高压变频电机控制电路
高压变频的工作原理
高压变频的工作原理随着科技的不断进步和发展,高压变频技术的应用在电力工业、石油化工、城市轨道交通等领域应用越来越广泛。
那么,高压变频究竟是如何工作的呢?下面,我们就来详细地介绍一下高压变频的工作原理。
一、高压变频的概念及特点高压变频,就是指将低压交流电源通过变压器升压后,再由高压变频器进行变频输出。
这种技术主要的特点就是高效、节能、无污染、可靠性高等。
二、高压变频的工作原理当我们开启一个高压变频电机时,我们会发现变频器会向电机提供一定的电源。
同时,为了能够欺骗电机,在变频器被送入之前,需要对电流进行处理。
然后,电流会被送入电工电子变频器中,此时,它将会被转化成最适合电机使用的形式。
在此期间,变频器的瞬时功率向电机输出的瞬时功率相同,而电机的电感以及磁场会形成一个电压回路,从而使得电机的瞬时功率变得极小。
这个情况的出现是因为变频器的操作系统不仅仅是简单的电路,而是一个复杂的电路拓扑系统。
高压变频器中装有一个CPU芯片,它能够通过不同的算法调整出不同的频率和电压值。
这样一来,就能够使得电机达到最有效率的工作状态。
通过这种方法,高压变频器就能够将一个大多数激励以及能量的偏压直接连接到电机上,从而令电机变得更加高效。
此外,高压变频器还配备有一些保护措施,以确保系统的稳定性和安全性,比如过压保护、欠压保护、过电流保护等等。
这些措施不仅可以保护变频器,还能保证电机的正常运行。
总之,高压变频技术是一种非常高效、环保、稳定的电力转换技术。
通过变频器的精准控制,能够让电机达到更高效的工作状态,为我们的生产生活提供了很大的便利和优势。
浅析高压变频器及其常见故障处理
浅析高压变频器及其常见故障处理摘要:在实际工业生产应用中,高压变频器经常会出现一些故障。
为了使变频器能够安全稳定运行,有必要采取相应的防范措施。
本文分析了高压变频器的基本工作原理,结合实际应用对常见故障处理与防范措施进行探讨,以期达到更优的经济效益。
关键词:高压变频器原理故障分析防范措施1.高压变频器介绍高压变频器是近几年发展起来的一种应用广泛的变频器,它和过去传统的采用液力耦合或者串级调速方式是一样的,只是采用改变电机运行电源频率实现对电机调速的目的。
目前,高压变频器内部的结构都是相通的,主要包括三个部分:一是主电路接线端,包括接工频电网的输入端(R、S、T),接电动机的频率、电压连续可调的输出端(U、V、W);二是控制端子,包括外部信号控制端子、变频器工作状态指示端子、变频器与微机或其他变频器的通信接口;三是操作面板,包括液晶显示屏和键盘。
2.高压变频器基本工作原理高压变频器一般采用目前国际电源系列多级技术,系统采用高高结构。
高压直接输入逆变器不需要升压变压器等组件,因为在对逆变器的内部电源进行整流和逆变后直接向电机输出高压。
每个电源均为三相输入,单相输出脉宽调制低压变频器,技术可靠,结构和性能相同,大大提高了高压变频器的可靠性和可维护性。
变频器一般由制动单元、微处理单元、滤波回路、整流回路、检测单元和驱动单元组成。
它可以根据电机的具体需求提供必要的供电电压,从而实现调速和节能。
另外,大多数逆变器具有各种保护功能,如过载保护、过压保护和过流保护。
3.高压变频器的优点3.1 节能效果显著为有效地确保生产过程中的可靠性,各类用于生产的机械设备(风机、水泵)在设计配套动力驱动装置时,一般都会预留出一定的富余量。
如电机未在满负荷的条件下运行,除提供给动力驱动装置所需的动力外,部分多余的力矩会造成有功功率消耗的增加,导致电能浪费。
传统的调速方法,即通过对出入口位置挡板或阀门开度进行调节,来控制风量和供水量,不仅输入的功率较大,而且还有很大部分的能源消耗在挡板及阀门的截流过程中。
浅析IGBT高压变频器的高压变频控制
高压变频器的主要形式包括电压源型与电流源型高压变频器。单元串联多重化变频器属于电压源型,其虽然能提高功率器件IGBT的耐压性能,但其体积很大,重量较大,且接线较多,故障点也变得非常多。此外,单元串联多重化变频器在使用过程中会由于电流电压不平衡而使谐波增大,进而容易造成电动机损坏。中性点钳位三电平PWM变器的缺点是会产生很大的谐波分量,进而会给电动机的使用寿命、工作效率造成一定影响。多电平+多重化高压变频器的研发初衷是为了提高IGBT功率器件的耐压性能,但其缺点却在于使整个系统变得更加复杂,且其性能本身也不如三电平变频器和多重化变频器。电流源型高压变频器虽然结构简单,便于对电流进行控制,但其本身并不能解决串联问题,而且会对电肉系统带来严重污染,功率因数相对较低,它与电压型变频器相比,在经济方面和技术方面都有所不如。
浅析IGBT高压变频器的高压变频控制
摘要:本文通过对传统高压变频器的主要形式及缺点进行分析,重点研究了IGBT功率器件的直接串联高压变频控制技术,分析了保护动态箝压技术、抗共模电压技术及正弦波解决技术等IGBT功率器件直接串联核心技术的应用。
关键词:IGBT;高压变频器;高压变频控制
引言
近些年来,我国在低压变频调速方面取得了很大突破,变频控制技术也越来越成熟。但在高压变频控制中,由于IGBT变频器件的耐压能力有所不足,致使现有高压变频器的高压变频控制技术与低压变频控制技术存在较大差距,由IGBT功率器件所组成的高压变频器的耐压能力不能长期满足高压变频控制的要求。因此,对于提高高压变频器中IGBT功率器件的耐压能力,已经成为急需解决的技术难题。本文便对传统高压变频器的主要形式及存在缺点进行分析,以此探索IGBT功率器件直接串联的相关核心技术。
变频器的控制电路及几种常见故障分析
变频器的控制电路及几种常见故障分析变频器的控制电路及几种常见故障分析1、引言随着变频器在工业生产中日益广泛的应用,了解变频器的结构,主要器件的电气特性和一些常用参数的作用及其常见故障对于实际工作越来越重要。
2、变频器控制电路给异步电动机供电(电压、频率可调)的主电路提供控制信号的网络,称为控制回路,控制电路由频率,电压的运算电路,主电路的电压,电流检测电路,电动机的速度检测电路,将运算电路的控制信号进行放大的驱动电路,以及逆变器和电动机的保护电路等组成。
无速度检测电路为开环控;在控制电路增加了速度检测电路,即增加速度指令,可以对异步电动机的速度进行更精确的闭环控制。
(1)运算电路将外部的速度,转矩等指令同检测电路的电流,电压信号进行比较运算,决定逆变器的输出电压、频率。
(2)电压、电流检测电路为与主回路电位隔离检测电压,电流等。
(3)驱动电路为驱动主电路器件的电路,它与控制电路隔离,控制主电路器件的导通与关断。
(4)I/O电路使变频更好地人机交互,其具有多信号(比如运行多段速度运行等)的输入,还有各种内部参数(比如电流,频率,保护动作驱动等)的输入。
(5)速度检测电路将装在异步电动机轴上的速度检测器(TG、PLG等)的信号设为速度信号,送入运算回路,根据指令和运算可使电动机按指令速度运转。
(6)保护电路检测主电路的电压、电流等。
当发生过载或过电压等异常时,为了防止逆变器和异步电动机损坏,使逆变器停止工作或抑制电压,电流值。
逆变器控制电路中的保护电路,可分为逆变器保护和异步电动机保护两种,保护功能如下:(1)逆变器保护①瞬时过电流保护,用于逆变电流负载侧短路等,流过逆变电器回件的电流达到异常值(超过容许值)时,瞬时停止逆变器运转,切断电流,变流器的输出电流达到异常值,也得同样停止逆变器运转。
②过载保护,逆变器输出电流超过额定值,且持续流通超过规定时间,为防止逆变器器件、电线等损坏,要停止运转,恰当的保护需要反时限特性,采用热继电器或电子热保护,过载是由于负载的GD2(惯性)过大或因负载过大使电动机堵转而产生。
电动机变频调速控制电路
任务三 电动机变频调速控制 电路安装与调试
完成工作任务指导:
四、PLC控制电路的调试
1.线路检查 2.程序下载 3.变频器参数设置 4.通电试车
PLC程序下载
项目三任务三
变频器参数设置
任务三 电动机变频调速控制 电路安装与调试
完成工作任务指导:
四、PLC控制电路的调试
1.线路检查 2.程序下载 3.变频器参数设置 4.通电试车
起动设备
电机以10HZ运行
项目三任务三
按下行程开关
电机以35HZ运行
任务三 电动机变频调速控制 电路安装与调试
安全提示: 通电试车前要检查安全措施,通
电时应有人监护,要严格遵守安全 操作规程,出现故障时要停电检查, 并挂警示牌。
在作业全过程中,要文明施工, 注意工具与器材的摆放,工位的整 洁。
项目三任务三
项目三任务三
任务三 电动机变频调速控制 电路安装与调试
知识链接:
二、汇川变频器
1.汇川变频器外形及型号
项目三任务三
任务三 电动机变频调速控制 电路安装与调试
知识链接:
二、汇川变频器
2.汇川变频器的接线 (1)主电路接线 (2)控制回路接线
项目三任务三
任务三 电动机变频调速控制 电路安装与调试
知识链接:
完成工作任务指导:
一、控制电路的安装
2.固定安装元器件 3.连接线路
项目三任务三
任务三 电动机变频调速控制 电路安装与调试
完成工作任务指导:
二、变频器参数设置
项目三任务三
任务三 电动机变频调速控制 电路安装与调试
完成工作任务指导:
三、PLC控制程序的编写
高压变频器的工作原理
高压变频器的工作原理
高压变频器是一种用于调节电源频率并实现电压变换的电力变频调速设备。
它能够将固定频率和电压的电源输入转换为可调节频率和电压的输出。
高压变频器的工作原理如下:
1. 整流:高压变频器首先将交流电源输入进行整流,将交流电转换为直流电。
这通常通过使用整流桥电路实现,其中包括四个二极管。
2. 滤波:直流电在通过整流后,仍然存在一些脉动,需要进行滤波以减小脉动幅度。
滤波电路通常包括电容器,用于存储电荷并平滑直流电流。
3. 逆变:经过滤波后的直流电被送入逆变器,将其转换为可调节频率和电压的交流电。
逆变器通过控制电子开关器件(例如晶闸管、IGBT等)的开关状态来实现。
4. 控制:高压变频器通常配备一个控制系统,用于控制逆变器的开关频率和占空比。
根据用户的需求,控制系统可以通过改变开关频率和占空比来实现输出频率和电压的调节。
总的来说,高压变频器通过整流、滤波、逆变和控制等过程,将固定频率和电压的输入电源转换为可调节频率和电压的输出电源。
这种调节能力使得高压变频器可以广泛应用于工业控制系统,如电机调速、电力传输、电网稳定等领域。
《高压变频器》ppt课件
ppt课件•高压变频器基本概念与原理•高压变频器市场现状及发展趋势•高压变频器技术特点与优势•高压变频器选型与安装调试指南目录•高压变频器运行维护与故障排除方法•高压变频器在节能环保领域应用前景高压变频器基本概念与原理01CATALOGUE定义节能提高生产效率减少机械磨损定义及作用高压变频器是一种电力电子设备,用于控制和调节高压交流电机的速度和运行性能。
优化电机运行性能,提高生产设备的运行效率。
通过调节电机速度,使之与实际负载需求匹配,从而达到节能效果。
通过软启动和调速功能,减少电机和机械设备的磨损。
A BC D工作原理简介主电路结构高压变频器主电路一般采用交-直-交结构,包括整流器、中间直流环节和逆变器三部分。
中间直流环节平滑直流电压,储存能量。
整流将三相交流电转换为直流电。
逆变将直流电转换为频率和电压可调的三相交流电,供给高压交流电机。
高压变频器分类按电压等级分类如6kV、10kV等,不同电压等级对应不同的高压变频器产品。
按控制方式分类包括开环控制和闭环控制(矢量控制、直接转矩控制等)。
按功率等级分类从小功率到大功率,不同功率等级的高压变频器适用于不同的应用场景。
高压变频器市场现状及发展趋势02CATALOGUE市场规模与增长趋势市场规模近年来,随着工业自动化水平的提高和能源节约需求的增加,高压变频器市场规模不断扩大。
根据市场调研数据,2022年高压变频器市场规模已达到数十亿元人民币。
增长趋势随着国家节能减排政策的深入实施和工业企业对能源利用效率要求的提高,高压变频器市场将继续保持快速增长。
预计未来几年,市场规模将以每年10%以上的增长速度持续扩大。
主要厂商及产品特点主要厂商目前,国内外众多企业涉足高压变频器领域,包括ABB、西门子、施耐德、台达、汇川技术等国际知名品牌,以及英威腾、合康新能、森源电气等国内优秀企业。
产品特点高压变频器产品种类繁多,各具特色。
一般来说,高压变频器具有高效率、高功率因数、低谐波污染等显著特点。
变频器电路图整流、滤波、电源及电压检测电路
变频器电路图-整流、滤波、电源及电压检测电路以下仅仅对变频器电路图-整流、滤波、电源及电压检测电路的分析,好象论坛上发不了图纸.1. 整流滤波部分电路三相220V电压由端子J3的T、S、R引入,加至整流模块D55(SKD25-08)的交流输入端,在输出端得到直流电压,RV1是压敏电阻,当整流电压超过额定电压385V时,压敏电阻呈短路状态,短路的大电流会引起前级空开跳闸,从而保护后级电路不受高压损坏。
整流后的电压通过负温度系数热敏电阻RT5、RT6给滤波电容C133、C163充电。
负温度系数热敏电阻的特点是:自身温度超高,阻值赿低,因为这个特点,变频器刚上电瞬间,RT5、RT6处于冷态,阻值相对较大,限制了初始充电电流大小,从而避免了大电流对电路的冲击。
2. 直流电压检测部分电路电阻R81、R65、R51、R77、R71、R52、R62、R39、R40组成串联分压电路,从电阻上分得的电压分别加到U15(TL084)的三个运放组成的射极跟随器的同向输入端,在各自的输出端得到跟输入端相同的电压(输出电压的驱动能力得到加强)。
U13(LM339)是4个比较器芯片,因为是集电集开路输出形式,所以输出端都接有上接电阻,这几组比较器的比较参考电压由Q1(TL431)组成的高精度稳压电路提供,调整电位器R9可以调节参考电压的大小,此电路中参考电压是6.74V。
如果直流母线上的电压变化,势必使比较器的输入电压变化,当其变化到超过6.74V的比较值时,则各比较器输出电平翻转,母线电压过低则驱动光耦U1(TLP181)输出低电平,CPU接收这个信号后报电压低故障。
母线电压过高则U10(TL082)的第7脚输出高电平,通过模拟开关U73(DG418)从其第8脚输出高电平,从而驱动刹车电路,同时LED DS7点亮指示刹车电路动作。
由整流二极管D5、D6、D7、D18、D19、D20组成的整流电路输出脉动直流电,其后级的检测电路可对交流电压过低的情况进行实时检测,检测报警信号也通过光耦U1输出。
高压变频器操作规程
三、功能设定子界面
(五)上位机控制
在控制柜门“远控/本控”开关处于远控位置 时,HARSVERT-A系列变频器具有通过上 位监控计算机进行启动、停车、急停、复位 或设定运行频率的功能。要使该功能有效, 选择“允许”。如果不允许上位监控计算机 对变频器进行启动、停车、急停、复位或设 定运行频率等控制,则选择“禁止”。 如果控制柜门“远控/本控”开关处于本控位 置,无论这里设定为“允许”或“禁止”, 上位机控制功能都无效。
(一)调速参数
1、基本参数 (7)变频器的额定电流 按变频器的名牌参数输入。当实际电流值超 过该值的120%时,变频器的过载能力为1分 钟;当实际电流值超过该值的150%时,变 频器的过载能力为30秒;当实际电流值超过 该值的200%时,变频器立即保护。
四、参数设定子界面
(一)调速参数
1、基本参数 (8)转矩提升 提升低速运行时的电机转矩,设定范围为 0~15共16种,选0时没有提升,选15时提 升力度最大。 根据负载特性,尤其是负载的起动特性,通 过试验可选出较佳曲线,如图所示。对于变 转矩负载(风机、泵类负载),如转矩提升 参数设置不当,会出现低速时的输出电压过 高,电动机带负载起动时电流大,而转速上 不去的现象。
二、主控制界面
查询变频器当前状态及曾发生的历次故 障记录信息。
二、主控制界面
显示运行记录数据,并可以将记录数据 转存软盘或打印输出。
二、主控制界面
变频器及电机的参数输入。运行时可查 询并可修改。
二、主控制界面
一些功能项的设定选择。变频器运行时, 可通过该按钮查询变频器的功能设定状 态,但不能修改功能设定。
二、主控制界面
现场状态
该栏呈红色状态。显示变频器当前状态 下发生的轻故障及其发生的原因。没有 故障时此栏显示“非操作人员请勿触碰 显示屏”。
变频器主电路工作原理
变频器主电路工作原理一、引言变频器是一种电力调节设备,广泛应用于电机驱动系统中,可以实现电机的调速和控制。
变频器主电路是变频器的核心部分,通过将输入的固定频率交流电转换为可调频率的交流电供电给电机,从而实现电机的调速和控制。
本文将详细介绍变频器主电路的工作原理。
二、变频器主电路的组成变频器主电路主要由整流器、滤波器、逆变器和输出滤波器组成。
1. 整流器:变频器主电路的输入是交流电,而电机需要直流电才能正常工作。
整流器的作用是将输入的交流电转换为直流电。
常见的整流器有单相整流器和三相整流器,根据输入电源的相数选择相应的整流器。
2. 滤波器:整流器输出的直流电中可能含有一些脉动成分,滤波器的作用是去除这些脉动成分,使直流电更加稳定。
滤波器通常由电容器和电感器组成。
3. 逆变器:逆变器是变频器主电路的核心部分,其作用是将直流电转换为可调频率的交流电。
逆变器采用高频开关技术,通过控制开关管的通断来实现输出电压的调节。
逆变器通常由功率开关器件(如IGBT)和驱动电路组成。
4. 输出滤波器:逆变器输出的交流电中可能含有一些高频成分,输出滤波器的作用是去除这些高频成分,使输出电压更加纯净。
输出滤波器通常由电感器和电容器组成。
三、变频器主电路的工作原理变频器主电路的工作原理可以分为以下几个步骤:1. 整流:输入的交流电经过整流器转换为直流电。
单相整流器采用单相桥式整流电路,将单相交流电转换为直流电;三相整流器采用三相桥式整流电路,将三相交流电转换为直流电。
2. 滤波:直流电经过滤波器,去除脉动成分,使直流电更加稳定。
3. 逆变:稳定的直流电经过逆变器,通过控制开关管的通断来实现输出交流电的调节。
逆变器的控制电路根据需要控制开关管的导通和关断,从而控制输出电压的频率和幅值。
4. 输出滤波:逆变器输出的交流电经过输出滤波器,去除高频成分,使输出电压更加纯净。
四、变频器主电路的特点变频器主电路具有以下几个特点:1. 节能高效:变频器主电路通过将输入的固定频率交流电转换为可调频率的交流电供电给电机,可以根据实际需要调整电机的转速,从而实现节能和高效运行。
变频器控制电路设计方法(1)
控制线路的设计方法
功能添加法 较简单的控制线路 步进逻辑公式法 多个工作过程自动循环的复杂线路
功能添加法举例说明
设计要求: 1、有两台电动机,正转运行, 2、第一台电机必须先开后停,正常停车为 斜坡停车。 3、如果任何一台电机过载时,两台电机同 时快速停车。
设计两个能独立开停的控制线路
第三次添加功能——加过载同时停车 过载保护可以在Set-ttd参数设置电机热态阈值, 然后用变频器的内部继电器R1(或R2)停车, 即设置R1参数为I-O-r1=tSA(达到热态阈值)。 由于正常停车与过载停车停车模式与停车时间均 不相同,所以过载时应通过逻辑输入快速停车, 设置Fun-StC-FSt=LI5,即分配变频器的输入 端子LI5为过载停车端子
第三次添加功能后,虽然过载后两台电机 能快速停车,但停车后1KA、2KA线圈仍 处于吸合状态,无法重新起动,除非先按 下按钮2SB1和1SB1,使1KA、2KA线圈失 电,很不方便。我们可以用KA的触点使 1KA、2KA线圈自动失电,主电路不变
第四次添加功能——过载停车后,1KA、2KA线 圈自动失电
第二次添加功能——第一台电机不能先停。将 2KA的常开触点与停车按钮1SB1并联
第三次添加功能——加过载同时停车 过载保护可以在Set-ttd参数设置电机热态阈值, 然后用变频器的内部继电器R1(或R2)停车, 即设置R1参数为I-O-r1=tSA(达到热态阈值)。 由于正常停车与过载停车停车模式与停车时间均 不相同,所以过载时应通过逻辑输入快速停车, 设置Fun-StC-FSt=LI5,即分配变频器的输入 端子LI5为过载停车端子
L
N
1QS 2QSFU1SB Nhomakorabea 2SB1
高压电机的自动化控制技术及电气调试
高压电机的自动化控制技术及电气调试摘要:高压电机是工业生产的重要设备,随着我国的工业生产规模不断扩大,高压电机自动化技术在工业生产中也得到了广泛应用。
高压电机在引入自动化控制技术后,使功率大、承受力强的特点更加突出。
在高压电机投入生产前,需要进行电气调试,达到合格后才能投入正式生产运行。
但从当前高压电机应用各方面情况来看,在运行过程中的安全性和稳定性方面存在一些问题。
本文通过对高压电机自动化控制技术和电气调试进行分析,对增加高压电机运行的稳定安全,保证电机的正常工作提供理论基础。
关键词:高压电机;自动化控制技术;电气调试引言:随着中国科学技术的快速发展,自动化技术被广泛应用于各个领域。
从当前工业企业来看,智能化发展已经实现,这对提高企业竞争力非常重要。
高压电机是工业企业广泛使用的设备,采用自动控制技术,并做好调试工作,可以充分发挥其功能,还可以起到节能减排、避免资源浪费、保护生态环境的作用。
1、高压电机的自动化控制技术1.1高压电机直接启动控制设计直接启动控制的设计能够使高压电机运行中容易出现的电流过大、漏电、短路等故障得到解决,以我国目前工业生产中常用的高压电机为例,要想设计高压电机直接启动控制,需要有效连接综合保护控制器和真空接触器。
其中综合保护控制器可以对电机运行状态实时监控,发现故障时由真空接触器将电源切断,将故障分析结果上传给控制中心,使控制中心第一时间了解故障,解决故障。
但在处理故障时,电机需要处于停机状态,这时综合保护控制器和真空接触器不能动作,顺利完成故障检修工作后方可运行。
1.2高压电机的变频启动控制在高压电动机中,最难以控制的就是高压电压伴随着的电源。
因此变频控制系统的存在,使得电源的控制变得更加方便和安全。
该变频启动控制系统的工作原理是:通过使用符合条件的二极管,并且将其用于高压电动机的主二级使其能够快速关闭开关,并且将高压电源的电流转换为DC,最终转换三相变频AC以供给高压电动机进行稳定运行。
高压变频器的原理及应用
高压变频器的原理及应用前言高压变频器是一种电器设备,用于将电源的交流电转换成可调节频率和电压的交流电。
它在工业领域有着广泛的应用,可以用于驱动各种高压电机,实现节能和精确控制。
本文将介绍高压变频器的原理和应用。
高压变频器的原理高压变频器的原理主要包括三个方面:整流、逆变和PWM调制。
1.整流:高压变频器首先对输入的交流电进行整流,将交流电转换为直流电。
这一步通常使用整流桥电路完成,包括多个可控整流器。
整流过程中,可以通过控制整流器的导通和关断时机,实现对输出直流电电压的控制。
2.逆变:经过整流后得到的直流电,需要进一步经过逆变处理,将其转换为可调频率和电压的交流电。
逆变主要通过逆变器完成,逆变器是由多个功率开关器件组成的,如晶闸管、IGBT等。
逆变器将直流电转换为高频交流电,在输出电压上通过调节逆变器的开关器件通断时机来实现。
3.PWM调制:高压变频器通过PWM(脉宽调制)技术对逆变器的开关器件进行控制,从而实现对输出电流、电压的精确控制。
PWM调制会根据输入的控制信号生成一系列脉冲宽度可调的波形,用于控制逆变器开关器件的导通和关断。
通过调节这些脉冲的脉宽和频率,可以控制输出电压和频率的大小。
常用的PWM调制方式有SVM(空间矢量调制)和SPWM(正弦波脉宽调制)。
高压变频器的应用高压变频器在工业领域的应用十分广泛,主要用于电机的调速控制和节能改造。
以下是一些典型的应用场景:1.水泵控制:高压变频器可以用于水泵的调速控制,根据需要调整输出频率和电压,以实现对水泵的精确控制。
例如,在供水系统中,可以根据不同的需求调整水泵的工作频率和电压,节约能源和延长设备寿命。
2.风机控制:高压变频器广泛应用于工业风机的调速控制。
通过调整输出频率和电压,可以灵活地控制风机的转速和风量。
这对于一些需要根据工艺需求随时调整风机转速的场合非常有用,比如空调系统、通风系统等。
3.压缩机控制:高压变频器也常用于压缩机的调速控制。
变频器驱动电路详解
变频器驱动电路详解测量驱动电路输出的六路驱动脉冲的电压幅度都符合要求,如用交流档测量正向激励脉冲电压的幅度约14V左右,负向截止电压的幅度约左右(不同的机型有所差异),对驱动电路经过以上检查,一般检修人员就认为可以装机了,此中忽略了一个极其重要的检查环节——对驱动电路电流(功率)输出能力的检查!很多我们认为已经正常修复的变频器,在运行中还会暴露出更隐蔽的故障现象,并由此导致了一定的返修率。
变频器空载或轻载运行正常,但带上一定负载后,出现电机振动、输出电压偏相、频跳OC故障等。
故障原因:A、驱动电路的供电电源电流(功率)输出能力不足;B、驱动IC或驱动IC后置放大器低效,输出内阻变大,使驱动脉冲的电压幅度或电流幅度不足;C、IGBT低效,导通内阻变大,导通管压降增大。
C原因所导致的故障比例并不高,而且限于维修修部的条件所限,如无法为变频器提供额定负载试机。
但A、B原因所带来的隐蔽性故障,我们可以采用为驱动增加负载的方法,使其暴露出来,并进而修复之,从面能使返修率降到最低。
IGBT的正常开通既需要幅值足够的激励电路,如+12V以上,更需要足够的驱动电流,保障其可靠开通,或者说保障其导通在一定的低导通内阻下。
上述A、B 故障原因的实质,即由于驱动电路的功率输出能力不足,导致了IGBT虽能开通但不能处于良好的低导能内阻的开通状态下,从而表现出输出偏相、电机振动剧烈和频跳OC故障等。
让我们从IGBT的控制特性上来做一下较为深入的分析,找出故障的根源所在。
一、IGBT的控制特性:通常的观念,认为IGBT器件是电压型控制器件——为栅偏压控制,只需提供一定电平幅度的激励电压,而不需吸取激励电流。
在小功率电路中,仅由数字门电路,就可以驱动MOS型绝缘栅场效应管。
做为IGBT,输入电路恰好具有MOS型绝缘栅场效应管的特性,因而也可视为电压控制器件。
这种观念其实有失偏颇。
因结构和工艺的原因,IGBT管子的栅-射结间形成了一个名为Cge的结电容,对IGBT管子开通和截止的控制,其实就是Cge进行的充、放电控制。
(完整word版)高压变频器原理及应用
高压变频器原理及应用1、引言电机是工业生产中主要的耗电设备,高压大功率电动机的应用更为突出,而这些设备大部分都存在很大的节能潜力。
所以大力发展高压大功率变频调速技术具有时代的必要性和迫切性.目前,随着现代电力电子技术和微电子技术的迅猛发展,高压大功率变频调速装置不断地成熟起来,原来一直难于解决的高压问题,近年来通过器件串联或单元串联得到了很好的解决。
其应用领域和范围也越来越为广范,这为工矿企业高效、合理地利用能源(尤其是电能)提供了技术先决条件。
2、几种常用高压变频器的主电路分析(1)单元串联多重化电压源型高压变频器.单元串联多重化电压源型高压变频器利用低压单相变频器串联,弥补功率器件IGBT的耐压能力的不足。
所谓多重化,就是每相由几个低压功率单元串联组成,各功率单元由一个多绕组的移相隔离变压器供电,用高速微处理器实现控制和以光导纤维隔离驱动。
但其存在以下缺点:a)使用的功率单元及功率器件数量太多,6kV系统要使用150只功率器件(90只二极管,60只IGBT),装置的体积太大,重量大,安装位置和基建投资成问题;b)所需高压电缆太多,系统的内阻无形中增大,接线太多,故障点相应的增多;c)一个单元损坏时,单元可旁路,但此时输出电压不平衡中心点的电压是浮动的,造成电压、电流不平衡,从而谐波也相应的增大,勉强运行时终究会导致电动机的损坏;d)输出电压波形在额定负载时尚好,低于25Hz以下畸变突出;e)输出电压波形在额定负载时尚好,低于25Hz以下畸变突出;f)由于系统中存在着变压器,系统效率再提高不容易实现;移相变压器中,6kV三相6绕组×3(10kV时需12绕组×3)延边三角形接法,在三相电压不平衡(实际上三相电压是不可能绝对平衡的)时,产生的内部环流,必将引起内阻的增加和电流的损耗,也相应的就造成了变压器的铜损增大.此时,再加上变压器的铁芯的固有损耗,变压器的效率就会降低,也就影响了整个高压变频器的效率。
变频器基本电路图
变频器基本电路图目前,通用型变频器绝大多数是交—直—交型变频器,通常尤以电压器变频器为通用,其主回路图(见图1.1),它是变频器的核心电路,由整流回路(交—直交换),直流滤波电路(能耗电路)及逆变电路(直—交变换)组成,当然还包括有限流电路、制动电路、控制电路等组成部分。
1)整流电路如图1.2所示,通用变频器的整流电路是由三相桥式整流桥组成。
它的功能是将工频电源进行整流,经中间直流环节平波后为逆变电路和控制电路提供所需的直流电源。
三相交流电源一般需经过吸收电容和压敏电阻网络引入整流桥的输入端。
网络的作用,是吸收交流电网的高频谐波信号和浪涌过电压,从而避免由此而损坏变频器。
当电源电压为三相380V时,整流器件的最大反向电压一般为1200—1600V,最大整流电流为变频器额定电流的两倍。
2)滤波电路逆变器的负载属感性负载的异步电动机,无论异步电动机处于电动或发电状态,在直流滤波电路和异步电动机之间,总会有无功功率的交换,这种无功能量要靠直流中间电路的储能元件来缓冲。
同时,三相整流桥输出的电压和电流属直流脉冲电压和电流。
为了减小直流电压和电流的波动,直流滤波电路起到对整流电路的输出进行滤波的作用。
通用变频器直流滤波电路的大容量铝电解电容,通常是由若干个电容器串联和并联构成电容器组,以得到所需的耐压值和容量。
另外,因为电解电容器容量有较大的离散性,这将使它们随的电压不相等。
因此,电容器要各并联一个阻值等相的匀压电阻,消除离散性的影响,因而电容的寿命则会严重制约变频器的寿命。
3)逆变电路逆变电路的作用是在控制电路的作用下,将直流电路输出的直流电源转换成频率和电压都可以任意调节的交流电源。
逆变电路的输出就是变频器的输出,所以逆变电路是变频器的核心电路之一,起着非常重要的作用。
最常见的逆变电路结构形式是利用六个功率开关器件(GTR、IGBT、GTO等)组成的三相桥式逆变电路,有规律的控制逆变器中功率开关器件的导通与关断,可以得到任意频率的三相交流输出。
三相380V变频器的控制异步交流电动机正反转工作过程详解
腹有诗书气自华一提到变频器,大家都知道,用它来调速 效果很好。
其实,用变频器三相380v 来控制三相异步交流电机的正反转,效果也不错。
下面就给大家来讲解一下。
现举一例说明,看下图:变频调速电动机正反转控制电路上图为三相380V 变频器控制三相交流电机正反转电路图。
从图中可以看出,电路由两部分组成:负载工作主电路和控制电路。
负载工作主电路是由电源主开关(断路器)、交流接触器KM 主触点、变频器内置交—直—交转换电路、三相异步交流电动机M 等。
控制电路由变频器内置辅助电路,启动按钮开关SB2,停止按钮开关SB1、交流接触器KM 电磁线圈,接触器常开辐助触点及电机正反转选择开关SA 等。
RP 为频率给定信号电位器。
二、三相380V 变频器控制三相交流电机正反转工作过程见上图,先合上电源开关QF ,控制电路得电,当按下启动按钮SB2时,接触器KM线圈得电吸合并自锁,连接COM与SA之间的接触器动合触点KM闭合。
主电路中接触器主触点闭合,变频器输入端R、S、T得电,变频器准备工作。
操作选择开关SA,当SA与FWD接通时,电机正向运转;当SA与REV接通时,电机反向运转。
需要停机时,将选择开关SA置于中间位置,三相380V 变频器先停止工作。
按下停止按钮SB1,接触器KM线圈失电复位,接触器主触点断开,切断三相电源。
若先按下停止按钮SB1,接触器线圈失电复位,接触器主触点断开,直接切断变频器输入电源,电机停止工作。
深圳市艾米克电气有限公司自2004年成立以来,经过十年的快速稳健发展,目前已经成长为国际知名的变频器制造商。
公司具有业内领先的自主核心技术和可持续研发能力,提供通用变频器、电流矢量变频器、磁通矢量变频器、风机专用变频器、水泵专用变频器、纺织专用变频器、空压机变频器、注塑机专用变频器等优质产品。
由于变频器在众多行业中都能实现高效节约电能,提高工艺水平等优势,艾米克变频器已广泛应用于风机、水泵、空压机、注塑机、卷绕机、中央空调,纺织、化工、冶金、矿业、制药、陶瓷、造纸、油田、塑料、印刷、热电、烟草、食品等各类机械设备中。