奥数高斯求和

合集下载

小学奥数--四年级高斯求和(学生版)6份

小学奥数--四年级高斯求和(学生版)6份

高斯求和德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。

高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。

1~100正好可以分成这样的50对数,每对数的和都相等。

于是,小高斯把这道题巧算为(1+100)×100÷2=5050。

小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。

若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。

后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。

例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。

由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。

项数=(末项-首项)÷公差+1。

末项=首项+公差×(项数-1)。

对于任意一个项数为奇数的等差数列来说,中间一项的值等于所有项的平均数,也等于首项和末项和的一半;或者换句话说,各项和等于中间项乘以项数。

即为中项定理【例题讲解及思维拓展训练】例1 1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。

由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。

注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。

小学奥数题讲解: 高斯求和(等差数列)

小学奥数题讲解: 高斯求和(等差数列)

小学奥数题讲解:高斯求和(等差数列)德国数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。

高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。

1~100正好能够分成这样的50对数,每对数的和都相等。

于是,小高斯把这道题巧算为(1+100)×100÷2=5050。

小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。

若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。

后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。

例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9, (99)(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。

由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。

例1 1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。

由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。

注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。

例2 11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。

原式=(11+31)×21÷2=441。

在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。

13五年级奥数高斯求和

13五年级奥数高斯求和

例5: 在下图中,每个最小的等边三角形的面积是12 厘米2,边长是1根火柴棍。问:(1)最大三角形的 面积是多少平方厘米?(2)整个图形由多少根火柴 棍摆成?
分析:最大三角形共有8层,从上往下摆时,每 层的小三角形数目及所用火柴数目如下表:

小三 角形 数 火柴 数
1
1
2
3
3
5
4
7
5
9
6
11
7
13
8
15
3
6
9
12
15
18
21
24
由上表看出,各层的小三角形数成等差数列,各 层的火柴数也成等差数列。
解:(1)最大三角形面积为 (1+3+5+…+15)×12 =[(1+15)×8÷2]×12 =768(平方厘米)。 2)火柴棍的数目为 3+6+9+…+24 =(3+24)×8÷2=108(根)。 答:最大三角形的面积是768厘米2,整个 图形由108根火柴摆成。
由高斯的巧算方法,得到等差数列的求和 公式: 和=(首项+末项)×项数÷2。
例1: 1+2+3+…+1999=? 分析与解:这串加数1,2,3,…,1999是等 差数列,首项是1,末项是1999,共有1999个 数。由等差数列求和公式可得 原式=(1+1999)×1999÷2=1999000。 注意:利用等差数列求和公式之前,一定要判断 题目中的各个加数是否构成等差数列。
德国著名数学家高斯幼年时代聪明过人,上学时, 有一天老师出了一道题让同学们计算: 1+2+3+4+…+99+100=? 老师出完题后,全班同学都在埋头计算,小高斯 却很快算出答案等于5050。高斯为什么算得又快 又准呢?原来小高斯通过细心观察发现: 1+100=2+99=3+98=…=49+52=50+51。 1~100正好可以分成这样的50对数,每对数的和 都相等。于是,小高斯把这道题巧算为 (1+100)×100÷2=5050。 小高斯使用的这种求和方法,真是聪明极了, 简单快捷,并且广泛地适用于“等差数列”的求和问 题。

四年级奥数《高斯求和》答案及解析

四年级奥数《高斯求和》答案及解析

高斯求和德国着名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。

高斯为什么算得又快又准呢原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。

1~100正好可以分成这样的50对数,每对数的和都相等。

于是,小高斯把这道题巧算为(1+100)×100÷2=5050。

小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。

若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。

后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。

例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。

由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。

]例1 1+2+3+ (1999)分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。

由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。

注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。

例2 11+12+13+ (31)分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。

原式=(11+31)×21÷2=441。

在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。

四年级奥数高斯求和问题

四年级奥数高斯求和问题

四年级奥数高斯求和问题(总5页) -本页仅作为预览文档封面,使用时请删除本页-小学奥数专题——高斯求和德国着名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。

高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。

1~100正好可以分成这样的50对数,每对数的和都相等。

于是,小高斯把这道题巧算为(1+100)×100÷2=5050。

小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。

若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。

后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。

例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。

由高斯的巧算方法,得到等差数列的求和公式:若干个数排成一列称为数列。

数列中的每一个数称为一项。

其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。

从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。

通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1和=(首项+末项)×项数÷2。

例1、1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。

三年级奥数高斯求和

三年级奥数高斯求和

断题目中的各个加数是否构成等差数列。
大家好
5
例2: 1+2+3+4+5+……+99 =? 分析与解:这串加数1,2,3,…,99是
等差数列,首项是1,末项是99,共有99个 数。由等差数列求和公式可得
1+2+3+4+5+……+99 =(1+99)×99÷2
=4950
大家好
6
例3: 1+3+5+7+9+11+13+15+17 =? 分析与解:这串加数1,3,5,7,9 , 11,
(1)1,2,3,4,5,…,100; (2)1,3,5,7,9,…,99; (3)8,15,22,29,36,…,71。
(1)是首项为1,末项为100,公差为1的等差数列; (2)是首项为1,末项为99,公差为2的等差数列;(3) 是首项为8,末项为71,公差为7的等差数列。
大家好
3
• 由高斯的巧算方法,得到等差数列的 求和公式:
50+58+66+74+82+90+98 =(50+98)×7÷2 =148 ×7÷2
=518
大家好
9
结束
大家好
10
相等。于是,小高斯把这道题巧算为
(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单 快捷,并且广泛地适用于“等差数列”的求和问题。
大家好
2
若干个数排成一列称为数列,数列中的每一个数称 为一项,其中第一项称为首项,最后一项称为末项。后 项与前项之差都相等的数列称为等差数列,后项与前项 之差称为公差。 例如:

四年级奥数高斯求和

四年级奥数高斯求和

第3讲高斯求和德国着名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。

高斯为什么算得又快又准呢原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。

1~100正好可以分成这样的50对数,每对数的和都相等。

于是,小高斯把这道题巧算为(1+100)×100÷2=5050。

小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。

若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。

后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。

例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。

由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。

项数=(末项-首项)÷公差+1。

末项=首项+公差×(项数-1)。

对于任意一个项数为奇数的等差数列来说,中间一项的值等于所有项的平均数,也等于首项和末项和的一半;或者换句话说,各项和等于中间项乘以项数。

即为中项定理【例题讲解及思维拓展训练】例1 1+2+3+ (1999)分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。

由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。

注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。

四年级奥数《高斯求和》答案及解析教学内容

四年级奥数《高斯求和》答案及解析教学内容

高斯求和德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。

高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。

1~100正好可以分成这样的50对数,每对数的和都相等。

于是,小高斯把这道题巧算为(1+100)×100÷2=5050。

小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。

若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。

后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。

例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。

由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。

]例1 1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。

由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。

注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。

例2 11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。

原式=(11+31)×21÷2=441。

在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。

四年级奥数《高斯求和》答案及解析

四年级奥数《高斯求和》答案及解析

高斯求和德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。

高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。

1~100正好可以分成这样的50对数,每对数的和都相等。

于是,小高斯把这道题巧算为(1+100)×100÷2=5050。

小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。

若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。

后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。

例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。

由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。

]例1 1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。

由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。

注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。

例2 11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。

原式=(11+31)×21÷2=441。

在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。

四年级奥数-高斯求和

四年级奥数-高斯求和

高斯求和一、高斯求和相关定义:若干个数按一定顺序规律排列起来就是一个数列。

如果这个数列中任意两个相邻的数之间的差都相等,我们就把这个数列称为等差数列。

其中第一个数称为首项,最后一个数称为末项。

相邻两个数之间的差称为公差,这数列中数的个数称为项数。

求和公式为: 等差数列的和=(首项+末项)⨯项数÷2项数=(末项-首项)÷公差+1末项=首项+公差⨯(项数-1)首项=末项-公差⨯(项数-1)二、例题例1.计算10987654321+++++++++练习 (1) 1917531+++++ (2) 求50以内所有偶数的和。

例2.建筑工地上堆着一些钢管(如图),求这些钢管一共有多少根?练习(1)图中一共有多少个三角形?(2)下图是一垛电线杆的侧面示意图,试计算一下图中共有多少根电线杆?例3.下面一列数是按照一定规律排列的:3,7,11,15,...,95,99.请问:(1)这列数中的第20个数是多少?(2)39是这列数中的第几项?练习:(1)自1开始,每隔三个数数一数,得到数列1,4,7,10......问第100个数是多少?(2)某饭店的餐桌都是能做4人的正方形,如图①所示。

当团体客人在10人以上时,饭店允许客人将餐桌拼成一长条,如图②所示,但每张桌子不能呢个有空位。

问如果团体客人是22人,那么需要几张桌子?例4.计算11+21+31+41+51+61+71+81+91练习:(1)计算:11+13+15+17+19+21+23(2)明明用棋子摆了一个五层图形,每两层棋子的个数相差5,最内层用了18个棋子。

问一共用了多少个棋子?例5.求首项为5,末项为155,公差是3的等差数列的和。

练习:一个有17项的等差数列,末项为117,公差为7,求这个等差数列的和是多少?例6.如图所示,如果用3根火柴摆成一个等边三角形,用这样的方法,按图中所示铺满一个大的等边三角形,如果这个大的等边三角形的底边是10根火柴,那么一共放多少根火柴?练习:如图所示是一个五边形点阵,中心是一个点为第一层,第二层每边两个点,第三层每边三个点,第四层每边四个点,一次类推,如果这个五边形点阵共有100层,那么点阵中一共有多少个点?三、课后练习1、下面数列中,哪些是等差数列?如果是,请指明公差;如果不是,说明理由。

四年级奥数高斯求和问题

四年级奥数高斯求和问题

小学奥数专题——高斯求和德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。

高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。

1~100正好可以分成这样的50对数,每对数的和都相等。

于是,小高斯把这道题巧算为(1+100)×100÷2=5050。

小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。

若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。

后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。

例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。

由高斯的巧算方法,得到等差数列的求和公式:若干个数排成一列称为数列。

数列中的每一个数称为一项。

其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。

从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。

通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1和=(首项+末项)×项数÷2。

例1、1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。

由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。

四年级奥数-高斯求和

四年级奥数-高斯求和
巧妙求和
小故事
• 一位教师布置了一道很繁杂的计算题,要求学生把1到 100 的所有整数加起来,教师刚叙述完题目,一位小男孩即刻把 写着答案的小石板交了上去。

1+2+3+4+......+98+99+100=?
• 老师起初并不在意这一举动,心想这个小家伙又在捣乱,但 当他发现全班唯一正确的答案属于那个男孩时,才大吃一惊。

而更使人吃惊的是男孩的算法......
小故事
此男孩叫高斯,是德国数学家、天 文学家和物理学家,被誉为历史上伟大 的数学家之一,和阿基米德、牛顿并列, 同享盛名。
老师发现:第一个数加最后一个数 是101,第二个数加倒数第二个数的和 也是101,……共有50对这样的数,用 101乘以50得到5050。种算法是教师 未曾教过的计算等级数的方法,高斯的 才华使老师——彪特耐尔十分激动,下 课后特地向校长汇报,并声称自己已经 没有什么可教这位男孩的了。
卡尔·弗里德里希·高斯
高斯的办法
• 德国著名数学家高斯幼年时代聪明过人
• 高斯为什么算得又快又准呢?原来小高斯通过细心观察 发现:

1+100=2+99=3+98=…=49+52=50+51。

1~100正好可以分成这样的50对数,每对数的和都
相等。于是,小高斯把这道题巧算为
• (1+100)×100÷2=5050。
计算
1+2+3+4+5+6+7+8+9+10=?
1+2+3+4+5+6+7+8+9+10 +10+9+8+7+6+5+4+3+2+1

四年级奥数第3讲-高斯求和课件及习题(学生)

四年级奥数第3讲-高斯求和课件及习题(学生)

四年级奥数第3讲-高斯求和课件及习题(学生)第第33讲高斯求和德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4++99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。

高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98==49+52=50+51。

1~100正好可以分成这样的50对数,每对数的和都相等。

于是,小高斯把这道题巧算为(1+100)100÷2=5050。

小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。

如下:(1)1,2,3,4,5,100;(2)1,3,5,7,9,99;(3)8,15,22,29,36,71。

由高斯的巧算方法,得到等差数列的求和公式:例例11+2+3++1999=?例例211+12+13++31=?例例33+7+11++99=?例例4求首项是25,公差是3的等差数列的前40项的和。

例例5在下图中,每个最小的等边三角形的面积是12厘米2,边长是1根火柴棍。

问:(1)最大三角形的面积是多少平方厘米?(2)整个图形由多少根火柴棍摆成?例例6盒子里放有三只乒乓球,一位魔术师第一次从盒子里拿出一只球,将它变成3只球后放回盒子里;第二次又从盒子里拿出二只球,将每只球各变成3只球后放回盒子里第十次从盒子里拿出十只球,将每只球各变成3只球后放回到盒子里。

这时盒子里共有多少只乒乓球?练习331、计算下列各题:(1)2+4+6++200;(2)17+19+21++39;(3)5+8+11+14++50;(4)3+10+17+24++101。

2、求首项是5,末项是93,公差是4的等差数列的和。

3、求首项是13,公差是5的等差数列的前30项的和。

4、时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟也敲一下。

问:时钟一昼夜敲打多少次?5、求100以内除以3余2的所有数的和。

最新四年级奥数《高斯求和》答案及解析

最新四年级奥数《高斯求和》答案及解析

高斯求和德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。

高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。

1~100正好可以分成这样的50对数,每对数的和都相等。

于是,小高斯把这道题巧算为(1+100)×100÷2=5050。

小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。

若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。

后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。

例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。

由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。

]例1 1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。

由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。

注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。

例2 11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。

原式=(11+31)×21÷2=441。

在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。

小学奥数—高斯求和

小学奥数—高斯求和

海青教育一对一个性化教案
二、选择题
1、下面各组数列中,是等差数列的是( )。

A、1、2、3、4、5
B、1、2、4、8、16
C、98、96、98、96
D、1、1、2、3、5、8
2、下面各组数列中,( )和其他三组有区别。

A、5、8、11、14、17
B、50、40、30、20、10
C、40、35、30、25、20
D、5、10、20、40、80
3、下面说法错误的是( )。

A、我们把按一定次序排成列的一列数称为数列。

B、数列中的每一个数都叫做这个数列的项。

C、数列中第一个数称为这个数列的前项,最后一个数称为后项。

D、一个数列从第二项起,每一项与前一项的差都等于同一个数,这个数列叫等差数列。

三、计算:
1、把一些圆柱形铁管按如图的样子摆在一起,如果正好摆了40层,共有多少根
铁管?
2、从1开始,每隔两个数写出一个数来,得到一个数列1、4、7、10、……前100
项的和是多少?
3、已知等差数列3、8、13、18、……问998是这个数列的第几项?。

小学奥数高斯求和例题汇总

小学奥数高斯求和例题汇总

小学奥数高斯求和例题汇总奥数奥数,四年级奥数。

下面,就来看四年级奥数精讲:高斯求和!例1 :1+2+3+…+2022=?分析与解:这串加数1,2,3,…,2022是等差数列,首项是1,末项是2022,共有2022个数。

由等差数列求和公式可得原式=(1+2022)×2022÷2=2022000。

注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。

例2 :11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。

原式=(11+31)×21÷2=441。

在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。

根据首项、末项、公差的关系,可以得到项数=(末项-首项)÷公差+1,末项=首项+公差×(项数-1)。

例3 :3+7+11+…+99=?分析与解:3,7,11,…,99是公差为4的等差数列,项数=(99-3)÷4+1=25,原式=(3+99)×25÷2=1275。

例4 :求首项是25,公差是3的等差数列的前40项的和。

分析与解:末项=25+3×(40-1)=142,和=(25+142)×40÷2=3340。

利用等差数列求和公式及求项数和末项的公式,可以解决各种与等差数列求和有关的问题。

四年级奥数培优《高斯求和(一)》

四年级奥数培优《高斯求和(一)》

高斯求和(一)约翰·卡尔·弗里德里希·高斯德国著名数学家、物理学家、天文学家、大地测量学家。

是近代数学奠基者之一,高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称。

高斯和阿基米德、牛顿并列为世界三大数学家。

一生成就极为丰硕,以他名字“高斯”命名的成果达110个,属数学家中之最。

一、例题精讲例1.观察下面三组数据,你发现了什么?(1)1、 2、 3、 4、 5、 6、 7、 8、 9、 10(2)2、 4、 6、 8、 10、 12、14、 16(3)101、 98、 95、 92、 89、 86、 83(4)6、 6、 6、 6、 6、 6、 6例2.等差数列的初步认识我们把第一个数称为(首项),最后一项称为(末项)相邻两个数的差相等,所以这个差叫(公差)。

数列(1)的公差是(),数列(2)的公差是(),数列(3)的公差是(),数列(4)的公差是(),因为相邻两数的差都(),这样的数列就是等差数列。

数列中数的个数称为(项数),数列(3)的项数是()个。

例3.下列数列不是等差数列的是()。

A. 7、 8、 7、 8、 7、 8、 7、 8、 7B. 0、 5、 10、 15、 20、 25、 30、 35C. 50、 48、 46、 44、 42、 40、 38例4.花园里的玫瑰花如下图排列,请你快速算出花的数量?例5.通过例4的学习,我们小结等差数列求和的公式是:请你利用公式计算:(1)2+4+6+8+10+12+14+16+18=(2)25+21+17+13+9+5+1=例6.在下图中,每个小等边三角形的边长是1根火柴棒,面积是15平方厘米。

(1)最大三角形的面积是多少平方厘米?(2)整个图形由多少根火柴摆成?二、课堂小测7. 5+9+13+17+21+25+29+33+378. 5+9+13+17+21+29+33+379. 3+6+9+12+15+18+21+24+22+20+18+16+14+12+10+810. 将正方形叠成山形(如图),叠1层一共用1个正方形,叠2层一共用4个正方形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

奥数高斯求和
德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:
1 + 2+3 + 4+ …+ 99+ 100=?
老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。

高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:
1 + 100= 2+ 99= 3 + 98=-= 49+ 5
2 = 50+ 51。

1〜100正好可以分成这样的50对数,每对数的和都相等。

于是,
小高斯把这道题巧算为
(1 + 100)X 100 + 2 = 5050。

小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。

若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。

后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。

例如:
(1) 1, 2, 3, 4, 5, (100)
(2) 1, 3, 5, 7, 9,…,99;( 3) 8, 15, 22, 29, 36,…,
其中(1)是首项为1,末项为100,公差为1的等差数列;
是首项为1,末项为99,公差为2的等差数列;(3)是首项为末项为71,公差为7的等差数列。

由高斯的巧算方法,得到等差数列的求和公式:
和二(首项+末项)X项数+ 2。

例1 1+2+3+ …+ 1999=?
分析与解:这串加数1, 2, 3,-, 1999是等差数列,首项是1,末(2) 8,
项是1999,共有1999个数。

由等差数列求和公式可得
原式=(1 + 1999)X 1999- 2= 1999000。

注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。

例2 11+12+13+…+ 31 = ?
分析与解:这串加数11, 12, 13,…,31是等差数列,首项是11,
末项是31,共有31-11 + 1 = 21 (项)。

原式二(11+31)X 21-2=441。

在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。

根据首项、末项、公差的关系,可以得到项数二(末项-首项)+公差+1, 末项二首项+公差x(项数-1 )。

例3 3 + 7+11+ …+ 99=?
分析与解:3, 7, 11,…,99是公差为4的等差数列,
项数二(99- 3)- 4+ 1= 25,
原式=(3+ 99)X 25- 2= 1275。

例4求首项是25,公差是3的等差数列的前40项的和。

解:末项=25+ 3X(40-1 ) = 142,
和=(25+ 142)X 40- 2= 3340。

利用等差数列求和公式及求项数和末项的公式, 可以解决各种与等差 数列求和有关的问题。

例5在下图中,每个最小的等边三角形的面积是 12厘米2,边长是
1根火柴棍。

问:(1)最大三角形的面积是多少平方厘米?(
2)整 个图形由多少根火柴棍摆成?
分析:最大三角形共有8层,从上往下摆时,每层的小三角形数目及 各层的火柴数也成等差数列。

解:(1)最大三角形面积为
(1 + 3+5+…+ 15)X 12 =[(1 + 15)x 8-2]X 12
=768 (厘米 2)。

2)火柴棍的数目为
3+ 6+ 9+…+24
=(3+ 24)X 8 -2=108 (根)。

答:最大三角形的面积是768厘米2,整个图形由108根火柴摆成。

例6盒子里放有三只乒乓球,一位魔术师第一次从盒子里拿出一只 球,将它变成3只球后放回盒子里;第二次又从盒子里拿出二只球, 将每只球各变成3只球后放回盒子里……第十次从盒子里拿出十只 球,将每只球各变成3只球后放回到盒子里。

这时盒子里共有多少只 乒乓球
? 1 1 1 I i r ■ J
1 1 i m 1 h J )i ! I I l i l i U 1 i ( ! I : .p l i :i , 所用火柴数目如下表:
分析与解:一只球变成3只球,实际上多了2只球。

第一次多了2只球,第二次多了2X 2只球……第十次多了2X10只球。

因此拿了十次后,多了
2X 1+ 2X 2+ …+ 2X 10 =2X( 1 + 2+…+ 10)
=2X55= 110 (只)。

加上原有的3只球,盒子里共有球110 + 3= 113 (只)。

综合列式为:
(3-1) X( 1+2+…+ 10)+ 3
=2X[( 1 + 10)X 10-2]+ 3= 113 (只)。

练习
1.计算下列各题:
(1) 2 + 4+6+ …+ 200;
(2) 17+ 19+21+ …+ 39;
(3) 5 + 8+ 11+ 14+…+ 50;
(4) 3+10+ 17+24+…+ 101。

2.求首项是5,末项是93,公差是4的等差数列的和。

3.求首项是13,公差是5的等差数列的前30项的和。

4.时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟也敲一下。

问:时钟一昼夜敲打多少次?
5.求100以内除以3余2的所有数的和。

6.在所有的两位数中,十位数比个位数大的数共有多少个?。

相关文档
最新文档