ 当温度高于300℃时, 橡胶分解加快, 断裂出来的化学物质分子 量较小, 产生的油流动性较好, 而且透明
橡胶的热解处理
废轮胎高温热解靠外部加热使化学链打开, 有机物得以分 解或液化、汽化。热解温度在250℃~500℃范围内,当温 度高于250℃时, 破碎的轮胎分解出的液态油和气体随温度 升高而增加,400℃以上时依采用的方法不同, 液态油和固 态炭黑的产量随气体产量的增加而减少。
污染
无氧或缺氧 吸热 气、油、炭黑 贮存或远距离运输 二次污染较小
研究报道表明,热解烟气量是焚烧的1/2,NO是焚 烧的1/2,HCl是焚烧的1/25,灰尘是焚烧的1/2。
3 热解的过程及产物
固体废物热解过程是一个复杂的化学反应过程。包括大分 子的键断裂,异构化和小分子的聚合等反应,最后生成各 种较小的分子。
供热方 式
➢直接加热 、间接加热
五
热解温 度不同
➢高温热解、中温热解、低温热解
热
解
热解炉 结构
➢固定床、移动床、流化床和旋转炉
工
艺 分
产物物 理形态
➢气化方式、液化方式、炭化方式
类 热解、
燃烧位 置
➢单塔式和双塔式
是否生 成炉渣
➢造渣型和非造渣型
第四章生物质热裂解技术
<1s <0.5s 2-30s
<10s 0.5~10s
高 非常高
中
高 高
>650 1000 400
500 1050
气 气 油
油 化学品
根据热裂解条件和产物的不同,生物质热裂解工艺主 要分为: 炭化、干馏、热裂解气化、热裂解液化等
?炭化
生物质放置在炭化设备中,通入少量空气进行热分解制取木炭的方法。
?热裂解液化
以制取液态生物油为主要目的的方法。
生物质热裂解技术的优点:
?生物质热裂解产物为燃气、焦油或半焦油,可以根据不同的 需要加以利用。 ?热裂解可以简化污染控制,生物质在无氧的或缺氧的条件下 热裂解时,NOx、SOx、HCl等污染物排放少,而且热裂解烟气 中灰分量小。 ?生物质中的硫、重金属等有害成分大部分被固定在炭黑中, 可以从中回收金属,进一步减少环境污染。 ?热裂解可以处理不适于焚烧的生物质,如有毒有害医疗垃圾。
(4)液体生物油的收集
液体的收集一直以来都是整个热解过程中运行最困难的部分, 目前几乎所有的收集装置都不能很有效的收集。
这是因为裂解气产物中挥发分在冷却过程中与非冷凝性气体 形成了烟雾状的气溶胶形态,是一种由蒸汽、微米级的小颗 粒、带有极性分子的水蒸气分子组成的混合物,这种结构给 液体的收集带来困难。
?煅烧阶段( 450~500 oC)
木炭中的挥发质减少,固定碳含量增加
6.2 生物质热裂解的工艺类型
生物质热裂解制炭工艺
生物质热裂解液化工艺
制油
生物质热裂解制炭工艺
在有限制地供给少量氧气条件下,使木材在炭化装置中进行 热分解,制取木炭。
常用的炭化装置:炭窑64、移动式炭化炉65、果壳炭化炉66、 立式多槽炭化炉67、回转炉、流态化炉、多层炭化炉。
生物质热解技术
生物质压缩成型技术1 压缩成型原理生物质主要有纤维素、半纤维素和木质素组成。
木质素为光合作用形成的天然聚合体,具有复杂的三维结构,属于高分子化合物,它在植物中的含量一般为15%~30%。
木质素不是晶体,没有熔点但有软化点,当温度为70-110℃时开始软化,木质素有一定的黏度;在200-300℃呈熔融状、黏度高,此时施加一定的压力,增强分子间的内聚力,可将它与纤维素紧密粘接并与相邻颗粒互相黏结,使植物体变得致密均匀,体积大幅度减少,密度显著增加,当取消外部压力后,由于非弹性的纤维分子之间相互缠绕,一般不能恢复原来的结构和形状。
在冷却以后强度增加,成为成型燃料。
压缩时如果对生物质原料进行加热,有利于减少成型时的挤压力。
对于木质素含量较低的原料,在压缩成型过程中,可掺入少量的黏结剂,使成型燃料保持给定形状。
当加入黏结剂时,原料颗粒表面会形成吸附层,颗粒之间产生引力,使生物质粒子之间形成连锁的结构。
这种成型方法所需的压力较小,可供选择的黏结剂包括黏土、淀粉、糖蜜、植物油和造纸黑液等。
2 压缩成型生产工艺压缩成型技术按生产工艺分为黏结成型、压缩颗粒燃料和热压缩成型工艺,可制成棒状、块状、颗粒状等各种成型燃料。
生物质—-干燥—-粉碎—-调湿—-成型—-冷却—-成型燃料主要操作步骤如下:(1)干燥生物质的含水率在20%-40%之间,一般通过滚筒干燥机进行烘干,将原料的含水率降低至8%-10%。
如果原料太干,压缩过程中颗粒表面的炭化和龟裂有可能会引起自燃;而原料水分过高时,加热过程中产生的水蒸气就不能顺利排出,会增加体积,降低机械强度。
(2)粉碎木屑及稻壳等原料的粒度较小,经筛选后可直接使用。
而秸秆类原料则需通过粉碎机进行粉碎处理,通常使用锤片式粉碎机,粉碎的粒度由成型燃料的尺寸和成型工艺所决定。
(3)调湿加入一定量的水分后,可以使原料表面覆盖薄薄的一层液体,增加黏结力,便于压缩成型。
(4)成型生物质通过压缩成型,一般不使用添加剂,此时木质素充当了黏合剂。
生物质热解技术
生物质热解技术按温度,升温速率,固定停留时间(反应时间)和颗粒大小等实验条件可将热解分为炭化(慢热解),快速热解和气化。
由于液体产物的诸多优点和随之而来的人们对其研究兴趣的日益高涨,对液体产物收率相对较高的快速热解技术的研究和应用越来越受到人们的重视。
快速热解过程在几秒或更短的时间内完成。
所以,化学反应,传热传质以及相变现象都起重要作用。
关键问题是使生物质颗粒只在极短的时间内处于较低温度(此种低温利于生成焦炭),然后一直处于热解过程最优温度。
要达到此目的的一种方法是使用小生物质颗粒(应用于流化床反应器),另一种方法是通过热源直接与生物质颗粒表面接触达到快速传热(这一方法应用于生物质烧蚀热解技术中)。
由众多实验研究得知,较低的加热温度和较长气体停留时间会有利于炭的生成,高温和较长停留时间会增加生物质转化为气体的量,中温和短停留时间对液体产物增加最有利。
秸秆发电商品化前景分析解决浪费性生物质能资源的唯一出路在于商品化。
生物质能秸秆发电技术,不仅为农村提供更多电力,更有意义的是将使生物质能资源的商品化成为可能,一方面农民可通过出售秸秆获得更多的收入;另一方面过去农村使用直接燃烧秸秆的方式进行炊事,要为秸秆的收集、运输、储存以及在直接燃烧时花费大量的时间和劳力。
如果能使用秸秆发电,农村使用更多的商品能源,农民将获得更多的时间从事生产性劳动,以尽早脱贫致富。
因此,将秸秆发电进行能源方式转化,是一件利国利民的好事。
1 生物质能秸秆发电的工艺流程农作物秸秆在很久以前就开始作为燃料,直至1973年第一次石油危机时丹麦开始研究利用秸秆作为发电燃料。
在这个领域丹麦BWE公司是世界领先者,第一家秸秆燃烧发电厂于1998年投入运行(Haslev,5Mw)。
此后,BWE公司在西欧设计并建造了大量的生物发电厂,其中最大的发电厂是英国的Elyan发电厂,装机容量为38Mw。
1.1 秸秆的处理、输送和燃烧发电厂内建设两个独立的秸秆仓库。
生物质热解气化原理与技术
生物质热解气化原理与技术生物质热解气化是一种将生物质转化为可用气体燃料的技术。
生物质是指植物和动物的有机物质,如木材、农作物废弃物、动物粪便等。
热解气化是将生物质加热至高温,并在缺氧或氧气限制条件下进行分解,生成可燃气体和固体残渣的过程。
生物质热解气化的原理是通过热解和气化两个过程将生物质转化为气体燃料。
首先,生物质在高温下进行热解,热解过程中生物质的有机物质被分解为气体、液体和固体。
其中,气体主要是一氧化碳(CO)、二氧化碳(CO2)、氢气(H2)、甲烷(CH4)等。
液体主要是烃类物质,如醇类、酮类、醚类等。
固体残渣是热解过程中不能分解的物质,主要是炭质物质。
然后,热解产物在气化过程中被进一步转化为可用气体燃料。
气化是在缺氧或氧气限制条件下进行的,通过气化反应将热解产物中的固体炭质物质转化为一氧化碳和氢气。
气化过程中,氧气与炭质物质反应生成一氧化碳,同时一氧化碳与水蒸气反应生成氢气。
生物质热解气化技术具有以下几个优势。
首先,生物质是一种可再生能源,与化石燃料相比具有更低的碳排放。
生物质热解气化能够有效利用生物质资源,减少对化石燃料的依赖。
其次,生物质热解气化可以将生物质转化为多种气体燃料,具有较高的灵活性。
不同类型的生物质可以产生不同成分的气体燃料,可以根据需求进行选择和调整。
再次,生物质热解气化可以利用生物质的多级能量,通过热解气化过程可以同时产生气体、液体和固体燃料。
气体燃料可以直接用于燃烧或发电,液体燃料可以用于替代石油燃料,固体残渣可以用作肥料或再生能源的原料。
生物质热解气化技术的应用具有广泛的前景。
首先,生物质热解气化可以用于生物质能源的开发利用。
生物质能源是一种清洁、可再生的能源,可以用于代替传统的化石能源,减少对环境的污染。
其次,生物质热解气化可以用于生物质废弃物的处理。
农作物废弃物、木材废料等生物质废弃物在经过热解气化处理后可以转化为有用的气体燃料,同时还可以减少废弃物对环境的影响。
生物质热裂解技术
生物质热裂解技术概述摘要:生物质在慢速热裂解的情形下以得到炭为目的的炭化是一种有几千年历史的工艺,由于化工和能源等领域中新型反应工艺的不断开发,人们发现通过改变热裂解过程的温度、加热速率及停留时间等因素,可分别有效地最大化气体和液体产物产量,并且对所得产物进行相应的改性及优化后可用作其他多种用途。
本文简单介绍了生物质热裂解技术发展,对生物质热裂解技术的裂解机理、影响因素,以及生物质热裂解过程及产物组成因素进行概述。
关键词:生物质;热裂解;温度;升温速率前言:生物质通常是木材、竹材、灌木、野草、秸秆等植物纤维来源的天然有机材料(也包括甲壳素等动物来源的天然有机材料)的统称,其主要化学成分是纤维素、半纤维素和木质素,此外尚含有少量品种繁多的其它有机和无机物质。
通过生物质能转换技术可高效地利用生物质能源,生产各种清洁能源和化工产品,是一种对环境友好的可以替代化石能源的可再生的能源,可以有效减少有害气体及烟尘排放量和温室气体增加量,维系全球平衡,提高环境质量;较之其他新能源(如太阳能、风能、地热能及潮汐能等)生物质能源的开发转化技术较容易实现,既可利用生物质能的热能效应又可将简单的热效应充分转化为化学能、电能等高品位能源。
生物质热裂解是指生物质在没有氧化剂(空气、氧气、水蒸汽等)存在或只提供有限氧的条件下,加热到500℃,通过热化学反应将物质大分子物质分解成较小分子的燃料物质的热化学转化技术方法,是目前国内外非常关注的新能源生产技术。
1 生物质热裂解技术简介及工艺类型生物质热裂解是指生物质在完全缺氧或有限氧提供条件下利用热能切断生物质大分子中碳氢化合物的化学键,使之转化为小分子物质的热降解,这种热解过程最终生成液体生物油、可燃气体和固体生物质炭三种,产物的比例根据不同的热裂解工艺和反应条件而发生变化。
生物热裂解的燃料能源转化率可达95.5%,最大限度地将生物质能量转化为能源产品,是生物质能利用技术的主要方法之一,且越来越得到重视,这是因为:○1热解技术对于原料的种类没有严格要求,城市固体废弃物(MSW),农业、林业废物都能气化。
生物质快速热解技术
生物质快速热解技术摘要:生物质能源是可再生能源的重要组成部分,有丰富的资源和低污染的特点,它的开发与利用已成为2l世纪研究的重要课题。
本文概述了生物质转化利用的方法,并重点阐述了生物质热化学转化法中的快速热解技术,同时综述了国内外快速热解反应器的现状,以度其产物——生物油的收集与特征分析,并提出了我国在快速热解研究方面应采取的有关措施。
生物质是地球上绿色植物通过光合作用获得的各种有机物质,它是以化学方式储存太阳能,也是以可再生形式储存在生物圈的碳。
主要包括林业生物质、农业废弃物、水生植物、能源作物、城市垃圾、有机废水和人、畜粪便等。
据统计,世界每年生物质产量约l460亿吨,其中农村每年的生物质产量就有300亿吨,而生物质的利用却仅占世界能源消耗总量的l4%,发达国家占3%,发展中国家占35%,是继石油、煤炭、天然气等化石能源之后,当今全球第四大能源。
但随着化石能源利用中产生诸如“酸雨”、“温室效应”等环境问题的日益突出,以及化石燃料本身可开采量的逐渐减少,生物质能源凭借其是一种环境友好型能源,及其利用中较低的SO、NO产出和CO净排放量为零等优点,引起了越来越多人的关注。
不言而喻,生物质能源将是未来可持续发展能源体系的重要组成部分,无论是从环境,还是从资源方面考虑,研究生物质能源的转化与利用都是一项迫在眉睫的重大课题。
1生物质转化利用方法1.1生物法或称为微生物法生物质(主要是农作物秸秆、粪便、有机废水等)在厌氧条件下发酵制得沼气,主要成分是甲烷;糖类、淀粉类原料水解发酵制取酒精。
1.2化学处理法生物质中的半纤维素在酸l生条件下加热水解获得重要的化工原料糠醛;利用稻壳生产白炭黑等。
1.3热化学转化法1.3.1热解生物质在隔绝或少量氧气的条件下,热解反应获得气体、固体、液体3类产品。
近几十年来国外研究开发了快速热解技术,即生物质瞬间热解制取液体燃料油,其得率高达70%以上,是一种很有开发前景的生物质应用技术。
生物质热解原理与技术
生物质热解原理与技术生物质热解是将生物质原料在高温、无氧或低氧气氛下加热分解的过程,其产物可以用于能源、化工等领域。
生物质热解技术被认为是一种可持续的能源生产方式,因为它可以利用可再生的生物质原料,减少对化石燃料的依赖,同时减少环境污染。
生物质热解的原理是利用热能将生物质原料中的有机物分解成气体、液体和固体三种产物。
生物质热解的反应过程可以分为三个阶段:干燥、热解和气化。
在干燥阶段,生物质原料中的水分被蒸发出来,此时生物质原料温度升高。
在热解阶段,生物质原料中的有机物开始分解,产生一些易挥发的产物,如水、酚等。
在气化阶段,生物质原料中的产物被进一步分解,产生大量的气体产物,如一氧化碳、二氧化碳和甲烷等。
生物质热解的技术包括固定床热解、旋转炉热解、流化床热解和微波热解等。
固定床热解是最常用的技术之一,它是将生物质原料放置在固定的床上,通过加热使其分解。
旋转炉热解则是通过旋转的方式将生物质原料加热分解。
流化床热解是将生物质原料放置在流化床中,通过气体流动使其分解。
微波热解则是利用微波加热生物质原料。
生物质热解的产物包括固体炭、液体油和气体。
固体炭可以用作固体燃料,液体油可以用于发电、加热和化工等领域,气体则可以用于发电或者制氢等领域。
生物质热解技术的优点是可以利用可再生的生物质原料,减少对化石燃料的依赖,同时减少环境污染。
但是,生物质热解技术也存在一些缺点,如生物质原料的供应不稳定、生产成本较高等问题。
生物质热解是一种可持续的能源生产方式,其原理是利用热能将生物质原料中的有机物分解成气体、液体和固体三种产物。
生物质热解技术具有广阔的应用前景,但是需要进一步完善技术和降低成本。
生物质 热解
生物质热解
生物质热解是一种热化学转化技术方法,它指的是在没有氧化剂存在或只提供有限氧的条件下,将生物质加热到超过500℃,通过热化学反应将生物质大分子物质(如木质素、纤维素和半纤维素)分解成较小分子的燃料物质(如固态炭、可燃气、生物油)。
生物质热解技术能够以较低的成本、连续化生产工艺,将常规方法难以处理的低能量密度的生物质转化为高能量密度的气、液、固产物,减少了生物质的体积,便于储存和运输。
同时,还能从生物油中提取高附加值的化学品。
生物质热解气化技术以其规模适度、启动灵活、原料收集半径小等优点,可与大型直燃发电优势互补,建设形成10 MW以下规模的生物质气化发电项目,完成生物质发电的规模与空间布局。
总的来说,生物质热解是一种有效的生物质能源利用技术,它不仅可以提高能源的利用效率,还可以帮助减少环境污染。
7,第四章(1)生物质热裂解
生物质热化学转化技术概述 生物质气化 生物质热裂解(热解) 生物质热裂解(热解) 生物质直接液化 生物质热裂解炭化
1.生物质热化学转化技术概述
定义:生物质热化学转化是指在加热条件下,用 化学手段将生物质转换成燃料物质的技术。 分类:生物质热化学转化可进一步分为气化、热 裂解(热解)、液化三种技术;各技术产生各自 的产品。
生物质气化分类
(4) 空气(氧气)—水蒸气气化 空气(氧气)—水蒸气气化是以空气(氧气)、 水蒸气同时作为气化介质的气化过程,其优越 之处在于减少了空气的供给量,并生成更多的 氢气和碳氢化合物,提高了燃气的热值,典型 的燃气热值为11.5MJ/m3。另外,生物质与空气 的氧化反应可以给其他反应提供能量,因此它 是自供热系统,不需要外供热源。
生物质气化原理
(2) 热分解反应
当温度达到160℃以上便开始发生高分子有机物在吸热 的不可逆条件下的热分解反应,并且随着温度的进一步 升高,分解进行得越激烈。由于生物质原料中含有较多 的氧,但温度升高到一定程度后,氧将参加反应而使温 度迅速提高,从而加速完成热分解。 热分解时一个十分复杂的过程,其真实的反应可能包括 若干不同路径的一次、二次甚至高次反应,但总的结果 是大分子的碳水化合物的链被打开,析出生物质中的挥 发分,只剩残余的木炭。 完成热分解反应时间600 ℃需要27秒,900 ℃需要9秒。
生物质气化分类
(5)氢气气化 氢气气化主要反应是在高温高压下氢气与碳 及水蒸气生成甲烷的过程,氢气气化的可燃 气热值可高达22.3~26MJ/m3,属高热值燃 气,但因其反应需在高温高压且具有氢源的 条件下进行,条件苛刻,不常引用。
生物质气化分类
(6)干馏气化 干馏气化失在隔绝空气或只提供极有限的氧 使气化不止于大量发生情况下进行的生物质 热裂解,产生固体碳、液体与可燃气。可燃 气主要组成为H2、CH4、CO、CO2 及少量 C2H6、C2H4,热值为15MJ/m3。由于热裂解 是吸热反应,应提供外热源以使反应进行。
生物质热解
生物质热解通过生物质能转换技术可高效地利用生物质能源,生产各种清洁能源和化工产品,从而减少人类对于化石能源的依赖,减轻化石能源消费给环境造成的污染。
目前,世界各国尤其是发达国家,都在致力于开发高效、无污染的生物质能利用技术,以保护本国的矿物能源资源,为实现国家经济的可持续发展提供根本保障。
生物质热解是指生物质在没有氧化剂(空气、氧气、水蒸气等)存在或只提供有限氧的条件下,加热到逾500?,通过热化学反应将生物质大分子物质(木质素、纤维素和半纤维素)分解成较小分子的燃料物质(固态炭、可燃气、生物油)的热化学转化技术方法。
生物质热解的燃料能源转化率可达95.5%,最大限度的将生物质能量转化为能源产品,物尽其用,而热解也是燃烧和气化必不可少的初始阶段。
1 热解技术原理1.1 热解原理从化学反应的角度对其进行分析,生物质在热解过程中发生了复杂的热化学反应,包括分子键断裂、异构化和小分子聚合等反应。
木材、林业废弃物和农作物废弃物等的主要成分是纤维素、半纤维素和木质素。
热重分析结果表明,纤维素在52?时开始热解,随着温度的升高,热解反应速度加快,到350,370?时,分解为低分子产物,其热解过程为:(C6H10O5)n?nC6H10O5C6H10O5?H2O+2CH3-CO-CHOCH3-CO-CHO+H2?CH3-CO-CH2OHCH3-CO-CH2OH+H2?CH3-CHOH-CH2+H2O半纤维素结构上带有支链,是木材中最不稳定的组分,在225,325?分解,比纤维素更易热分解,其热解机理与纤维素相似。
从物质迁移、能量传递的角度对其进行分析,在生物质热解过程中,热量首先传递到颗粒表面,再由表面传到颗粒内部。
热解过程由外至内逐层进行,生物质颗粒被加热的成分迅速裂解成木炭和挥发分。
其中,挥发分由可冷凝气体和不可冷凝气体组成,可冷凝气体经过快速冷凝可以得到生物油。
一次裂解反应生成生物质炭、一次生物油和不可冷凝气体。
《生物质热解技术》课件
生物质热解技术的优势
01
质热解技术利用可再生的 生物质资源,如农业废弃物、 木材废弃物等,符合可持续发 展的要求。
高效转化
生物质热解技术能够将生物质 高效转化为高品位燃料和化学 品,提高了能源利用效率。
减少污染
与传统的燃烧方式相比,生物 质热解技术能够减少废气、废 水和固体废物的排放,降低环 境污染。
加强政策支持
政府应加强政策支持,鼓励生 物质热解技术的研发和应用。
04
生物质热解技术的实际应用案例
生物质热解技术在能源生产中的应用
生物质热解技术可以用于生产生物油,替代化石燃料,如柴油、 汽油等。生物油的热值较高,可以用于燃烧发电或直接用于工业 燃烧设备。
生物质热解技术还可以用于生产生物燃气,如沼气等。生物燃气 的主要成分是甲烷,可以用于家庭和工业燃气。
生物质热解技术可以用于处理农业废弃物、城市垃圾等废物 ,将其转化为有用的能源和化学品。这不仅可以减少废物的 环境污染,还可以实现废物资源化利用。
生物质热解技术还可以用于处理工业废弃物,如废油、废溶 剂等。通过生物质热解技术可以将这些废弃物转化为有用的 能源和化学品,实现废弃物的资源化利用。
05
结论
生物质热解技术在化学品生产中的应用
01
生物质热解技术可以用于生产各 种化学品,如酚类、芳香烃类、 醇类等。这些化学品在化工、医 药、农药等领域有广泛的应用。
02
生物质热解技术还可以用于生产 高分子材料,如聚合物、树脂等 。这些高分子材料可以用于制造 塑料、纤维等产品。
生物质热解技术在废物处理中的应用
未来生物质热解技术的国际合作与交流将 进一步加强,促进技术传播和经验分享, 推动全球范围内的技术进步和应用推广。
生物质热解沥青技术
生物质热解沥青技术生物质热解沥青技术是一种利用生物质资源进行能源转化的先进技术。
它通过将生物质材料加热至高温条件下,使其发生热解反应,从而得到沥青、液体燃料和气体等多种高附加值产品。
生物质热解沥青技术的发展离不开对生物质资源的深入研究和有效利用。
生物质资源是指来自植物、动物和微生物的有机物质,包括木材、秸秆、农作物残渣、废弃物等。
这些生物质资源具有丰富的碳水化合物和纤维素,是理想的能源原料。
在生物质热解沥青技术中,首先需要对生物质进行预处理,以提高其可热解性。
预处理包括干燥、粉碎和去除杂质等步骤。
接着,将预处理后的生物质送入热解反应器中,进行高温热解。
在高温条件下,生物质发生热解反应,产生大量的沥青、液体燃料和气体。
其中,沥青是一种黑色粘稠的液体,具有良好的可燃性和粘结性,广泛应用于建筑、道路和石油化工等领域。
生物质热解沥青技术的优势在于其可持续性和环保性。
相比于传统石油资源,生物质资源具有可再生的特点,能够减少对有限资源的依赖。
同时,生物质热解沥青技术在热解过程中产生的气体可以通过进一步处理,得到高品质的生物燃气或生物液体燃料,用于替代传统燃料,减少温室气体排放和环境污染。
然而,生物质热解沥青技术仍面临一些挑战。
一方面,生物质资源的收集和处理成本较高,需要建立完善的供应链和设施。
另一方面,生物质热解沥青技术的研究和开发还处于初级阶段,存在着工艺参数优化、产物分离和催化剂开发等问题。
总的来说,生物质热解沥青技术是一种具有巨大潜力的能源转化技术。
通过充分利用生物质资源,可以实现能源的可持续发展和环境的可持续保护。
未来,随着技术的不断进步和政策的支持,相信生物质热解沥青技术将在能源领域发挥更为重要的作用。
生物质热解
生物质热解分慢速热解和快速热解。
快速热解为生物质在常压中等温度(约500℃),较高的升温速率103一104℃/s,蒸汽停留时间1s以内,据文献报道液体生物油的产率最高可达85%,并仅有少量可燃的不凝性气体和炭产生。
生物质快速热解技术始于20世纪70年代,是一种新型的生物质能源转化技术。
它在隔绝空气或少量空气的条件下,采用中等反应温度,很短的蒸汽停留时间,对生物质进行快速的热解过程,再经过骤冷和浓缩,最后得到深棕色的生物油。
众所周知,目前生物质气化法是大规模集中处理生物质的主要方式,但也存在气体热值低,不易存贮、输送,小规模设备发电成本高以及上电网困难等问题;而固体燃料直接燃烧存在燃烧不完全,热利用率低,使用场合受限制等缺点。
鉴于上述情形,生物质快速热解技术作为一项资源高效利用的新技术逐渐受到重视,已成为国内外众多学者研究的热点课题。
因为生物油易于储存和运输,热值约为传统燃料油的一半以上,又可以作为合成化学品的原料,同时产生的少量气、固体产物可以在生产中回收利用。
2.1国外快速热解现状国际能源署(IEA)组织了加拿大、芬兰、意大利、瑞典、英国及美国的10余个研究小组进行了10余年的研究工作,重点对这一过程发展的潜力、技术、经济可行性以及参与国之间的技术交流进行了协调,并在所发表的报告中得出了十分乐观的结论。
欧美从20世纪70年代第一次进行生物质快速热解实验以来,已经形成比较完备的技术设备和工业化系统,表1较详细列出了欧美地区快速热解技术正常运行的反应器。
其中加拿大的Dyna Motive Energy Systems是目前利用生物质快速热解技术实行商业化生产规模最大的企业,其处理量为1500kg/h,生产以树皮、白木树、刨花、甘蔗渣为原料,在隔绝氧气450~500℃条件下,采用鼓泡循环流化床反应器,生物油的产率为60%一75%,炭15%一20%,不凝性气体10%~20%以上均为质量产率。
生物油和炭可以作为商业产品出售,而不凝性气体则为循环气体燃烧使用,整个过程无废弃物产生,从而达到原料100%的利用率。
生物质催化热解技术研究
生物质催化热解技术研究Introduction在全球环境问题和化石能源储备问题的双重压力下,开发新的替代能源和可持续资源已成为世界各国共同的挑战。
生物质热能利用是可持续发展的能源利用方式之一,可以潜在地提供大量的清洁能源。
生物质催化热解技术是逐渐受到人们关注的一项技术。
本文将从生物质热解技术的具体过程、技术的应用和发展前景三方面入手,对生物质催化热解技术进行探讨。
生物质催化热解技术的过程生物质热解是指将生物质在一定温度下处理后,使生物质分子中的化学键断裂、分解成小分子气体和液体,进而进行化学反应和合成的热解过程。
在生物质热解的过程中,存在许多产物,其中液体产物是生物质能够被广泛利用的主要产物。
常见的液体产物为木质素油、纤维素油和半纤维素油。
由于生物质本身的特殊性质,生物质热解产物的性质和组成也受到影响,这也成为了生物质热解技术开发的一个挑战。
生物质催化热解技术的优势相对于传统的生物质热解技术,催化热解技术有许多优势。
首先,催化剂能够提高生物质热解过程的效率和产物的质量,同时还能减少生产过程中的排放物,即该技术具有很好的环保性。
其次,催化剂具有促进生物质在热解过程中的裂解,促进化学反应生成产物等作用,提升了生物质热解的效率和品质。
此外,催化剂的强力化学作用还能够避免催化剂的再利用过程对环境造成影响,使得催化热解技术具有很好的寿命。
生物质催化热解技术的应用目前,生物质催化热解技术被广泛地应用于能源领域、化学领域和环保领域等多个领域。
在能源领域,生物质热解产生的液体燃料可以用于发电和供热等能源利用方式;在化学领域,生物质热解产生的液体产物可以继续转化为化学原料,如生物基燃料和生物基化学品;在环保领域中,生物质热解技术能够减少环境污染和碳排放,形成环保产业链。
生物质催化热解技术的发展前景生物质热解技术具有广泛的应用前景,但是其实际开发和应用仍面临一系列问题和挑战。
解决这些问题,发展生物质催化热解技术,有望成为未来能源利用和环境保护的重要途径。
生物质热解及其强化技术研究
生物质热解及其强化技术研究生物质热解是指将生物质在高温条件下经过物理和化学变化而转化为热能、气体和其他有机物质的过程。
生物质热解技术已经成为了可再生能源领域中最为重要的技术之一,因为它可以把废弃物转化成一种可利用的能源形式。
在接下来的文章中,我们将会介绍更多关于生物质热解及其强化技术研究的信息,以期帮助读者对这一技术更为深入地了解。
一、生物质热解技术的原理生物质热解的主要过程是在高温情况下发生木质素的裂解,在氮气、氢气、一氧化碳、甲烷、乙烯、丙酮等有机化合物的存在下,产生大量的一氧化碳、二氧化碳和一氧化氮等有机物。
生物质热解主要包括两种类型,即干燥热解和湿热解,其中干燥热解是在缺乏氧气的条件下进行的,而湿热解则是在水蒸气的存在下进行的。
二、生物质热解技术的发展历史生物质热解技术的历史可以追溯到几百年前,当时人们就通过燃烧木材来将其转化为热能。
在20世纪初期,科学家们开始着手研究生物质热解技术,并陆续发现了木质素、赤褐色素、木糖和木聚糖等重要化合物。
随着研究的深入,生物质热解技术变得越来越复杂,这也促使了很多新技术的出现,例如:氧和水蒸气共同加热的技术,旋转流化床式反应器技术等。
这些技术都为生物质热解技术的发展提供了更多的选择。
三、强化生物质热解技术的方法尽管生物质热解技术已经在可再生能源领域中扮演着越来越重要的角色,但是这一技术仍然存在很多问题。
其中一个问题是生产出的产物成分不均匀,这对于生产具体产品而言是一个很大的障碍。
因此,对于强化生物质热解技术的研究一直是可再生能源领域中的热点话题之一。
目前已经有很多研究者针对生物质热解技术开展了研究。
下面我们将介绍其中一些研究方法。
1、催化剂技术研究者发现,催化剂的加入可以使生物质热解时所产生的产物成分更为均匀。
催化剂会在高温下与生物质反应,从而选择性地去除一些产物,进而促进所得产物的结构调控。
一些常见的催化剂包括纳米金属、氧化金属等。
2、溶剂作用和添加物研究将生物质加入一些溶剂中能够促进其热解过程。
《生物质热解技术》课件
热解技术发展趋势
描述生物质热解技术从发展历程到未来的发展趋势。
1
热解技术发展历程
经过多次调整,生物质热解工艺得到长足发展,并引入智能化、节能化等新概念。
2
未来发展趋势
生物质衍生能源将逐渐替代化石燃料成为主要能源,生物质热解技术得到进一步发展。
热解技术市场前景
介绍生物质热解技术市场的现状以及未来前景。
热解设备
生物质热解技术中使用的固体热解设备、液体热解设备和气体热解设备不同的技术方案和应用场景。
固体热解设备
采用流化床,固定床和旋转缸等反应器。
液体热解设备
采用微波反应器和固定床反应器。
气体热解设备
采用床式气化器和流化床气化器等各种纵向气化器, 配合不同的工作负压等技术方案来进行实际应用。
热解技术应用
介绍热解技术在生产生物质加工物、处理废弃物和生产生物气的应用案例。
热解液制备活性炭
液体生物油可用于活性炭生产,用作恶臭和水处理剂。
热解处理废弃物
生物质热解处理废弃物可用于造纸、制备木质素。
热解生物质制气
生物气体可用于汽车燃料和发电用途,为清洁能源贡献力量。
热解技术优缺点
介绍生物质热解技术的优点和缺点。 • 优点:生产量较高;可再生能源贡献巨大。 • 缺点:生产成本较高;能源利用效率较低;环保难度大等。
生物质热解技术
介绍生物质热解技术的定义、热解反应制度和反应产物等相关知识点。
热解概述
生物质热解技术定义,热解过程,以及热解后的产物与其用途。
定义
生物质在热解过程中释放出可再生能源。
热解过程
将生物质物理或化学分解,以释放出可燃气体、有机液体和固体炭。
热解产物
生物质热解后的产物包括生物炭、液体生物油和生物气体。
《生物质热解技术》课件
政府支持
制定相关政策和标准 加大对生物质热解技术的投入
企业合作
多方合作,共同推动技术创新
科研机构
开展深入研究,提升技术水平
国际合作
加强国际间生物质热解技术合 作与交流
国际合作
国际间应该加强生物质热解技术的合作与交流,共同推动 技术的发展和普及。通过国际合作,不仅可以分享经验和 资源,还可以加速技术的创新和应用,实现更广泛的影响 和效益。
生物气
可用于发电 供热、供暖等领域
生物炭
用于土壤改良 再生能源领域
热能
直接供暖、制冷等用途
生物质热解技术的应用 前景
生物质热解技术具有广泛的应用前景。在能源领域,可以替 代传统化石能源,减少温室气体排放,保护环境。在工业生 产中,可以实现资源的循环利用,提高能源利用效率。未来 随着生物质热解技术的不断创新和发展,其应用范围将进一 步扩大。
● 02
第2章 生物质热解过程
生物质热解的基本原理
生物质热解是一种将生物质分子内部的键断裂的过程,通过 高温、无氧或低氧环境下进行,最终生成气体、液体和固体 产物。这一过程在生物质能源开发和利用中具有重要意义。
生物质热解的反应机理
热解
生物质在高温下分 解成不同产物
干馏
在缺氧或无氧条件 下,生物质物质分
● 05
第五章 生物质热解技术的环 保效益
01 减少碳排放
低碳排放
02 减少污染
环保优势
03 提高空气质量
环境友好
生物质热解技术的减排效果
减少化石能源使用
提倡可再生能源 减少对石油、煤等传统能源的 依赖
减少温室气体排放
降低二氧化碳排放量 减缓气候变化
提高大气质量
生物质热裂解技术ppt
产物的比例根据不同的热裂解工艺和反应条件而变化。
慢速热裂解
按照升温速率和完 全反应时间的不同
快速热裂解 闪速热裂解
热裂解工艺主要运行参数
参数
慢速热裂解
反应温度/oC
300~700
升温速度/(oC/s)
0.1~1
快速热裂解 600~1000 10~20
停留时间/s
>600
0.5~5
物料尺寸/mm
5~50
周期3-5d
白烟 黄烟 青烟 木炭率18-22
操作周期24小时,木炭率15-20
每8小时加料1次,每1小时出料1次,物料停留4-5h,木炭率25-30
生物质热裂解液化工艺的发展
20世纪80年代初,加 1995年左右,目前生 拿大Waterloo大学开 物质热解制油主流设 始了以提高液体产率 备已经普遍完成研发。 为目标的循环流化床 之后,随着试验规模 研究,为现代快速、 的反应装置逐步完善 闪速裂解提供了基础, 化,欧美示范性和商 被公认为本领域中最 业化运行的热裂解项 广泛深入的研究成果。 目不断开发和建造。
2005年后, 国外科研 机构开始 加大力度 研发生物 油的深加 工技术。
1980
1990
纤维素、半纤维素、木质素三种组分常被假设独立进行热分解。
纤维素受热分解阶段:
➢水分的蒸发与干燥(100~150 oC) 化学性质不变,水蒸发
➢葡萄糖基脱水(150~240 oC) 法学性质发生变化,产物为反应水
➢热裂解(240~375oC) 一氧化碳、二氧化碳、醋酸、甲醇、焦油、生物质炭
➢聚合和芳构化(>400 oC) 甲烷、木炭等固液气产物
纤维素通常的热分解温度范围:275~450 oC
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010-06
Page 7
4.2.2 生物质热解液化技术研究及开发现状
20世纪80年代初,加 拿大Waterloo大学开 始了以提高液体产率 为目标的循环流化床 研究,为现代快速、 闪速裂解提供了基础, 被公认为本领域中最 广泛深入的研究成果。
第4章 生物质热解技器-真空热解反应器 4.7.3 典型的快速热解反应器-旋转锥反应器 4.7.4 典型的快速热解反应器-流化床热解反应器 4.7.5 典型的快速热解反应器-热辐射反应器
4.2 生物质热裂解主要工艺比较
4.3 生物油技术发展历程 4.4 生物质热解技术工艺流程 4.5 生物质热解反应器分类 4.6 生物质热解液化主要装置对比 4.7 典型的快速热解反应器 4.7.1 典型的快速热解反应器-烧蚀涡流反应器 4.7.2 典型的快速热解反应器-真空热解反应器
2010-06
Page 5
4.2.1 生物质热解液化工艺流程 焦炭和灰的分离 在生物质热解制油工艺中,一些细小的焦炭颗粒不可避免地 进入到生物油液体当中。研究表明:液体产物中的焦炭会导 致生物油不稳定,加快聚合过程,使生物油的粘度增大,从 而影响生物油的品质。 同时,生物质中几乎所有的灰分都保留在焦炭当中,而灰分 是影响生物质热解液体产物收率的重要因素,它的存在将大 大催化挥发成分的二次分解,所以分离焦炭也会影响分离灰 分。 分离焦炭除了采用热蒸汽过滤外,还可以通过液体过滤装置 (滤筒或过滤器等)来完成,目前,后者仍处于研究开发阶 段。焦炭的分离虽然很困难,但是对所有的系统而言都是必 不可少的。
目前进行的生物质热解制油技术研究中,针对第一类 和第三类的反应器的工作开展得相对较多,并取得了一 定的进展,这些反应器的成本较低且宜大型化,从而能 在工业上投入实际应用。
2010-06 Page 16
4.3.2 典型的快速热解反应器-烧蚀涡流反应器(1) 典型的快速热解反应器 世界各国通过反应器的 设计、制造及工艺条件的 控制,开发了各种类型的 快速热解工艺,几种有代 表性的反应器如下:
烧蚀涡流反应器 (1995) 美国可再生能 源实验室(NREL)研制 出的烧蚀涡流反应器,其 流程如图所示。
2010-06 Page 17
4.3.2 典型的快速热解反应器-烧蚀涡流反应器(1) 反应器正常运行时,生物质颗粒需要用速度为 40m/s的氮气或过热蒸汽流引射(夹带)沿切线方 向进入反应器管,生物质在此条件下受到高速离心 力的作用,导致生物质颗粒在受热的反器壁上的受 到高度烧蚀。烧蚀后,颗粒留在反应器壁上的生物 油膜迅速蒸发。如果生物质颗粒没有被完全转化, 可以通过特殊的固体循环回路循环反应。
升温速率
非常低 低 较高 高 高 非常高 中
最高温度/℃
400 600 650 <650 >650 1000 400
主要产物
炭 气、油、炭 油 油 气 气 油
高
500
油
2010-06
Page 2
4.2 生物质热解工艺类型及研究现状 4.2.1 生物质热解液化工艺流程 生物质热解液化技术的 一般工艺流程由物料的干 燥、粉碎、热解、产物炭 和灰的分离、气态生物油 的冷却和生物油的收集等 几个部分组成。
2010-06
Page 4
4.2.1 生物质热解液化工艺流程 热裂解反应器 反应器是热解的主要装置,反应器类型的选择和加热方式是 各种技术路线的关键环节。适合于快速热解的反应器型式是 多种多样的,但所有热解制油实用性较强的反应器都具备了 三个基本特点:加热速率快,反应温度中等和气相停留时间 短。
20世纪80年代初,加拿大Waterloo大学开始了以提高液体 产率为目标的循环流化床研究,随后开始了持续闪速热解流 化床实验台得到研制。他们的工作为现代快速和闪速裂解提 供了基础,被公认为本领域中最广泛深入的研究成果。
2010-06
Page 11
4.2.2 生物质热解液化技术研究及开发现状 1989年,欧洲第一家生物质热解加工厂,一个传统的慢速 热解示范性工厂(500kg/h)在意大利落成,其液体和焦炭的 产量大致上都在25%左右。同一时期,瑞典Bio-Alternative公 司建成了固定床反应器的热解示范性工厂,主要用来制取焦 炭和副产品油,其焦油产率也比较低,仅20%的质量含量。
2010-06
Page 18
4.3.2 典型的快速热解反应器-烧蚀涡流反应器(1) 在1995年,该实验室在原来系统的基础上将主反 应器改为垂直,并且还增加了热蒸汽过滤装置。改 进后的实验系统可获得更为优质的生物油,主要是 因为安装了热蒸汽过滤设备,成功的防止了微小的 焦炭颗粒在裂解气被冷凝过程中混入生物油,同时 这也使得油中的灰分含量低于0.01%,并且碱金属 含量很低。这套系统所生成油的产量在67%左右, 但该油中氧含量较高。
西班牙Fenosa联邦于1993年建立了基于Laterloo大学热裂解 技术的200kg/h闪速热裂解试验台。比利时Egemin公司于1991 年建立由他们自行设计的,容量为200kg/h引射流反应器并在 1992投入运行使用。许多重要的热裂解技术在欧洲一些著名 实验室和研究所中进行开发,90年代初欧共体JOULE计划中 的用生物质生产能源项目的很多课题的启动也显示了欧盟对 生物质热裂解制油技术的重视程度。
2010-06 Page 6
4.2.1 生物质热解液化工艺流程 液体生物油的收集 液体的收集一直以来都是整个热解过程中运行最困难的部分, 目前几乎所有的收集装置都不能很有效的收集。
这是因为裂解气产物中挥发份在冷却过程中与非冷凝性气体 形成了烟雾状的气溶胶形态,是一种由蒸汽、微米级的小颗 粒、带有极性分子的水蒸气分子组成的混合物,这种结构给 液体的收集带来困难。
4.8 生物油组分及性质比较
4.8.1 生物油组成成分比较 4.8.2 生物油主要性质比较 4.8.3 生物油主要性质说明 4.9 生物质热解技术发展趋势
4.10 生物油深加工技术介绍
2010-06
Page 1
4.1 生物质热裂解主要工艺比较 表. 生物质热裂解主要工艺比较
工艺类型 滞留期 慢速热裂解 炭化 数小时-数天 5-30min 常规 快速热裂解 0.5-5s 快速 闪速(液体) <1s 闪速(气体) <1s 极快速 <0.5s 2-30s 真空 反应性热裂解 加氢热裂解 <10s
2010-06 Page 15
4.3 生物质热解反应器 4.3.1 生物质热解反应器分类 间接式反应器 这类反应器的主要特征是由一高温的 表面或热源提供生物质热解所需热量,其主要通过热辐 射进行热量传递,对流传热和热传导则居于其次要地位, 常见的热天平也可以归属此类反应器。 混合式反应器 其主要是借助热气或气固多相流对生 物质进行快速加热,其主导热量方式主要为对流换热, 但热辐射和热传导有时也不可忽略,常见的有流化床反 应器、快速引射床反应器、循环流化床反应器等。
2010-06 Page 10
4.2.2 生物质热解液化技术研究及开发现状 生物质热裂解最初的研究主要集中在欧洲和北美地区。生 物质热解液化技术始于20世纪70年代末期的北美,加拿大西 安大略大学开始利用输送床以制造气体和液体燃料及化工产 品的研究。然而其发表的资料主要是关于乙烯和丙烯产物的 研究,并没有引起做够的重视。
1990年左右, 欧美一些国家 开始建设速热 解示范性工厂 或试验台。
2000年左右, 中国各科研机 构纷纷开始对 生物质热解设 备的研发。
近期,中国一 些科研机构也 开始研发生物 油的深加工技 术。 Page 8
4.2.2 生物质热解液化技术研究及开发现状 生物质热解技术在世界上还属于新技术,生产工艺上尚有 很多问题有待解决和完善。 中国在生物油热解液化设备研究方面明显落后于国外,国 内开发的反应器主要以接触式和混合式为主,具有代表性的 是流化床式反应器和旋转锥反应器。目前我国热解液化工艺 整体上尚有许多需要改进之处。
2010-06
Page 3
4.2.1 生物质热解液化工艺流程 原料干燥和粉碎 生物油中的水分会影响油的稳定性、粘度、PH值、腐蚀性以 及一些其它特性,而天然的生物质原料中含有较多的自由水, 相比从生物油中去除水分,反应前物料的干燥要容易的多, 因而在一般的热解工艺中,为了避免将自由水带入产物,物 料要求干燥到水份含量低于10%(质量分数)。 快速热解制油工艺要求高的传热速率,除了从反应器的传热 方面入手,原料尺寸也是重要的影响因素,通常对原料需要 进行粉碎处理,不过随着原料的尺寸变得越小,整个系统的 运行成本也会相应提高。
随着技术的不断完善,研究方向和重点也开始拓宽。过去的 研究只要侧重热解反应器类型以及反应器参数,以寻求产物 的最大化。技术的成熟使生物油产量上的发展空间已经不是 很大了,最大产量基本上都可以达到70%~80%左右。
生物油品质和反应系统整体效率的提高是目前发展的新趋势。 通过预处理原始物料以及催化,改性等方法提高产物的品质 以适合高层次应用时拓展技术应用空间和前景的重要手段。 而整体利用生物质资源的联合工艺以及系统整体效率则被认 为是最大化热解制油经济效益,具有相当大的潜力的发展方 向。
2010-06 Page 12
4.2.2 生物质热解液化技术研究及开发现状 生物质热解制油技术的蓬勃发展从20世纪90年代初开始,随 着试验规模的反应装置逐步完善化,示范性和商业化运行的 热裂解装置被不断开发和建造。不同规模的、各种各样型式 的快速热裂解系统在世界各国先后建立起来。
2010-06
国外对生物油深加工的研究早已展开,但是暂时没有取得 突破性进展。
中国在生物油深加工方面的研究尚处于起步阶段,研发的 机构不多。东北林大、中科大、山东理工对生物油与柴油混 合制备乳化油技术进行了研究,但短期内无法取得突破性进 展。