求解变力做功的四种方法

合集下载

有关变力做功问题的求解

有关变力做功问题的求解

有关变力做功问题的求解在整个高中物理教学和学习中,力学问题是高中物理学习的基础,是重点,也是难点。

而在高中阶段求变力做功问题,既是学生学习和掌握的难点,也是教师教学的难点。

那么变力做功的情况有那些?又如何来求解呢?下面就根据本人在高中物理教学中一点所得进行简单的总结。

1,运用等值法求变力做功求某个过程中的变力做功,可以通过等效法把求该变力做功转换成求与该变力做功相同的恒力的功,即该变力的功和某一恒力的功相等,则可以同过计算该恒力的功,求出该变力的功。

等效转换的关键是分析清楚该变力做功到底与哪个恒力的功是相同的。

一般在某一恒力F 通过轻绳或轻杆在不受任何摩擦的情况下给某一物体的变力做功就等于该恒力做的功。

此时可用功定义式W = cos Fs 求恒力的功,从而可知该变力的功。

这里要特别提醒的是,这种方法一般只用于求解大小恒定方向变化的变力做功问题。

例1、如图1所示,定滑轮至滑块的高度为h ,已知细绳的拉力为恒定F ,滑块沿水平面由A 点前进s 米至B 点,滑块在初、末位置时细绳与水平方向夹角分别为α和β。

求滑块由A 点运动到B 点过程中,绳的拉力对滑块所做的功。

分析:设绳对物体的拉力为T ,显然人对绳的拉力F 大小也等于T 。

T 在对物体做功的过程中大小不变,但其方向在时刻改变,因此该问题是变力做功的问题。

但是在滑轮的质量以及滑轮与绳间的摩擦不计的情况下,人对绳做的功就等于绳的拉力对物体做的功。

而拉力F 的大小和方向都不变,所以F 做的功可以用公式W=FScosa 直接计算。

解:由图可知,在绳与水平面的夹角由α变到β的过程中拉力F 的作用点位移大小为:△S=S 1-S 2=h/sin α-h/sin β所以:W T =W F =F △S=Fh(1/ sin α-1/ sin β)2,运用微元法求解变力做功当物体在变力的作用下作曲线运动时,若力的方向与物体运动的切线方向之间的夹角或者说力的方向与速度方向的夹角不变,且力与速度的方向同步变化,可用微元法将曲线分成无限个小元段,每一小元段可以认为恒力做功,总功即为各个小元段做功的代数和。

变力做功的计算

变力做功的计算

变力做功的计算 Prepared on 22 November 2020变力做功的计算公式适用于恒力功的计算,对于变力做功的计算,一般有以下几种方法。

一、微元法对于变力做功,不能直接用进行计算,但是我们可以把运动过程分成很多小段,每一小段内可认为F是恒力,用求出每一小段内力F所做的功,然后累加起来就得到整个过程中变力所做的功。

这种处理问题的方法称为微元法,这种方法具有普遍的适用性。

但在高中阶段主要用于解决大小不变、方向总与运动方向相同或相反的变力的做功问题。

例1. 用水平拉力,拉着滑块沿半径为R的水平圆轨道运动一周,如图1所示,已知物块的质量为m,物块与轨道间的动摩擦因数为。

求此过程中摩擦力所做的功。

图1思路点拨:由题可知,物块受的摩擦力在整个运动过程中大小不变,方向时刻变化,是变力,不能直接用求解;但是我们可以把圆周分成无数小微元段,如图2所示,每一小段可近似成直线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做的功,然后再累加起来,便可求得结果。

图2正确解答:把圆轨道分成无穷多个微元段,摩擦力在每一段上可认为是恒力,则每一段上摩擦力做的功分别为,,…,,摩擦力在一周内所做的功。

误点警示:对于此题,若不加分析死套功的公式,误认为位移s=0,得到W=0,这是错误的。

必须注意本题中的F是变力。

小结点评:对于变力做功,一般不能用功的公式直接进行计算,但有时可以根据变力的特点变通使用功的公式。

如力的大小不变而方向总与运动方向相同或相反时,可用计算该力的功,但式子中的s不是物体运动的位移,而是物体运动的路程。

[发散演习]如图3所示,某个力F=10N作用于半径R=1m的转盘的边缘上,力F的大小保持不变,但方向任何时刻与作用点处的切线方向保持一致。

则转动半圆,这个力F做功多少图3答案:。

二、图象法在直角坐标系中,用纵坐标表示作用在物体上的力F,横坐标表示物体在力的方向上的位移s。

如果作用在物体上的力是恒力,则其F-s图象如图4所示。

小专题复习课(变力做功求解四法)

小专题复习课(变力做功求解四法)
2 2
答案:-125 J
3.利用W=Pt求解 在功率给出且保持不变的情况下,利用W=Pt可求出变力所 做的功. 【典例6】质量为5 t的汽车以恒定的输出功率75 kW在一条平直
的公路上由静止开始行驶,在10 s内速度达到10 m/s,求摩擦
阻力在这段时间内所做的功.
【深度剖析】汽车的功率不变,根据P=Fv知,随着速度v的增大, 牵引力将变小,不能用W=Fl求功,但已知汽车的功率恒定,所 以牵引力在这段时间内所做的功WF=Pt=75×103× 10 J=7.5×105 J
轴及x=5 m所围面积,即 W1 10 5 5 J 37.5 J; W2为F2做的功,数
值等于F2图线跟坐标轴及x=5 m所围面积,即 W2 5 5 J 12.5 J, 所以Ekm=37.5 J-12.5 J=25 J. 答案:25 J
2 2
W外=ΔEp=mgΔh= 1 mg
答案: 1 mg
2

2

a 2 b2 b .

a 2 b2 b

1.(化变力为恒力)如图所示,质量为2 kg的木块套在光滑的竖
直杆上,用60 N的恒力F通过轻绳拉木块,木块在A点的速度vA=
3 m/s,则木块运动到B点的速度vB是多少?(木块可视为质点,g 取10 m/s2)
【典例4】如图所示,质量m=1 kg的物体从轨道上的A点由静止 下滑,轨道AB是弯曲的,且A点高出B点h=0.8 m.物体到达B点时 的速度为2 m/s,求物体在该过程中克服摩擦力所做的功.
【深度剖析】物体由A运动到B的过程中共受到三个力作用:重力 G、支持力FN和摩擦力Ff.由于轨道是弯曲的,支持力和摩擦力 均为变力.但支持力时刻垂直于速度方向,故支持力不做功,

求变力做功的几种方法

求变力做功的几种方法

求变力做功的几种方法变力做功是物理学中的一个重要概念。

力可以改变物体的状态,让物体移动、加速或减速。

做功就是施加力使物体移动的过程中能量的转移。

以下将介绍几种常见的变力做功的方法。

1.推力做功:将物体推向前方时,施加的力与物体的位移方向一致,即力和位移向量的夹角为0度。

例如,我们推车子或推行李箱时,就是通过推力来做功。

2.拉力做功:这种方式与推力做功相反,即施加的力与物体的位移方向相反,力和位移向量的夹角为180度。

例如,我们拉拽一根绳子或拉弓发射箭矢时,施加的力与物体的运动方向相反。

3.重力做功:重力是地球吸引物体向地心运动的力。

当一个物体从高处下落时,重力对物体做功。

在这种情况下,重力与物体的位移方向相同,力和位移向量的夹角为0度。

4.弹力做功:当有弹簧或橡皮带等弹性物体被拉伸或压缩时,会产生弹力。

弹力做功是将弹性势能转化为动能的过程。

例如,我们拉伸弓弦时,弓的张力对箭矢做功,让它飞行。

5.摩擦力做功:当物体在表面上移动时,与表面接触的粒子之间会产生摩擦力。

摩擦力做功是将机械能转化为热能的过程。

例如,我们用力推动一个滑动在地面上的物体时,摩擦力会做功,使物体停下来。

6.磁力做功:磁力是磁体之间的相互作用力。

当磁场改变时,施加在物体上的磁力会做功。

例如,我们用电磁铁吸起一个金属球时,磁力会做功,将物体从地面抬起。

7.电力做功:电力是在电子之间产生的相互作用力。

当电流通过电阻产生的电阻力与电子的移动方向相对立时,电力会做功。

例如,电流通过电灯丝时,电力会转化为热能和光能,使灯泡发亮。

总结起来,变力做功的方法主要包括推力做功、拉力做功、重力做功、弹力做功、摩擦力做功、磁力做功和电力做功。

通过施加不同的力,我们可以改变物体的状态和能量的转移,从而实现各种实际应用。

变力做功的六种常见计算方法

变力做功的六种常见计算方法

变力做功的六种常见计算方法s,但是学生在应用在高中阶段,力做功的计算公式是W=FScoα时,只会计算恒力的功,对于变力的功,高中学生是不会用的。

下面介绍六种常用的计算变力做功的方法,希望对同学们有所启发。

方法一:用动能定理求若物体的运动过程很复杂,但是如果它的初、末动能很容易得出,而且,除了所求的力的功以外,其他的力的功很好求,可选用此法。

例题1:如图所示。

质量为m的物体,用细绳经过光滑的小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个数值F时,转动半径为R;拉力逐渐减小到0.25F时,物体仍然做匀速圆周运动,半径为2R,求外力对物体所做的功的大小。

解析:当拉力为F时,小球做匀速圆周运动,F提供向心力,则F=mv12/2R。

此题中,当半径由R2/R;当拉力为0.25F时,0.25F=mv2变为2R的过程中,拉力F为变力,由F变为2F,我们可以由动能定2=0.25RF。

理,求2—0.5mv2得外力对物体所做的功的大小W=0.5mv1方法二:用功率的定义式求若变力做功的功率和做功时间是已知的,则可以由W=Pt来求解变力的功。

例题2:质量为m=500吨的机车,以恒定的功率从静止出发,经过时间t=5min在水平路面上行使了s=2.25km,速度达到最大值v=54km/h。

假设机车受到的阻力为恒力。

求机车在运动中受到的阻力大小。

解析:机车先做加速度减小的变加速直线运动,再做匀速直线运动。

所以牵引力F先减小,最后,F恒定,而且跟阻力f平衡,此时有功率P=Fv=fv。

在变加速直线运动阶段,牵引力是变力,它在此阶段所作的功可以由w=Pt来求。

由动能定理,Pt—fs=0.5mv2—0,把P=Fv=fv代入得,阻力f=25000N。

方法三:平均力法如果变力的变化是均匀的(力随位移线性变化),而且方向不变时,可以把变力的平均值求出后,将其当作恒力代入定义式即可。

例题3:如图所示。

轻弹簧一端与竖直墙壁连接,另一端与一质量为m的木块相连,放在光滑的水平面上,弹簧的劲度系数为k,开始时弹簧处于自然状态。

变力做功(微元法、平均力法、图像法)

变力做功(微元法、平均力法、图像法)

第一次击入深度为x1,平均阻力F1= 1/2× kx1,
做功为W1= F1 x1=1/2×kx21.
第二次击入深度为x1到x2,
平均阻力F2=1/2× k(x2+x1), 位移为x2-x1,
做功为W2= F2(x2-x1)=1/2× k(x22-x21).
两次做功相等:W1=W2.
解后有:x2= 2 x2=1.41cm.
例一 一辆马车在恒定大小摩擦力力f=100N的作用下 绕半径为50m的圆形轨道做匀速圆周运动,当车运 动一周回到原位置时,摩擦力所做的功为多少?
解: 阻力的方向时刻在变,是变力做功的问题,不 能直接由功的公式计算。
采用微元法解之,将圆分成很多很多小段,在这些小 段中,力可以看作恒力,于是
ΔW1=-fΔl1
③恒力做功多少只与F、L及二者夹角余弦有关,而 与物体的加速度大小、速度大小、运动时间长短等都 无关,即与物体的运动性质无关,同时与有无其它力 做功也无关。
二.变力做功
对于变力做功不能依定义式
W Flcos
直接求解,但可依物理规律通过技巧的转化间接求解。
基本原则——过程分割与代数累积
1.可用(微元法)无限分小法来求, 过程无限分小后, 可认为每小段是恒力做功。
7.2《功》 变力做功的几种求法
一、复习引入
1.定义:物体受到力的作用,并在力方向上发生一段 位移,就说力对物体做了功.
2.公式:W=Flcosα,其中α为F与l的夹角,F是力的大 小,l一般是物体相对地面的位移,而不是相对于和它 接触的物体的位移.
3.应用中的注意点
①公式只适用于恒力做功
② F和S是对应同一个物体的;
例3. 用铁锤将一铁钉击入木块,设木块对铁钉的阻

求变力做功的几种方法

求变力做功的几种方法

求变力做功的几种方法变力做功是物理学中的一个重要概念,指的是通过施加力使物体移动,并且力的方向与物体的位移方向相同,从而产生功。

在物理学中,变力做功的几种常见的方式包括:1.恒力做功:恒力做功是指当施加于物体上的力保持恒定,并且力的方向与物体的位移方向相同时所产生的功。

例如,当将物体按直线方向推动时,施加力的大小和方向始终保持不变,这时产生的功就是恒力做的功。

2.弹力做功:弹力做功是指当施加于弹性物体上的力使其发生形变,并且力的方向与变形的方向相同时所产生的功。

例如,当将弹簧压缩或拉伸时,弹簧将会产生弹力,并且完成对外做功的过程。

3.重力做功:重力做功是指当物体受到重力的作用时所产生的功。

例如,将物体从高处抬升到低处,重力将会对物体做功,使物体下降。

此时,重力与物体的下降方向相同,从而产生重力做的功。

4.摩擦力做功:摩擦力做功是指当物体在摩擦力的作用下移动时所产生的功。

例如,当将物体沿水平面上的表面推动时,摩擦力将与物体的运动方向相反,并且产生摩擦力做的功,将物体减速或停止。

5.推力做功:推力做功是指当物体受到推力的作用时所产生的功。

例如,当用力将物体沿斜面推动时,推力将与物体的位移方向一致,并且产生推力做的功,使物体上升或下降。

除了上述几种方式之外,还有其他一些特殊情况下的功。

例如,当物体围绕固定点旋转时,所受到的转动力矩将使物体围绕轴旋转,并且产生转动功。

而当应力作用下的材料发生变形时,所施加的应力将会对材料做功,称为弹性势能的转化。

总之,变力做功具有多种方式,这些方式在物理学中都有着重要的应用。

通过研究和理解这些不同的方式,可以更好地理解和应用物理学的知识,并且在实际生活中解释和分析各种物理现象。

变力做功的四种类型

变力做功的四种类型

变力做功的四种类型①利用平均值法求变力做功(或示功图) ②分过程求变力做功。

③微元法求变力作功。

④转移法(将变力转做为恒力做功)例1:质量为1kg 的物体在变力作用下,自静止起加速运动,已知作用F 随位移S 变化的规律是:F=(10+3S )N ,则该物体经4m 位移后力F 做的功为多少焦?解法一:因变力F 随位移S 线性变化,则变力F 的平均F 为:12(1030)(1034)1622F F F N ++⨯++⨯=== 变力F 所做的功为:16464W FS J ==⨯= 解法二:力F 随位移S 是均匀增大的,据此做出F=S 图象,因为功是力在空间积累的效果,所以力F 所做的功等于图形中梯形的面积。

“即”121(1022)42 =64JW =+⨯(a+b )h=巩固练习一、劲度系数为k 的弹簧,用力拉它,当它伸长x 时,所用的拉力为F ,求此力所做的功。

解:由于力F 的大小与位移成正比,所以变力F 可以用平均力来替代,也就是说,变力F 做的功等于它的平均力F 做的功即:2122o kx W FS x kx +=== 示功图为: S 面=例2:以一定初速度竖直向上抛出一小球,小球上升的最大高度为h ,空气阻力的大小恒为()A 、零B 、fh -C 、2fh -D 、4fh -分析:整个过程,小球所受阻力的方向变化了,所以是变力,如何求这一变力做的功,可分段处理,上升和下降阶段,阻力均做负功,且均为fh -,故总功为2fh -.例3:沿着半径为R 的圆周做匀速运动的汽车,运行一周回到原出发点的过程中,牵引力和摩擦力各做功为多少?已知摩擦力f解析:做圆周运动的物体,速度方向总沿其切线方向,故牵引力也沿其切线议长阻力与牵引力方向相反,故这两个力都是变力,则采用微元法解决。

把圆周分成无数小段,在第一小段里可以看成作直线运动:则牵引力做功 123n WF F S F S F S F S =∆+∆+∆++∆ 123=F(S +S +)n S S ∆∆∆++∆=f.2R π 同理摩擦力做功为: wf=-f.2R π巩固练习:水平面上,有一弯曲的槽道AB ,槽道由半径分别为R/2和R 的两个半圆构成,现有大小恒为F 的拉力将一光滑小球从A 点沿槽道拉至B 点,若拉力F 的拉力将一光滑小球从A 点沿槽道拉至B 点,若拉力F 的方向同时与小球的运动方向一致,则此过程中,拉力做功为 ( )A 、0B 、FRC 、23RF π D 、2FR π例4:在光滑的水平面上,物体在恒力F=100N 作用下F 从A 点运动到B 点,不计滑轮的大小,不计绳滑轮的质量,及滑轮与绳间的摩擦:已知002.4 37 53H m a β===求拉力F 对物体做的功。

高考物理:变力做功的求解方法!

高考物理:变力做功的求解方法!

高考物理:变力做功的求解方法!一、变力做功的计算方法1、用动能定理动能定理表达式为,其中是所有外力做功的代数和,△E k是物体动能的增量。

如果物体受到的除某个变力以外的其他力所做的功均能求出,那么用动能定理表达式就可以求出这个变力所做的功。

2、用功能原理系统内除重力和弹力以外的其他力对系统所做功的代数和等于该系统机械能的增量。

若在只有重力和弹力做功的系统内,则机械能守恒(即为机械能守恒定律)。

3、利用W=Pt求变力做功这是一种等效代换的思想,用W=Pt计算功时,必须满足变力的功率是一定的。

4、转化为恒力做功在某些情况下,通过等效变换可将变力做功转换成恒力做功,继而可以用求解。

5、用平均值当力的方向不变,而大小随位移做线性变化时,可先求出力的算术平均值,再把平均值当成恒力,用功的计算式求解。

6、微元法对于变力做功,我们不能直接用公式进行计算,但是可以把运动过程分成很多小段,每一小段内可认为F是恒力,用求出每一小段内力F所做的功,然后累加起来就得到整个过程中变力所做的功。

这种处理问题的方法称为微元法,其具有普遍的适用性。

在高中阶段主要用这种方法来解决大小不变、方向总与运动方向相同或相反的变力做功的问题。

二、摩擦力做功的特点1、静摩擦力做功的特点:A、静摩擦力可以做正功,也可以做负功,还可以不做功。

B、在静摩擦力做功的过程中,只有机械能的相互转移(静摩擦力起着传递机械能的作用),而没有机械能转化为其他形式的能。

C、相互摩擦的系统内,一对静摩擦力所做功的代数和总是等于零。

2、滑动摩擦力做功的特点:如图所示,顶端粗糙的小车,放在光滑的水平地面上,具有一定速度的小木块由小车左端滑上小车,当木块与小车相对静止时木块相对小车的位移为d,小车相对地面的位移为s,则滑动摩擦力F对木块做的功为W木=-F(d+s)①由动能定理得木块的动能增量为ΔE k木=-F(d+s)②滑动摩擦力对小车做的功为W车=Fs ③同理,小车动能增量为ΔE k车=Fs ④②④两式相加得ΔE k木+ΔE k车=-Fd ⑤⑤式表明木块和小车所组成系统的机械能的减少量等于滑动摩擦力与木块相对于小车位移的乘积,这部分能量转化为内能。

变力做功的计算

变力做功的计算

公式适用于恒力功的计算,对于变力做功的计算,一般有以下几种方法。

一、微元法对于变力做功,不能直接用进行计算,但是我们可以把运动过程分成很多小段,每一小段内可认为F是恒力,用求出每一小段内力F所做的功,然后累加起来就得到整个过程中变力所做的功。

这种处理问题的方法称为微元法,这种方法具有普遍的适用性。

但在高中阶段主要用于解决大小不变、方向总与运动方向相同或相反的变力的做功问题。

例1. 用水平拉力,拉着滑块沿半径为R的水平圆轨道运动一周,如图1所示,已知物块的质量为m,物块与轨道间的动摩擦因数为。

求此过程中摩擦力所做的功。

图1思路点拨:由题可知,物块受的摩擦力在整个运动过程中大小不变,方向时刻变化,是变力,不能直接用求解;但是我们可以把圆周分成无数小微元段,如图2所示,每一小段可近似成直线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做的功,然后再累加起来,便可求得结果。

图2正确解答:把圆轨道分成无穷多个微元段,摩擦力在每一段上可认为是恒力,则每一段上摩擦力做的功分别为,,…,,摩擦力在一周内所做的功。

误点警示:对于此题,若不加分析死套功的公式,误认为位移s=0,得到W=0,这是错误的。

必须注意本题中的F是变力。

小结点评:对于变力做功,一般不能用功的公式直接进行计算,但有时可以根据变力的特点变通使用功的公式。

如力的大小不变而方向总与运动方向相同或相反时,可用计算该力的功,但式子中的s不是物体运动的位移,而是物体运动的路程。

[发散演习]如图3所示,某个力F=10N作用于半径R=1m的转盘的边缘上,力F的大小保持不变,但方向任何时刻与作用点处的切线方向保持一致。

则转动半圆,这个力F做功多少?图3答案:31.4J。

二、图象法在直角坐标系中,用纵坐标表示作用在物体上的力F,横坐标表示物体在力的方向上的位移s。

如果作用在物体上的力是恒力,则其F-s图象如图4所示。

经过一段时间物体发生的位移为s0,则图线与坐标轴所围成的面积(阴影面积)在数值上等于力对物体做的功W=Fs,s轴上方的面积表示力对物体做正功(如图4(a)所示),s轴下方的面积表示力对物体做负功(如图4(b)所示)。

变力做功的六种常见计算方法

变力做功的六种常见计算方法

变力做功的六种常见计算方法第一种方法是曲线切线式。

在物体沿曲线运动的情况下,可以通过计算力的切线分量与物体速度的乘积来确定变力做功的大小。

具体计算方法是,首先需要确定物体在其中一时刻的速度,然后取该时刻的力的切线分量(即与物体速度方向相同的力的分量),最后将该切线分量与物体速度的乘积相乘,即可得到变力做功的大小。

第二种方法是常力法。

在物体受到一定的恒定力作用下,可以通过计算力与物体位移方向的夹角的余弦值再乘上力的大小来确定变力做功的大小。

具体计算方法是,首先需要确定力的大小,然后确定物体的位移方向与力的方向之间的夹角,最后将位移方向与力的方向之间夹角的余弦值乘以力的大小,即可得到变力做功的大小。

第三种方法是分力法。

当物体受到多个力的作用时,可以通过计算各个力的分力与物体位移方向之间的夹角的余弦值再分别乘上各个分力的大小来确定变力做功的大小,然后将各个分力的做功求和即可得到变力做功的总大小。

第四种方法是连续变力法。

在物体受到连续变化的力作用下,可以通过将力的大小关于物体位移的函数表示出来,然后对该函数进行积分来确定变力做功的大小。

具体计算方法是,首先需要确定力对物体位移的函数关系式,然后对该函数进行积分,最后得到的积分值即为变力做功的大小。

第五种方法是有功做功法。

在物体受到非保守力作用下,可以通过计算力的非保守分量与物体位移的乘积再加上势能变化的大小来确定变力做功的大小。

具体计算方法是,首先需要确定力的保守分量与非保守分量,然后将非保守分量与位移的乘积相加,再加上势能变化的大小,即可得到变力做功的大小。

第六种方法是负功做功法。

在物体受到反向力作用下,可以通过计算该反向力的绝对值与物体位移的乘积再乘上负一来确定变力做功的大小。

具体计算方法是,首先需要确定反向力的大小,然后将反向力的绝对值与位移的乘积相乘,并将结果乘以负一,即可得到变力做功的大小。

综上所述,变力做功的六种常见计算方法分别是曲线切线式、常力法、分力法、连续变力法、有功做功法和负功做功法。

(完整版)五种方法搞定变力做功问题

(完整版)五种方法搞定变力做功问题

五种方法搞定变力做功一.微元法思想。

当物体在变力作用下做曲线运动时,我们无法直接使用θcos s F w •=来求解,但是可以将曲线分成无限个微小段,每一小段可认为恒力做功,总功即为各个小段做功的代数和。

例1. 用水平拉力,拉着滑块沿半径为R 的水平圆轨道运动一周,如图1所示,已知物块的质量为m ,物块与轨道间的动摩擦因数为μ。

求此过程中摩擦力所做的功。

思路点拨:由题可知,物块受的摩擦力在整个运动过程中大小不变,方向时刻变化,是变力,不能直接用求解;但是我们可以把圆周分成无数小微元段,如图2所示,每一小段可近似成直线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做的功,然后再累加起来,便可求得结果 图1图2把圆轨道分成无穷多个微元段,摩擦力在每一段上可认为是恒力,则每一段上摩擦力做的功分别为,,…,,摩擦力在一周内所做的功二、平均值法当力的大小随位移成线性关系时,可先求出力对位移的平均值221F F F +=,再由αcos L F W =计算变力做功。

如:弹簧的弹力做功问题。

例2静置于光滑水平面上坐标原点处的小物块,在水平拉力F 作用下,沿x 轴方向运动(如图2甲所示),拉力F 随物块所在位置坐标x 的变化关系(如图乙所示),图线为半圆.则小物块运动到x 0处时的动能为 ( ) A .0 B .021x F mC .04x F m πD .204x π【精析】由于W =Fx ,所以F-x 图象与x 轴所夹的面积表示功,由图象知半圆形的面积为04m F x π.C 答案正确.三.功能关系法。

功能关系求变力做功是非常方便的,但是必须知道这个过程中能量的转化关系。

例3 如图所示,用竖直向下的恒力F 通过跨过光滑定滑轮的细线拉动光滑水平面上的物体,物体沿水平面移动过程中经过A 、B 、C 三点,设AB =BC ,物体经过A 、B 、C 三点时的动能分别为E KA ,E KB ,E KC ,则它们间的关系一定是:A .E KB -E KA =E KC -E KB B .E KB -E KA <E KC -E KB C .E KB -E KA >E KC -E KBD .E KC <2E KBF x 0FxF •Ox 0图2-甲图2乙【精析】此题中物块受到的拉力是大小恒定,但与竖直方向的夹角逐渐增大,属于变力,求拉力做功可将此变力做功转化为恒力做功问题.设滑块在A 、B 、C 三点时到滑轮的距离分别为L 1、L 2、L 3,则W 1=F (L 1-L 2),W 2=F (L 2-L 3),要比较W 1和W 2的大小,只需比较(L 1-L 2)和(L 2-L 3)的大小.由于从L 1到L 3的过程中,绳与竖直方向的夹角逐渐变大,所以可以把夹角推到两个极端情况.L 1与杆的夹角很小,推到接近于0°时,则L 1-L 2≈AB ,L 3与杆的夹角较大,推到接近90°时,则L 2-L 3≈0,由此可知,L 1-L 2> L 2-L 3,故W 1> W 2.再由动能定理可判断C 、D 正确.答案CD.四.应用公式Pt W =求解。

高中物理:变力做功怎么求?

高中物理:变力做功怎么求?

高中物理:变力做功怎么求?功的求法是高中物理教学的重点和难点之一,教材上的公式:,只适用于恒力做功的情况,对于某些变力做功的问题,在高中阶段也要求学生掌握,而学生遇到变力做功的问题时,常常感到无处着手。

下面,对变力做功求解方法的问题进行总结:方法一:微元累积法将物体的位移分割成许多小段,因小段很小,每一小段上作用在物体上的力可以视为恒力,这样就将变力做功转化为在无数多个无穷小的位移上的恒力所做元功的代数和。

此法在中学阶段,常应用于求解力的大小不变、方向改变或者方向不变、大小改变的变力做功问题。

例1、如图1所示,半径为R,孔径均匀的圆形弯管水平放置,小球在管内以足够大的初速度在水平面内做圆周运动,设开始运动的一周内,小球与管壁间的摩擦力大小恒为,求小球在运动的这一周内,克服摩擦力所做的功。

解析:将小球运动的轨迹分割成无数个小段,设每一小段的长度为,它们可以近似看成直线,且与摩擦力方向共线反向,如图2所示,元功,而在小球运动的一周内小球克服摩擦力所做的功等于各个元功的和,即方法二:力的平均值法当某个力的方向不变,但其大小随位移均匀变化时,可以用力的初始值F1和末状态值F2的平均值来计算变力所做的功。

例2、如图3所示,在光滑的水平面上,劲度系数为k的弹簧左端固定在竖直墙上,右端系着一小球,弹簧处于自然状态时,小球位于O点,今用外力压缩弹簧,使其形变量为x,当撤去外力后,求小球到达O点时弹簧的弹力所做的功。

解析:弹簧的弹力为变力,与弹簧的形变量成正比,在题设条件下,弹力的初始值为,终值为,故弹力的平均值为,则弹力所做的功。

方法三:图像法在题设情况下,如果能找出力F与位移s的函数关系,则在F-s 的平面直角坐标系中,作出F随s变化的图像,那么,图像与横坐标轴所围成的图形的面积即是F对物体在某一段位移上所做功的数值。

例3、用质量为5kg的均匀铁索从10m深的井中吊起质量为20kg 的重物,在这个过程中至少要做多少功(取g=10m/s2)解析:在吊起重物的过程中,作用在重物和铁索上的力至少应等于重物和铁索的重力,但在吊起过程中铁索的长度逐渐缩短,故拉力也逐渐减少,即拉力是一个随距离变化的变力,拉力随深度s的变化关系为所以力随距离是均匀变化,作出拉力的F-s图线,则拉力所做的功可以用图4中梯形的面积来表示显然,此题亦可以用方法二求解。

求变力做功的十种方法

求变力做功的十种方法

变力做功的十种方法河南省信阳高级中学 陈庆威功是高中物理的重要概念,对力做功的求解也是高考物理的重要考点,恒力的功可以用公式θcos FS W =直接求解,但变力做功就不能直接用公式了,这里总结了一些求变力做功的方法,希望能对读者有帮助。

一. 动能定理法例1. 如图所示,质量为m 的物体从A 点沿半径为R 的粗糙半球内表面以的速度开始下滑,到达B 点时的速度变为,求物体从A 运动到B 的过程中,摩擦力所做的功是多少?【解析】物体由A 滑到B 的过程中,受重力G 、弹力和摩擦力三个力的作用,因而有,即,式中为动摩擦因数,v 为物体在某点的速度,为物块与球心的连线与竖直方向的夹角。

分析上式可知,物体由A 运动到B 的过程中,摩擦力是变力,是变力做功问题,根据动能定理有,在物体由A 运动到B 的过程中,弹力不做功;重力在物体由A 运动到C 的过程中对物体所做的正功与物体从C 运动到B 的过程中对物体所做的负功相等,其代数和为零。

因此,物体所受的三个力中摩擦力在物体由A 运动到B 的过程中对物体所做的功,就等于物体动能的变化量,则有:即 可见,如果所研究的物体同时受几个力的作用,而这几个力中只有一个力是变力,其余均为恒力,且这些恒力所做的功和物体动能的变化量容易计算时,此类方法解决问题是行之有效的。

【点评】利用动能定理可以求变力做功,但不能用功的定义式直接求变力功,并且用动能定理只要求始末状态,不要求中间过程。

这也是动能定理比牛顿运动定律优越的一个方面。

二. 微元法对于变力做功,不能直接用θcos FS W =进行计算,但是我们可以把运动过程分成很多小段,每一小段内可认为F 是恒力,用θcos FS W =求出每一小段内力F 所做的功,然后累加起来就得到整个过程中变力所做的功。

这种处理问题的方法称为微元法,具有普遍的适用性。

例2. 用水平拉力,拉着滑块沿半径为R 的水平圆轨道运动一周,如图所示,已知物块的质量为m ,物块与轨道间的动摩擦因数为μ。

求解变力做功问题的五种方法

求解变力做功问题的五种方法

求解变力做功问题的五种方法在高中阶段,应用做功公式W=FScosα来解题时,公式中F只能是恒力。

如果F是变力,就不能直接应用公式W=FScosα来求变力做功问题。

但是题目中又经常出现变力做功问题,下面介绍五种求解变力做功问题的方法。

一:将变力做功转化为恒力做功来求解我们知道变力做功不可以直接用公式W=FScosα来计算,但有些情况下,将变力转化成恒力做功,就可以用公式直接求解。

例题1:如图1所示,人用大小不变的力F拉着放在光滑平面上的物体,开始时与物体相连的绳子和水平面间的夹角是α,当拉力F作用一段时间后,绳子与水平面的夹角是β,图中的高度是h,求绳子拉力T对物体所做的功,(绳的质量,滑轮的质量和绳与滑轮之间的摩擦均不计)。

分析与解答:在物体向右运动过程中,绳子拉力T是一个变力,是变力做功问题。

但是拉力T大小等于力F的大小,且力F是恒力。

因此,求绳子拉力T对物体所做的功就等于力F所做的功。

由图可知,力F的作用点移动的位移大小为:ΔS=S1-S2。

则:W T=W F=FΔS=F(S1-S2)=Fh(1/sinα-1/sinβ).二:用动能定理来求解我们知道,动能定理的内容:外力对物体所做的功等于物体动能的增量。

如果我们研究物体所受的外力中只有一个是变力,其他力都是恒力,而且这些力做功比较容易求,就可以用动能定理来求变力做功。

例题2:如图2所示,质量为2kg的物体从A点沿半径为R的粗糙半球内表面以10m/s 的速度开始下滑,到达B点时的速度变为2m/s,求物体从A点运动到B点的过程中,摩擦力所做的功是多少?分析及解答:物体从A点运动到B点的过程中,受到重力G、弹力N和摩擦力f三个力作用,在运动过程中,摩擦力f的方向和大小都发生改变,因此摩擦力f是变力,是变力做功问题。

物体从A点运动到B点的过程中,弹力N不做功,重力G做功为零。

物体所受的三个力中摩擦力在物体从A点运动到B点的过程中对物体所做的功,就等于物体动能的变化量,则W外=W f=ΔE k=1/2mV B2-1/2mV A2=-96(J).三:用机械能守恒定律来求解我们知道,物体只受重力和弹力作用或只有重力和弹力做功时,系统的机械能守恒。

变力做功问题的求法集锦

变力做功问题的求法集锦

变力的功求法集锦第一.平均力法1.基本依据:如果一个过程,若F 是位移l 的线性函数时,即F=k l +b 时,可以用F 的平均值 =F (F 1 +F 2)/2来代替F 的作用效果来计算。

2.基本方法:先判断変力F 与位移l 是否成线性关系,然后求出该过程初状态的力1F 和末状态的力2F ,再求出每段平均力和每段过程位移,然后由αcos l F W =求其功。

【例1】用铁锤将一铁钉击入木块,设木块对铁钉的阻力与铁钉钉入木块内的深度成正比。

在铁锤击第一次时,能把铁钉击入木块内1cm ,问击第二次时,能击入多深?(设铁锤每次做功都相等) 解析:铁锤每次做功都是克服铁钉阻力做功,但摩擦阻力不是恒力,其大小与深度成正比。

, 可用平均阻力来代替。

如图所示,第一次击入深度为,平均阻力为, 做功为:第二次击入深度为到,平均阻力为:位移为做功为:两次做功相等:解后有:练习1:要把长为l 的铁钉钉入木板中,每打击一次给予的能量为E 0,已知钉子在木板中遇到的阻力 与钉子进入木板的深度成正比,比例系数为k 。

问此钉子全部进入木板需要打击几次?分析:钉子在整个过程中受到的平均阻力为:F k l k l =+=022钉子克服阻力做的功为:W F l k l F ==122设全过程共打击n 次,则给予钉子的总能量:E n E k l 总==0212所以n k l E =202【例2】如图所示,轻弹簧一端与竖直墙壁相连,另一端与一质量为m的木块连接,放在光滑的水平面上。

弹簧劲度系数为k ,开始时处于自然长度。

现用水平力缓慢拉木块,使木块前进x ,求拉力对木块做了多少功?解析:可用平均力 kx F 1=求功,故21kx x F W =⋅=。

思考:1.若是恒力F 向右拉动木块,拉力的功是否仍为上述的解?2.若是物块轻轻放置于如右图所示的竖直轻弹簧上并最终静止在平衡位置。

弹簧压缩了x ,则重力做的功是否完全转化成了弹簧的弹性势能(mgx=1/2kx 2)?【例3】如图所示,在盛有水的圆柱形容器内竖直地浮着一块立方体木块,木块的边长为h ,其密度为水的密度ρ的一半,横截面积也为容器截面积的一半,水面高为2h ,现用力缓慢地把木块压到容器底上,设水不会溢出,求压力所做的功。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10:07
栏目 导引
第七章
机械能守恒定律10:07


(2015· 西安八校高一联考)某人利用如图所 示的装置,用 100 N 的恒力 F 作用于不计质量的 细绳的一端,将物体从水平面上的 A 点移到 B 点 .已知α1=30°,α2=37°,h=1.5 m,不计 滑轮质量及绳与滑轮间的摩擦.求绳的拉力对 物体所做的功.
导引
第七章
机械能守恒定律10:07
[ 解析] (1)将圆弧 AB 分成很多小段 l1 、l2、…、 ln,拉力在每 小段上做的功为 W1、 W2、…、 Wn,因拉力 F 大小不变,方向 始终与物体所在位置的切线方向成 37° 角,所以: W1 = Fl1 cos 37° , W2 = Fl2 cos 37° ,…, Wn= Flncos 37° , 所以 WF= W1 + W2+…+ Wn = Fcos 37° ( l1+ l2+…+ ln) π = Fcos 37° ·R= 20π J= 62.8 J. 3 (2)重力 mg 做的功 WG=-mgR(1- cos 60° )=- 50 J. (3)物体受的支持力 FN 始终与物体的运动方向垂直,所以 WFN = 0.
第七章
机械能守恒定律10:07
• • • •
1.做功的两个必要因素 (1)作用在物体上的力. (2)物体在力方向上的位移. 2.功的表达式:W=Flcos α,α为力F与位移l的 夹角. • (1)α<90°时,W>0. • (2)α>90°时,W<0. • (3)α=90°时,W=0.
10:07
只能用于 F 与位移 l 成线性关系的情况,不能用于 F 与时间 t 成线性关系的情况.
10:07
栏目 导引
第七章
机械能守恒定律10:07
图象法求变力做功
• 变力做的功W可用F-l图线与l轴所围成的面积 表示.l轴上方的面积表示力对物体做正功的多 少,l轴下方的面积表示力对物体做负功的多少 .
10:07
10:07
栏目 导引
第七章
机械能守恒定律10:07
法二:平均力法 拉力 F= ks′, 力与位移成正比, 力 F 为线性力, 则平均力为 F 0+ ks 1 = = ks. 2 2 1 W= F s= ks2 . 2 1 2 [答案] ks 2
10:07
栏目 导引
第七章
机械能守恒定律10:07
微元法求变力做功
10:07
栏目 导引
第七章
机械能守恒定律10:07
10:07
• 如图所示,一质量为m=2.0 kg的物体从半径为R =5.0 m的圆弧的A端,在拉力F作用下沿圆弧缓慢运 动到B端(圆弧AB在竖直平面内).拉力F大小不变始 终为15 N,方向始终与物体所在位置的切线成37° 角.圆弧所对应的圆心角为60°, • BO边为竖直方向,g取10 m/s2.求这一过程中: • (1)拉力F做的功; • (2)重力mg做的功; • (3)圆弧面对物体的支持力FN做的功. 栏目
• [答案] (1)62.8 J (2)-50 J
(3)0
栏目 导引
10:07
第七章
机械能守恒定律10:07
转换法求变力做功
• 1.分段转换法:力在全程是变力,但在每一个 阶段是恒力,这样就可以先计算每个阶段的功 ,再利用求和的方法计算整个过程中变力做的 功. • 2.等效替换法:若某一变力的功和某一恒力的 功相等,则可以用求得的恒力的功来作为变力 的功.
栏目 导引
第七章
机械能守恒定律10:07
• 如图所示,轻弹簧一端与竖直墙壁连接 ,另一端与一个质量为m的木块连接,放在光滑的水平 面上,弹簧的劲度系数为k,处于自然状态.现用一 水平力F缓慢拉动木块,使木块向右移动s,求这一过 程中拉力对木块做的功.
10:07
栏目 导引
第七章
机械能守恒定律10:07
栏目 导引
第七章
机械能守恒定律10:07
平均值法求变力做功
当力的方向不变,大小随位移按线性规律变化时,可先求出力 F1 + F2 对位移的平均值 F = ,再由 W= F lcos 2 α 计算功.
10:07
栏目 导引
第七章
机械能守恒定律10:07
用铁锤把小铁钉钉入木板,设木板对钉子的阻力与钉进 木板的深度成正比,已知铁锤第一次将钉子钉进 d,如果铁锤 第二次敲钉子时对钉子做的功与第一次相同,那么,第二次钉 子进入木板的深度是( B A. ( 3- 1)d B. ( 2- 1) d 5- 1 d C. 2 2 D. d 2 )
• [答案] 50 J • [ 易错提醒 ] F 做功的位移等于左边绳的变短的部分,而 不等于物体的位移. 10:07
栏目 导引
10:07
栏目 导引
第七章
机械能守恒定律10:07
[ 解析 ] 在将钉子钉入木板的过程中,随着深度的增加,阻力 成正比地增加,这属于变力做功问题,由于力与深度成正比, 可将变力等效为恒力来处理. 根据题意可得 kd 第一次做功: W= F1 d= d. 2 d′ 第二次做功: W= F2 d′= kd+ d′ . 2 联立解得 d′= ( 2- 1) d. F1 + F2 [ 归纳提升 ] 当力为变力,应用平均值法求功时, F = 2
栏目 导引
10:07
第七章
机械能守恒定律10:07
[ 解析 ] 绳对物体的拉力虽然大小不变,但方向不断变化,所 以不能直接根据 W= Flcos α 求绳的拉力对物体做的功. 由于不计绳与滑轮的质量及摩擦,所以恒力 F 做的功和绳对物 体的拉力做的功相等.本题可以通过求恒力 F 所做的功求出绳 对物体的拉力所做的功.由于恒力 F 作用在绳的端点,故需先 求出绳的端点的位移 l,再求恒力 F 的功. 由几何关系知,绳的端点的位移为 h h 1 l= - = h= 0.5 m sin 30° sin 37° 3 在物体从 A 移到 B 的过程中,恒力 F 做的功为 W= Fl= 100× 0.5 J= 50 J. 故绳的拉力对物体所做的功为 50 J.
• 当力的大小不变,力的方向时刻与速度同向(或 反向)时,把物体的运动过程分为很多小段,这 样每一小段可以看成直线,先求力在每一小段 上的功,再求和即可.
10:07
栏目 导引
第七章
机械能守恒定律10:07
• 例如:如图所示,物体在大小不变、方向始终沿着圆 周的切线方向的一个力F的作用下绕圆周运动了一圈 ,又回到出发点.已知圆周的半径为R,求力F做的功 时,可把整个圆周分成很短的间隔Δs1、Δs2、Δs3…在 每一段上,可近似认为F和位移Δs在同一直线上并且 同向,故 • W=F(Δs1+Δs2+Δs3+…)=2πRF. • 因此功等于力F与物体实际路径长度的乘积.即 • W=Fs. • 对于滑动摩擦力、空气阻力,方向总是与v反向,故 • W=-Ff· s.
[解析 ] 缓慢拉动木块,可以认为木块处于平衡状态,故拉力 等于弹力的大小 F= ks′,是变力. 法一:图象法 力 F 随位移 s′变化的关系如图所示,则力 F 所做的功在数值 上等于图线 OA 与所对应的横轴所包围的面积,即等于△ OAs 的面积.则:
1 1 W= s· ks= ks2 . 2 2
相关文档
最新文档