《多项式的乘法》教学设计

合集下载

初中数学_11.4多项式乘多项式教学设计学情分析教材分析课后反思

初中数学_11.4多项式乘多项式教学设计学情分析教材分析课后反思

教学设计一.教学目标:1、经历探索多项式相乘法则的过程,明确其算理,进一步发展有条理的思考能力和表达能力。

2、会运用多项式的乘法法则进行两个多项式(仅限于一次多项式)的乘法运算。

3、在经历探索多项乘多项式的乘法法则过程中,使学生体会数形结合思想、整体代换思想与转化思想。

重点:使学生理解法则的导出过程难点:运用法则时,项不重复,不漏掉。

二.教材分析:本节课是在学生学习了单项式的乘法后,通过一系列学习活动来猜测多项式乘以多项式的运算法则,在此过程中,注意完善、规范学生已有的认知,点拨、引导,形成探索、归纳的理性过程.教材首先从生活实例出发,先用两种不同的思路列出一个多项式乘多项式的算式和一个包括两个单项式与多项式的和的算式,根据实际意义,这两个算式相等,然后又从代数运算的角度,两次运用单项式乘多项式的法则导出了多项式乘多项式的法则,期中把一个多项式先看成一个单项式的思想是代数中用字母表示数的思想的进一步发展.三.学情分析:本节课是在学生学习了“单项式与多项式相乘”的基础上进行的,学生基本掌握了“单项式与多项式相乘”的运算法则,但是,有的学生基础差,因此在简单回顾旧知之后,让学生亲身参加探索发现,从而获取新知。

在法则的导出过程中,让学生经历探索,自己发现归纳总结规律,提高了学生的积极性。

法则的应用这一环节选,通过基本练习达到训练双基的目的,。

本节课从学生原有的知识和能力出发,带领学生归纳结论,通过合作交流、共同探索来寻求验证结论的方法四.教学方法分析:本节是新课内容的学习,教学过程中尽力引导学生成为知识的发现者,教给学生学习的方法是教师的职责。

为了充分调动学生的参与意识,更好的落实各项目标,本课采用学生讨论和启发式相结合等教学方法。

创设情景,引入课题。

以矩形面积为背景,由浅入深,导入课题:多项式乘多项式(2)探究新知,揭示规律。

充分遵循学生的认知规律,坚持启发式。

通过矩形面积得出(a+b )(c+d)=ac+ad+bc+bd,让学生感受到代数与几何的内在联系,从而体会数形结合的数学思想方法。

《3.3多项式的乘法》作业设计方案-初中数学浙教版12七年级下册

《3.3多项式的乘法》作业设计方案-初中数学浙教版12七年级下册

《多项式的乘法》作业设计方案(第一课时)一、作业目标1. 理解多项式乘法的基本概念与运算规则。

2. 掌握多项式乘法的具体操作步骤,能熟练进行简单的多项式乘法。

3. 培养数学思维能力和计算能力,激发对数学的兴趣。

二、作业内容作业内容主要包括两个部分:课堂知识与练习、实际运用问题。

(一)课堂知识与练习1. 学习多项式乘法的定义及运算规则,包括分配律和合并同类项等。

2. 掌握多项式乘法的基本步骤,如先乘后加等。

3. 通过例题和练习题,让学生熟悉并掌握多项式乘法的具体操作。

练习题设计:- 基础题:如(2x+3)×(x-1)等简单多项式乘法题目。

- 提升题:如多项式与多项式的乘法等较复杂题目。

(二)实际运用问题1. 引导学生观察生活中的实际问题,如利用多项式乘法解决速度与距离的数学模型问题。

2. 布置实际问题解决作业,如设计一个简单的应用题,要求学生利用多项式乘法解决实际距离和速度的计算问题。

三、作业要求1. 独立完成:学生需独立完成作业,不得抄袭他人答案。

2. 认真审题:仔细阅读题目要求,理解题目意图。

3. 规范书写:答案需书写规范,步骤清晰,结果准确。

4. 时间安排:合理安排时间,确保在规定时间内完成作业。

四、作业评价1. 正确性评价:评价学生答案的正确性,对错误的地方进行批改并指正。

2. 过程评价:评价学生的解题过程是否合理,步骤是否清晰。

3. 速度评价:评价学生完成作业的速度,鼓励高效完成作业的学生。

4. 书写评价:评价学生的书写规范程度,鼓励书写工整的学生。

五、作业反馈1. 老师需对学生的作业进行及时批改,对错误的地方进行详细指正。

2. 对于共性问题,老师需在课堂中进行集中讲解和纠正。

3. 对于优秀的学生作品和典型错误案例进行展示和讨论,帮助学生总结经验教训。

4. 鼓励学生互相交流学习心得和解题技巧,共同进步。

通过本次作业,学生不仅可以掌握多项式乘法的基本概念和运算规则,还可以在解决实际问题的过程中加深对数学知识的理解和应用,从而更好地培养学生的数学思维能力和计算能力。

3.3《多项式的乘法(1)》参考教案1

3.3《多项式的乘法(1)》参考教案1

3.3 多项式的乘法(1)参考教案
一、背景介绍及教学资料
本教材在单项式的乘法之后直接安排多项式的乘法,显得贴切自然,多项式乘以多项式是整式乘法的一部分.本课时利用对同一面积不同表达和分配律的运用两个方面,探索多项式相乘的运算法则,进而体会分配律的重要作用,以及转化思想,并从理解的角度掌握多项式乘法法则.
二、教学设计
【教学内容分析】
本节课从同一面积的不同表达入手,通过分析讨论,进一步体会分配律的作用的情况下得到多项式相乘法则.由法则可知:(1)多项式与多项式相乘的结果仍是多项式;(2)结果的项数应该是原两个多项式项数的积(没有经过合并同类项之前),检验项数常常作为检验解题过程是否的一个有效方法.
【教学目标】
1、经历探索多项式乘法法则的过程,理解多项式乘法法则.
2、学会用多项式乘法法则进行计算.
3、培养学生用几何图形理解代数知识的能力和复杂问题转化为简单问题的转化思想.
【教学重点、难点】
重点是掌握多项式的乘法法则并加以运用.
难点是理解多项式乘法法则的推导过程和运用法则进行计算.
【教学准备】
展示课件.
【教学过程】。

《多项式与多项式相乘》参考教案

《多项式与多项式相乘》参考教案

12.2整式的乘法(三)多项式与多项式相乘教学目标1.能说出多项式与多项式相乘的法则,并且知道多项式乘以多项式的结果仍然是多项式。

会实行多项式乘以多项式的计算及混合运算。

2.培养学生灵活使用所学知识分析问题、解决问题的水平。

3.培养独立思考、主动探索的习惯和初步解决问题的愿望及水平。

教学重难点重点:掌握多项式乘以多项式的法则。

难点:使用法则实行混合运算时,不要漏项。

教学过程一、复习活动。

指名学生说出单项式与多项式相乘的法则。

(单项式乘以多项式就是用单项式乘以多项式中的每一项,再把所得的积相加。

)二、引导观察,图形演示。

1.式子p(a+b)=pa+pb中的p,能够是单项式,也能够是多项式。

假如p=m +n,那么p(a+b)就成了(m+n)(a+b),这就是今天我们所要讲的多项式与多项式相乘的问题。

(由此引出课题。

)你会计算这个式子吗?你是怎样计算的?(教师引导学生由繁化简,把m+n看作一个整体,使之转化为单项式乘以多项式,即:[(m+n)(a+b)=(m+n)a+(m+n)b=ma+mb+na+nb。

] 2.你能用图形验证你算出的式子吗?某地区在退耕还林期间,有一块原长m米、宽a米的长方形林区增长了n 米,加宽了b米。

请你表示这块林区现在的面积。

问题:(1)如何表示扩大后的林区的面积?(2)用不同的方法表示出来后的等式为什么是相等的呢?(学生分组讨论,相互交流得出答案。

)学生得到了两种不同的表示方法,一个是(m+n)(a+n)米2;另一个是(ma+mb+na+nb)米2.以上的两个结果都是准确的。

3.观察这个结果的每一项与原来两个多项式各项之间的关系,能不能由原来的多项式各项之间相乘直接得到?假如能得到,又是怎样相乘得到的?(教师示范。

)你能用语言表达这个式子吗?多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加。

即:(m+n)(a+b)=ma+mb+na+nb。

八年级数学上册《多项式与多项式相乘》教案、教学设计

八年级数学上册《多项式与多项式相乘》教案、教学设计
2.布置分层作业:根据学生的学习程度,设计不同难度的练习题,让学生在课后进行巩固。
(五)总结归纳
1.回顾本节课所学内容,引导学生总结多项式与多项式相乘的运算法则和注意要点。
提问:通过今天的学习,我们掌握了哪些关于多项式乘法的知识?有哪些需要注意的地方?
2.强调数学在现实生活中的应用价值,激发学生学习数学的兴趣。
3.讲解多项式乘法中的符号处理方法:分析多项式乘法中的符号规律,提醒学生注意符号的处理,避免出现错误。
解释:在多项式乘法中,正负号的组合有一定的规律,我们需要注意符号的运算,确保最终结果的正确性。
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,每组讨论一个具有实际背景的多项式乘法问题,如“计算一个长为(x+2)cm,宽为(x-1)cm的长方形的面积”。
五、作业布置
为了巩固本节课所学的多项式与多项式相乘的知识,培养学生的运算能力和解决问题的能力,特布置以下作业:
1.基础练习题:完成课本第56页的练习题第1、2、3题,要求学生独立完成,注意检查运算过程和结果。
提示:在做题过程中,注意分配律的运用,确保运算步骤正确。
2.提高题:计算以下长方形的面积,并将结果写成标准多项式的形式。
(2)开展课后小组讨论,让学生在讨论中互相学习,共同提高。
5.拓展环节:
(1)引导学生探索多项式与多项式相乘的其他运算方法,培养学生的创新思维。
(2)设计具有一定难度的数学问题,让学生在挑战中提高自己的数学素养。
6.情感态度与价值观的培养:
(1)鼓励学生积极参与课堂讨论,培养学生的团队合作精神。
(2)关注学生在学习过程中的情感体验,引导学生正确看待挫折,培养克服困难的勇气和信心。
(2)在多项式乘法运算中,如何运用分配律简化计算过程?

多项式的乘法

多项式的乘法
全国中小学“教学中的互联网搜索”优秀教学案例评选
教案设计
一、教案背景
1,面向学生:□中学□小学2,学科:数学
2,课时:1
3,学生课前准备:
(1)回忆单项式与多项式的乘法法则.
(2)计算:
① ②
③ ④
二、教学课题
教养方面:
1.理解和掌握单项式与多项式乘法法则及其推导过程.
2.熟练运用法则进行单项式与多项式的乘法计算.
这个法则还可利用一个图形明显地表示出来.
(1)这个长方形的面积用代数式表示为_____________.
(2)Ⅰ的面积为________;Ⅱ的面积为________;Ⅲ的面积为________;Ⅳ的面积为___8185.html
四、教学方法
本节课我采用讨论法、讲练结合等方法,主要学习了多项式的乘法法则和一个特殊的二项式乘法公式,在学习时应注意分析和比较这一法则和公式的关系,事实上它们是一般与特殊的关系.当遇到多项式乘法时,首先要看它是不是 的形式,若是则可以用公式直接写出结果,若不是再应用法则计算.
在用面积法推导多项式与多项式乘法法则过程中,应让学生充分理解多项式乘法法则的几何意义,这样既便于学生理解记忆公式,又能让学生在解题过程中准确地使用.
六、教学反思
多项式与多项式的相乘关键在于展开式中的四项是如何得到的,这里应注重引导学生细心观察、品味法则的规律性,实质就在于让一个多项式的每一项与另一个多项式的每一项遍乘既不能漏又不能重复.对特殊的多项式相乘可运用特殊的办法去处理。
例1的目的是熟悉、理解法则.完成例1时,要求学生紧扣法则,按法则的文字叙发“一步步”解题,注意最后要合并同类项.让学生参与例题的解答,旨在强化学生的参与意识,使其主动思考.
4.运用知识,尝试解题

初中数学七年级下册苏科版9.3多项式乘多项式教学设计

初中数学七年级下册苏科版9.3多项式乘多项式教学设计
五、作业布置
为了巩固学生对多项式乘法知识的掌握,培养他们独立解决问题的能力,特此布置以下作业:
1.基础巩固题:完成课本第9.3节后的习题1、2、3,这些题目旨在帮助学生熟悉多项式乘法的基本步骤,加强他们对分配律运用的熟练度。
2.应用提升题:从生活中选取两个实际情境,要求学生将问题转化为多项式乘法运算,并求解答案。这样的题目可以帮助学生将理论知识与生活实际相结合,提高数学应用能力。
2.情境导入:向学生展示一个与生活相关的情境,如计算一个长方形花园的面积(长和宽分别为多项式表达式),引导学生思考如何解决这类问题,为新课的学习提供实际背景。
3.问题导入:提出一个具有挑战性的问题,如“如何计算两个多项式的乘积?”,激发学生的好奇心,引导学生进入新课的学习。
(二)讲授新知
1.演示与讲解:利用多媒体课件或黑板,直观地展示多项式乘以多项式的运算过程。详细讲解分配律在多项式乘法中的应用,解释每一步的运算规则。
3.思考探究题:针对本节课学习的多项式乘法,提出一个具有挑战性的问题,要求学生在课后进行思考和探究。例如:“如何将一个三项式与一个四项式相乘?请尝试给出一个通用的解题步骤。”
4.小组合作题:布置一道需要小组合作完成的题目,要求学生在课后分组讨论,共同解决。这样的题目有助于培养学生的团队合作意识和交流表达能力。
4.能够在解决混合运算题目时,识别并优先执行多项式乘法步骤,理清运算顺序。
(二)过程与方法
1.探究与发现:鼓励学生通过小组合作,自主探究多项式乘多项式的运算规律,培养学生的观察能力和归纳总结能力。
2.理解与运用:通过例题讲解和课堂练习,让学生理解和掌握多项式乘法的具体步骤,提高学生的逻辑思维能力和问题解决能力。
7.评价与反馈阶段:通过课堂提问、作业批改、小测验等形式,全面评估学生的学习效果。针对学生的个体差异,给予有针对性的指导和建议,促进学生的全面发展。

人教版八年级数学上册14.1整式的乘法(多项式乘以多项式)教案

人教版八年级数学上册14.1整式的乘法(多项式乘以多项式)教案
3.培养学生的空间想象与抽象能力:引导学生将实际问题抽象为多项式乘法模型,并能运用所学知识解决实际问题,提高学生的数学建模能力。
4.培养学生的合作交流能力:在小组讨论与合作学习中,培养学生与人沟通、协作解决问题的能力,增强团队意识。
本章节核心素养目标紧密围绕新教材要求,注重培养学生的逻辑思维、运算能力、空间想象与抽象能力以及合作交流能力,为学生未来的数学学习和全面发展奠定基础。
(2)强调分配律的重要性,如(a+b) * c = a*c + b*c,确保学生能够将这个原理应用到多项式乘法中。
(3)通过实际例题,如计算(x^2 + 3x + 2) * (x + 1),让学生掌握如何从简单的乘法步骤过渡到复杂的整式乘法运算。
2.教学难点
-核心难点:多项式乘法中的项与项之间的正确配对与合并。
-难点内容:
-理解和掌握如何将一个多项式的每一项分别与另一个多项式的每一项相乘。
-在多项式乘法过程中,避免漏乘或重复计算。
-处理含有多项式的乘法中的符号问题。
举例解释:
(1)难点在于如何指导学生将多项式(a+b+c)与(d+e)相乘时,正确配对每一项,即a*d, a*e, b*d, b*e, c*d, c*e,并确保所有可能的组合都被考虑到。
首先,同学们在理解多项式乘法法则时,普遍存在对分配律掌握不够熟练的现象。在讲解例题时,我尽量通过生动的语言和实际操作,让学生明白每一项是如何相乘的,但仍有部分同学在具体操作时出现错误。针对这一点,我考虑在下一节课开始前,增加一些关于分配律的小练习,帮助同学们巩固这一概念。
其次,在教学难点部分,如何正确配对和合并多项式的项,对同学们来说是一个挑战。在小组讨论和实验操作中,我发现有的同学在处理具体问题时,容易漏掉某些项或者重复计算。为了帮助同学们克服这一困难,我尝试通过举例和对比分析,引导他们找出规律。在今后的教学中,我会继续关注这部分内容,采用更多形式的教学方法,让同学们更好地掌握这个难点。

《多项式的乘法》教案

《多项式的乘法》教案

《多项式的乘法》教案第一课时教学目标知识与技能1.知道利用乘法分配律可以将单项式乘多项式转化为单项式乘单项式.2.会进行单项式乘多项式的计算.过程与方法1.通过面积的计算领会用长方形面积图或乘法的分配律说明单项式与多项式相乘的法则.2.经历探究单项式乘多项式法则的过程,发展有条理的思维和语言表达能力. 情感、态度与价值观1.理解整式的乘法运算的原理,体会乘法分配律的作用和转化思想.2.注意学生学习积极性,主动性的调动,增强学生学习数学重点难点重点单项式与多项式相乘的法则.难点单项式的系数的符号是负号时的情况.教学设计一、回顾交流,课堂演练1.口述单项式乘以单项式法则.2.口述乘法分配律.3.课堂演练,计算:(1)(-5x )·(3x )2(2)(-3x )·(-x )(3)31xy ·32xy 2 (4)-5m 2·(-31mn )(5)-51x 2y 4-2x 2y ·(-21x 2y 2) 二、创设情境,引入新课 小明作了一幅水彩画,所用纸的大小如图1,她在纸的左右两边各留了61a 米的空白,请同学们列出这幅画的画面面积是多少?【学生活动】小组合作,讨论.【情境问题】夏天将要来临,有3家超市以相同价格n (单位:元/台)销售A 牌空调,他们在一年内的销售量(单位:台)分别是x ,y ,z ,请你采用不同的方法计算他们在这一年内销售这种空调的总收入.【学生活动】分四人小组,与同伴交流,寻求不同的表示方法.方法一:首先计算出这三家超市销售A 牌空调的总量(单位:台),再计算出总的收入(单位:元).即:n (x +y +z ).方法二:采用分别计算出三家超市销售A 牌空调的收入,然后再计算出他们的总收入(单位:元).总结规律:单项式与多项式相乘,就是用单项式去乘多项式中的每一项,再把所得的积相加.例题解析:例10 计算:2112412()()();x y xy x ∙-+ 2212442()()().b b ab -∙- 例11 求 22212442()-()x x y y x x y ∙-∙-的值,其中x =2,y =-1. 三、范例学习,应用所学1、计算:(-2a 2)·(3ab 2-5ab 3).解:原式=(-2a 2)(3ab 2)-(-2a 2)·(5ab 3)=-6a 3b 2+10a 3b 32、化简:-3x 2·(13xy -y 2)-10x ·(x 2y -xy 2) 解:原式=-x 3y +3x 2y 2-10x 3y +10x 2y 2=-11x 3y +13x 2y 23、解方程:8x (5-x )=19-2x (4x -3)40x -8x 2=19-8x 2+6x40x-6x=19 34x=19x=19 34四、随堂练习,巩固深化计算:(1)5x2·(2x2-3x3+8)(2)-16x·(x2-3y)(3)-2a2·(12ab3+b3)(4)(23x2y3-16xy)·12xy2五、课堂总结,发展潜能1.单项式与多项式相乘法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.2.单项式与多项式相乘,应注意(1)“不漏乘”;(2)注意“符号”.第二课时教学目标知识与技能1.经历探索多项式乘法的法则的过程,理解多项式乘法的法则,并会进行多项式乘法的运算.2.进一步体会乘法分配律的作用和转化的思想,发展有条理的思考和语言表达能力.过程与方法在解决问题的过程中,注重与他人合作,培养学生的语言表达能力.情感、态度与价值观培养学生语言表达能力,以及与他人沟通、交往的能力.重点难点重点掌握多项式的乘法法则并加以运用.难点探索多项式乘法的法则,注意多项式乘法的运算中“漏项”和“符号”的问题.教学设计一、创设情境,操作感知【动手操作】首先,在硬纸板上用直尺画出一个矩形,并且分成如下图所示的四部分,标上字母.拿出准备好的硬纸板,画出上图1,并标上字母.根据图中的数据,求一下这个矩形的面积.计算出它的面积为:(m+b)×(n+a).将纸板上的矩形沿你所画竖着的线段将它剪开,分成如下图两部分,如下图.剪开之后,分别求一下这两部分的面积,再求一下它们的和.求出第一块的面积为m(n+a),第二块的面积为b(n+a),它们的和为m(n+a)+b(n+a).继续沿着横的线段剪开,将图形分成四部分,如图3,然后再求这四块长方形的面积.求出S1=mn;S2=nb;S3=am;S4=ab,它们的和为S=mn+nb+am+ab.依据上面的操作,求得的图形面积,探索(m+b)(n+a)应该等于什么?(m+b)×(n+a)=m(n+a)+b(n+a)=mn+nb+am+ab,因为我们三次计算是按照不同的方法对同一个矩形的面积进行了计算,那么,两次的计算结果应该是相同的,所以(m+b)×(n+a)=m(n+a)+b(n+a)=mn+nb+am+ab.多项式与多项式相乘,用第一个多项式的每一项乘以另一个多项式的每一项,再把所得的结果相加.例题解析:例12 计算:(1)(2x+y)(x-3y);(2)(2x+1)(3x2-x-5);(3)(x+a)(x+b).例13 计算:1)(a+b)(a-b);(2)(a+b)2 ;(3)(a-b)2.【探究时空】一块长m米,宽n米的玻璃,长宽各裁掉a米后恰好能铺盖一张办公桌台面(玻璃与台面一样大小),问台面面积是多少?二、法则应用下面我们利用法则来做计算.计算(1)(3x+1)(x+2)(2)(x-8y)(x-y)(3)(x+y)(x2-xy+y2)解:(1)(3x+1)(x+2)(2)(x-8y)(x-y)= 3x2·x+(3x)·2+1·x+1×2 =x2-xy - 8x + 8y2= 3x2+6x+x+2 =x2-9xy+8y2= 3x2+7x+x+2(3)(x+y)(x2-xy+y2)=x3-x2y+xy2+x2y-xy2+y3=x3+y3注:不要漏掉任何一项,注意符号巩固练习1.(1)(2x+1)(x+3):(2)(m+2m)(m-3m)=2x2+7x+3 =m2-m(3)(a-1)2(4)(a+3b)(a-3b)=a2-2a+1 =a2-9b2(5)(2x2 -1)(x-4)(6)(x2+3)(2x-5)= 2x3+8x2+x-4 =2x3-5x2-6x-15三、课堂总结,发展潜能1.多项式与多项式相乘,应充分结合导图中的问题来理解多项式与多项式相乘的结果,利用乘法分配律来理解(m+n)与(a+b)相乘的结果,导出多项式乘法的法则.2.多项式与多项式相乘,第一步要先进行整理,在用一个多项式的每一项去乘另一个多项式的每一项时,要“依次”进行,不重复,不遗漏,且各个多项式中的项不能自乘,多项式是几个单项式的和,每一项都包括前面的符号,在计算时要正确确定积中各项的符号.。

人教版数学八年级上册15.1.4《多项式乘多项式》教学设计

人教版数学八年级上册15.1.4《多项式乘多项式》教学设计

人教版数学八年级上册15.1.4《多项式乘多项式》教学设计一. 教材分析《多项式乘多项式》是人教版数学八年级上册第15章的一部分,它是学生学习多项式乘法的基础知识,对于培养学生的数学思维和解决问题的能力具有重要意义。

本节内容主要介绍了多项式乘多项式的运算法则,并通过实例进行了详细的解释和说明。

教材中包含了丰富的例题和练习题,有助于学生巩固所学知识。

二. 学情分析学生在学习本节内容前,已经掌握了多项式的基本概念和运算法则,具备了一定的数学基础。

但是,对于部分学生来说,对于多项式乘多项式的理解可能还存在一定的困难,需要通过实例和练习来进一步巩固。

三. 教学目标1.理解多项式乘多项式的运算法则。

2.能够运用多项式乘多项式的运算法则进行计算。

3.培养学生的数学思维和解决问题的能力。

四. 教学重难点1.多项式乘多项式的运算法则。

2.如何运用多项式乘多项式的运算法则进行计算。

五. 教学方法采用问题驱动法、实例解析法和练习法进行教学。

通过问题引导学生的思考,通过实例让学生理解多项式乘多项式的运算法则,通过练习让学生巩固所学知识。

六. 教学准备1.多媒体教学设备。

2.教学课件。

3.练习题。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾多项式的基本概念和运算法则,为新课的学习做好铺垫。

2.呈现(10分钟)利用多媒体展示多项式乘多项式的运算法则,并通过实例进行解释和说明。

让学生理解并掌握多项式乘多项式的计算方法。

3.操练(10分钟)让学生分组进行练习,运用多项式乘多项式的运算法则进行计算。

教师巡回指导,解答学生的问题。

4.巩固(10分钟)出示一些练习题,让学生独立完成。

教师选取部分学生的作业进行讲解和分析,巩固所学知识。

5.拓展(10分钟)让学生思考如何将多项式乘多项式的运算法则应用于实际问题中,引导学生运用所学知识解决实际问题。

6.小结(5分钟)让学生总结本节课所学内容,教师进行补充和讲解。

7.家庭作业(5分钟)布置一些练习题,让学生回家后进行巩固和练习。

浙教版初中数学3.3 多项式的乘法(2)教案

浙教版初中数学3.3 多项式的乘法(2)教案

3.3 多项式的乘法〖教学目标〗1、经历探索多项式的乘法运算法则的过程,掌握多项式与多项式相乘的法则。

2、会运用单项式与单项式,单项式与多项式,多项式与多项式相乘的法则,化简整式。

3、会用多项式的乘法解决简单的实际问题。

〖教学重点与难点〗教学重点:多项式与多项式相乘的运算。

教学难点:例2包含了多种运算,过程比较复杂是本节的难点。

〖教学过程〗一、创设情境,引出课题小明找来一张铅画纸包数学课本,已知课本长a厘米,宽b厘米,厚c厘米,小明想将课本封面与封底的每一边都包进去m厘米,问如果你是小明你会在铅画纸上裁下一块多大面积的长方形?二、引出新知,探究示例1、合作探索学习:有一家厨房的平面布局如图1(1)请用三种不同的方法表示厨房的总面积。

(2)这三种不同的方法表示的面积应当相等,你能用运算律解释吗?(3)通过上面的讨论,你能总结出单项式与多项式相乘的运算规律吗?(让学生以同桌合作的形式进行探索,然后表达交流)答:(1)总面积:(a+n)(b+m);a(b+m)+n(b+m)或b(a+n)+m(a+n);ab+am+nb+nm (2)总面积相等,由此可得到(a+n)(b+m)=a(b+m)+n (b+m)……①=ab+am+nb+nm……②第①步运用分配律把(b+m)看成一个数,第②步再运用分配律。

(3)由(a+n)(b+m)=ab+am+nb+nm师生共同总结得出多项式与多项式相乘的法则:(学生归纳,教师板书)2、运用新知,计算例题例1:计算(1)(x+y)(a+2b) (2)(3x-1)(x+3) (3)(x-1)2解:(1)(x+y)(a+2b)=x•a+x•(2b)+y•a+y•(2b)=ax+2bx+ay+2by(2)( 3x-1)(x+3)=3x2+9x-x-3=3x2+8x-3nam右侧矮矮柜b(3)(x -1)2=(x -1)(x -1)=x 2-x -x +1=x 2-2x +1教师在示范过程中引导学生注意这三题都按多项式相乘的法则进行,运算过程中注意符号,防止漏乘,结果要合并同类项。

《多项式与多项式相乘》教案、导学案、同步练习

《多项式与多项式相乘》教案、导学案、同步练习

《第2课时多项式与多项式相乘》教学设计(一)教学目标知识与技能目标:理解多项式乘法的法则,并会进行多项式乘法的运算.过程与方法目标:经历探索多项式乘法的法则的过程.情感态度与价值观:通过探索多项式乘法法则,让学生感受数学与生活的联系,同时感受整体思想、转化思想,并培养学生的抽象思维能力.教学重点:多项式与多项式相乘法则及应用.教学难点:多项式乘法法则的推导.多项式乘法法则的灵活运用.(二)教学程序教学过程一、问题情境导入新课为了扩大街心花园的绿地面积,把一块原长为m米,宽为a米的长方形绿地,增长了n米,加宽了b米.你能用几种方法求出扩大后的绿地面积?二、新知讲解扩大后绿地的面积可以表示为(m+n)(a+b)或(ma+mb+na+nb),它们表示同一块地的面积,故有:(m+n)(a+b)= ma+mb+na+n b多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.也可以这样考虑: 当X=m+n时, (a+b)X=?由单项式乘以多项式知 (a+b)X=aX+bX于是,当X=m+n时,(a+b)X=(a+b)(m+n)=a(m+n)+b(m+n)即 (a+b)(m+n)=am+an+bm+bn=am+an+bm+bn例题讲解:例题1:计算:(1)(x+2y)(5a+3b); (2)(2x-3)(x+4);(3)(x+y)2; (4)(x+y)(x2-xy+y2)解:(1)(x+2y)(5a+3b)=x·5a+x·3b+2y·5a+2y·3b=5ax+3bx+10ay+6by;(2)(2x-3)(x+4)=2x2+8x-3x-12=2x2+5x-12(3)(x+y)2=(x+y)(x+y)=x2+xy+xy+y2=x2+2xy+y2;(4)(x+y)(x2-xy+y2)=x3-x2y+xy2+x2y-xy2+y3=x3+y3例题2:计算以下各题:(1)(a+3)·(b+5);(2)(3x-y) (2x+3y); (3)(a-b)(a+b); (4)(a-b)(a 2+ab+b 2) 解:(1) (a+3)·(b+5) =ab+5a+3b+15; (2) (3x-y) (2x+3y)=6x 2+9xy -2xy-3y 2(多项式与多项式相乘的法则) =6x 2+7xy-3y 2(合并同类项) (3)(a-b)(a+b) =a 2+ab-ab-b 2 = a 2-b 2(4)(a-b)(a 2+ab+b 2) =a 3+a 2b+ab 2-a 2b-ab 2-b 3 = a 3 -b 3 例题3:先化简,再求值:(2a-3)(3a+1)-6a (a-4)其中a =2/17 解:(2a-3)(3a+1)-6a (a-4) =6a 2+2a-9a-3-6a 2+24a =17a-3当a =2/17时,原式=17×2/17-3=-1 例题4:观察下列解法,判断是否正确,若错请说出理由。

单项式与多项式的乘法教学设计

单项式与多项式的乘法教学设计

单项式与多项式的乘法教学设计目标
- 通过教学设计使学生了解和掌握单项式与多项式的乘法运算
方法
- 培养学生的逻辑思维和数学计算能力
- 帮助学生提高解决实际问题的能力
教学过程
引入
1. 创设情境:通过一个具体的实例引导学生对单项式与多项式
的乘法产生兴趣,并认识到它们在实际生活中的应用。

2. 解释概念:简明扼要地介绍单项式和多项式的定义及其特点。

手把手指导
1. 讲解单项式的乘法原理和规则,同时使用具体的例子帮助学
生理解。

2. 引导学生发现乘法的交换律、结合律和分配律在单项式乘法
中的应用。

练与巩固
1. 学生进行练,计算给定的单项式之间的乘法。

2. 学生解决一些实际问题,运用单项式的乘法解决。

推广拓展
1. 引导学生理解多项式的定义和组成方式。

2. 讲解多项式的乘法原理和规则,并通过具体的例子进行说明。

作业和评估
1. 布置一些乘法练题作为作业,以巩固学生的知识。

2. 通过课堂练和作业评估学生对单项式与多项式乘法的掌握程度。

扩展阅读
1. 提供一些相关的阅读材料或网上资源,供学生深入了解单项式与多项式的乘法应用。

2. 鼓励学生进行进一步研究和探索,拓宽对这一概念的理解。

多项式的乘法教案,初中数学不再难

多项式的乘法教案,初中数学不再难

多项式的乘法是数学中一个非常重要的知识点,也是初中数学中较难的一部分,在学习这部分内容的时候,很多学生都会感到困难。

只要我们掌握了一定的方法,加上勤奋的学习,就能够轻松掌握这一部分的知识,从而让初中数学不再难。

一、常见的多项式在学习多项式的乘法之前,我们需要先了解一下常见的多项式。

所谓多项式,就是指若干个数相乘或相加的表达式,而这些数又被称为“项”。

例如下面几个式子都是多项式:(1)3x + 4y(2)5x² + 2xy + 9(3)2x³ + 3x²y + 4xy² + 5y³其中,式(1)只有两项,分别为3x和4y;式(2)有三项,分别为5x²、2xy和9;式(3)有四项,分别为2x³、3x²y、4xy²和5y³。

二、多项式的乘法多项式的乘法是指两个或多个多项式相乘的过程。

例如,我们要计算下面两个多项式的积:(1)(2x + 3)(x + 4)(2)(4x² + 2xy + 1)(3x + 2y)对于式(1),我们可以使用“分配律”来计算,即(2x + 3)(x + 4)= 2x×x + 2x×4 + 3×x + 3×4= 2x² + 8x + 3x + 12= 2x² + 11x + 12对于式(2),我们也可以用分配律来计算,但由于它更为复杂,我们可以采用“竖式乘法”的方法,即将两个多项式按照竖线分别写出,分别乘以对方的每一项,并将结果相加,最终得到积。

具体可以参考下面的计算过程:三、多项式乘法的简便方法虽然上面的方法可以用来计算多项式的乘法,但当多项式较为复杂时,这种方法就显得很繁琐,容易出错。

我们需要寻找一种更为简便、实用的计算方法,以便更方便地解决问题。

下面,我们介绍两种常用的多项式乘法简便方法:代数法和公式法。

1.代数法代数法是一种很好用的方法,它可以帮助我们简单地解决一些多项式乘法问题。

多项式的乘法

多项式的乘法

授课人冯永乐课题多项式的乘法(1)第1课时(本节共2课时)教学目标知识与技能学会用多项式乘法法则进行计算.过程与方法经历探索多项式乘法法则的过程,理解多项式乘法法则.情感态度与价值观培养学生用几何图形理解代数知识的能力和复杂问题转化为简单问题的转化思想.教学重点多项式的乘法法则的运用.教学难点理解多项式乘法法则的推导过程和运用法则进行计算.教学思路或板书设计设计思路:本课通过实例引入,利用几何图形来解释多项式乘以多项式法则,显得自然贴切,并通过分配律的应用加以解释,体会了数形结合和转化的思想,并通过例题、练习、拓展性习题,环环相扣,进一步巩固了法则,注意了项、符号等一些必须引起注意的问题,使学生明确规范的书写格式和每一步的算理.学生课前准备教具课后反思一、创设情景,引入新课1.请口答(1)(-x)·(-x)2·(-x)3=______;(2)(x2)4=_______;(4)(xy)2·(xy)3=______;(5)(-3x3y)(-xy2z)=_______;(6)2a×(-4a+3ab-2)=________________2.某一个养殖专业户,原有一长为a米,宽为b米的长方形养殖场。

现由于养殖生意好,扩大了养殖场,长增加m米,宽增加n米,求扩大后的养殖场面积为多少平方米?3.揭示课题二、复习旧知,探求新知(1)请大家观察等式的左边与右边有什么特点?并发现其规律。

答:①多项式两项与两项相乘得结果四项;②两项式与两项式相乘,先用一个两项式的每一项乘以另一个两项式的每一项,再把所得的积相加.或先将一个两项式看作一项运用分配律乘以另一个两项式的每一项,再把所得的积相加法则:多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.(前面多项式的每一项乘以后面多项式的每一项,或者反过来。

)三.例题讲解例1.计算:(1)(x+2y)(5a+3b);(2)(2x–3)(x+4);设问:(1)通过这两题学习,哪几点让你要注意呢?答:①两项相乘时,先定符号。

多项式的乘法

多项式的乘法

多项式的乘法导读:本文是关于多项式的乘法,希望能帮助到您!教学建议一、知识结构二、重点、难点分析本节教学的重点是利用公式(x+a)(x+b)=x2+(a+b)x+ab熟练地计算.难点是理解并掌握公式.本节内容是进一步学习乘法公式及后续知识的基础.1.多项式乘法法则,是多次运用单项式与多项式相乘的法则得到的.计算时,先把看成一个单项式,是一个多项式,运用单项式与多项式相乘的法则,得到然后再次运用单项式与多项式相乘的法则,得到:2.含有一个相同字母的两个一次二项式相乘,得到的积是同一字母的二次三项式,它的二次项由两个因式中的一次项相乘得到;积的一次项是由两个因式中的常数基分别乘以两个因式中的一次项后,合并同类项得到;积的常数项等于两个因式中常数项的积.如果因式中一次项的系数都是1,那么积的二次项系数也是1,积的一次项系数等于两个因式中的常数项的和,这就是说,如果用、分别表示一个含有系数是1的相同字母的两个一次二项式中的常数项,则有3.在进行两个多项式相乘、直接写出结果时,注意不要“漏项”.检查的办法是:两个多项式相乘,在没有合并同类项之前,积的项数应是这两个多基同甘共苦的积.如积的项数应是,即六项:当然,如有同类项则应合并,得出最简结果.4.运用多项式乘法法则时,必须做到不重不漏,为此,相乘时,要按一定的顺序进行.例如,,可先用第一个多项式中的第一项“”分别与第二个多项式的每一项相乘,再用第一个多项式中的第二项“”分别与第二个多项式的每一项相乘,然后把所得的积相加,即.5.多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.6.注意确定积中每一项的符号,多项式中每一项都包含它前面的符号,“同号得正,异号得负”.三、教法建议教学时,应注意以下几点:(1)要防止两个多项式相乘,直接写出结果时“漏项”.检查的办法是:两个多项式相乘,在没有合并同类项之前,积的项数应是这两个多项式项数的积.如,积的项数应是,即四项当然,如有同类项,则应合并同类项,得出最简结果.(2)要不失时机地指出:多项式是单项式的和,每一项都包括前面的符号,在计算时一定要注意确定积中各项的符号.(3)例2的第(1)小题是乘法的平方差公式,例2的第(2)小题是两数和的完全平方公式.实际上任何乘法公式都是直接用多项式乘法计算出来的.然后,我们把这种特殊形式的乘法连同它的结果作为公式.这里只是为后面学习乘法公式作准备,不必提它们是乘法公式,分散学生的注意力.当然,在讲解这个1题时,要讲清它们在合并同类项前的项数.(4)例3是另一种形式的多项式的乘法,要讲清楚两个因式的特点,积与两个因式的关系.总之,要讲清楚这种特殊形式的两个多项式相乘的规律,使学生在计算这种类型的题目时,能够迅速地求得结果.如对于练习第1题中的,等等,能够直接写出结果.教学设计示例一、教学目标1.理解和掌握单项式与多项式乘法法则及其推导过程.2.熟练运用法则进行单项式与多项式的乘法计算.3.通过用文字概括法则,提高学生数学表达能力.4.通过反馈练习,培养学生计算能力和综合运用知识的能力.5.渗透公式恒等变形的和谐美、简洁美.二、学法引导1.教学方法:讨论法、讲练结合法.2.学生学法:本节主要学习了多项式的乘法法则和一个特殊的二项式乘法公式,在学习时应注意分析和比较这一法则和公式的关系,事实上它们是一般与特殊的关系.当遇到多项式乘法时,首先要看它是不是的形式,若是则可以用公式直接写出结果,若不是再应用法则计算.三、重点、难点及解决办法(一)重点多项式乘法法则.(二)难点利用单项式与多项式相乘的法则推导本节法则.(三)解决办法在用面积法推导多项式与多项式乘法法则过程中,应让学生充分理解多项式乘法法则的几何意义,这样既便于学生理解记忆公式,又能让学生在解题过程中准确地使用.四、课时安排一课时.五、教具学具准备投影仪或电脑、自制胶片、长方形演示纸板.六、师生互动活动设计1.设计一组练习,以检查学生单项式乘以多项式的掌握情况.2.尝试从多角度理解多项式与多项式乘法:(1)把看成一单项式时,.(2)把看成一单项式时,.(3)利用面积法3.在理解上述过程的基础之上,引导学生归纳并指出多项式乘法的规律.4.通过举例,教师的示范,学生的尝试练习,不断巩固新学的知识.对于遇到的特殊二项式相乘可利用特殊的公式加以解决,并注意一般与特殊的关系.七、教学步骤(一)明确目标本节课将学习多项式与多项式相乘的乘法法则及其特殊形式的公式的应用.(二)整体感知多项式与多项式的相乘关键在于展开式中的四项是如何得到的,这里教师应注重引导学生细心观察、品味法则的规律性,实质就在于让一个多项式的每一项与另一个多项式的每一项遍乘既不能漏又不能重复.对特殊的多项式相乘可运用特殊的办法去处理(三)教学过程1.创设情境,复习导入(1)回忆单项式与多项式的乘法法则.(2)计算:①②③④学生活动:学生在练习本上完成,然后回答结果.【教法说明】多项式乘法是以单项式乘法和单项式与多项式相乘为基础的,通过复习引起学生回忆,为本节学习提供铺垫和思想基础.2.探索新知,讲授新课今天,我们在以前学习的基础上,学习多项式的乘法.多项式的乘法就是形如的计算.这里都表示单项式,因此表示多项式相乘,那么如何对进行计算呢?若把看成一个单项式,能否利用单项式与多项式相乘的法则计算呢?请同桌同学互相讨论,并试着进行计算.学生活动:同桌讨论,并试着计算(教师适当引导),学生回答结论.【教法说明】多项式乘法法则,是两次运用单项式与多项式相乘的法则得到的.这里的关键在于让学生理解,将看成一个单项式,然后运用单项式与多项式相乘的法则进行计算,让学生讨论并试着计算,目的是培养学生分析问题、解决问题的能力,鼓励学生积极探索知识、善于发现规律、主动参与学习.3.总结规律,揭示法则对于的计算过程可以表示为:教师引导学生用文字表述多项式乘法法则:多项式与多项式相乘,先用一个多项式的第一项乘另一个多项式的每一项,再把所得的积相加.如计算:看成公式中的;-1看成公式中的;看成公式中的;3看成公式中的.运用法则中的每一项分别去乘中的每一项,计算可得:.学生活动:在教师引导下细心观察、品味法则.【教法说明】借助算式图,指出的得出过程,实质就是用一个多项式的“每一项”乘另一个多项式的“每一项”,再把所得积相加的过程.可以达到两个目的:一是直观揭示法则,有利于学生理解;二是防止学生出现运用法则进行计算时“漏项”的错误,强调法则,加深理解,同时明确多项式是单项式的和,每一项都包括前面的符号.这个法则还可利用一个图形明显地表示出来.(1)这个长方形的面积用代数式表示为_____________.(2)Ⅰ的面积为________;Ⅱ的面积为________;Ⅲ的面积为________;Ⅳ的面积为_______.结论:即.学生活动:随着教师的演示,边思考,边回答问题.【教法说明】利用图形的直观性,使学生进一步理解、掌握这一法则,渗透数形结合的思想,培养学生观察、分析图形的能力.4.运用知识,尝试解题例1 计算:(1)(2)(3)解:(1)原式(2)原式(3)原式【教法说明】例1的目的是熟悉、理解法则.完成例1时,要求学生紧扣法则,按法则的文字叙发“一步步”解题,注意最后要合并同类项.让学生参与例题的解答,旨在强化学生的参与意识,使其主动思考.例2 计算:(1)(2)学生活动:在教师引导下,说出解题过程.解:(1)原式(2)原式【教法说明】例2的两个小题是后面要讲到的乘法公式,但目前仍按多项式乘法法则计算,无需说明它们是乘法公式,此题的目的在于为后面的学习做准备.5.强化训练,巩固知识(1)计算:①②③④⑤⑥(2)计算:①②③④⑤⑥⑦⑧学生活动:学生在练习本上完成.【教法说明】本组练习的目的是:①使学生进一步理解法则,熟练运用法则进行计算.②训练学生计算的准确性,培养计算能力.③对乘法公式先有一个模糊印象,为以后的学习打下基础.(四)总结、扩展这节课我们学习了多项式乘法法则,请同学们回答问题:1.叙述多项式乘法法则.2.谈谈这节课你的学习体会.学生活动:学生分别回答上述问题.【教法说明】通过让学生自己谈学习体会,既可以达到总结归纳本节知识的目的,形成完整印象,又可以提高学生的总结概括能力.八、布置作业P120 A组1.(1)(3)(5)(7),2.(2)(3),3.(1)(3)(8).参考答案1.(1)原式(3)原式(5)原式(7)原式2.(2)原式(3)原式3.(1)原式(3)原式(8)原式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《多项式的乘法》教学设计
一、背景介绍及教学资料
本教材在单项式的乘法之后直接安排多项式的乘法,显得贴切自然,多项式乘以多项式是整式乘法的一部分。

本课时利用对同一面积不同表达和分配律的运用两个方面,探索多项式相乘的运算法则,进而体会分配律的重要作用,以及转化思想,并从理解的角度掌握多项式乘法法则。

二、教学设计
【教学内容分析】
本节课从同一面积的不同表达入手,通过分析讨论,进一步体会分配律的作用的情况下得到多项式相乘法则。

由法则可知:(1)多项式与多项式相乘的结果仍是多项式;(2)结果的项数应该是原两个多项式项数的积(没有经过合并同类项之前),检验项数常常作为检验解题过程是否的一个有效方法。

【教学目标】
1、经历探索多项式乘法法则的过程,理解多项式乘法法则。

2、学会用多项式乘法法则进行计算。

3、培养学生用几何图形理解代数知识的能力和复杂问题转化为简单问题的转化思想。

【教学重点、难点】
重点是掌握多项式的乘法法则并加以运用。

难点是理解多项式乘法法则的推导过程和运用法则进行计算。

【教学准备】
展示课件。

【设计说明】
本课设计通过实例引入,利用几何图形来解释多项式乘以多项式法则,显得自然贴切,并通过分配律的应用加以解释,体会了数形结合和转化的思想,并通过例题、练习、拓展性习题,环环相扣,进一步巩固了法则,注意了项、符号等一些必须引起注意的问题,使学生明确规范的书写格式和每一步的算理。

相关文档
最新文档