弹簧振子实验报告
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹簧振子实验报告
一、引言
●实验目的
1.测定弹簧的刚度系数(stiffness coefficient).
2.研究弹簧振子的振动特性,验证周期公式.
3.学习处理实验数据.
●实验原理
一根上端固定的圆柱螺旋弹簧下端悬一重物后,就构成了弹簧振子.当振子处于静止状况时,重物所受的重力与弹簧作用于它的弹性恢复力相平衡,这是振子的静止位置就叫平衡位置.如用外力使振子离开平衡位置然后释放,则振子将以平衡位置为中心作上下振动.实验研究表明,如以振子的平衡位置为原点(x=0),则当振子沿铅垂方向离开平衡位置时,它受到的弹簧恢复力F在一定的限度内与振子的位移x成正比,即
F=−kx
(1)
式中的比例常数k称为刚度系数(stiffness coefficient),它是使弹簧产生单位形变所须的载荷.这就是胡克定律.式(1)中的负号表示弹性恢复力始终指向平衡位置.当位移x为负值,即振子向下平移时,力F向上.这里的力F表示弹性力与重力mg的综合作用结果.
根据牛顿第二定律,如振子的质量为m,在弹性力作用下振子的运动方程为:
m d2x
dt2
+kx=0(2)
令ω2=k
m ,上式可化为一个典型的二阶常系数微分方程d
2x
dt2
+ω02=0,其解
为
x=A sin(ω0t+ϕ)(3)
(3)式表明.弹簧振子在外力扰动后,将做振幅为A,角频率为ω0的简谐振动,式中的(ω0t+ϕ)称为相位,ϕ称为初相位.角频率为ω0的振子其振动周期为T0=2π
ω0
,可得
x=2π√m
k
(4)
(4)式表示振子的周期与其质量、弹簧刚度系数之间的关系,这是弹簧振子的最基本的特性.弹簧振子是振动系统中最简单的一种,它的运动特性(振幅,相位,频率,周期)是所有振动系统共有的基本特性,研究弹簧振子的振动是认识更复杂震动的基础.
弹簧的质量对振动周期也有影响.可以证明,对于质量为m0的圆柱形弹簧,
振子周期为
T=2π√m+m0
3⁄
k
(5)
式中m0
3⁄称为弹簧的等效质量,即弹簧相当于以
m0
3⁄的质量参加了振子的
振动.非圆柱弹簧(如锥形弹簧)的等效质量系数不等于1/3.
我们选用短而轻的弹簧并配备适当重量的砝码组成振子,是实验条件与理论比较相符.在此基础上测振子周期,考察振子质量和弹簧刚度系数对周期的影响,再将所得结果与理论公式比较,并探讨实验中存在的问题.
实验仪器装置
游标高度尺,电子天平,弹簧,砝码,秒表
二、实验步骤
1.测弹簧质量和刚度系数
先测出弹簧的质量和刚度系数,测量时要分清弹簧的标记色,避免测周期是把数据弄混.弹簧的刚度系数可用静力平衡法测定,即在悬挂好的弹簧下端逐次加挂砝码,设其质量为m1,m2,m3,m4,m5,然后取x i为自变量、y i=m i g为因变量作直线拟合,斜率b的绝对值即为弹簧的刚度系数.(也可对x
i,
m i拟合做出直线斜率,再乘以g=9.801m s−2).为测准x i,应选一能正确反映弹簧伸长的标志线或面,而且要保证高度尺能方便地校准.实验中砝码和弹簧质量要求读到0.01g.
2.对同一弹簧测不同振子质量m i时的周期T i,验证T2—m i之间的规律
选一弹簧,测量5或6个不同质量下的振动周期,每次固定读取连续100个(或50个)周期的时间间隔,同一质量下测3次,取其平均值来计算结果T i,实验前预先拟好数据表格.
(5)式改写为方程
m=k
4π2T2−m0
3
(6)
对测量数据作以T 2为自变量、m 为因变量的最小二乘法直线拟合.可由直线的斜率与截距求得刚度系数k 与弹簧的质量m 0.
3. 对几乎相同的振子质量测不同弹簧的周期,验证T i —k i 之间的规律.
砝码质量可选定大于0.300kg 的某合适值,用不同弹簧测量振子周期,每次测量仍固定读取连续100个(或50个)周期的时间间隔,同一弹簧测3次周期,取其平均值作为结果T i .
不同弹簧的振子总等效质量可能略有不同.下面的数据处理中计算总振子质量时,近似的统一加上弹簧平均质量的1/3,经过分析可以得知,这样不同弹簧的振子总等效质量与近似值的差别不大于0.15%,折合成的等效周期测量误差不大于0.08%,即使不对质量因素进行修正,其影响也不太大.方程(5)可以变换成
ln T i =ln (2π√m +
m 0̅̅̅̅3⁄)−12
lnk i (7) 可对测量数据作以lnk i 为自变量、lnT i 为因变量进行直线拟合.
三、 数据分析
1. 砝码质量与弹簧质量
其中质量测量的不确定度均为δm =0.0001g
表1 砝码的质量
表2 弹簧的质量
2.测量弹簧的k值
其中长度测量的不确定度均为δl=0.01mm.表中长度单位均为mm.读数指弹簧最下端在游标高度尺上的读数.
表3 悬挂不同砝码的各弹簧读数下面是以读数为自变量, m i g为因变量进行直线拟合所得的图像:
R² = 0.9991
图1无(较小)弹簧mg-x
R² = 0.981
图2 红色弹簧的mg-x
R² = 0.9173
图3 黄色弹簧的mg-x
R² = 0.9996
图4 橙色弹簧的mg-x
R² = 0.9983
图5 蓝色弹簧的mg-x