高职高考中职数学对口升学总复习基础模块(上册)全册重点知识点小结归纳
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
叫作集合B的子集; 记作:A B(A B)或B A(B A) 读作:A包含于B或B包含A 图示:
B A 或 A(B)
图2
【注意】: 1.“ ”( )读作“包含于”,“ ”( )读作包含,开口朝哪边,哪边集合的范围就大; 2.“”和“ ”的区别:“”只能用来表示元素与集合之间的关系;“ ”表示的是集合与集合之间的关系; 3. A B, A可以是B的一部分,A也可以和B相等
—————————————————————————— 一.集合的概念
1.集合的概念:一般地,把一些能够确定 的对象看成一个整体,我们就说,这个整 体是由这些对象的全体构成的集合(简称 集).通常用大写英文字母A,B,C...表示;
2.元素:构成集合的每个对象都叫做集合 的元素,一般用小字字母a,b,c...表示;
知识清单
—————————————————————————— 2.真子集
(1)定义:若集合A是集合B的子集,且集合B中至少有一个元素不属于集合A,那么 集合A叫作集合B的真子集; 记作:AÜB 或 B? A 读作:A真包含于B或B真包含A
图示:
BA源自文库
图3
(2)性质: ①空集是任何集合的子集,空集是任何非空集合的真子集; ②如果AÜ B,B ÜC,那么A Ü C
3.韦恩图示法 画一条封闭曲线,用它的内部来表示一个集合,图1可
表示任意一个集合A.
图1
【注意】:边界用直线或曲线,实线或虚线均 可,只要是 封闭曲线,把元素都包含在内即可。
知识清单
三.集合之间的关系
——————————————————————————
1.子集
(1)定义:对于集合A,B,如果集合A中的每个元素都是集合B的元素,那么集合A
知识清单
——————————————————————————
5.集合的分类
(1)有限集:集合中含有有限个元素 如: 明德中学2020级数控班所有同学构成的集合.
(2)无限集:集合中含无有限个元素 如: 大于0的所有正整数构成的集合.
(3)空 集:不含任何元素的集合 记作
知识清单
——————————————————————————
——————————————————————————
性质描述法举例:
① 奇数集: {x | x 2k 1, k Z}
② 偶数集: {x | x 2k, k Z}
③ x轴上所有点组成的集合:
{(x, y) | y 0, x R}
④ y轴上所有点组成的集合:
{(x, y) | x 0, y R}
⑤ 第一象限的所有点组成的集合: {(x, y) | x 0, y 0}
⑥ 第二象限的所有点组成的集合: {(x, y) | x 0, y 0}
⑦ 第三象限的所有点组成的集合: {(x, y) | x 0, y 0}
⑧ 第四象限的所有点组成的集合:{(x, y) | x 0, y 0}
知识清单
——————————————————————————
3.集合中元素的性质: (1)确定性:集合中的元素必须是确定的; (2)互异性:集合中的元素互不相同; (3)无序性:集合中元素之间不考虑顺序关系.
4.元素与集合的关系 (1)若a是集合A中的元素,则a属于集合A, 记作:a A (2)若a不是集合A中的元素,则a不属于集合 A,记作:a A
C O U N T E R PA R T ENTRANCE EXAM
中职数学基础模块(上册)知识点
出品人:好老师
高职高考中职数学对口升学总复习知识点总结归纳 基础模块(上册)
CONTENTS
第一章 P03 第二章 P25 第三章 P37 第四章 P46 第五章 P55
知识清单
【知识结构】
知识清单
B且B也包含于A.
(3)常用结论: A的子集个数为2n; A的真子集个数为2n-1; A的非空子集个数为2n-1; A的非空真子集个数为2n-2;
满足{a1, a2 , a3,, am} A {a1, a2, a3,, an}关系的集合A有2nm 个。 满足{a1, a2, a3,, am}苘A {a1, a2, a3,, an}关系的集合A有2nm-2个。
知识清单
——————————————————————————
性质描述法
【注意】:
①有些集合的代表元素需要有两个或两个以上的字母表示. ②如下 一些写法是错误的,如:
把{(a,b)}表示成{a,b},{x=a,y=b}或{x|a,b};× 用{实数集}或{全体实数}表示R;×
知识清单
——————————————————————————
6.实数的分类:
整数
正整0 数自然数
实数
有理数
负整数
分数
正分数 负分数
无理数(无限不循环小数)
知识清单
——————————————————————————
7.常用数集的记法:
集合名 称
记法
实数 集
R
有理数 集
Q
整数 集
Z
自然数 集
N
正整数 集
N*或N+
知识清单
——————————————————————————
知识清单
——————————————————————————
3.集合相等
(1)定义:若集合A中任意一个元素在集合B中,B中任意一个元素都在A中,那么就
说集合A与集合B相等,记作A=B;
符号语言:A=B(A B且B A )
韦恩图示:
A(B)
图4
(2)性质:如果A包含于B,B也包含于A,那么A=B;反之如果 A=B,那么A包含于
2.性质描述法 用集合所含元素的共同特征表示集合的方法
(把集合中元素的公共特征描述出来,按一定格式 写在括号里)
形式: A {x I | P(x)}其中竖线前的x叫集合的
,p(x)是元素x所具有的
;
A {x I | P(x)}表示集合A是由集合I中具有性质 P(x)的所有元素构成的.
5
知识清单
1.列举法 把集合中的元素一一列举出来 ,用花括号 { }括起来,
元素之间用“,”隔开.(注意无素的互异性)
不方便或不可能列出集合中所有元素时,在不产生 歧义的情况下可以列出该集合的一部分元素,其余元 素可以省略号代替。如{1,2,3,......,99,100}
知识清单
——————————————————————————
B A 或 A(B)
图2
【注意】: 1.“ ”( )读作“包含于”,“ ”( )读作包含,开口朝哪边,哪边集合的范围就大; 2.“”和“ ”的区别:“”只能用来表示元素与集合之间的关系;“ ”表示的是集合与集合之间的关系; 3. A B, A可以是B的一部分,A也可以和B相等
—————————————————————————— 一.集合的概念
1.集合的概念:一般地,把一些能够确定 的对象看成一个整体,我们就说,这个整 体是由这些对象的全体构成的集合(简称 集).通常用大写英文字母A,B,C...表示;
2.元素:构成集合的每个对象都叫做集合 的元素,一般用小字字母a,b,c...表示;
知识清单
—————————————————————————— 2.真子集
(1)定义:若集合A是集合B的子集,且集合B中至少有一个元素不属于集合A,那么 集合A叫作集合B的真子集; 记作:AÜB 或 B? A 读作:A真包含于B或B真包含A
图示:
BA源自文库
图3
(2)性质: ①空集是任何集合的子集,空集是任何非空集合的真子集; ②如果AÜ B,B ÜC,那么A Ü C
3.韦恩图示法 画一条封闭曲线,用它的内部来表示一个集合,图1可
表示任意一个集合A.
图1
【注意】:边界用直线或曲线,实线或虚线均 可,只要是 封闭曲线,把元素都包含在内即可。
知识清单
三.集合之间的关系
——————————————————————————
1.子集
(1)定义:对于集合A,B,如果集合A中的每个元素都是集合B的元素,那么集合A
知识清单
——————————————————————————
5.集合的分类
(1)有限集:集合中含有有限个元素 如: 明德中学2020级数控班所有同学构成的集合.
(2)无限集:集合中含无有限个元素 如: 大于0的所有正整数构成的集合.
(3)空 集:不含任何元素的集合 记作
知识清单
——————————————————————————
——————————————————————————
性质描述法举例:
① 奇数集: {x | x 2k 1, k Z}
② 偶数集: {x | x 2k, k Z}
③ x轴上所有点组成的集合:
{(x, y) | y 0, x R}
④ y轴上所有点组成的集合:
{(x, y) | x 0, y R}
⑤ 第一象限的所有点组成的集合: {(x, y) | x 0, y 0}
⑥ 第二象限的所有点组成的集合: {(x, y) | x 0, y 0}
⑦ 第三象限的所有点组成的集合: {(x, y) | x 0, y 0}
⑧ 第四象限的所有点组成的集合:{(x, y) | x 0, y 0}
知识清单
——————————————————————————
3.集合中元素的性质: (1)确定性:集合中的元素必须是确定的; (2)互异性:集合中的元素互不相同; (3)无序性:集合中元素之间不考虑顺序关系.
4.元素与集合的关系 (1)若a是集合A中的元素,则a属于集合A, 记作:a A (2)若a不是集合A中的元素,则a不属于集合 A,记作:a A
C O U N T E R PA R T ENTRANCE EXAM
中职数学基础模块(上册)知识点
出品人:好老师
高职高考中职数学对口升学总复习知识点总结归纳 基础模块(上册)
CONTENTS
第一章 P03 第二章 P25 第三章 P37 第四章 P46 第五章 P55
知识清单
【知识结构】
知识清单
B且B也包含于A.
(3)常用结论: A的子集个数为2n; A的真子集个数为2n-1; A的非空子集个数为2n-1; A的非空真子集个数为2n-2;
满足{a1, a2 , a3,, am} A {a1, a2, a3,, an}关系的集合A有2nm 个。 满足{a1, a2, a3,, am}苘A {a1, a2, a3,, an}关系的集合A有2nm-2个。
知识清单
——————————————————————————
性质描述法
【注意】:
①有些集合的代表元素需要有两个或两个以上的字母表示. ②如下 一些写法是错误的,如:
把{(a,b)}表示成{a,b},{x=a,y=b}或{x|a,b};× 用{实数集}或{全体实数}表示R;×
知识清单
——————————————————————————
6.实数的分类:
整数
正整0 数自然数
实数
有理数
负整数
分数
正分数 负分数
无理数(无限不循环小数)
知识清单
——————————————————————————
7.常用数集的记法:
集合名 称
记法
实数 集
R
有理数 集
Q
整数 集
Z
自然数 集
N
正整数 集
N*或N+
知识清单
——————————————————————————
知识清单
——————————————————————————
3.集合相等
(1)定义:若集合A中任意一个元素在集合B中,B中任意一个元素都在A中,那么就
说集合A与集合B相等,记作A=B;
符号语言:A=B(A B且B A )
韦恩图示:
A(B)
图4
(2)性质:如果A包含于B,B也包含于A,那么A=B;反之如果 A=B,那么A包含于
2.性质描述法 用集合所含元素的共同特征表示集合的方法
(把集合中元素的公共特征描述出来,按一定格式 写在括号里)
形式: A {x I | P(x)}其中竖线前的x叫集合的
,p(x)是元素x所具有的
;
A {x I | P(x)}表示集合A是由集合I中具有性质 P(x)的所有元素构成的.
5
知识清单
1.列举法 把集合中的元素一一列举出来 ,用花括号 { }括起来,
元素之间用“,”隔开.(注意无素的互异性)
不方便或不可能列出集合中所有元素时,在不产生 歧义的情况下可以列出该集合的一部分元素,其余元 素可以省略号代替。如{1,2,3,......,99,100}
知识清单
——————————————————————————