对数及其运算基础知识及例题

合集下载

4.4对数概念及其运算

4.4对数概念及其运算

练习:书本 练习:书本P10
小结
a>0,a≠1,M,N>0 (1)logaM+logaN=loga(M×N) × (2)loga(M÷N)=logaM-logaN ÷ (3)logaMn=nlogaM
解1.08x=2
思考题
21000是几位数
log 2 x = p; log a y = q; log a z = r , 把a 2 p + q −3r 用x, y , z表示
log 7 2 = k
试用k表示
log8 14
小结
介绍什么是换底公式? 利用换底公式将不同底的对数处理成同底的 形式
回家作业
Page 2练习部分 习题4.4A组7,8,9 B组5,6
(lg 2) 2 ⋅ lg 250 + (lg 5) 2 ⋅ lg 40
log18 9 = a,18 = 5, 用a, b表示 log 36 45
4.4 对数的概念及 其运算
2 对数运算法则
任取两组M、N完成下表
从中请找出同底的对数有哪些运算性质?并证明其中其中一个性质。 从中请找出同底的对数有哪些运算性质?并证明其中其中一个性质。 同底的对数有哪些运算性质 并注意每个性质要满足什么条件才能成立
M
N
M+N
M-N
M×N ×
M÷N ÷
lgM
lgN
= log b a
例题2:求值 例题 : lg 2 lg 5 (1) log 4 3 ⋅ log 9 32 (2) log 10 + log 10 ) ) 50 5
3x = 4 y = 6 z 例3:设x,y,z都是正数,且 : 都是正数, 都是正数

对数函数知识点及典型例题讲解

对数函数知识点及典型例题讲解

对数函数知识点及典型例题讲解1.对数:(1) 定义:如果N a b =)1,0(≠>a a 且,那么称 为 ,记作 ,其中a 称为对数的底,N 称为真数.① 以10为底的对数称为常用对数,N 10log 记作___________.② 以无理数)71828.2( =e e 为底的对数称为自然对数,N e log 记作_________. (2) 基本性质:① 真数N 为 (负数和零无对数);② 01log =a ;③ 1log =a a ; ④ 对数恒等式:N a N a =log . (3) 运算性质:① log a (MN)=___________________________; ② log a NM =____________________________;③ log a M n= (n ∈R).④ 换底公式:log a N = (a >0,a ≠1,m >0,m ≠1,N>0)⑤ log m na a nb b m = .2.对数函数:① 定义:函数 称为对数函数,1) 函数的定义域为( ;2) 函数的值域为 ;3) 当______时,函数为减函数,当______时为增函数;4) 函数x y a log =与函数)1,0(≠>=a a a y x且互为反函数. ② 1) 图象经过点( ),图象在 ;2) 对数函数以 为渐近线(当10<<a 时,图象向上无限接近y 轴;当1>a 时,图象向下无限接近y 轴); 4) 函数y =log a x 与 的图象关于x 轴对称. ③ 函数值的变化特征:例1 计算:(1))32(log32-+(2)2(lg 2)2+lg 2·lg5+12lg )2(lg 2+-;(3)21lg4932-34lg 8+lg 245. 解:(1)方法一设)32(log32-+=x,(2+3)x=2-3=321+=(2+3)-1,∴x=-1.方法二)32(log 32-+=32log +321+=32log+(2+3)-1=-1.(2)原式=lg 2(2lg 2+lg5)+12lg 2)2(lg 2+-=lg 2(lg2+lg5)+|lg 2-1| =lg 2+(1-lg 2)=1.(3)原式=21(lg32-lg49)-34lg821+21lg245=21(5lg2-2lg7)-34×2lg 23+21 (2lg7+lg5)=25lg2-lg7-2lg2+lg7+21lg5=21lg2+21lg5=21lg(2×5)= 21lg10=21.变式训练1:化简求值. (1)log 2487+log 212-21log 242-1;(2)(lg2)2+lg2·lg50+lg25; (3)(log 32+log 92)·(log 43+log 83).解:(1)原式=log 2487+log 212-log 242-log 22=log 2.232log 221log 242481272322-===⨯⨯⨯-(2)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2. (3)原式=(.452lg 63lg 5·3lg 22lg 3)2lg 33lg 2lg 23lg (·)3lg 22lg 3lg 2lg ==++ 例2 比较下列各组数的大小. (1)log 332与log 556;2)log 1.10.7与log 1.20.7;(3)已知log 21b <log 21a <log 21c,比较2b,2a,2c的大小关系.解:(1)∵log 332<log 31=0,而log 556>log 51=0,∴log 332<log 556.(2)方法一 ∵0<0.7<1,1.1<1.2,∴0>2.1log 1.1log 7.00.7>,∴2.1log 11.1log 17.07.0<,即由换底公式可得log 1.10.7<log 1.20.7.方法二 作出y=log 1.1x 与y=log 1.2x 的图象.如图所示两图象与x=0.7相交可知log 1.10.7<log 1.20.7. (3)∵y=x 21log 为减函数,且c a b 212121log log log <<,∴b >a >c,而y=2x 是增函数,∴2b >2a >2c.变式训练2:已知0<a <1,b >1,ab >1,则log a bb bba1log ,log ,1的大小关系是 ( )A.log a bb bba1log log 1<< B.bbb baa 1log 1log log <<C.b b b a ba1log 1loglog << D.b bb a a b log 1log 1log << 解: C例3已知函数f(x)=log a x(a >0,a ≠1),如果对于任意x ∈[3,+∞)都有|f(x)|≥1成立, 试求a 的取值范围.解:当a >1时,对于任意x ∈[3,+∞),都有f(x)>0. 所以,|f(x)|=f(x),而f(x)=log a x 在[3,+∞)上为增函数, ∴对于任意x ∈[3,+∞),有f(x)≥log a 3.因此,要使|f(x)|≥1对于任意x ∈[3,+∞)都成立. 只要log a 3≥1=log a a 即可,∴1<a ≤3.当0<a <1时,对于x ∈[3,+∞),有f(x)<0, ∴|f(x)|=-f(x). ∵f (x )=log a x 在[3,+∴-f (x )在[3,+∞)上为增函数. ∴对于任意x ∈[3,+|f(x)|=-f(x)≥-log a 3.因此,要使|f(x)|≥1对于任意x ∈[3,+只要-log a 3≥1∴log a 3≤-1=log a a1,即a 1≤3,∴31≤a < 1.综上,使|f(x)|≥1对任意x ∈[3,+∞)都成立的a 的取值范围是:(1,3]∪[31,1). 变式训练3:已知函数f (x )=log 2(x 2-ax-a)在区间(-∞,1-3]上是单调递减函数.求实数a 的取值范围.解:令g(x)=x 2-ax-a,则g(x)=(x-2a )2-a-42a ,由以上知g(x )的图象关于直线x=2a对称且此抛物线开口向上.因为函数f(x)=log 2g(x)的底数2>1, 在区间(-∞,1-3]上是减函数,所以g(x)=x 2-ax-a 在区间(-∞,1-3]上也是单调减函数,且g(x)>0.∴⎪⎩⎪⎨⎧>-----≥⎪⎩⎪⎨⎧>-≤-0)31()31(3220)31(2312a a a g a ,即解得2-23≤a <2.故a 的取值范围是{a|2-23≤a <2}.例4 已知过原点O 的一条直线与函数y=log 8x 的图象交于A 、B 两点,分别过A 、B 作y 轴的平行与函数y=log 2x 的图象交于C 、D 两点. (1)证明:点C 、D 和原点O(2)当BC 平行于x 轴时,求点A 的坐标. (1)证明 设点A 、B 的横坐标分别为x 1、x 2,由题设知x 1>1,x 2>1,则点A 、B 的纵坐标分别为log 8x 1、log 8x 2. 因为A 、B 在过点O 的直线上,所以228118log log x x x x =点C 、D 的坐标分别为(x 1,log 2x 1)、(x 2,log 2x 2), 由于log 2x 1=2log log 818x =3log 8x 1,log 2x 2=3log 8x 2,OC 的斜率为k 1=118112log 3log x x x x =,OD 的斜率为,log 3log 2282222x x x x k ==由此可知k 1=k 2,即O 、C 、D 在同一直线上.(2)解: 由于BC 平行于x 轴,知log 2x 1=log 8x 2,即得log 2x 1=31log 2x 2,x 2=x 31,代入x 2log 8x 1=x 1log 8x 2,得x 31log 8x 1=3x 1log 8x 1,由于x 1>1,知log 8x 1≠0,故x 31=3x 1, 又因x 1>1,解得x 1=3,于是点A 的坐标为(3,log 83).1.处理对数函数的有关问题,要紧密联系函数图象,运用数形结合的思想进行求解.2.对数函数值的变化特点是解决含对数式问题时使用频繁的关键知识,要达到熟练、运用自如的水平,使用时常常要结合对数的特殊值共同分析.3.含有参数的指对数函数的讨论问题是重点题型,解决这类问题最基本的分类方案是以“底”大于1或小于1分类.4.含有指数、对数的较复杂的函数问题大多数都以综合形式出现,与其它函数(特别是二次函数)形成的函数问题,与方程、不等式、数列等内容形成的各类综合问题等等,因此要注意知识的相互渗透或综合.。

对数的运算法则及公式例题

对数的运算法则及公式例题

对数的运算法则及公式例题
对数的运算法则主要包括以下几个方面:
1. 对数的乘法法则:
logₐ(MN) = logₐM + logₐN
2. 对数的除法法则:
logₐ(M/N) = logₐM - logₐN
3. 对数的幂法法则:
logₐMᵇ= b * logₐM
4. 对数的换底法则:
logₐM = logᵦM / logᵦa
公式例题:
1. 求log₃(9)的值。

解:根据对数的定义,3的多少次方等于9,很明显3的2次方等于9,即log₃(9) = 2。

2. 求log₄(16)的值。

解:同样根据对数的定义,4的多少次方等于16,显然4的2次方等于16,因此log₄(16) = 2。

3. 求log₂(8)的值。

解:根据对数的定义,2的多少次方等于8,很明显2的3次方等于8,即log₂(8) = 3。

4. 求log₈(2)的值。

解:根据对数的定义,8的多少次方等于2,很明显8的-1次方等于2,因此log₈(2) = -1。

5. 求log₅(25)的值。

解:根据对数的定义,5的多少次方等于25,很明显5的2次方等于25,因此log₅(25) = 2。

对数运算、对数函数经典例题讲义全

对数运算、对数函数经典例题讲义全

1.对数的概念 如果a x =N (a >0,且a ≠1),那么数x 叫做__________________,记作____________,其中a 叫做__________,N 叫做______.2.常用对数与自然对数通常将以10为底的对数叫做____________,以e 为底的对数叫做____________,log 10N 可简记为______,log e N 简记为________. 3.对数与指数的关系若a >0,且a ≠1,则a x =N ⇔log a N =____.对数恒等式:a log a N =____;log a a x =____(a >0,且a ≠1). 4.对数的性质(1)1的对数为____; (2)底的对数为____; (3)零和负数__________.1.有下列说法:①零和负数没有对数;②任何一个指数式都可以化成对数式; ③以10为底的对数叫做常用对数; ④以e 为底的对数叫做自然对数. 其中正确命题的个数为( )A .1B .2C .3D .42.有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x ,则x =100;④若e =ln x ,则x =e 2.其中正确的是( )A .①③B .②④C .①②D .③④ 3.在b =log (a -2)(5-a )中,实数a 的取值围是( )A .a >5或a <2B .2<a <5C .2<a <3或3<a <5D .3<a <44.方程3log 2x=14的解是( )A .x =19B .x =33 C .x = 3 D .x =95.若log a 5b =c ,则下列关系式中正确的是( ) A .b =a 5c B .b 5=a c C .b =5a c D .b =c 5a6.0.51log 412-+⎛⎫ ⎪⎝⎭的值为( )A .6 B.72 C .8 D.377.已知log 7[log 3(log 2x )]=0,那么12x -=________.8.若log 2(log x 9)=1,则x =________.9.已知lg a =2.431 0,lg b =1.431 0,则b a=________. 10.(1)将下列指数式写成对数式:①10-3=11 000;②0.53=0.125;③(2-1)-1=2+1.(2)将下列对数式写成指数式:①log 26=2.585 0;②log 30.8=-0.203 1; ③lg 3=0.477 1.11.已知log a x =4,log a y =5,求A =121232x xy -⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦的值.能力提升12.若log a 3=m ,log a 5=n ,则a 2m +n 的值是( )A .15B .75C .45D .225 13.(1)先将下列式子改写成指数式,再求各式中x 的值:①log 2x =-25;②log x 3=-13.(2)已知6a =8,试用a 表示下列各式:①log 68;②log 62;③log 26.1.对数概念与指数概念有关,指数式和对数式是互逆的,即a b=N ⇔log a N =b (a >0,且a ≠1),据此可得两个常用恒等式:(1)log a a b =b ;(2) log a Na =N .2.在关系式a x =N 中,已知a 和x 求N 的运算称为求幂运算;而如果已知a 和N 求x 的运算就是对数运 算,两个式子实质相同而形式不同,互为逆运算. 3.指数式与对数式的互化1.对数的运算性质如果a >0,且a ≠1,M >0,N >0,那么: (1)log a (M ·N )=____________________;(2)log a MN=____________________;(3)log a M n =__________(n ∈R ).2.对数换底公式log a b =log c b log c a (a >0,且a ≠1,b >0,c >0,且c ≠1);特别地:log a b ·log b a =____(a >0,且a ≠1,b >0,且b ≠1).一、选择题1.下列式子中成立的是(假定各式均有意义)( ) A .log a x ·log a y =log a (x +y ) B .(log a x )n =n log a x C.log a x n=log a n xD.log a x log a y=log a x -log a y 2.计算:log 916·log 881的值为( )A .18 B.118 C.83 D.383.若log 513·log 36·log 6x =2,则x 等于( )A .9 B.19 C .25 D.1254.已知3a =5b =A ,若1a +1b=2,则A 等于( )A .15 B.15 C .±15 D .2255.已知log 89=a ,log 25=b ,则lg 3等于( )A.a b -1B.32(b -1)C.3a 2(b +1)D.3(a -1)2b6.若lg a ,lg b 是方程2x 2-4x +1=0的两个根,则(lg ab)2的值等于( ) A .2 B.12 C .4 D.147.2log 510+log 50.25+(325-125)÷425=_____________________________________. 8.(lg 5)2+lg 2·l g 50=________.9.2008年5月12日,汶川发生里氏8.0级特震,给人民的生命财产造成了巨大的损失.里氏地震的等级最早是在1935年由美国加州理工学院的地震学家里特判定的.它与震源中心释放的能量(热能和动能)大小有关.震级M =23lg E -3.2,其中E (焦耳)为以地震波的形式释放出的能量.如果里氏6.0级地震释放的能量相当于1颗美国在二战时投放在广岛的原子弹的能量,那么汶川震所释放的能量相当于________颗广岛原子弹. 三、解答题10.(1)计算:lg 12-lg 58+lg 12.5-log 89·log 34;(2)已知3a =4b =36,求2a +1b的值.11.若a 、b 是方程2(lg x )2-lg x 4+1=0的两个实根,求lg(ab )·(log a b +log b a )的值.能力提升12.下列给出了x 与10x 的七组近似对应值:A .二B .四C .五D .七13.一种放射性物质不断变化为其他物质,每经过一年的剩余质量约是原来的75%,估计约经过多少年,该物质的剩余量是原来的13?(结果保留1位有效数字)(lg 2≈0.301 0,lg 3≈0.477 1)1.在运算过程中避免出现以下错误: log a (MN )=log a M ·log a N .log a M N =log a M log a N.log a N n =(log a N )n .log a M ±log a N =log a (M ±N ).2.根据对数的定义和运算法则可以得到对数换底公式:log a b =log c b log c a (a >0且a ≠1,c >0且c ≠1,b >0).由对数换底公式又可得到两个重要结论: (1)log a b ·log b a =1;(2) log n ma b =mnlog a b .3.对于同底的对数的化简常用方法:(1)“收”,将同底的两对数的和(差)收成积(商)的对数;(2)“拆”,将积(商)的对数拆成两对数的和(差).对于常用对数的化简要创设情境,充分利用“lg 5+lg 2=1”来解题.1.对数函数的定义:一般地,我们把______________________叫做对数函数,其中x 是自变量,函数的定义域是________.2.对数函数的图象与性质定义 y =log a x (a >0,且a ≠1) 底数 a >1 0<a <1图象定义域 ________ 值域 ________单调性 在(0,+∞)上是增函数 在(0,+∞)上是减函数共点性 图象过点________,即log a 1=0函数值 特点 x ∈(0,1)时, y ∈________; x ∈[1,+∞)时, y ∈________ x ∈(0,1)时, y ∈________; x ∈[1,+∞)时, y ∈________ 对称性函数y =log a x 与y =1log ax 的图象关于____对称3.反函数对数函数y =log a x (a >0且a ≠1)和指数函数__________________互为反函数. 1.函数y =log 2x -2的定义域是( )A .(3,+∞)B .[3,+∞)C .(4,+∞)D .[4,+∞)2.设集合M ={y |y =(12)x ,x ∈[0,+∞)},N ={y |y =log 2x ,x ∈(0,1]},则集合M ∪N 等于( )A .(-∞,0)∪[1,+∞)B .[0,+∞)C .(-∞,1]D .(-∞,0)∪(0,1) 3.已知函数f (x )=log 2(x +1),若f (α)=1,则α等于( )A .0B .1C .2D .3 4.函数f (x )=|log 3x |的图象是( )5.已知对数函数f (x )=log a x (a >0,a ≠1),且过点(9,2),f (x )的反函数记为y =g (x ),则g (x )的解析式是( ) A .g (x )=4x B .g (x )=2x C .g (x )=9x D .g (x )=3x6.若log a 23<1,则a 的取值围是( )A .(0,23)B .(23,+∞)C .(23,1)D .(0,23)∪(1,+∞)7.如果函数f (x )=(3-a )x ,g (x )=log a x 的增减性相同,则a 的取值围是______________. 8.已知函数y =log a (x -3)-1的图象恒过定点P ,则点P 的坐标是________. 9.给出函数则f (log 23)=________. 三、解答题10.求下列函数的定义域与值域: (1)y =log 2(x -2); (2)y =log 4(x 2+8).11.已知函数f (x )=log a (1+x ),g (x )=log a (1-x ),(a >0,且a ≠1). (1)设a =2,函数f (x )的定义域为[3,63],求函数f (x )的最值. (2)求使f (x )-g (x )>0的x 的取值围.能力提升12.已知图中曲线C 1,C 2,C 3,C 4分别是函数y =log a 1x ,y =log a 2x ,y =log a 3x ,y =log a 4x 的图象,则a 1,a 2,a 3,a 4的大小关系是( )A .a 4<a 3<a 2<a 1B .a 3<a 4<a 1<a 2C .a 2<a 1<a 3<a 4D .a 3<a 4<a 2<a 113.若不等式x 2-log m x <0在(0,12)恒成立,数m 的取值围.1.函数y =log m x 与y =log n x 中m 、n 的大小与图象的位置关系.当0<n <m <1时,如图①;当1<n <m 时,如图②;当0<m <1<n 时,如图③.2.由于指数函数y =a x(a >0,且a ≠1)的定义域是R ,值域为(0,+∞),再根据对数式与指数式的互化过程知道,对数函数y =log a x (a >0,且a ≠1)的定义域为(0,+∞),值域为R ,它们互为反函数,它们的定义域和值域互换,指数函数y =a x 的图象过(0,1)点,故对数函数图象必过(1,0)点.1.函数y =log a x 的图象如图所示,则实数a 的可能取值是( )A .5 B.15C.1eD.12 2.下列各组函数中,表示同一函数的是( ) A .y =x 2和y =(x )2 B .|y |=|x |和y 3=x 3 C .y =log a x 2和y =2log a x D .y =x 和y =log a a x3.若函数y =f (x )的定义域是[2,4],则y =f (12log x )的定义域是( )A .[12,1] B .[4,16]C .[116,14] D .[2,4]4.函数f (x )=log 2(3x +1)的值域为( )A .(0,+∞)B .[0,+∞)C .(1,+∞)D .[1,+∞)5.函数f (x )=log a (x +b )(a >0且a ≠1)的图象经过(-1,0)和(0,1)两点,则f (2)=________. 6.函数y =log a (x -2)+1(a >0且a ≠1)恒过定点____________.一、选择题1.设a =log 54,b =(log 53)2,c =log 45,则( ) A .a <c <b B .b <c <a C .a <b <c D .b <a <c2.已知函数y =f (2x )的定义域为[-1,1],则函数y =f (log 2x )的定义域为( )A .[-1,1]B .[12,2]C .[1,2]D .[2,4]3.函数f (x )=log a |x |(a >0且a ≠1)且f (8)=3,则有( ) A .f (2)>f (-2) B .f (1)>f (2) C .f (-3)>f (-2) D .f (-3)>f (-4)4.函数f (x )=a x +log a (x +1)在[0,1]上的最大值与最小值之和为a ,则a 的值为( ) A.14 B.12 C .2 D .4 5.已知函数f (x )=lg 1-x 1+x ,若f (a )=b ,则f (-a )等于( )A .bB .-b C.1b D .-1b6.函数y =3x (-1≤x <0)的反函数是( ) A .y =13log x (x >0)B .y =log 3x (x >0)C .y =log 3x (13≤x <1)D .y =13log x (13≤x <1)7.函数f (x )=lg(2x -b ),若x ≥1时,f (x )≥0恒成立,则b 应满足的条件是________. 8.函数y =log a x 当x >2时恒有|y |>1,则a 的取值围是______________. 9.若log a 2<2,则实数a 的取值围是______________.10.已知f (x )=log a (3-ax )在x ∈[0,2]上单调递减,求a 的取值围.11.已知函数f (x )=121log 1axx --的图象关于原点对称,其中a 为常数. (1)求a 的值;(2)若当x ∈(1,+∞)时,f (x )+12log (1)x -<m 恒成立.数m 的取值围.能力提升12.设函数f (x )=log a x (a >0,a ≠1),若f (x 1x 2…x 2 010)=8,则f (x 21)+f (x 22)+…+f (x 22 010)的值等于( ) A .4 B .8C .16D .2log 48 13.已知log m 4<log n 4,比较m 与n 的大小.1.在对数函数y =log a x (a >0,且a ≠1)中,底数a 对其图象的影响无论a 取何值,对数函数y =log a x (a >0,且a ≠1)的图象均过点(1,0),且由定义域的限制,函数图象穿过点(1,0)落在第一、四象限,随着a 的逐渐增大,y =log a x (a >1,且a ≠1)的图象绕(1,0)点在第一象限由左向右顺时针排列,且当0<a <1时函数单调递减,当a >1时函数单调递增.2.比较两个(或多个)对数的大小时,一看底数,底数相同的两个对数可直接利用对数函数的单调性来比较大小,对数函数的单调性由“底”的围决定,若“底”的围不明确,则需分“底数大于1”和“底数大于0且小于1”两种情况讨论;二看真数,底数不同但真数相同的两个对数可借助于图象,或应用换底公式将其转化为同底的对数来比较大小;三找中间值,底数、真数均不相同的两个对数可选择适当的中间值(如1或0等)来比较.1.已知m =0.95.1,n =5.10.9,p =log 0.95.1,则这三个数的大小关系是( ) A .m <n <p B .m <p <nC .p <m <nD .p <n <m 2.已知0<a <1,log a m <log a n <0,则( )A .1<n <mB .1<m <nC .m <n <1D .n <m <13.函数y =x -1+1lg(2-x )的定义域是( )A .(1,2)B .[1,4]C .[1,2)D .(1,2]4.给定函数①y =12x ,②y =()12log 1x +,③y =|x -1|,④y =2x +1,其中在区间(0,1)上单调递减的函数序号是( )A .①②B .②③C .③④D .①④5.设函数f (x )=log a |x |,则f (a +1)与f (2)的大小关系是________________________. 6.若log 32=a ,则log 38-2log 36=________.一、选择题1.下列不等号连接错误的一组是( )A .log 0.52.7>log 0.52.8B .log 34>log 65C .log 34>log 56D .log πe>log e π2.若log 37·log 29·log 49m =log 412,则m 等于( )A.14B.22C. 2 D .43.设函数若f (3)=2,f (-2)=0,则b 等于( )A .0B .-1C .1D .24.若函数f (x )=log a (2x 2+x )(a >0,a ≠1)在区间(0,12)恒有f (x )>0,则f (x )的单调递增区间为( )A .(-∞,-14)B .(-14,+∞)C .(0,+∞)D .(-∞,-12)5.若函数若f (a )>f (-a ),则实数a 的取值围是( ) A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)6.已知f (x )是定义在R 上的奇函数,f (x )在(0,+∞)上是增函数,且f (13)=0,则不等式f (log 18x )<0的解集为( )A .(0,12)B .(12,+∞)C .(12,1)∪(2,+∞)D .(0,12)∪(2,+∞) 7.已知log a (ab )=1p ,则log ab a b=________. 8.若log 236=a ,log 210=b ,则log 215=________.9.设函数若f (a )=18,则f (a +6)=________. 10.已知集合A ={x |x <-2或x >3},B ={x |log 4(x +a )<1},若A ∩B =∅,数a 的取值围.11.抽气机每次抽出容器空气的60%,要使容器的空气少于原来的0.1%,则至少要抽几次?(lg 2≈0.301 0)能力提升12.设a >0,a ≠1,函数f (x )=log a (x 2-2x +3)有最小值,求不等式log a (x -1)>0的解集.13.已知函数f (x )=log a (1+x ),其中a >1.(1)比较12[f (0)+f (1)]与f (12)的大小; (2)探索12[f (x 1-1)+f (x 2-1)]≤f (x 1+x 22-1)对任意x 1>0,x 2>0恒成立.1.比较同真数的两个对数值的大小,常有两种方法:(1)利用对数换底公式化为同底的对数,再利用对数函数的单调性和倒数关系比较大小;(2)利用对数函数图象的相互位置关系比较大小.2.指数函数与对数函数的区别与联系指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)是两类不同的函数.二者的自变量不同.前者以指数为自变量,而后者以真数为自变量;但是,二者也有一定的联系,y=a x(a>0,且a≠1)和y=log a x(a>0,且a≠1)互为反函数.前者的定义域、值域分别是后者的值域、定义域.二者的图象关于直线y =x对称.。

对数的运算及对数函数

对数的运算及对数函数

§2.2.1 对数与对数运算(一)¤知识要点:1. 定义:一般地,如果x a N =(0,1)a a >≠,那么数 x 叫做以a 为底 N 的对数(logarithm ).记作 log a x N =,其中a 叫做对数的底数,N 叫做真数2. 我们通常将以10为底的对数叫做常用对数(common logarithm ),并把常用对数10log N 简记为lg N 在科学技术中常使用以无理数e=2.71828……为底的对数,以e 为底的对数叫自然对数,并把自然对数log e N 简记作ln N3. 根据对数的定义,得到对数与指数间的互化关系:当0,1a a >≠时,log b a N b a N =⇔=.4. 负数与零没有对数;log 10a =, log 1a a = ,log a a N N = ¤例题精讲:【例1】将下列指数式化为对数式,对数式化为指数式:(1)712128-=; (2)327a =; (3)1100.1-=; (4)12log 325=-; (5)lg0.0013=-; (6)ln100=4.606.【例2】计算下列各式的值:(1)lg 0.001; (2)4log 8; (3)第14练 §2.2.1 对数与对数运算(一)※基础达标1.log (0,1,0)b N a b b N =>≠>对应的指数式是( ). A. b a N = B. a b N = C. N a b = D. N b a = 2.下列指数式与对数式互化不正确的一组是( ). A. 01ln10e ==与 B. 1()381118log 223-==-与 C. 123log 9293==与 D. 17log 7177==与 3.设lg 525x =,则x 的值等于( ).A. 10B. 0.01C. 100D. 10004.设13log 82x=,则底数x 的值等于( ). A. 2 B. 12 C. 4 D. 145.已知432log [log (log )]0x =,那么12x -等于( ).A.13 B. C. D. 6.若21log 3x =,则x = ; 若log 32x =-,则x = .7.计算:= ; 6l g 0.1= . ※能力提高8.求下列各式的值:(1)8; (2)9log9.求下列各式中x 的取值范围:(1)1log (3)x x -+; (2)12log (32)x x -+.※探究创新10.(1)设log 2a m =,log 3a n =,求2m n a +的值.(2)设{0,1,2}A =,{log 1,log 2,}a a B a =,且A B =,求a 的值.第15讲 §2.2.1 对数与对数运算(二)¤知识要点:1. 对数的运算法则:log ()log log a a a M N M N =+,log log log aa a MM N N=-,log log n a a M n M =,其中0,1a a >≠且,0,0,M N n R >>∈. 三条法则是有力的解题工具,能化简与求值复杂的对数式.2. 对数的换底公式log log log b a b N N a =. 如果令b =N ,则得到了对数的倒数公式1log log a b b a=. 同样,也可以推导出一些对数恒等式,如log log n n a a N N =,log log m n a a nN N m=,log log log 1a b c b c a =等. ¤例题精讲:【例2】若2510a b ==,则11a b+= .【例4】(1)化简:532111log 7log 7log 7++; (2)设23420052006log 3log 4log 5log 2006log 4m ⋅⋅⋅=,求实数m 的值.第15练 §2.2.1 对数与对数运算(二)※基础达标 1.). A. 1B. -1C. 2D. -2 2.25log ()a -(a ≠0)化简得结果是( ).A. -aB. a 2C. |a |D. a3.化简3log 1的结果是( ). A.12B. 1C. 24.已知32()log f x x =, 则(8)f 的值等于( ). A. 1 B. 2 C. 8 D. 125.化简3458log 4log 5log 8log 9⋅⋅⋅的结果是 ( ).A .1 B.32C. 2D.3 6.计算2(lg5)lg2lg50+⋅= .7.若3a =2,则log 38-2log 36= .第16讲 §2.2.2 对数函数及其性质(一)¤知识要点:1. 定义:一般地,当a >0且a ≠1时,函数a y=log x 叫做对数函数(logarithmic function). 自变量是x ; 函数的定义域是(0,+∞).2. 由2log y x =与12log y x =的图象,可以归纳出对数函数的性质:定义域为(0,)+∞,值域为R ;当1x =时,0y =,即图象过定点(1,0);当01a <<时,在(0,)+∞上递减,当1a >时,在(0,)+∞上递增.¤例题精讲:【例1】比较大小:(1)0.9log 0.8,0.9log 0.7,0.8log 0.9; (2)3log 2,2log 3,41log 3.【例2】求下列函数的定义域:(1)y (2)y【例4】求不等式log (27)log (41)(0,1)a a x x a a +>->≠且中x 的取值范围.第16练 §2.2.2 对数函数及其性质(一)※基础达标1.下列各式错误的是( ).A. 0.80.733>B. 0.10.10.750.75-<C. 0..50..5log 0.4log 0.6>D. lg1.6lg1.4>.2.当01a <<时,在同一坐标系中,函数log x a y a y x -==与的图象是( ).AC3.下列函数中哪个与函数y =x 是同一个函数( )A.log (0,1)a xy a a a =>≠ B. y =2x xC. log (0,1)x a y a a a =>≠D. y4.函数y ).A. (1,)+∞B. (,2)-∞C. (2,)+∞D. (1,2]5.若log 9log 90m n <<,那么,m n 满足的条件是( ).A. 1 m n >>B. 1n m >>C. 01n m <<<D. 01m n <<<6.函数y = . (用区间表示)7.比较两个对数值的大小:ln 7 ln12 ; 0.5log 0.7 0.5log 0.8. ※能力提高8.求下列函数的定义域:(1) ()()3log 1f x x =++; (2)y9.已知函数2()3log ,[1,4]f x x x =+∈,22()()[()]g x f x f x =-,求: (1)()f x 的值域; (2)()g x 的最大值及相应x 的值.第17讲 §2.2.2 对数函数及其性质(二)¤知识要点:1. 当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inverse function ). 互为反函数的两个函数的图象关于直线y x =对称.2. 函数(0,1)x y a a a =>≠与对数函数log (0,1)a y x a a =>≠互为反函数.3. 复合函数(())y f x ϕ=的单调性研究,口诀是“同增异减”,即两个函数同增或同减,复合后结果为增函数;若两个函数一增一减,则复合后结果为减函数. 研究复合函数单调性的具体步骤是:(i )求定义域;(ii )拆分函数;(iii )分别求(),()y f u u x ϕ==的单调性;(iv )按“同增异减”得出复合函数的单调性.¤例题精讲:【例1】讨论函数0.3log (32)y x =-的单调性.【例2】(05年山东卷.文2)下列大小关系正确的是( ). A. 30.440.43log 0.3<< B. 30.440.4log 0.33<< C. 30.44log 0.30.43<< D. 0.434log 0.330.4<<第17练 §2.2.2 对数函数及其性质(二)※基础达标 1.函数1lg1xy x+=-的图象关于( ). A. y 轴对称 B. x 轴对称 C. 原点对称D. 直线y =x 对称2.函数212log (617)y x x =-+的值域是( ).A. RB. [8,)+∞C. (,3]-∞-D. [3,)+∞3.(07年全国卷.文理8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ).A.B. 2C.D. 44.图中的曲线是log a y x =的图象,已知a的值为43,310,15,则相应曲线1234,,,C C C C 的a 依次为( ).A.43,15,310B. 43,310,15C. 15,310,43D. 43,310,155.下列函数中,在(0,2)上为增函数的是( ). A. 12log (1)y x =+B. 2log y = C. 21log y x= D.20.2log (4)y x =-6.函数())f x x =是 函数. (填“奇”、“偶”或“非奇非偶”)7.函数x y a =的反函数的图象过点(9,2),则a 的值为 . ※能力提高8.已知6()log ,(0,1)a f x a a x b=>≠-,讨论()f x 的单调性.0 x C 1C 2C 4C 3 1y第18讲 §2.3 幂函数¤学习目标:通过实例,了解幂函数的概念;结合函数y=x, y=x 2, y=x 3, y =1/x , y=x 1/2 的图像,了解它们的变化情况.知识要点:1. 幂函数的基本形式是y x α=,其中x 是自变量,α是常数. 要求掌握y x =,2y x =,3y x =,1/2y x =,1y x -=这五个常用幂函数的图象. 2. 观察出幂函数的共性,总结如下:(1)当0α>时,图象过定点(0,0),(1,1);在(0,)+∞上是增函数.(2)当0α<时,图象过定点(1,1);在(0,)+∞上是减函数;在第一象限内,图象向上及向右都与坐标轴无限趋近.3. 幂函数y x α=的图象,在第一象限内,直线1x =的右侧,图象由下至上,指数α由小到大. y 轴和直线1x =之间,图象由上至下,指数α由小到大.¤例题精讲:【例1】已知幂函数()y f x =的图象过点(27,3),试讨论其单调性. 解:设y x α=,代入点(27,3),得327α=,解得13α=, 所以13y x =,在R 上单调递增.【例2】已知幂函数6()m y x m Z -=∈与2()m y x m Z -=∈的图象都与x 、y 轴都没有公共点,且2()m y x m Z -=∈的图象关于y 轴对称,求m 的值.解:∵ 幂函数图象与x 、y 轴都没有公共点,∴{6020m m -<-<,解得26m <<.又 ∵ 2()m y x m Z -=∈的图象关于y 轴对称, ∴ 2m -为偶数,即得4m =. 【例3】幂函数m y x =与n y x =在第一象限内的图象如图所示,则( ). A .101n m -<<<< B .1,01n m <-<<C .10,1n m -<<>D .1,1n m <->解:由幂函数图象在第一象限内的分布规律,观察第一象限内直线1x =的右侧,图象由下至上,依次是n y x =,1y x -=,0y x =,m y x =,1y x =,所以有101n m <-<<<. 选B.点评:观察第一象限内直线1x =的右侧,结合所记忆的分布规律. 注意比较两个隐含的图象1y x =与0y x =.【例4】本市某区大力开展民心工程,近几年来对全区2a m 的老房子进行平改坡(“平改坡”是指在建筑结构许可条件下,将多层住宅平屋面改建成坡屋顶,并对外墙面进行整修粉饰,达到改善住宅性能和建筑物外观视觉效果的房屋修缮行为),且每年平改坡面积的百分比相等. 若改造到面积的一半时,所用时间需10年. 已. (1)求每年平改坡的百分比;(2)问到今年为止,该平改坡工程已进行了多少年?(3)若通过技术创新,至少保留24am 的老房子开辟新的改造途径. 今后最多还需平改坡多少年?解:(1)设每年平改坡的百分比为(01)x x <<,则101(1)2a x a -=,即11011()2x -=,解得11011()0.0670 6.702x =-≈=%.(2)设到今年为止,该工程已经进行了n 年,则(1)na x -=,即110211()()22n =,解得n =5. 所以,到今年为止,该工程已经进行了5年.(3)设今后最多还需平改坡m 年,则 51(1)4m a x a +-=,即521011()()22m +=,解得m =15. 所以,今后最多还需平改坡15年.点评:以房屋改造为背景,从中抽象出函数模型,结合两组改造数据及要求,通过三个等式求得具有实际意义的底数或指数.第※基础达标1.如果幂函数()f x x α=的图象经过点 A. 16 B. 2 C. 116 2.下列函数在区间(0,3) A. 1y x= B. 12y x = C. y 3.设120.7a =,120.8b =,c 3log 0.7= A. c <b <a B. c <a <b C. a <b 4.如图的曲线是幂函数n y x =4c 相应的n 依次为( ).A .112,,,222-- B. 12,,2- C. 11,2,2,22-- D. 12,2--5.下列幂函数中过点(0,0),(1,1) A.12y x = B. 4y x = C. y =6.幂函数()y f x =的图象过点1(4,)27.比较下列各组数的大小: 32(2)a + 32a ; 223(5)a -+ 235-; 0.50.4 0.40.5.※能力提高8.幂函数273235()(1)t t f x t t x +-=-+是偶函数,且在(0,)+∞上为增函数,求函数解析式.9.1992年底世界人口达到54.8亿,若人口的平均增长率为x %,2008年底世界人口数为y (亿).(1)写出1993年底、1994年底、2000年底的世界人口数; (2)求2008年底的世界人口数y 与x 的函数解析式. 如果要使2008年的人口数不超过66.8亿,试求人口的年平均增长率应控制在多少以内?※探究创新10.请把相应的幂函数图象代号填入表格.① 23y x =; ② 2y x -=;③ 12y x =; ④ 1y x -=; ⑤ 13y x =;⑥ 43y x =;⑦ 12y x -=;⑧ 53y x =. 第19讲 第二章 基本初等函数(Ⅰ) 复习¤学习目标:理解掌握指数函数、对数函数和幂函数的性质、图象及运算性质. 突出联系与转化、分类与讨论、数与形结合等重要的数学思想、能力. 通过对指数函数、对数函数等具体函数的研究,加深对函数概念的理解.¤例题精讲:【例1】若()(0,1)x f x a a a =>≠且,则1212()()()22x x f x f x f ++≤. 证明:121212122()()()222x x x x f x f x x x a a f a ++++-=-0==≥. ∴ 1212()()()22x x f x f x f ++≤. (注:此性质为函数的凹凸性) 【例2】已知函数2()(0,0)1bxf x b a ax =≠>+.(1)判断()f x 的奇偶性; (2)若3211(1),log (4)log 422f a b =-=,求a ,b 的值.解:(1)()f x 定义域为R ,2()()1bxf x f x ax --==-+,故()f x 是奇函数.(2)由1(1)12b f a ==+,则210a b -+=.又log 3(4a -b )=1,即4a -b =3.由{21043a b a b -+=-=得a =1,b =1.【例3】(01天津卷.19)设a >0, ()x x e af x a e=+是R 上的偶函数.(1)求a 的值; (2)证明()f x 在(0,)+∞上是增函数.解:(1)∵ ()x x e af x a e=+是R 上的偶函数,∴ ()()0f x f x --=.∴ 110()()x x x x x x e a e a a e a e a e a e a a---+--=⇒-+-10()()0x x a e e a -=⇒--=.e x -e -x 不可能恒为“0”, ∴ 当1a-a =0时等式恒成立, ∴a =1.(2)在(0,)+∞上任取x 1<x 2,1212121212111()()()()x x x x x x x x e f x f x e e e a e e e e -=+--=-+-12121()(1)x x x x e e e e =-- ∵ e >1,x 1<x 2, ∴ 121x x e e >>, ∴12x x e e >1,121212()(1)x x x x x x e e e e e e --<0,∴ 12()()0f x f x -<, ∴ ()f x 是在(0,)+∞上的增函数.点评:本题主要考查了函数的奇偶性以及单调性的基础知识.此题中的函数,也可以看成指数函数xy a =与x a y a x =+的复合,可以进一步变式探讨x ay a x=+的单调性. 【例4】已知1992年底世界人口达到54.8亿.(1)若人口的平均增长率为1.2%,写出经过t 年后的世界人口数y (亿)与t 的函数解析式;(2)若人口的平均增长率为x %,写出2010年底世界人口数为y (亿)与x 的函数解析式. 如果要使2010年的人口数不超过66.8亿,试求人口的年平均增长率应控制在多少以内?解:(1)经过t 年后的世界人口数为 *54.8(1 1.2)54.8 1.012,t t y t N =⨯+%=⨯∈.(2)2010年底的世界人口数y 与x 的函数解析式为 1854.8(1)y x =⨯+%.由1854.8(1)y x =⨯+%≤66.8,解得1001) 1.1x ≤⨯≈. 所以,人口的年平均增长率应控制在1.1%以内.点评:解应用题应先建立数学模型,再用数学知识解决,然后回到实际问题,给出答案. 此题由增长率的知识,可以得到指数型或幂型函数,并得到关于增长率的简单不等式,解决实际中增长率控制问题.第19练 第二章 基本初等函数(Ⅰ) 复习※基础达标 1.(06年全国卷II.文2理1)已知集合{}2{|3},|log 1M x x N x x =<=>,则M N =( ).A. ∅B. {}|03x x <<C. {}|13x x <<D. {}|23x x << 2.(08年北京卷.文2)若372log πlog 6log 0.8a b c ===,,,则( ). A. a b c >> B. b a c >> C. c a b >> D. b c a >>3.(05年福建卷)函数()x b f x a -=的图象如图,其中a 、b 为常数,则下列结论正确的是( ). A. 1,0a b >< B. 1,0a b >> C. 01,0a b <<> D. 01,0a b <<<4.(06年广东卷)函数2()lg(31)f x x =++的定义域是( ). A.1(,)3-+∞ B. 1(,1)3- C. 11(,)33- D. 1(,)3-∞-5.(06年陕西卷)设函数()log ()(0,1)a f x x b a a =+>≠的图像过点(2,1),其反函数的图像过点(2,8),则a b +等于( ).A. 3B. 4C. 5D. 66.(06年辽宁卷.文14理13)设,0(),0x e x g x lnx x ⎧≤=⎨>⎩,则1(())2g g = .7.如图所示,曲线是幂函数y x α=在第一象限内的图象,已知α分别取11,1,,22-四个值,则相应图象依次为 .※能力提高8.已知定义域为R 的函数12()2x x bf x a+-+=+是奇函数. 求,a b 的值.9.已知函数y =24log log 42x x(2≤x ≤4).(1)求输入x =234时对应的y 值; (2)令2log t x =,求y 关于t 的函数关系式及t 的范围.※探究创新10.设121()log 1axf x x -=-为奇函数,a 为常数.(1)求a 的值; (2)证明()f x 在区间(1,+∞)内单调递增;1 () 2x m恒成立,求实数m的取值范围.(3)若对于区间[3,4]上的每一个x值,不等式()f x>。

对数及其运算基础知识及例题

对数及其运算基础知识及例题

对数及其运算基础知识及例题1、定义:对数是指用一个数b(b>0且不等于1)作为底数,将一个正数a表示成幂b的指数的形式,即a=b^x(x为实数),则x称为以b为底a的对数,记作logb a。

2、性质:①logb 1=0(b>0且不等于1)②logb b=1(b>0且不等于1)③logb (mn)=logb m+logb n(m>0,n>0,b>0且不等于1)④logb (m/n)=logb m-logb n(m>0,n>0,b>0且不等于1)⑤logb m^k=klogb m(m>0,b>0且不等于1,k为任意实数)3、对数的运算性质:①logb (mn)=logb m+logb n②logb (m/n)=logb m-logb n③logb m^k=klogb m④logb (a^k)=klogb a⑤logb a=logc a/logc b(b>0,且不等于1,c>0,且不等于1)4、换底公式:XXX b(b>0,且不等于1,c>0,且不等于1)5、对数的其他运算性质:①logb a=logb c,则a=c②logb a=logc a/logc b=logd a/logd b6、常用对数和自然对数:常用对数:以10为底数的对数,记作XXX。

自然对数:以自然常数e(e≈2.)为底数的对数,记作ln。

典型例题】类型一、对数的概念例1.求下列各式中x的取值范围:1)log2(x-5)≥0;(2)log(x-1)-log(x+2)0.改写为:1)x≥5;2)x>1且x<2;3)x>1且x1且x>1.类型二、指数式与对数式互化及其应用例2.将下列指数式与对数式互化:1)log2 16=4;(2)log1/27=-3;(3)log3 1/2= -1/log2 3;(4)53=125;(5)2^-1=1/2;(6)(1/3)^x=9.改写为:1)2^4=16;2)1/27=3^-3;3)3^-1/2=2/log2 3;4)5^3=125;5)2^-1=1/2;6)x=log(1/3)9/log(1/3)2.类型三、利用对数恒等式化简求值1+log5 77=log5 500.类型四、积、商、幂的对数例4.用loga x,loga y,loga z表示下列各式:1)loga (xy/z)=loga x+loga y-loga z;2)loga (xy)=loga x+loga y;3)loga (x^2/y^3z)=2loga x-3loga y-loga z;4)loga (x^2y^3/z)=2loga x+3loga y-loga z。

对数与对数运算练习题

对数与对数运算练习题

对数与对数运算练习题在数学中,对数是解决指数问题的一种重要工具。

对数运算是指对数之间的各种运算,包括加法、减法、乘法和除法等。

本文将提供一些对数与对数运算的练习题,以帮助读者更好地理解和掌握这一概念。

练习题一:基础对数运算1. 计算 log₄ 16。

2. 计算 log₂ 8 + log₄ 2。

3. 计算 log₃ 9 - log₅ 125。

4. 计算 log₁₀ 100 - log₁₀ 10。

练习题二:对数的性质运用1. 若logₓ y = 3,计算logₓ √y 的值。

2. 若logₓ y = a,logₓ z = b,求logₓ (yz) 的值。

3. 若logₐ b = x,logₓ b = y,求logₐ x 的值。

4. 若 log₂ a = m,log₂ b = n,求logₐ (ab) 的值。

练习题三:对数方程的求解1. 解方程logₓ (x - 2) = 1。

2. 解方程 log₂ (3x + 1) = log₂ (2x - 4)。

3. 解方程 log₄ (x² - 5x + 4) = 2。

练习题四:对数运算的应用1. 在化学实验中,若酸的浓度 c 可以表示为 pH = -log₁₀ c,若某酸的浓度为 10⁻⁴ mol/L,求其 pH 值。

2. 若一座大楼的高度 H 可以表示为 H = log₂ (t + 5) + 10,其中 t 为某物体从大楼顶部自由下落所需时间(单位:秒),求当 t = 2 时,大楼的高度 H。

以上是对数与对数运算的练习题,通过解题的过程,我们可以更好地理解对数的概念及其运算规律。

希望这些练习题能够帮助读者提高对数的应用能力,并在数学学习中取得更好的成绩。

对数的含义与运算

对数的含义与运算

对数含义与运算一、 知识综述1.对数定义:一般地,如果a (10≠>a a 且)的b 次幂等于N , 就是N a b =,那么数 b 叫做a 为底 N 的对数,记作 b N a =log ,a 叫做对数的 ,N 叫做 。

即ba N =, log a Nb =aNb指数式N a b = 底数 幂 指数 对数式b N a =log对数的底数真数对数例如:对数式与指数式的互换2416= 210100= 1242= 2100.01-=2.基本性质:若0a >且1a ≠,0N >,则(1)log 10a =,log 1a a =;(2)log a Na N =.3.介绍两种特殊的对数: ①常用对数:以10作底 10log N 写成lg N ②自然对数:以e 作底为无理数,e = 2.71828…… , log e N 写成ln N .4.对数的运算性质:如果 a > 0 , a ≠ 1, M > 0 ,N > 0, 那么(1)log ()log log a a a MN M N =+;(2)log log -log aa a M M N N=;(3)log log ()na a M n M n R =∈. 5.换底公式:log log log m a m NN a=( a > 0 , a ≠ 1 ;0,1m m >≠)说明:两个较为常用的推论:(1)log log 1a b b a ⨯= ; (2)log log m na a nb b m= (a 、0b >且均不为1). 二、例题讲解例一:(1)计算: 9log 27, 345log 625.(2)求 x 的值:①33log 4x =-; ②()2221log 3211x x x ⎛⎫ ⎪⎝⎭-+-=.(3)求底数:①3log 35x =-, ②7log 28x =.例二: 例5.求下列各式的值:(1)()752log 42⨯; (2)5lg 100 .例三: 计算: (1)lg14-21g 18lg 7lg 37-+; (2)9lg 243lg ; (3)2.1lg 10lg 38lg 27lg -+.三、课堂练习 一、填空题1.计算:log2.56.25+lg1001+ln e +3log 122+= . 2.若10x=3,10y=4,则102x-y=__________;为表示、用7512log y x .3.(log 43+log 83)(log 32+log 92)-log 421329log 255+=__________ .4.若log (21)1x +=-, 则x = . 5.已知()xf e x =,则f(5)等于 . 6.如果732log [log (log )]0x =,那么12x -等于________________.7.25)a (log 5-(a ≠0)化简得结果是_____________________.8.已知 ab=M (a>0, b>0, M ≠1), 且logM b=x ,则logM a=________________.9.设(){}1,,lg A y xy =, {}0,,B x y =,且A =B ,则x = ;y =10. 计算:()()5log 22323-+二、选择题11.3log 9log 28的值是 ( )A .32 B .1 C .23 D .212.若log 2)](log [log log )](log [log log )](log [log 55153313221z y x ===0,则x 、y 、z 的大小关系是( )A .z <x <yB .x <y <zC .y <z <xD .z <y <x 13.已知x =2+1,则lo g 4(x 3-x -6)等于( )A.23 B.45 C.0D.21 14.已知lg2=a ,lg3=b ,则15lg 12lg 等于( )A .ba ba +++12B .ba ba +++12C .ba ba +-+12D .ba ba +-+1215.已知2 lg(x -2y )=lg x +lg y ,则yx 的值为( )A .1B .4C .1或4D .4 或-116.若log a b ·log 3a=5,则b 等于( )A .a 3B .a 5C .35D .5317. 已知ab>0,下面四个等式中,正确命题的个数为 ( ) ①lg (ab )=lga+lgb ②lgb a =lga -lgb ③bab a lg )lg(212= ④lg (ab )=10log 1abA .0B .1C .2D .318.若f (ln x )=3x +4,则f (x )的表达式为 ( )A 3ln xB 3ln x +4C 3e x +4D 3e x三、解答题19. (1)已知32a=,用a 表示33log 4log 6-;(2)已知3log 2a =,35b=,用a 、b 表示 30log 3.20.已知:lg (x -1)+lg (x -2)=lg2,求x 的值21. 已知18log 9,185,ba ==用a,b 表示 36log 4522. 15.(14分)已知函数2()(lg 2)lg f x x a x b =+++满足(1)2f -=-,且对一切实数x ,都有f (x)≥2x 成立,求实数a 、b 的值.课后练习1.下列指数式与对数式互化中错误的一组是 A . 01e =与ln10= B .13182-=与811log 23=- C . 3log 92=与1293= D .7log 71=与177=2.若b ≠1,则 loga b 等于( )。

对数及其运算

对数及其运算

第3讲:对数及其运算【复习要求】1、理解对数的意义,会熟练地将指数式与对数式互化;2、初步学会换底公式的基本运用;3、掌握积、商、幂的对数性质。

会用计算器求对数。

【知识要点】1、对数的定义:如果(01)a a a >≠且的b 次幂等于N ,那么b 称为以a 为底N 的对数,记作:log a b N =,其中a 称为底数,N 称为真数。

2、指数式与对数式的互化:log b a a N N b =⇔=;3、对数恒等式:N aNa =log (0,01N a a >>≠且)。

4、换底公式及衍生性质:()1 log log log m a m NN a= (0a >,1a ≠,0m > , 1m ≠,0N >)()2a b b a log 1log =,()3c c b a b a log log log =⋅, ()4b nm b a ma n log log =5、对数的运算性质:如果0,1,0,0a a N M >≠>>有log ()log log a a a MN M N =+; log log log aa a MM N N=-; log log n a a M n M =;1log log a a M n=【基础训练】1、如果2(0,1)a b b b =>≠,则有 ( D ) (A )2log a b = (B )2log b a = (C )log 2a b = (D )log 2b a = 2、若2521log 3log 3m =+,则有 ( B ) (A )12m << (B )23m << (C )34m << (D )45m << 3、已知:25lg m =,则lg 2= 112m -(用m 表示)4、计算:(1)lg 4lg9++= 2 (2)223412223log (8log 16)log log +-= 605、若2log 1a <,则正数a 的取值范围是 02a <<【典型例题】类型1、对数与指数的互换例1、将下列指数式化为对数式,对数式化为指数式:(1)712128-=; (2)327a =; (3)1100.1-=; (4)12log 325=-; (5)lg0.0013=-; (6)ln100=4.606.例2、(1)设log 2a m =,log 3a n =,求2m n a +的值.(2)设{0,1,2}A =,{log 1,log 2,}a a B a =,且A B =,求a 的值.类型2、对数的四则运算例3、若*01,0,a a x y n N ≠∈>,>>,则下列各式:①(log )log n a a x n x =;②(log )log n n a a x x =;③1loglog a a x x =-;④log log log a a a x x yy=; 1log a x n =;⑥log log a a xn =log log nn a a x x =;⑧log log a a x y x y x y x y-+=-+-;其中成立的有_____________;答案:③⑥⑦⑧例4、化简与求值: (1)log log a bb ca⋅;(2)2log -; (3)222lg5lg8lg 5lg 20(lg 2)3++⨯+ (4答案(1)c ;(2)12;(3)3;(4)12【补充练习】计算(1)2log =32(2)33lg 2lg 53lg 2lg5++= 1 例5、若[][]345435log log (log )log log (log )0a b ==,则ab=__________; 答案:435;55a a b b==⇒= 例6、已知函数()f x 满足“当4x ≥时,1()2xf x ⎛⎫= ⎪⎝⎭,当4x <时,()(1)f x f x =+”,则2(2log 3)f +=_________; 答案:124例7、(1)方程lg lg(3)1x x ++=的解x =________;(2)设12,x x 是方程2lg lg 0x a x b ++=的两个根,则12x x 的值是 .例8、已知lg lg 2lg(2)a b a b +=-,求4log ab的值; 答案:先求出:a b =(舍)或4a b =,从而4log 1ab=类型3、对数的恒等式与换底公式的应用例9、若83log 3,log 5p q ==,则lg 5=________; 答案:3333log 5113log 8log 2lg 53log 1013pqp p pq=⇒=⇒==+; 例10、已知18log 9a =,185b=,试将36log 45用,a b 表示;【解】方法一、利用指数对数互换转化为指数式:189;1854518a b a b+==⇒=令36log 45x =从而181836451836()1833xa bx x a b ++⇒==⇒=⋅=亦即218189x a b x +=⋅(18)1818a x a b ax a b +++=⋅=22a b x ax a b x a+⇒=++⇒=-;方法二、换成对数式,然后利用换底公式,换成18为底的对数计算问题; 方法三、化成10为底的形式;方法二略简单例11、若78log 2,log 14k =求的值。

对数的运算及练习(带解析)

对数的运算及练习(带解析)

4.3.2 对数的运算1.对数运算性质如果a >0,且a ≠1,M >0,N >0,那么 (1)log a (MN )=log a M +log a N ; (2)log a MN =log a M -log a N ;(3)log a M n =n log a M (n ∈R). 2.换底公式若a >0,且a ≠1,b >0,c >0,且c ≠1, 则有log a b =log c blog c a.1.计算log 84+log 82等于( ) A .log 86 B .8 C .6D .1D 解析:log 84+log 82=log 88=1. 2.计算log 510-log 52等于( ) A .log 58 B .lg 5 C .1D .2 C 解析:log 510-log 52=log 55=1. 3.计算2log 510+log 50.25=( ) A .0 B .1 C .2D .4 C 解析:2log 510+log 50.25=log 5100+log 50.25=log 525=2. 4.计算log 23·log 32=________. 1 解析:log 23·log 32=lg 3lg 2×lg 2lg 3=1. 5.计算log 225·log 322·log 59=________. 6 解析:原式=lg 25lg 2·lg 22lg 3·lg 9lg 5=2lg 5lg 2·32lg 2lg 3·2lg 3lg 5=6.【例1】(1)若lg 2=a ,lg 3=b ,则lg 45lg 12=( ) A.a +2b 2a +b B.1-a +2b 2a +bC.1-b +2a 2a +bD.1-a +2b a +2b(2)计算:lg 52+2lg 2-⎝⎛⎭⎫12-1=________.(1)B (2)-1 解析:(1)lg 45lg 12=lg 5+lg 9lg 3+lg 4=1-lg 2+2lg 3lg 3+2lg 2=1-a +2b2a +b .(2)lg 52+2lg 2-⎝⎛⎭⎫12-1=lg 5-lg 2+2lg 2-2=(lg 5+lg 2)-2=1-2=-1.【例2】计算:(1)log 345-log 35; (2)log 2(23×45);(3)lg 27+lg 8-lg 1 000lg 1.2;(4)log 29·log 38.解:(1)log 345-log 35=log 3455=log 39=log 332=2.(2)log 2(23×45)=log 2(23×210)=log 2(213) =13log 22=13. (3)原式=lg (27×8)-lg 1032lg 1210=lg (332×23÷1032)lg 1210=lg⎝⎛⎭⎫3×41032lg 1210=32lg1210lg 1210=32.(4)log 29·log 38=log 232·log 323 =2log 23·3log 32=6log 23·1log 23=6.利用对数运算性质化简与求值的原则和方法(1)基本原则:①正用或逆用公式,对真数进行处理;②选哪种策略化简,取决于问题的实际情况,一般本着便于化简的原则进行. (2)两种常用的方法:①“收”,将同底的两对数的和(差)收成积(商)的对数; ②“拆”,将积(商)的对数拆成同底的两对数的和(差).提醒:对于对数的运算性质要熟练掌握,并能够灵活运用,在求值过程中,要注意公式的正用和逆用.计算下列各式的值: (1)12lg 3249-43lg 8+lg 245; (2)lg 52+23lg 8+lg 5·lg 20+(lg 2)2;(3)lg 2+lg 3-lg 10lg 1.8.解:(1)原式=12(5lg 2-2lg 7)-43×32lg 2+12(2lg 7+lg 5)=52lg 2-lg 7-2lg 2+lg 7+12lg 5=12lg 2+12lg 5=12(lg 2+lg 5) =12lg 10=12. (2)原式=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+(lg 2)2 =2lg 10+(lg 5+lg 2)2=2+(lg 10)2=2+1=3. (3)原式=12(lg 2+lg 9-lg 10)lg 1.8=lg 18102lg 1.8=lg 1.82lg 1.8=12.【例3】已知log 189=a ,18b =5,求log 3645. 解:因为18b =5,所以log 185=b . (方法一)log 3645=log 1845log 1836=log 18(9×5)log 181829=log 189+log 1852log 1818-log 189=a +b2-a.(方法二)因为lg 9lg 18=log 189=a , 所以lg 9=a lg 18,同理得lg 5=b lg 18, 所以log 3645=lg 45lg 36=lg (9×5)lg 1829=lg 9+lg 52lg 18-lg 9=a lg 18+b lg 182lg 18-a lg 18=a +b2-a.应用换底公式应注意的两个方面(1)化成同底的对数时,要注意换底公式的正用、逆用以及变形应用. (2)题目中有指数式和对数式时,要注意将指数式与对数式统一成一种形式.1.已知2x =3y =a ,且1x +1y =2,则a 的值为( )A .36B .6C .2 6 D. 6D 解析:因为2x =3y =a , 所以x =log 2a ,y =log 3a ,所以1x +1y =1log 2a +1log 3a =log a 2+log a 3=log a 6=2,所以a 2=6,解得a =±6.又a >0,所以a = 6. 2.求值:(1)log 23·log 35·log 516; (2)(log 32+log 92)(log 43+log 83).解:(1)原式=lg 3lg 2·lg 5lg 3·lg 16lg 5=lg 16lg 2=4lg 2lg 2=4.(2)原式=⎝⎛⎭⎫lg 2lg 3+lg 2lg 9⎝⎛⎭⎫lg 3lg 4+lg 3lg 8 =⎝⎛⎭⎫lg 2lg 3+lg 22lg 3⎝⎛⎭⎫lg 32lg 2+lg 33lg 2 =3lg 22lg 3·5lg 36lg 2=54.探究题1 若log 23=a ,log 25=b ,则用a ,b 表示log 415=________. a +b 2 解析:log 415=log 215log 24=log 23+log 252=a +b2.探究题2 已知3a =5b =c ,且1a +1b =2,求c 的值.解:∵3a =5b =c , ∴a =log 3c ,b =log 5c , ∴1a =log c 3,1b=log c 5, ∴1a +1b =logc 3+log c 5=log c 15=2. 得c 2=15, 即c =15.解决对数的运算问题,主要依据是对数的运算性质.常用方法有: (1)将真数化为“底数”;(2)将同底数的对数的和、差、倍合并; (3)利用常用对数中的lg 2+lg 5=1.已知x ,y ,z 为正数,3x =4y =6z ,且2x =py . (1)求p 的值; (2)证明:1z -1x =12y.解析:设3x =4y =6z =k (显然k >0,且k ≠1),则x =log 3k ,y =log 4k ,z =log 6k .(1)由2x =py ,得2log 3k =p log 4k =p ·log 3klog 34,因为log 3k ≠0,所以p =2log 34=4log 32. (2)证明:1z -1x =1log 6k -1log 3k=log k 6-log k 3=log k 2=12log k 4=12y .对数的运算练习(30分钟60分)1.(5分)计算:log153-log62+log155-log63=()A.-2B.0C.1 D.2B解析:原式=log15(3×5)-log6(2×3)=1-1=0.2.(5分)设10a=2,lg 3=b,则log26=()A.baB.a+baC.ab D.a+bB解析:∵10a=2,∴lg 2=a,∴log26=lg 6lg 2=lg 2+lg 3lg 2=a+ba.3.(5分)设a,b,c均为不等于1的正实数,则下列等式中恒成立的是() A.logab•logcb=logcaB.logab•logca=logcbC.loga(bc)=logab•logacD.loga(b+c)=logab+logacB解析:由logab•logcb=lg blg a•lg blg c≠logca,故A错;由logab•logca=lg blg a•lg alg c =lg blg c=logcb;loga(bc)=logab+logac,故C,D错.故选B.4.(5分)如果lg x=lg a+3lg b-5lg c,那么()A.x=ab3c5 B.x=3ab5cC.x=a+3b-5c D.x=a+b3-c3A解析:lg a+3lg b-5lg c=lg a+lg b3-lg c5=lgab3c5,由lg x=lgab3c5,可得x=ab3c5. 5.(5分)log2 4等于()A.12B.14C.2 D.4D解析:log2 4=log2 (2)4=4.6.(5分)已知lg 2=a,lg 3=b,则用a,b表示lg 15为()A.b-a+1B.b(a-1)C.b-a-1D.b(1-a)A解析:lg 15=lg(3×5)=lg 3+lg 5=lg 3+lg 102=lg 3+1-lg 2=b-a+1.7.(5分)方程lg x+lg(x+3)=1的解是x=________.2解析:原方程可化为lg(x2+3x)=1,∴x>0,x+3>0,x2+3x-10=0,解得x=2.8.(5分)若3x=4y=36,则2x+1y=________.1解析:3x=4y=36,两边取以6为底的对数,得xlog63=ylog64=2,∴2x=log63,2y=log64,即1y=log62,故2x+1y=log63+log62=1.9.(5分)已知log23=a,log37=b,则log1456=________(用a,b表示).3+ab1+ab解析:由log23=a,log37=b,得log27=ab,则log1456=log256log214=log28+log27log22+log27=3+log271+log27=3+ab1+ab. 10.(15分)计算.(1)log535-2log573+log57-log51.8;(2)log2748+log212-12log242-1.解:(1)原式=log5(5×7)-2(log57-log53)+log57-log595=log55+log57-2log57+2log53+log57-2log53+log55=2.(2)原式=log2748+log212-log242-log22=log27×1248×42×2=log2122=log22-23=-32.。

对数与对数运算知识点总结与例题讲解

对数与对数运算知识点总结与例题讲解

对数与对数运算知识点总结与例题讲解本节知识点 (1)对数的概念.(2)对数式与指数式的互化. (3)对数的性质. (4)对数的运算性质. (5)对数的换底公式. 知识点一 对数的概念一般地,如果N a x=(0>a 且1≠a ),那么数x 叫做以a 为底N 的对数,记作N x a log =.其中a 叫做对数的底数,N 叫做真数.例如,因为41621=,所以21就是以16为底4的对数,记作214log 16=. 对对数概念的理解:(1)底数a 必须满足0>a 且1≠a ; (2)真数N 大于0(负数和0没有对数). 规定底数0>a 且1≠a 的原因:当0<a 时,N 取某些值时,x 的值不存在.例如,()29log 3=-,但()27log 3-却不存在.当0=a 时:①若0≠N ,则x 的值不存在;②若0=N ,则x 的值是任意正数.(注意:0的负指数幂和0次幂都没有意义) 当1=a 时:①若1≠N ,则x 的值不存在; ②若1=N ,则x 的值是任意实数.所以在对数的定义里,规定底数0>a 且1≠a . 常用对数与自然对数将以10为底的对数叫做常用对数,记作N lg ;将以无理数e ( 71828.2≈e )为底的对数叫做自然对数,记作N ln .根据对数概念,可以求参数的取值范围 例1. 求下列各式中x 的取值范围.(1)()3log 5.0-x ; (2)()()x x --2log 1.分析:对数的概念,对底数和真数都作出了规定,要使对数式有意义,必须满足: (1)底数0>a 且1≠a ; (2)真数0>N .解:(1)由题意可知:03>-x ,解之得:3>x .∴x 的取值范围是()+∞,3;(2)由题意可知:⎪⎩⎪⎨⎧>-≠->-021101x x x ,解之得:21<<x .∴x 的取值范围是()2,1.例2. 求下列对数式中x 的取值范围.(1)()x -5log 2; (2)()3log 2x -.解:(1)由题意可知:05>-x ,解之得:5<x .∴x 的取值范围是()5,∞-;(2)由题意可知:⎩⎨⎧≠->-1202x x ,解之得:2<x 且1≠x .∴x 的取值范围是()()2,11, ∞-.例3. 使()1log +x a (0>a 且1≠a )有意义的x 的取值范围是【 】(A )[)+∞-,1 (B )()+∞-,1 (C )[)+∞,0 (D )()+∞,0解:由题意可知:01>+x ,解之得:1->x .∴x 的取值范围是()+∞-,1.选择【 B 】.例4. 求()()x x --4log 3中x 的取值范围. 解:由题意可知:⎪⎩⎪⎨⎧>-≠->-041303x x x ,解之得:43<<x . ∴x 的取值范围是()4,3.例5. 使()2log 212+--x x有意义的x 的取值范围是【 】(A )[)2,2- (B )[]2,2- (C )()2,2- (D )(]2,2-解:由题意可知:⎩⎨⎧>+>-0202x x ,解之得:22<<-x .∴x 的取值范围是()2,2-.选择【 C 】.知识点二 指数式与对数式的互化在N a x=与N x a log =中,N x a ,,是同一个代表符号,只是名称不同.例如,将指数式6426=化为对数式为64log 62=.指数式与对数式的比较知识点三 对数的性质 (1)负数和0没有对数.(2)1的对数等于0,即01log =a (0>a 且1≠a ). (3)底数的对数等于1,即1log =a a (0>a 且1≠a ). (4)对数恒等式N aNa =log (0>a 且1≠a ).(5)x a xa =log (0>a 且1≠a ).对数的性质不仅可以简化运算,更重要的是利用对数的性质可以将任意一个实数转化为对数.例如, ===---2323log ln 2e .例6. 将下列指数式改写成对数式:(1)1624=; (2)32125=-. 解:(1)∵1624=,∴416log 2=;(2)∵32125=-,∴5321log 2-=. 例7. 将下列对数式改写成指数式:(1)3125log 5=; (2)416log 21-=.解:(1)∵3125log 5=,∴12553=;(2)∵416log 21-=,∴16214=⎪⎭⎫⎝⎛-.点评 指数运算与对数运算互为逆运算,在解题过程中,互相转化是解决相关问题的重要途径,但一定要记清N x a ,,在两种形式中的准确位置:指数式N a x=,对数式N x a log =.需要说明的是,并不是所有的指数式都可以化为对数式,如()1624=-,就不能化为416log 2=-;112=,就不能化为21log 1=.例8. 计算下列各式的值:(1)25log 5; (2)32log 21; (3)10log 33; (4)1ln ; (5)5.2log 5.2.解:(1)25log 25log 255==;(对数的性质:x a xa =log )(2)521log 32log 52121-=⎪⎭⎫⎝⎛=-;(3)10310log 3=;(对数恒等式:N a N a =log ) (4)01ln =;(对数的性质:1的对数等于0) (5)15.2log 5.2=.(对数的性质:底数的对数等于1)例9. 计算:(1)27log 9; (2)81log 43; (3)()()32log 32-+.分析:利用指数式与对数式的互化进行计算.解:(1)设x =27log 9,则有279=x ,3233=x ,32=x ,23=x . ∴2327log 9=; (2)设x =81log 43,则有()8134=x,44133=x ,441=x ,16=x .∴1681log 43=;(3)设()()x =-+32log 32,则有()()1323213232-+=+=-=+x,1-=x .∴()()132log 32-=-+.例10. 求下列各式中的x :(1)2327log =x ; (2)x x 354⨯=. 解:(1)∵2327log =x ,∴2723=x ,()93327232332====x ;(2)∵xx354⨯=,∴534=⎪⎭⎫⎝⎛x,5log 34=x .例11. 若24=a ,a x =lg ,则=x __________. 解:∵24=a ,∴222=a ,12=a ,21=a . ∵a x =lg ,∴10101021===ax .例12. 已知函数()()a x x f +=22log ,若()13=f ,则=a __________.解:∵()13=f ,∴()19log 2=+a ,∴29=+a ,解之得:7-=a .点评 本题考查对数的性质:底数的对数等于1,即1log =a a (0>a ,且1≠a )例13. 设m a =2log ,n a =3log ,则nm a +2的值为__________.解:∵m a =2log ,n a =3log ,∴3,2==nm a a .∴()1232222=⨯=⋅=+n m n m a a a .例14. 求下列各式的值:(1)4log 55; (2)24log 33-; (3)5log 422+.解:(1)454log 5=;(对数恒等式:N a N a =log )(2)9433324log 24log 33==-; (3)805162225log 45log 422=⨯=⋅=+.知识点四 对数的运算性质如果0>a ,且1≠a ,0,0>>N M ,则有: (1)()N M MN a a a log log log +=; (2)N M NMa a alog log log -=; (3)M n M a na log log =.其中,对数的运算性质(1)可推广:()n a a a n a M M M M M M log log log log 2121 ++=. 常用推论: (1)M M Ma a a log log 1log 1-==-; (2)M pnMM a pn a pn alog log log ==. 例15. 证明对数的运算性质:()N M MN a a a log log log +=(0>a 且0,0,1>>≠N M a )分析:利用指数幂的运算性质,可以证明对数的运算性质.证明:设q N p M a a ==log ,log ,则qp a N a M ==,∴()()q p a a a MN q p a q p a a +==⋅=+log log log ,q p N M a a +=+log log . ∴()N M MN a a a log log log +=.例16. 证明对数的运算性质:N M NMa a alog log log -=(0>a 且0,0,1>>≠N M a ) 证明:设q N p M a a ==log ,log ,则qp a N a M ==,∴q p a aa N M q p a q pa a -===-log log log ,q p N M a a -=-log log∴N M NMa a alog log log -=. 例17. 证明对数的运算性质:M n M a n a log log =(0>a 且0,0,1>>≠N M a )证明:设x M a =log ,则xa M =∴()nx a a M nx a nx a n a ===log log log ,nx M n a =log∴M n M a n a log log =.对数的运算性质的应用 例18. 化简求值:(1)51lg 5lg 32lg 4-+;(2)2.1lg 10lg 38lg 27lg -+;(3)3log 333558log 932log 2log 2-+-; (4)348log 348log 22-++.解:(1)原式()410lg 52lg 5152lg 51lg 5lg 2lg 4443434==⨯=⨯=-+=; (2)原式=()()2312lg 23lg 12lg 23lg 2312lg 23lg 232lg 33lg 231023lg10lg 32lg 3lg 2213213=-+-+=-+-+=⨯-+; (3)原式13233log 389324log 38log 932log 4log 233333-=-=-=-⎪⎪⎪⎪⎭⎫ ⎝⎛⨯=-+-=; (4)原式()()22log 4log 16log348348log 22222====-+=.例19. 计算:=+25log53ln e__________.解:原式()7435log345=+=+=.例20. 设b a ==15log ,3log 22,则=75log 2__________. 解:∵b a ==15log ,3log 22∴()b a =+=+=⨯5log 5log 3log 53log 2222,∴a b -=5log 2. ∴()a b a b b -=-+=+=⨯=25log 15log 515log 75log 2222.例21. 计算:5log 3lg 33log 45log 1223211023⎪⎭⎫ ⎝⎛++-++.解:原式=5log 3lg 3log 45log 23232102233-++⨯-⨯52951274815233165351log 32-=++-=++⨯-⨯=. 例22. 计算:()20lg 5lg 2lg 2lg 2-⋅+. 解:原式()()210lg 5lg 22lg ⨯-+=g()12lg 12lg 2lg 12lg -=--=+-=.例23. 计算:(1);42log 2112log 487log 222-+ (2)()222lg 20lg 5lg 8lg 325lg +⋅++.解:(1)原式42log 144log 487log 222-+= 2log =212log 21log 421444872122-===⎪⎪⎭⎫⎝⎛÷⨯-; (2)原式()()2322lg 210lg 5lg 2lg 325lg +⨯⋅++=()()22lg 2lg 15lg 2lg 25lg 2++++=()()2lg 5lg 22lg 5lg 2lg 5lg 2lg 5lg 2++=++++=12+= 3=.例24. 计算:()()2922531log 31log 35+-+.解:原式()()()()3231139253531log 13log 31log 213log 2925925=++-=+=+=+-+-.点评 本题为易错题,易错误得到()()31log 231log 2522555--=,实际上,此时真数031<-,对数式无意义,应为()()()13log 213log 31log 25225225555---==.例25. 若()()0137log 22=+--x x x ,则x 的值为__________. 解:∵()()0137log 22=+--x x x∴⎪⎩⎪⎨⎧≠->-=+-120211372x x x x ,解之得:4=x . ∴x 的值为4.例26. 若()312xf x=+,则()=4f __________. 解:由412=+x 得到32=x,∴3log 2=x .∴()3log 31342==x f . 例27. 已知b a lg ,lg 是方程01422=+-x x 的两个根,则2lg ⎪⎭⎫ ⎝⎛b a 的值是【 】 (A )1 (B )2 (C )3 (D )4解:∵01422=+-x x ,∴02122=+-x x . ∵b a lg ,lg 是该方程的两个根 ∴21lg lg ,2lg lg =⋅=+b a b a . ∴()()22142lg lg 4lg lg lg lg lg 2222=⨯-=⋅-+=-=⎪⎭⎫ ⎝⎛b a b a b a b a .选择【 B 】.例28. 计算:=++⎪⎭⎫⎝⎛-54log 45log 81163343__________. 解:原式8271log 325445log 32333434=+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⨯+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛=--.例29. 解下列方程:(1)()()()1log 11log 4log 222++=-++x x x ; (2)()()5lg 11622lg -=-+x x x .解:(1)()()()1log 2log 14log 222++=-+x x x()()22log 43log 222+=-+x x x∴⎪⎪⎩⎪⎪⎨⎧>+>->++=-+01010422432x x x x x x ,解之得:2=x .∴该方程的解为2=x ;(2)()()x x x x x 2lg 2lg 5lg 10lg 1622lg ==-=-+ ∴x x x 21622=-+,解之得:8=x ,符合题意. ∴该方程的解为8=x .例30. 若12lg 2lg =-a ,则=a 【 】(A )4 (B )10 (C )20 (D )40解:∵12lg 2lg =-a ,∴14lg4lg lg ,12lg lg 2==-=-aa a . ∴104=a,解之得:40=a . 选择【 D 】.例31. 方程()1321log 3+=⋅+x x的解=x __________.解:()1333log321log +=⋅+x x,∴x x x 3333211⋅==⋅++.∴13=x ,解之得:0=x ,即该方程的解为0=x .点评 根据对数的性质,可将任意一个实数转化为对数,如上面的133log 1+=+x x .例32. 计算:3log 15.222ln 01.0lg 25.6log +-++e .解:原式3log 21225.2222ln 10lg 5.2log ⋅-++=-e211322122-=⨯-+-=.例33.(1)计算:()()()223log 8.94lg 25lg 27log 1203-+-+++-;(2)已知()y x y x 2lg 2lg lg -=+,求x y 22loglog-的值.解:(1)原式()()()21223312log 1425lg 3log -++⨯+=-21223+++=213=; (2)∵()y x y x 2lg 2lg lg -=+,∴()22lg lg y x xy -=∴()xy y x =-22,04522=+-y xy x .∵0>x ,∴04512=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-x y x y ,∴41=x y 或1=x y .∵02,0,0>->>y x y x ,∴210<<x y ,∴41=x y . ∴()42log 4log 41log logloglog4222222-=-=-===-x y x y .点评 这里第(2)问在得出结果时用到了对数的运算性质的推论:MM Ma a al o g l o g 1l o g 1-==-. 例34. 化简下列各式:(1)51lg 5lg 32lg 4-+;(2)2.1lg 1000lg 8lg 27lg -+.解:(1)原式()452lg 5152lg 51lg 5lg 2lg 43434=⨯=⨯=-+=; (2)原式()()1023lg10lg 2lg 3lg 22133213⨯-+=()2312lg 23lg 12lg 23lg 2312lg 3lg 232lg 33lg 232=-+-+=-+-+=.例35. 化简下列各式:(1)()5353lg 281log 22723log 322-+++⨯-; (2)()246246log2--+.解:(1)原式()()2323235353lg 2log 33-+++⨯-=-()1919910lg 3332=++=+-⨯-=;(2)原式()21246246log22⨯--+= ()()3216212log218log 21246246log62222=⨯=⨯=⨯=⨯--+=.解法二: 原式()()⎪⎭⎫⎝⎛--+=2222222log ()()32log22log2222log3222===+-+=.例36. 若03241=--+x x,则x 的值为__________.解:032222=-⋅-x x,()()01232=+-x x∴32=x (012<-=x ,舍去) ∴3log 2=x .例37. 计算:4ln 3327log 25lg 4lg e ---.解:原式()844421243log 254lg 3-=--=--=-⨯-=. 例38.(1)已知68log =x ,求x 的值;(2)已知()x x 323log 110log +=-,求x 的值.解:(1)∵68log =x ,∴86=x .∵0>x ,且1≠x ∴()22282161361====x ;解法二:∵68log =x ,∴62log 32log 3==x x ,∴22log =x .∴()22log 22log 2==x x,12log =x ,∴2=x .(2)()x x 323log 110log +=-,()x x 3323log 3log 10log +=- ∴()x x 3log 10log 323=-∴⎪⎩⎪⎨⎧=->>-x x x x 310001022,解之得:5=x . 即x 的值为5.点评 解对数方程时,若方程可化为两个同底对数相等,则它们的真数相等. 例39. 若13log 5=a ,则aa 93+的值为__________.解:∵13log 5=a ,∴13log 5=a,∴53=a.∴()3055359322=+=+=+a a a .点评 本题考查对数的性质:底数的对数等于1,即1log =a a (0>a 且1≠a ).例40. 若a y x =-lg lg ,则=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛332lg 2lg y x __________.(用含a 的式子表示) 解:∵a y x =-lg lg ,∴a yx=lg. ∴a y x y x y x y x 3lg 3lg 22lg 2lg 2lg 33333==⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛.例41. 若213log 4=x ,则x x 93log 2+等于【 】 (A )3 (B )5 (C )7 (D )10解:∵213log 4=x ,∴213log 4=x,∴244321===x .∴()52132log 93log 2222=+=+=+x x x .选择【 B 】.例42. 若3log 4=a ,则=+-a a 22__________.解:∵3log 4=a ,∴34=a,即()322=a,∴32=a .∴33431321222=+=+=+-aa a a . 例43. 方程()()223log 59log 1212+-=---x x 的解为__________.解:()()4log 23log 59log 21212+-=---x x∴()()234log 59log 1212-=---x x ,8345911-⋅=---x x . ∴02731232=+⋅-x x ,()()09333=--x x . ∴33=x 或93=x ,解之得:1=x 或2=x . 经检验,1=x 不符合题意,舍去. ∴2=x ,即该方程的解为2=x .例44. 已知方程03l o g 6l o g 222=++x x 的两个实数根分别为βα,,则=⎪⎭⎫⎝⎛⋅⎪⎭⎫ ⎝⎛βα4141【 】 (A )361(B )36 (C )6- (D )6 解:由题意可知:6log 2-=+βα.∴()366222414126log 6log 26log 22222=====⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛--βα. 选择【 B 】.例44. 已知3log 2=x ,则=----xxxx 2244__________. 分析:本题考查指数式与对数式的互化. 解:∵3log 2=x ,∴32=x.∴310924980313313224422==--=----xxx x . 例45. 若12log 3=x ,则=--x x 24__________.解:∵12log 3=x ,∴12log 3=x,∴32=x.∴()3263193132122422=-=-=-=--xx x x . 例46. 方程()3lg 2lg 24lg +=+xx的解是__________. 解:()()xx23lg 24lg ⋅=+,∴x x2324⋅=+.∴()()02212=--x x ,∴12=x 或22=x ,解之得:0=x 或1=x . 经检验,0=x 或1=x 都是原方程的解.例47. 计算:()()3log 22222lg 22lg 5lg +-.解:原式()()34lg 2lg 5lg 32lg 2lg 5lg 2lg 5lg 2+-=+-+=313425lg =⎪⎭⎫ ⎝⎛⨯=. 例48. 计算:323log 1271021001lg22-+⎪⎭⎫⎝⎛+-. 解:原式32323log 3410lg 222--⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-⨯=()()()169222342222223log 23log 2++⨯=⎪⎭⎫⎝⎛+--⨯=- 16329169292=++⨯=. 例49. 计算:()4log 2130217731log 3412++--⎪⎭⎫⎝⎛π. 解:原式4log 13773log 149++-=-2321123=+--=.例50. 若2,2>>b a ,且()2log 1log 212log log 212222b b a a b a ++=++,则 ()()=-+-2log 2log 22b a 【 】(A )0 (B )21(C )1 (D )2 解法一:2log 1log 2log log 2222bb a ab a ++=++ ∴()()b a b ab a +=+2log 2log 22,∴()()b a b ab a +=+22.∴()b a ab +=2.∴()()()()22log 2log 2log 222--=-+-b a b a()[]22log 4log 42log 2222===++-=b a ab .选择【 D 】.解法二:()02log 2log 1log 21log 212222=-++-+b a b a b a ∴()02log log 21222=++ab b a ,()()02log 2log log 222=⎥⎦⎤⎢⎣⎡⋅+=++ab b a ab b a ∴()12=⋅+abb a ,∴()b a ab +=2. ∴()()()()22log 2log 2log 222--=-+-b a b a()[]22log 4log 42log 2222===++-=b a ab .知识点五 对数的换底公式对数的运算,只有在同底数时才能直接计算,而实际问题中往往会遇到不同底数的对数运算,必须使用换底公式. 换底公式:abb c c a log log log =(0>a 且1≠a ,0>c 且1≠c ,0>b ).说明:(1)换底公式成立的条件是公式中的每一个对数式都有意义;(2)换底公式的意义在于改变对数式的底数,把本题底数的对数运算转化为同底数的对数运算,这样便可以利用对数的运算性质进行化简、求值和证明;(3)在使用换底公式时,把不同底数换成什么样的底数由题目所给条件决定.通常换成以10为底数的常用对数. 换底公式的证明分析:换底公式的证明,要用到对数式与指数式的互化证明:设x b a =log ,则b a x=.在等式b a x =的两边同时取以c 为底的对数得:b ac x c log log =,即b a x c c log log =.∵1≠a ,∴0log ≠a c ∴a b x c c log log =,即abb c c a log log log =. 其中,0>a 且1≠a ,0>c 且1≠c ,0>b .对数换底公式的几个常用推论:(1)b aba nb n a b b ac c c c n c n c na n log log log log log log log log ====; (2)b mn a b m n a m b n a b b a c c c c m c n c na mlog log log log log log log log =⋅===;(3)aa b b b b b a log 1log log log ==;(4)1log log =⋅a b b a ;1log log 1log log =⋅=⋅a aa b b b b a ,或1log log log log log log =⋅=⋅b a a b a b c c c c b a . (5)1log log log =⋅⋅a c b c b a . 例51. 计算:(1)8log 4log 9log 1632⋅⋅;(2)()()4log 4log 3log 3log 9342++.解:(1)原式=343222lg 42lg 33lg 2lg 22lg 3lg 216lg 8lg 3lg 4lg 2lg 9lg =⨯⨯=⋅⋅=⋅⋅; 解法二:原式()2log 432log 3log 42log 2log 23log 223232324⋅⋅=⋅⋅=34314=⨯⨯=;(2)原式⎪⎭⎫⎝⎛+⋅⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⋅⎪⎭⎫ ⎝⎛+=3lg 22lg 23lg 2lg 22lg 23lg 2lg 3lg 9lg 4lg 3lg 4lg 4lg 3lg 2lg 3lg293233lg 2lg 32lg 23lg 3=⨯=⋅=. 解法二:原式()()2323222log 2log 3log 3log 22++=()2log 33log 232log 2log 23log 213log 323322⋅=+⋅⎪⎭⎫⎝⎛+=291292log 3log 2932=⨯=⋅=. 注意 在(2)的解法二中,用到了对数换底公式的推论:b mnb a n a m log log =,1log log =⋅a b b a . 例52. 计算:(1)()=+3lg 2lg 3log 3log 84__________; (2)()()=++++8log 4log 2log 5log 25log 125log 125255842__________.解:(1)原式653lg 2lg 2lg 63lg 53lg 2lg 2lg 33lg 2lg 23lg 3lg 2lg 8lg 3lg 4lg 3lg =⋅=⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+=; 解法二:原式()2log 3log 313log 213lg 2lg 3log 3log 3222232⎪⎭⎫⎝⎛+=+= 652log 3log 6532=⋅=; (2)原式⎪⎭⎫ ⎝⎛++⋅⎪⎭⎫ ⎝⎛++=125lg 8lg 25lg 4lg 5lg 2lg 8lg 5lg 4lg 25lg 2lg 125lg135lg 2lg 32lg 35lg 135lg 32lg 35lg 22lg 25lg 2lg 2lg 35lg 2lg 25lg 22lg 5lg 3=⋅=⎪⎭⎫ ⎝⎛++⋅⎪⎭⎫ ⎝⎛++=.解法二:原式()()3525522222log 2log 2log 5log 5log 5log 33232++++=()132log 35log 3132log 2log 2log 5log 315log 5log 352555222=⋅=++⋅⎪⎭⎫⎝⎛++=例53.(1)设3643==yx,求yx 12+的值; (2)已知73,3log 2==b a ,求56log 12.解:(1)∵3643==yx∴36log ,36log 43==y x . ∴4log 9log 4log 3log 236log 136log 12123636363643+=+=+⋅=+y x 136log 36==;点评 这里用到了对数换底公式的推论:ab b a log 1log =.(2)∵73,3log 2==b a ∴b b a ===3lg 7lg ,7log ,2lg 3lg 3 ∴2lg 3lg 7lg ,2lg 3lg ba b a ===. ∴()()232lg 22lg 32lg 22lg 2lg 32lg 2lg 23lg 2lg 37lg 4lg 3lg 8lg 7lg 12lg 56lg 56log 12++=++=++=++=++==a ab a ab a ab .例54. 已知c b a ,,都是不等于1的正数,且zyxc b a ==,0111=++zy x ,求abc 的值. 分析:使用连等设参数法.可以利用指数幂与根式的互化以及指数幂的运算性质解决问题,还可以利用对数的定义以及对数的换底公式解决问题.解法一:设t c b a zyx===,则0>t ,zyxt c t b t a 111,,===.∴zy x zyxtt t t abc 111111++=⋅⋅=.∵0111=++zy x ∴10==t abc .解法二:设t c b a zyx===,则0>t .∵c b a ,,都是不等于1的正数 ∴t z t y t x c b a log ,log ,log ===. ∵0111=++zy x ∴0log 1log 1log 1=++tt t c b a ,∴()0log log log log ==++abc c b a t t t t ∴1=abc .例55. 计算3216log 的结果是【 】(A )34 (B )43 (C )34- (D )43- 解:342log 3116log 3116log 16log 42231232====. 选择【 A 】.点评: 这里用到了对数的性质:(1)M n M a na log log =;(2)1log =a a .例56. 求下列对数式的值:(1)e 1ln 1ln +;(2)51lg 5lg 32lg 4-+;(3)2log 3774lg 25lg 27log +++.解:(1)原式1ln 01-=+=-e;(2)原式()410lg 452lg 5152lg 51lg 5lg 2lg 443434==⨯=⎪⎭⎫ ⎝⎛÷⨯=-+=; (3)原式()()21122232425lg 3log 2133=++=+⨯+=. 例57. =⨯+-+8log 3log 43lg 9lg 215lg 232__________.解:原式3lg 8lg 2lg 3lg 43lg3lg 25lg ⨯+-+= 272322lg 2lg 23100lg 2lg 8lg 43325lg =+=+=+⎪⎭⎫ ⎝⎛÷⨯=. 例58. 对数综合运算求值:(1)2.1lg 1000lg 8lg 27lg -+;(2)()[]4log 18log 2log 3log 166626÷⋅+-.解:(1)原式()()12lg 23lg 232lg 33lg 231023lg10lg 2lg 3lg 22133213-+-+=⨯-+=()2312lg 23lg 12lg 23lg 23=-+-+=; (2)原式()()[]4log 6log 3log 2log 3log 6log 6666266÷++-=()[]()[]()12log 22log 22log 22log 2log 4log 2log 3log 2log 2log 4log 2log 3log 2log 2log 6666666666666626=÷=÷+=÷++=÷+⋅+=例59. 求下列式子的值:(1)()()a a lg lg 2lg lg 2100+; (2)8lg 3136.0lg 2113lg 2lg 2+++.解:(1)原式()()()[]()2lg lg 2lg lg 22lg lg 2lg 10lg 22=++=+=a a a a ; (2)原式()112lg 12lg 26.010lg 12lg 2lg 6.0lg 10lg 3lg 4lg ==⨯⨯=+++=.例60. 给出下列各式:①()010lg lg =;②()0ln lg =e ;③若x lg 10=,则10=x ;④由21log 25=x ,得5±=x . 其中正确的是__________.(把正确的序号都填上)答案 ①②解:()01lg 10lg lg ==,故①正确;()01lg ln lg ==e ,故②正确;若x lg 10=,则1010=x ,故③错误; 由21log 25=x ,得52521==x ,故④错误.例61. 计算3log 9153223log 327log ++的结果是__________. 解:原式58315233log 3log 33log 33log 3523135331=+--=+-=++=--. 例62. 计算=⨯+⨯-4log 3log 81log 2273223log 324__________. 解:原式()3lg 2lg 22lg 3lg 2log 23323log 213232⨯+⨯-=- ()31123922921213log 2-=+-=+-=.例63. 已知b a ==6log ,5log 52,则用b a ,表示=6lg __________. 解:∵b a ==6log ,5log 52∴b a ==5lg 6lg ,2lg 5lg ,a =-5lg 15lg ,∴aa+=15lg ∴aabb +==15lg 6lg . 例64.(1)已知a =2log 14,用a 表示7log2;(2)已知b a ==5log ,7log 1414,用b a ,表示28log 35.解:(1)∵a =2log 14,∴a12log 114log 142==∴()⎪⎭⎫⎝⎛-=-===1122log 14log 27log 27log7log2222221a ;(2)∵b a ==5log ,7log 1414∴()5log 7log 14log 7log 14log 57log 14714log 35log 28log 28log 14141414141414141435++-=⨯⎪⎭⎫ ⎝⎛⨯==b a a +-=2. 例65. 解关于x 的方程:(1)()()13log 1log 515=--+x x ;(2)()010lg lg 32=-+x x .解:(1)()()13log 1log 155=--+-x x ,()()5log 3log 1log 555=-++x x()()5log 31log 55=-+x x∴()()⎪⎩⎪⎨⎧>->+=-+0301531x x x x ,解之得:4=x . ∴该方程的解为4=x ;(2)()010lg 3lg 2=-+x x ,()()05lg 2lg =+-x x∴2lg =x 或5lg -=x ,解之得:210=x 或510-=x . 经检验,210=x 和510-=x 都是原方程的解.例66. 方程()()12log 3log 2log 222=-+-x x 的解是__________. 解:()()12log 32log 22=--x x∴()()⎪⎩⎪⎨⎧>->-=--03021232x x x x ,解之得:1-=x . ∴该方程的解为1-=x .例67. 已知1>>b a ,若310log log =+a b b a ,a bb a =3,则=b __________. 解:设t b a =log ,则t b a a b 1log 1log ==,3101=+t t ,解之得:31,321==t t . ∵1>>b a ,∴a b a a a log log 1log <<,即10<<t ,∴31=t .∴31log =b a ,31a b =.∵abb a =3,∴a ba a 313=,∴b a 331=,b a 9=∴()b b b b 9,9331==,解之得:3=b .例68. 解方程:()()14log 1log 42=+-+x x .解:()()4log 4log 1log 44222=+-+x x ,()()4log 4log 1log 4424=+-+x x∴()4log 41log 424=++x x .()⎪⎪⎪⎩⎪⎪⎪⎨⎧>+>+=++04014412x x x x ,解之得:5=x . ∴该方程的解为5=x .例69. 已知函数()()⎪⎩⎪⎨⎧<+≥⎪⎭⎫⎝⎛=4,14,21x x f x x f x,则()=+3log 22f 【 】(A )31 (B )61 (C )121 (D )241解:∵4log 3log 2log 222<<,∴23log 12<<∴()()()3log 32222213log 313log 23log 2+⎪⎭⎫ ⎝⎛=+=++=+f f f()24131812812211223log 3log 13=⨯=⨯=⨯⎪⎭⎫ ⎝⎛=--. 选择【 D 】.例70. 已知函数()131+=x x f ,则()=⎪⎭⎫ ⎝⎛+91log 3log 42f f __________. 解:∵()131+=x x f∴()()()1333131131131+++=+++=-+--x x x x x x x f x f 1313131=+++=xxx . ∴()()()⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+31log 3log 31log 3log 91log 3log 22222422f f f f f f ()()13log 3log 22=-+=f f .例71. 若cba964==,则=+-cb a 121__________. 解:设t cb a ===964,则tc t b t a 964log ,log ,log ===.∴9log 6log 24log log 1log 12log 1121964t t t tt t c b a +-=+⋅-=+- 01log 964log 2==⎪⎭⎫⎝⎛⨯=t t .解法二:设t cba===964,则cbat t t 1119,6,4===.∵2694=⨯,∴2111⎪⎭⎫ ⎝⎛=⋅b ca t t t ,bc a t t 211=+∴b c a 211=+,∴0121=+-cb a . 例72. 已知函数()()11ln 22+-+=ax x a x f (0>a ),则()=⎪⎭⎫⎝⎛+a f a f 1ln ln ______. 解:∵()()11ln 22+-+=ax x a x f∴()()()()11ln 11ln 2222+++++-+=-+ax x a ax x a x f x f()()[]221ln 211ln2222=+=+++-+=ax xa ax xa∴()()()2ln ln 1ln ln =-+=⎪⎭⎫⎝⎛+a f a f a f a f .例73. 已知b a ,是方程343log 3log 273-=+x x 的两个根,则=+b a __________. 解:343log 3log 333-=+x x ,343log 313log 133-=+x x . 设x t 3log 3=,则34311-=+t t ,解之得:3,121-=-=t t .∴1333log 13log -=-=x 或3333log 33log -=-=x ,解之得:91=x 或811=x . 经检验,91=x 和811=x 都是原方程的解.∴811081191=+=+b a .例74. 已知二次函数()()a x x a x f lg 42lg 2++=的最小值为3,则()⋅+2log 5log 2a a50log a 的值为__________.解:∵二次函数()()a x x a x f lg 42lg 2++=的最小值为3∴0lg >a ,()3lg 44lg 162=-aa ,解之得:1lg =a ,∴10=a . ∴()⋅+2log 5log 2a a ()50lg 2lg 5lg 50log 2⋅+=a()()()12lg 5lg 2lg 2lg 5lg 5lg 15lg 2lg 5lg 2=+=++=++=.例75. 已知n m a a ==2log ,3log .(1)求n m a 2+的值;(2)若10<<x ,a x x =+-1,且12log 3+=+n m ,求22--x x 的值.解:(1)∵n m a a ==2log ,3log ,∴2,3==n ma a∴()12232222=⨯=⋅=⋅=+n m n m n m a a a a a ;(2)∵12log 3+=+n m∴3log 2log 2log 3log 33+=+a a ,6log 6log 3=a ,∴3=a . ∴31=+-x x ,()()543422121=-=-+=---x x x x∵10<<x ,∴xx 1<,∴51-=--x x . ∴()()531122-=-+=----x x x x x x .例76. 已知z y x ,,为正数,zyx643==,py x =2.(1)求p 的值; (2)求证:yx z 2111=-解:(1)设t zy x ===643,则t z t y t x 643log ,log ,log ===.∵py x =2,∴t p t 43log log 2=,∴4log 23log 4log 24log 13log 12log log 2343==⋅==t t t t t t p2log 43=;证明:(2)由(1)可知:2log 3log 6log log 1log 11136t t t t t x z =-=-=-,2log 4log 21log 121214===⋅=t t t y ∴yx z 2111=-. 例77. 实数b a ,满足1052==ba,则下列关系正确的是【 】(A )111=+b a (B )212=+b a (C )221=+b a (D )2121=+b a解:∵1052==ba ,∴10log ,10log 52==b a .∴15lg 2lg 10log 110log 11152=+=+=+b a ,故(A )正确; 22lg 120lg 5lg 4lg 5lg 2lg 212≠+==+=+=+b a ,故(B )错误; 5lg 150lg 25lg 2lg 5lg 22lg 21+==+=+=+b a ,故(C )、(D )错误. 选择【 A 】.例78. 已知函数xx f 311)(+=,则()=⎪⎭⎫⎝⎛+31lg 3lg f f 【 】 (A )1 (B )2 (C )3 (D )9分析:因为()()()()()3lg 3lg 3lg 3lg 31lg 3lg 1-+=+=⎪⎭⎫ ⎝⎛+-f f f f f f ,所以根据函数()x f 的解析式计算出()()x f x f -+即可.解:∵xx f 311)(+=∴()()1333133311+=+=+=---x xxx x x x f ∴()()1133311=+++=-+x xxx f x f ∴()()()()()13lg 3lg 3lg 3lg 31lg 3lg 1=-+=+=⎪⎭⎫⎝⎛+-f f f f f f .选择【 A 】.例79. 设()x f 为定义在R 上的奇函数,当x ≥0时,()b e x f x+=(b 为常数),则()2ln -f 等于【 】(A )21-(B )1 (C )1- (D )3- 解:∵()x f 为定义在R 上的奇函数∴()00=f ,∴01=+b ,解之得:1-=b . ∴当x ≥0时,()1-=x e x f .当0<x 时,0>-x ,此时()()x f e x f x -=-=--1 ∴当0<x 时,()x e x f --=1. ∵01ln 21ln2ln =<=- ∴()12112ln 2ln -=-=-=-e f . 选择【 C 】.方法二:()()()()11212ln 2ln 2ln -=--=--=-=-e f f .例80. 计算:9log 2log 5lg 341lg 2lg 43⋅-+-. 解:原式22333log 2log 5412lg 2⋅-⎪⎭⎫⎝⎛⨯÷= 2133log 2log 10lg 233=-=⋅-=.。

对数及其运算

对数及其运算

对数及其运算第3讲:对数及其运算【复习要求】1、理解对数的意义,会熟练地将指数式与对数式互化;2、初步学会换底公式的基本运用;3、掌握积、商、幂的对数性质。

会用计算器求对数。

【知识要点】1、对数的定义:如果(01)a a a >≠且的b 次幂等于N ,那么b 称为以a 为底N 的对数,记作:log a b N =,其中a 称为底数,N 称为真数。

2、指数式与对数式的互化:log b a a N N b =?=;3、对数恒等式:N aNa =log (0,01N a a >>≠且)。

4、换底公式及衍生性质:()1 log log log m a m NN a= (0a >,1a ≠,0m > , 1m ≠,0N >)()2ab b a log 1log =,()3c c b a b a log log log =?, ()4b n m b a ma nl o g l o g = 5、对数的运算性质:如果0,1,0,0a a N M >≠>>有log ()log log a a a MN M N =+; l o g l o g l o g aa a MM N N=-;log log n a a M n M =; 1log log n a a M M n= 【基础训练】1、如果2(0,1)a b b b =>≠,则有( D )(A )2log a b = (B )2log b a = (C )log 2a b = (D )log 2b a = 2、若2521log 3log 3m =+,则有( B )(A )12m << (B )23m << (C )34m << (D )45m << 3、已知:25lg m =,则lg 2= 112m -(用m 表示) 4、计算:(1)2lg 4lg 92lg 6lg 361++-+= 2(2)223412223log (8log 16)log log +-= 605、若2log 1a <,则正数a 的取值范围是 02a <<【典型例题】类型1、对数与指数的互换例1、将下列指数式化为对数式,对数式化为指数式:(1)712128-=;(2)327a =;(3)1100.1-=;(4)12log 325=-;(5)lg 0.0013=-;(6)ln100=4.606.例2、(1)设log 2a m =,log 3a n =,求2m n a +的值.(2)设{0,1,2}A =,{log 1,log 2,}a a B a =,且A B =,求a 的值.类型2、对数的四则运算例3、若*01,0,a a x y n N ≠∈>,>>,则下列各式:①(log )log n a a x n x =;②(log )log n n a a x x =;③1log log a a x x =-;④log log log a a a x x y y=;⑤1log log n a a x x n =;⑥log log n a a xx n =;⑦log log nn a a x x =;⑧log log a a x y x y x y x y-+=-+-;其中成立的有_____________;答案:③⑥⑦⑧例4、化简与求值:(1)log log a b b ca;(2)2log (4747)+--;(3)222lg 5lg8lg 5lg 20(lg 2)3++?+ (4)lg 2lg 3lg 10lg1.8+-;答案(1)c ;(2)12;(3)3;(4)12【补充练习】计算(1)2log (642642)+--=32(2)33lg 2lg 53lg2lg5++= 1 例5、若[][]345435log log (log )log log (log )0a b ==,则ab=__________;答案:435;55a a b b==?= 例6、已知函数()f x 满足“当4x ≥时,1()2xf x ??=,当4x <时,()(1)f x f x =+”,则2(2log 3)f +=_________;答案:124例7、(1)方程lg lg(3)1x x ++=的解x =________;(2)设12,x x 是方程2lg lg 0x a x b ++=的两个根,则12x x 的值是 .例8、已知lg lg 2lg(2)a b a b +=-,求4log ab的值;答案:先求出:a b =(舍)或4a b =,从而4log 1ab=类型3、对数的恒等式与换底公式的应用例9、若83log 3,log 5p q ==,则lg 5=________;答案:3333log 5113log 8log 2lg 53log 1013pqp p pq==?==+;例10、已知18log 9a =,185b=,试将36log 45用,a b 表示;【解】方法一、利用指数对数互换转化为指数式:189;1854518a b a b+==?=令36log 45x =从而181836451836()1833xa bx x a b ++?==?=?=亦即218189x a b x +=?(18)1818a x a b ax a b +++=?=22a b x ax a b x a+?=++?=-;方法二、换成对数式,然后利用换底公式,换成18为底的对数计算问题;方法三、化成10为底的形式;方法二略简单例11、若78log 2,log 14k =求的值。

对数函数知识点及典型例题讲解

对数函数知识点及典型例题讲解

对数函数知识点1.对数:(1) 定义:如果N a b =)1,0(≠>a a 且,那么称 为 ,记作 ,其中a 称为对数的底,N 称为真数. ① 以10为底的对数称为常用对数,N 10log 记作___________.② 以无理数)71828.2( =e e 为底的对数称为自然对数,N e log 记作_________. (2) 基本性质:① 真数N 为 (负数和零无对数);② 01log =a ;③ 1log =a a ; ④ 对数恒等式:N a N a =log . (3) 运算性质:① log a (MN)=___________________________; ② log a NM =____________________________;③ log a M n= (n ∈R).④ 换底公式:log a N = (a >0,a ≠1,m >0,m ≠1,N>0)⑤ log mna a nb b m = .2.对数函数:① 定义:函数 称为对数函数,1) 函数的定义域为( ;2) 函数的值域为 ;3) 当______时,函数为减函数,当______时为增函数;4) 函数x y a log =与函数)1,0(≠>=a a a y x且互为反函数. ② 1) 图象经过点( ),图象在 ;2) 对数函数以 为渐近线(当10<<a 时,图象向上无限接近y 轴;当1>a 时,图象向下无限接近y 轴);4) 函数y =log a x 与 的图象关于x 轴对称. ③ 函数值的变化特征:例1 计算:(1))32(log32-+(2)2(lg 2)2+lg 2·lg5+12lg )2(lg 2+-;(3)21lg 4932-34lg 8+lg 245.例2 比较下列各组数的大小.(1)log 332与log 556; (2)log 1.10.7与log 1.20.7;(3)已知log 21b <log 21a <log 21c,比较2b ,2a ,2c 的大小关系.例3已知函数f(x)=log a x(a >0,a ≠1),如果对于任意x ∈[3,+∞)都有|f(x)|≥1成立, 试求a 的取值范围.函数y=log 2x 的图象交于C 、D 两点.例4 已知过原点O 的一条直线与函数y=log 8x 的图象交于A 、B 两点,分别过A 、B 作y 轴的平行与 (1)证明:点C 、D 和原点O 在同一直线上; (2)当BC 平行于x 轴时,求点A 的坐标.1解:(1)方法一 利用对数定义求值 设)32(log32-+=x, 则(2+3)x=2-3=321+=(2+3)-1,∴x=-1.方法二 利用对数的运算性质求解)32(log 32-+=32log +321+=32log+(2+3)-1=-1.(2)原式=lg 2(2lg 2+lg5)+12lg 2)2(lg 2+-=lg 2(lg2+lg5)+|lg 2-1| =lg 2+(1-lg 2)=1. (3)原式=21(lg32-lg49)-34lg821+21lg245 =21 (5lg2-2lg7)-34×2lg 23+21 (2lg7+lg5) =25lg2-lg7-2lg2+lg7+21lg5=21lg2+21lg5 =21lg(2×5)= 21lg10=21. 2解:(1)∵log 332<log 31=0, 而log 556>log 51=0,∴log 332<log 556.(2)方法一 ∵0<0.7<1,1.1<1.2, ∴0>2.1log 1.1log 7.00.7>, ∴2.1log 11.1log 17.07.0<,即由换底公式可得log 1.10.7<log 1.20.7.方法二 作出y=log 1.1x 与y=log 1.2x 的图象. 如图所示两图象与x=0.7相交可知log 1.10.7<log 1.20.7. (3)∵y=x 21log 为减函数,且c a b 212121log log log <<, ∴b >a >c,而y=2x 是增函数,∴2b >2a >2c .3解:当a >1时,对于任意x ∈[3,+∞),都有f(x)>0. 所以,|f(x)|=f(x),而f(x)=log a x 在[3,+∞)上为增函数, ∴对于任意x ∈[3,+∞),有f(x)≥log a 3. 因此,要使|f(x)|≥1对于任意x ∈[3,+∞)都成立. 只要log a 3≥1=log a a 即可,∴1<a ≤3. 当0<a <1时,对于x ∈[3,+∞),有f(x)<0, ∴|f(x)|=-f(x). ∵f (x )=log a x 在[3,+∞)上为减函数,∴-f (x )在[3,+∞)上为增函数. ∴对于任意x ∈[3,+∞)都有 |f(x)|=-f(x)≥-log a 3. 因此,要使|f(x)|≥1对于任意x ∈[3,+∞)都成立, 只要-log a 3≥1成立即可, ∴log a 3≤-1=log a a1,即a 1≤3,∴31≤a <1. 综上,使|f(x)|≥1对任意x ∈[3,+∞)都成立的a 的取值范围是:(1,3]∪[31,1).例4(1)证明 设点A 、B 的横坐标分别为x 1、x 2, 由题设知x 1>1,x 2>1,则点A 、B 的纵坐标分别为log 8x 1、log 8x 2. 因为A 、B 在过点O 的直线上,所以228118log log x x x x =点C 、D 的坐标分别为(x 1,log 2x 1)、(x 2,log 2x 2), 由于log 2x 1=2log log 818x =3log 8x 1,log 2x 2=3log 8x 2, OC 的斜率为k 1=118112log 3log x x x x =, OD 的斜率为,log 3log 2282222x x x x k ==由此可知k 1=k 2,即O 、C 、D 在同一直线上. (2)解: 由于BC 平行于x 轴,知log 2x 1=log 8x 2,即得log 2x 1=31log 2x 2,x 2=x 31, 代入x 2log 8x 1=x 1log 8x 2,得x 31log 8x 1=3x 1log 8x 1,由于x 1>1,知log 8x 1≠0,故x 31=3x 1, 又因x 1>1,解得x 1=3,于是点A 的坐标为(3,log 83).训练1:化简求值. (1)log 2487+log 212-21log 242-1; (2)(lg2)2+lg2·lg50+lg25; (3)(log 32+log 92)·(log 43+log 83).训练2:已知0<a <1,b >1,ab >1,则log a bb bba1log ,log ,1的大小关系是 ( )A.log a bb bba1loglog 1<< B.bbb baa1log 1log log << C.b bb aba1log 1log log << D.b bb aablog 1log 1log <<训练3:已知函数f (x )=log 2(x 2-ax-a)在区间(-∞, 1-3]上是单调递减函数.求实数a 的取值范围.训练4:已知函数f(x)=log 211-+x x +log 2(x-1)+log 2(p-x). (1)求f(x)的定义域;(2)求f(x)的值域.1解:(1)原式=log 2487+log 212-log 242-log 22=log 2.232log 221log 242481272322-===⨯⨯⨯-(2)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2.(3)原式=(.452lg 63lg 5·3lg 22lg 3)2lg 33lg 2lg 23lg (·)3lg 22lg 3lg 2lg ==++2解: C3解:令g(x)=x 2-ax-a,则g(x)=(x-2a )2-a-42a , 由以上知g(x )的图象关于直线x=2a 对称且此抛物线开口向上.因为函数f(x)=log 2g(x)的底数2>1, 在区间(-∞,1-3]上是减函数, 所以g(x)=x 2-ax-a 在区间(-∞,1-3]上也是单调减函数,且g(x)>0.∴⎪⎩⎪⎨⎧>-----≥⎪⎩⎪⎨⎧>-≤-0)31()31(3220)31(2312a a a g a ,即解得2-23≤a <2.故a 的取值范围是{a|2-23≤a <2}.4解:(1)f(x)有意义时,有⎪⎪⎪⎩⎪⎪⎪⎨⎧>->->-+,③0,②01,①011x p x x x 由①、②得x >1,由③得x <p,因为函数的定义域为非空数集,故p >1,f(x)的定义域是(1,p).(2)f(x)=log 2[(x+1)(p-x)] =log 2[-(x-21-p )2+4)1(2+p ] (1<x <p), ①当1<21-p <p ,即p >3时, 0<-(x-4)1(4)1()21222+≤++-p p p , ∴log 2⎥⎦⎤⎢⎣⎡++---4)1()21(22p p x ≤2log 2(p+1)-2. ②当21-p ≤1,即1<p ≤3时, ∵0<-(x-),1(24)1()2122-<++-p p p ∴log 2⎥⎦⎤⎢⎣⎡++---4)1()21(22p p x <1+log 2(p-1). 综合①②可知: 当p >3时,f(x)的值域是(-∞,2log 2(p+1)-2]; 当1<p ≤3时,函数f(x)的值域是(-∞,1+log 2(p-1)). 1.处理对数函数的有关问题,要紧密联系函数图象,运用数形结合的思想进行求解.2.对数函数值的变化特点是解决含对数式问题时使用频繁的关键知识,要达到熟练、运用自如的水平,使用时常常要结合对数的特殊值共同分析.3.含有参数的指对数函数的讨论问题是重点题型,解决这类问题最基本的分类方案是以“底”大于1或小于1分类. 4.含有指数、对数的较复杂的函数问题大多数都以综合形式出现,与其它函数(特别是二次函数)形成的函数问题,与方程、不等式、数列等内容形成的各类综合问题等等,因此要注意知识的相互渗透或综合.。

对数与对数运算知识点及例题解析

对数与对数运算知识点及例题解析

对数与对数运算知识点及例题解析1、对数的定义①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. 2、以10为底的对数叫做常用对数,log 10N 记作lg N .3、以无理数e=2.718 28…为底的对数称为自然对数,logeN 记作ln N4、对数的性质: (1)log 10,log 1a a a ==(2)对数恒等式①a log aN =N ;②log a a N =N (a >0,且a ≠1).5、对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN +=②减法:log log log a a a M M N N-= ③数乘:log log ()na a n M M n R =∈⑤log a m M n =n mlog a M . ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且特殊情形:log a b =1log b a,推广log a b ·log b c ·log c d =log a d .类型一、指数式与对数式互化及其应用例1、将下列指数式与对数式互化:(1);(2);(3);(4);(5);(6).思路点拨:运用对数的定义进行互化. 解:(1);(2);(3);(4);(5);(6).例2、求下列各式中x 的值:(1) (2) (3)lg100=x (4)思路点拨:将对数式化为指数式,再利用指数幂的运算性质求出x.解:(1);(2);(3)10x =100=102,于是x=2; (4)由例3、若x=log43,则(2x-2-x)2等于( )A.94B.54C.103D.43解由x=log43,得4x=3,即2x=3,2-x=33,所以(2x-2-x)2=⎝⎛⎭⎪⎫2332=43.类型二、利用对数恒等式化简求值例4、求值:解:.总结升华:对数恒等式中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数例5、求的值(a,b,c∈R+,且不等于1,N>0)思路点拨:将幂指数中的乘积关系转化为幂的幂,再进行运算.解:.类型三、积、商、幂的对数例6、已知lg2=a,lg3=b,用a、b表示下列各式.(1)lg9 (2)lg64 (3)lg6 (4)lg12 (5)lg5 (6) lg15解:(1)原式=lg32=2lg3=2b(2)原式=lg26=6lg2=6a(3)原式=lg2+lg3=a+b(4)原式=lg22+lg3=2a+b(5)原式=1-lg2=1-a(6)原式=lg3+lg5=lg3+1-lg2=1+b-a例7、(1) (2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2解:(1)(2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1(3)原式=2lg5+lg2(1+lg5)+(lg2)2=2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2.例8、已知3a=5b=c,,求c的值.解:由3a=c得:同理可得.例9、设a、b、c为正数,且满足a2+b2=c2.求证:.证明:.例10、已知:a2+b2=7ab,a>0,b>0. 求证:.证明:∵a2+b2=7ab,∴a2+2ab+b2=9ab,即(a+b)2=9ab,∴lg(a+b)2=lg(9ab),∵a>0,b>0,∴2lg(a+b)=lg9+lga+lgb ∴2[lg(a+b)-lg3]=lga+lgb即 .类型四、换底公式的运用例11、(1)已知log x y=a,用a表示;(2)已知log a x=m,log b x=n,log c x=p,求log abc x.解:(1)原式=;(2)思路点拨:将条件和结论中的底化为同底.方法一:a m=x,b n=x,c p=x,;方法二:.例12、求值:(1);(2);(3).解:(1)(2);(3)法一:法二:.总结升华:运用换底公式时,理论上换成以大于0不为1任意数为底均可,但具体到每一个题,一般以题中某个对数的底为标准,或都换成以10为底的常用对数也可.类型五、对数运算法则的应用例13、求值(1) log89·log2732(2)(3)(4)(log2125+log425+log85)(log1258+log254+log52)解:(1)原式=.(2)原式=(3)原式=(4)原式=(log2125+log425+log85)(log1258+log254+log52)例14、已知:log23=a,log37=b,求:log4256=?解:∵∴,。

高中数学对数和对数函数知识点与例题讲解

高中数学对数和对数函数知识点与例题讲解

对数与对数函数1.对数(1)对数的定义:如果a b=N(a>0,a≠1),那么b叫做以a为底N的对数,记作logaN=b.(2)指数式与对数式的关系:a b=NlogaN=b(a>0,a≠1,N>0).两个式子表示的a、b、N三个数之间的关系是一样的,并且可以互化.(3)对数运算性质:①log a(MN)=log a M+log a N.②log aMN=log a M-log a N.③logaM n=nlogaM.(M>0,N>0,a>0,a≠1)④对数换底公式:logbN= l oglogaaNb(a>0,a≠1,b>0,b≠1,N>0).2.对数函数(1)对数函数的定义函数y=log a x(a>0,a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里a<0,或=1的时候是会有相应b的值的。

但是,根据对数定义:log a a=1;如果a=1或=0那么log a a就可以等于一切实数(比如log11也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n=nlogaM如果a<0,那么这个等式两边就不会成立(比如,log(-2)4^(-2)就不等于(-2)*log(-2)4;一个等于1/16,另一个等于-1/16)(2)对数函数的图象yyy =l ogxa>(1)a1O1xOxy =l o g a x (<a <1) 0底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R.③过点(1,0),即当x=1时,y=0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.基础例题题型1(对数的计算) 1.求下列各式的值. (1)35 log +25log2-1 21 50log - 514 log ;(2)log5 2 1 25 ×lo g 3 1 8 ×lo g 5 1 9. 练习题1.计算:lg 1 2 -lg5 8 +lg12.5-log 89·log 278;3.log535+21log2-log51502 -log514;3.log2125×log318×log519.1loglog4log3 4.399222.5.lg5lg2lg41(6).log24lglog27lg2log33222 7.2lg2lg3111lg0.36lg823例2.已知实数x、y、z满足3x=4y=6z>1.(1)求证:2x+1y=2z;(2)试比较3x、4y、6z的大小.练习题.已知log189=a,18b=5,用a、b表示log3645.题型二:(对数函数定义域值域问题)例1.已知函数fxlog22xx1aax的定义域为集合A,关于x的不等式22 的解集为B,若AB,求实数a的取值范围.2.设函数2ylog(ax2x2)定义域为A.2(1)若AR,求实数a的取值范围;(2)若2log(ax2x2)2在x[1,2]上恒成立,求实数a的取值范围.2练习题1.已知函数2 fxlgax2x1(1)若fx的定义域是R,求实数a的取值范围及fx的值域;(2)若fx的值域是R,求实数a的取值范围及fx的定义域2求函数y=2lg (x -2)-lg (x -3)的最小值.题型三(奇偶性及性) 例题1.已知定义域为R 的函数f (x )为奇函数足f(x +2)=-f(x),当x ∈[0,1]时,f(x)=2x -1.(1)求f(x)在[-1,0)上的解析式; (2)求f(1 log24)的值. 2 4.已知f (x )=l o g 1[3-(x -1)2],求f (x )的值域.3 5.已知y =l o g a (3-a x )在[0,2]上是x 的减函数,求a 的围.4.已知函数f(x)lg(2x)lg(2x).(Ⅰ)求函数yf(x)的定义域;(Ⅱ)判断函数yf(x)的奇偶性;(Ⅲ)若f(m2)f(m),求m的取值范围.练习题1.已知函数f(x)=loga(x+1)-loga(1-x)(a>0,a≠1)(1)求f(x)的定义域;(2)判断f(x)的奇偶性,并给出证明;(3)当a>1时,求使f(x)>0的x的取值范围2.函数f(x)是定义在R上的偶函数,f(0)0,当x0时,1f(x)logx.2 (1)求函数f(x)的解析式;(2)解不等式2f(x1)2;3.已知f(x)是定义在R上的偶函数,且x0时,1f(x)log(x1).2 (Ⅰ)求f(0),f(1);(Ⅱ)求函数f(x)的表达式;(Ⅲ)若f(a1)1,求a的取值范围.题型4(函数图像问题)例题1.函数f(x)=|log2x|的图象是yy111x-11xOOAByy111x1xOOCD6.求函数y=log2|x|的定义域,并画出它的图象,指出它的单调区间.f(x)=|lgx|,a,b为实数,且0<a<b.(1)求方程f(x)=1的解;(2)若a,b满足f(a)=f(b)=2fa b2,求证:a·b=1,a b2 >1.练习题:1.已知a0且a1,函数f(x)log(x1)a,1g(x)log a,记F(x)2f(x)g(x)1x(1)求函数F(x)的定义域及其零点;(2)若关于x的方程2 F2.已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.(1)求k的值;(2)设g(x)=log44xa?237.函数y=log2|ax-1|(a≠0)的对称轴方程是x=-2,那么a等于题型五:函数方程1方程lgx+lg(x+3)=1的解x=___________________.5.已知函数f(x)= 1()2x,x4,则f(2+log23)的值为f(x1),x4,4.已知函数f(x)log a(axx)(a0,a1为常数). (Ⅰ)求函数f(x)的定义域;(Ⅱ)若a2,x1,9,求函数f(x)的值域;(Ⅲ)若函数f(x)ya的图像恒在直线y2x1的上方,求实数a的取值范围.1xxyloglog(2x8).5.已知函数22242(Ⅰ)令tlog2x,求y关于t的函数关系式及t的取值范围;(Ⅱ)求函数的值域,并求函数取得最小值时的x的值.8.设函数f(x)=lg(1-x),g(x)=lg(1+x),在f(x)和g(x)的公共定义域内比较|f(x)|与|g(x)|的大小.您好,欢迎您阅读我的文章,本WORD文档可编辑修改,也可以直接打印。

高中数学对数与对数函数知识点及经典例题讲解

高中数学对数与对数函数知识点及经典例题讲解

对数与对数函数1.对数(1)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b .(2)指数式与对数式的关系:a b =N log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化.(3)对数运算性质:①log a (MN )=log a M +log a N .②log a =log a M -log a N .NM ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1)④对数换底公式:log b N =(a >0,a ≠1,b >0,b ≠1,N >0).bN a a log log 2.对数函数(1)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。

但是,根据对数定义: log a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16)(2)对数函数的图象11))底数互为倒数的两个对数函数的图象关于x 轴对称.(3)对数函数的性质:①定义域:(0,+∞).②值域:R .③过点(1,0),即当x =1时,y =0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.基础例题1.函数f (x )=|log 2x |的图象是?2.若f-1(x )为函数f (x )=lg (x +1)的反函数,则f-1(x )的值域为___________________.3.已知f (x )的定义域为[0,1],则函数y =f [log(3-x )]的定21义域是__________.4.若log x =z ,则x 、y 、z 之间满足7y A.y 7=x z B.y =x 7z C.y =7x zD.y =z x5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则A.a <b <cB.a <c <bC.b <a <cD.c <a <b6.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于A.B.C. D.422241217.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于 (x=-2非解)A.B.-C.2D.-221218.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是AB9.设f-1(x )是f (x )=log 2(x +1)的反函数,若[1+ f-1(a )][1+ f -1(b )]=8,则f (a +b )的值为A.1B.2C.3D.log 2310.方程lg x +lg (x +3)=1的解x =___________________.典型例题【例1】 已知函数f (x )=则f (2+log 23)的值为⎪⎩⎪⎨⎧<+≥,4),1(,4,21(x x f x xA.B.C.D.3161121241【例2】 求函数y =log 2|x |的定义域,并画出它的图象,指出它的单调区间.【例3】已知f (x )=log [3-(x -1)2],求f (x )的值域及单31调区间.【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围.【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和g (x )的公共定义域内比较|f (x )|与|g (x )|的大小.【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值.【例7】 在f 1(x )=x ,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log x 四2121个函数中,x 1>x 2>1时,能使[f (x 1)+f (x 2)]<f ()成21221x x 立的函数是A.f 1(x )=x(平方作差比较)B.f 2(x )21=x 2C.f3(x)=2xD.f4(x)=log x12探究创新1.若f(x)=x2-x+b,且f(log2a)=b,log2[f(a)]=2(a≠1).(1)求f(log2x)的最小值及对应的x值;(2)x取何值时,f(log2x)>f(1)且log2[f(x)]<f(1)?2.已知函数f(x)=3x+k(k为常数),A(-2k,2)是函数y=f -1(x)图象上的点.(1)求实数k的值及函数f-1(x)的解析式;(2)将y= f-1(x)的图象按向量a=(3,0)平移,得到函数y=g(x)的图象,若2f-1(x+-3)-g(x)≥1恒成立,试求m实数m的取值范围.。

对数与对数函数_及经典题

对数与对数函数_及经典题

对数与对数函数二、知识要点梳理知识点一、对数及其运算我们在学习过程遇到2x=4的问题时,可凭经验得到x=2的解,而一旦出现2x=3时,我们就无法用已学过的知识来解决,从而引入出一种新的运算——对数运算.(一)对数概念:1. 如果,那么数b叫做以a为底N的对数,记作:log a N=b.其中a叫做对数的底数,N叫做真数.2. 对数恒等式:3. 对数具有下列性质:(1)0和负数没有对数,即;(2)1的对数为0,即;(3)底的对数等于1,即.(二)常用对数与自然对数通常将以10为底的对数叫做常用对数,.以e为底的对数叫做自然对数,.(三)对数式与指数式的关系由定义可知:对数就是指数变换而来的,因此对数式与指数式联系密切,且可以互相转化.它们的关系可由下图表示.由此可见a,b,N三个字母在不同的式子中名称可能发生变化.(四)积、商、幂的对数已知(1);推广:(2);(3).(五)换底公式同底对数才能运算,底数不同时可考虑进行换底,在a>0,a≠1,M>0的前提下有:(1)令log a M=b,则有a b=M,(a b)n=M n,即,即,即:.(2) ,令log a M=b,则有a b=M,则有即,即,即当然,细心一些的同学会发现(1)可由(2)推出,但在解决某些问题(1)又有它的灵活性.而且由(2)还可以得到一个重要的结论:.知识点二、对数函数1. 函数y=log a x(a>0,a≠1)叫做对数函数.2. 在同一坐标系内,当a>1时,随a的增大,对数函数的图像愈靠近x轴;当0<a<1时,对数函数的图象随a的增大而远离x轴.(见图1)(1)对数函数y=log a x(a>0,a≠1)的定义域为(0,+∞),值域为R(2)对数函数y=log a x(a>0,a≠1)的图像过点(1,0)(3)当a>1时,三、规律方法指导容易产生的错误(1)对数式log a N=b中各字母的取值范围(a>0 且a≠1,N>0,b∈R)容易记错.(2)关于对数的运算法则,要注意以下两点:一是利用对数的运算法则时,要注意各个字母的取值范围,即等式左右两边的对数都存在时等式才能成立.如:log2(-3)(-5)=log2(-3)+log2(-5)是不成立的,因为虽然log2(-3)(-5)是存在的,但log2(-3)与log2(-5)是不存在的.二是不能将和、差、积、商、幂的对数与对数的和、差、积、商、幂混淆起来,即下面的等式是错误的:log a(M±N)=log a M±log a N,log a(M·N)=log a M·log a N,loga.(3)解决对数函数y=log a x (a>0且a≠1)的单调性问题时,忽视对底数a的讨论.(4)关于对数式log a N的符号问题,既受a的制约又受N的制约,两种因素交织在一起,应用时经常出错.下面介绍一种简单记忆方法,供同学们学习时参考.以1为分界点,当a,N同侧时,log a N>0;当a,N异侧时,log a N<0.经典例题透析类型一、指数式与对数式互化及其应用1.将下列指数式与对数式互化:(1);(2);(3);(4);(5);(6).思路点拨:运用对数的定义进行互化.解:(1);(2);(3);(4);(5);(6).总结升华:对数的定义是对数形式和指数形式互化的依据,而对数形式和指数形式的互化又是解决问题的重要手段.举一反三:【变式1】求下列各式中x的值:(1)(2)(3)lg100=x (4)思路点拨:将对数式化为指数式,再利用指数幂的运算性质求出x.解:(1);(2);(3)10x=100=102,于是x=2;(4)由.类型二、利用对数恒等式化简求值2.求值:解:.总结升华:对数恒等式中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数.举一反三:【变式1】求的值(a,b,c∈R+,且不等于1,N>0)思路点拨:将幂指数中的乘积关系转化为幂的幂,再进行运算.解:.类型三、积、商、幂的对数3.已知lg2=a,lg3=b,用a、b表示下列各式.(1)lg9 (2)lg64 (3)lg6 (4)lg12 (5)lg5 (6) lg15解:(1)原式=lg32=2lg3=2b(2)原式=lg26=6lg2=6a(3)原式=lg2+lg3=a+b(4)原式=lg22+lg3=2a+b(5)原式=1-lg2=1-a(6)原式=lg3+lg5=lg3+1-lg2=1+b-a举一反三:【变式1】求值(1)(2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2解:(1)(2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1(3)原式=2lg5+lg2(1+lg5)+(lg2)2=2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2.【变式2】已知3a=5b=c,,求c的值.解:由3a=c得:同理可得.【变式3】设a、b、c为正数,且满足a2+b2=c2.求证:.证明:.【变式4】已知:a2+b2=7ab,a>0,b>0. 求证:.证明:∵a2+b2=7ab,∴a2+2ab+b2=9ab,即(a+b)2=9ab,∴lg(a+b)2=lg(9ab),∵a>0,b>0,∴2lg(a+b)=lg9+lga+lgb ∴2[lg(a+b)-lg3]=lga+lgb即.类型四、换底公式的运用4.(1)已知log x y=a,用a表示;(2)已知log a x=m,log b x=n,log c x=p,求log abc x.解:(1)原式=;(2)思路点拨:将条件和结论中的底化为同底.方法一:a m=x,b n=x,c p=x∴,∴;方法二:.举一反三:【变式1】求值:(1);(2);(3).解:(1);(2);(3)法一:法二:.总结升华:运用换底公式时,理论上换成以大于0不为1任意数为底均可,但具体到每一个题,一般以题中某个对数的底为标准,或都换成以10为底的常用对数也可.类型五、对数运算法则的应用5.求值(1) log89·log2732(2)(3)(4)(log2125+log425+log85)(log1258+log254+log52)解:(1)原式=.(2)原式=(3)原式=(4)原式=(log2125+log425+log85)(log1258+log254+log52)举一反三:【变式1】求值:解:另解:设=m (m>0).∴,∴,∴,∴lg2=lgm,∴2=m,即.【变式2】已知:log23=a,log37=b,求:log4256=?解:∵∴,类型六、函数的定义域、值域求含有对数函数的复合函数的定义域、值域,其方法与一般函数的定义域、值域的求法类似,但要注意对数函数本身的性质(如定义域、值域及单调性)在解题中的重要作用.6. 求下列函数的定义域:(1);(2).思路点拨:由对数函数的定义知:x2>0,4-x>0,解出不等式就可求出定义域.解:(1)因为x2>0,即x≠0,所以函数;(2)因为4-x>0,即x<4,所以函数.举一反三:【变式1】求下列函数的定义域.(1) y=(2) y=ln(a x-k·2x)(a>0且a≠1,k∈R).解:(1)因为,所以,所以函数的定义域为(1,)(,2).(2)因为a x-k·2x>0,所以()x>k.[1]当k≤0时,定义域为R;[2]当k>0时,(i)若a>2,则函数定义域为(k,+∞);(ii)若0<a<2,且a≠1,则函数定义域为(-∞,k);(iii)若a=2,则当0<k<1时,函数定义域为R;当k≥1时,此时不能构成函数,否则定义域为.【变式2】函数y=f(2x)的定义域为[-1,1],求y=f(log2x)的定义域.思路点拨:由-1≤x≤1,可得y=f(x)的定义域为[,2],再由≤log2x≤2得y=f(log2x)的定义域为[,4].类型七、函数图象问题7.作出下列函数的图象:(1) y=lgx,y=lg(-x),y=-lgx;(2) y=lg|x|;(3) y=-1+lgx.解:(1)如图(1);(2)如图(2);(3)如图(3).类型八、对数函数的单调性及其应用利用函数的单调性可以:①比较大小;②解不等式;③判断单调性;④求单调区间;⑤求值域和最值.要求同学们:一是牢固掌握对数函数的单调性;二是理解和掌握复合函数的单调性规律;三是树立定义域优先的观念.8. 比较下列各组数中的两个值大小:(1)log23.4,log28.5(2)log0.31.8,log0.32.7(3)log a5.1,log a5.9(a>0且a≠1)思路点拨:由数形结合的方法或利用函数的单调性来完成.(1)解法1:画出对数函数y=log2x的图象,横坐标为3.4的点在横坐标为8.5的点的下方,所以,log23.4<log28.5;解法2:由函数y=log2x在R+上是单调增函数,且3.4<8.5,所以log23.4<log28.5;解法3:直接用计算器计算得:log23.4≈1.8,log28.5≈3.1,所以log23.4<log28.5;(2)与第(1)小题类似,log0.3x在R+上是单调减函数,且1.8<2.7,所以log0.31.8>log0.32.7;(3)注:底数是常数,但要分类讨论a的范围,再由函数单调性判断大小.解法1:当a>1时,y=log a x在(0,+∞)上是增函数,且5.1<5.9,所以,log a5.1<log a5.9当0<a<1时,y=log a x在(0,+∞)上是减函数,且5.1<5.9,所以,log a5.1>log a5.9 解法2:转化为指数函数,再由指数函数的单调性判断大小,令b1=log a5.1,则,令b2=log a5.9,则当a>1时,y=a x在R上是增函数,且5.1<5.9所以,b1<b2,即当0<a<1时,y=a x在R上是减函数,且5.1<5.9所以,b1>b2,即.举一反三:【变式1】若log m3.5>log n3.5(m,n>0,且m≠1,n≠1),试比较m ,n的大小.解:(1)当m>1,n>1时,∵3.5>1,由对数函数性质:当底数和真数都大于1时,对同一真数,底数大的对数值小,∴n>m>1.(2)当m>1,0<n<1时,∵log m3.5>0,log n3.5<0,∴0<n<1<m也是符合题意的解.(3)当0<m<1,0<n<1时,∵3.5>1,由对数函数性质,此时底数大的对数值小,故0<m<n<1.综上所述,m,n的大小关系有三种:1<m<n或0<n<1<m或0<m<n<1.9. 证明函数上是增函数.思路点拨:此题目的在于让学生熟悉函数单调性证明通法,同时熟悉利用对函数单调性比较同底数对数大小的方法.证明:设,且x1<x2则又∵y=log2x在上是增函数即f(x1)<f(x2)∴函数f(x)=log2(x2+1)在上是增函数.举一反三:【变式1】已知f(log a x)=(a>0且a≠1),试判断函数f(x)的单调性.解:设t=log a x(x∈R+,t∈R).当a>1时,t=log a x为增函数,若t1<t2,则0<x1<x2,∴f(t1)-f(t2)=,∵0<x1<x2,a>1,∴f(t1)<f(t2),∴f(t)在R上为增函数,当0<a<1时,同理可得f(t)在R上为增函数.∴不论a>1或0<a<1,f(x)在R上总是增函数.10.求函数y=(-x2+2x+3)的值域和单调区间.解:设t=-x2+2x+3,则t=-(x-1)2+4.∵y=t为减函数,且0<t≤4,∴y≥=-2,即函数的值域为[-2,+∞.再由:函数y=(-x2+2x+3)的定义域为-x2+2x+3>0,即-1<x<3.∴t=-x2+2x+3在-1,1)上递增而在[1,3)上递减,而y=t为减函数.∴函数y=(-x2+2x+3)的减区间为(-1,1),增区间为[1,3.类型九、函数的奇偶性11. 判断下列函数的奇偶性.(1)(2).(1)思路点拨:首先要注意定义域的考查,然后严格按照证明奇偶性基本步骤进行.解:由所以函数的定义域为:(-1,1)关于原点对称又所以函数是奇函数;总结升华:此题确定定义域即解简单分式不等式,函数解析式恒等变形需利用对数的运算性质.说明判断对数形式的复合函数的奇偶性,不能轻易直接下结论,而应注意对数式的恒等变形.(2)解:由所以函数的定义域为R关于原点对称又即f(-x)=-f(x);所以函数.总结升华:此题定义域的确定可能稍有困难,函数解析式的变形用到了分子有理化的技巧,要求掌握. 类型十、对数函数性质的综合应用12.已知函数f(x)=lg(ax2+2x+1).(1)若函数f(x)的定义域为R,求实数a的取值范围;(2)若函数f(x)的值域为R,求实数a的取值范围.思路点拨:与求函数定义域、值域的常规问题相比,本题属非常规问题,关键在于转化成常规问题.f(x)的定义域为R,即关于x的不等式ax2+2x+1>0的解集为R,这是不等式中的常规问题.f(x)的值域为R与ax2+2x+1恒为正值是不等价的,因为这里要求f(x)取遍一切实数,即要求u=ax2+2x+1取遍一切正数,考察此函数的图象的各种情况,如图,我们会发现,使u 能取遍一切正数的条件是.解:(1)f(x)的定义域为R,即:关于x的不等式ax2+2x+1>0的解集为R,当a=0时,此不等式变为2x+1>0,其解集不是R;当a≠0时,有a>1.∴a的取值范围为a>1.(2)f(x)的值域为R,即u=ax2+2x+1能取遍一切正数a=0或0≤a≤1,∴a的取值范围为0≤a≤1.11。

对数函数基础运算法则及例题,答案

对数函数基础运算法则及例题,答案

对数函数的定义: 函数x y a log =)10(≠>a a 且叫做对数函数,定义域为),0(+∞,值域为),(+∞-∞.对数的四则运算法则:若a >0,a ≠1,M >0,N >0,则(1)log ()log log a a a MN M N =+; (2) log log log a a a M M N N=-; (3)log log ()n a a M n M n R =∈. (4)N nN a n a log 1log =例1.已知x =49时,不等式 log a (x 2 – x – 2)>log a (–x 2 +2x + 3)成立,求使此不等式成立的x 的取值范围.解:∵x =49使原不等式成立. ∴log a [249)49(2--]>log a )3492)49(1[2+⋅+⋅即log a 1613>log a 1639. 而1613<1639. 所以y = log a x 为减函数,故0<a <1. ∴原不等式可化为⎪⎪⎩⎪⎪⎨⎧++-<-->++->--322032022222x x x x x x x x , 解得⎪⎪⎩⎪⎪⎨⎧<<-<<->-<2513121x x x x 或. 故使不等式成立的x 的取值范围是)25,2( 例2.求证:函数f (x ) =xx -1log 2在(0, 1)上是增函数. 解:设0<x 1<x 2<1,则f (x 2) – f (x 1) = 212221log log 11x x x x ---21221(1)log (1)x x x x -=-=.11log 21122x x x x --⋅ ∵0<x 1<x 2<1,∴12x x >1,2111x x -->1. 则2112211log x x x x --⋅>0, ∴f (x 2)>f (x 1). 故函数f (x )在(0, 1)上是增函数例3.已知f (x ) = log a (a – a x ) (a >1).(1)求f (x )的定义域和值域; (2)判证并证明f (x )的单调性.解:(1)由a >1,a – a x >0,而a >a x ,则x <1. 故f (x )的定义域为( -∞,1),而a x <a ,可知0<a – a x <a , 又a >1. 则log a (a – a x )<lg a a = 1.取f (x )<1,故函数f (x )的值域为(–∞, 1).(2)设x 1>x 2>1,又a >1, ∴1x a >2x a ,∴1x a a -<a-2x a ,∴log a (a –1x a )<log a (a –2x a ),即f (x 1)< f (x 2),故f (x )在(1, +∞)上为减函数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对数及其运算基础知识及例题
1、定义:
2、性质:
~
3、对数的运算性质:
4、换底公式:
5、对数的其他运算性质
!
6、常用对数和自然对数:
【典型例题】
类型一、对数的概念
例1.求下列各式中x 的取值范围:
(1)2log (5)x -;(2)(1)log (2)x x -+;(3)2
(1)log (1)x x +-.

类型二、指数式与对数式互化及其应用 例2.将下列指数式与对数式互化: (1)2log 164=;(2)1
3
log 273=-;(3)3x =;(4)3
5125=;(5)1
122-=;(6)2
193-⎛⎫
= ⎪⎝⎭
.
类型三、利用对数恒等式化简求值
\
例3.求值: 71log 5
7+
类型四、积、商、幂的对数
例4. z y x a a a log ,log ,log 用表示下列各式
\
235
3
(1)log ;
(2)log ();
(3)log ;
(4)log a a a a
x y
xy
x
x y z
z
例5.已知18log 9,185b
a ==,求36log 45.
:
类型六、对数运算法则的应用 例6.求值
(1) 9
1log 81log 251log 32log 532
64⋅⋅⋅
.
(2) 7
lg142lg lg 7lg183
-+-
(3))36log 4
3
log 32(log log 42
1
22++
(4)()248125255log 125log 25log 5(log 8log 4log 2)++++

对数及其运算练习题
一、选择题 1、 2
5)(log 5
a -(a ≠0)化简得结果是( )
~
A 、-a
B 、a 2
C 、|a |
D 、a
2、 log 7[log 3(log 2x )]=0,则2
1-x 等于( )
A 、
3
1
B 、
3
21 C 、
2
21 D 、
3
31
3、 n
n ++1log
(n n -+
1)等于( ) A 、1
B 、-1
C 、2
D 、-2
4、 已知32a =,那么33log 82log 6-用表示是( )
A 、2a -
B 、52a -
C 、2
3(1)a a -+ D 、 23a a - 5、 2log (2)log log a a a M N M N -=+,则
N
M
的值为( ) "
A 、
4
1
B 、4
C 、1
D 、4或1 6、 若log m 9<log n 9<0,那么m,n 满足的条件是( ) A 、m>n>1 B 、n>m>1 C 、0<n<m<1 D 、0<m<n<1
7、 若1<x<b,a=log 2
b x,c=log a x,则a,b,
c 的关系是( ) A 、a<b<c B 、 a<c<b C 、c<b<a D 、c<a<b 8、在)5(log 2a b a -=-中,实数a 的范围是( )
^
A 、 a >5或a <2
B 、 25<<a
C 、 23<<a 或35<<a
D 、 34<<a
9、 若log [log (log )]4320x =,则x -
12
等于( ) A 、 1
4
2 B 、
1
2
2 C 、 8
D 、 4
10、3
3
4
log
的值是( )
A 、 16
B 、 2
C 、 3
D 、 4
11、 已知b a ==4log 3log 55,
,则log 2512是( ) A 、 a b +
B 、
)(2
1
b a + C 、 ab D 、
12
ab 【
12、 已知21366log log x =-,则x 的值是( )
A 、 3
B 、 2
C 、 2或-2
D 、 3或2
13、 计算=++5lg 2lg 35lg 2lg 3
3( ) A 、 1
B 、 3
C 、 2
D 、 0
14、 已知238
3
4x y ==,log ,则x y +2的值为( ) A 、 3
B 、 8
C 、 4
D 、 log 48
15、 设a 、b 、c 都是正数,且c b a 643==,则( )
"
A 、
111c a b
=+ B 、
221c a b =+ C 、 122c a b
=+ D 、
212
c a b
=+ 二、填空题
16、 若log a x =log b y =-2
1
log c 2,a ,b ,c 均为不等于1的正数,且x >0,y >0,c =ab ,则xy =________
17 、若lg2=a ,lg3=b ,则log 512=________ 18、 3a
=2,则log 38-2log 36=__________ 19、 若2log 2,log 3,m n
a a m n a
+===___________________
20、 lg25+lg2lg50+(lg2)2
=

21、 若1)12(log -=+x ,则x=________,若log
2
8=y ,则y=___________。

22、 若f x x ()log ()=-31,且f a ()=2,则a=_____________ 23、 已知log log log a b c x x x ===214,,,则log abc x =_________ 24、 23
42
92
3232log ()log ()+-+=___________
三、解答题
25、 222522122(lg )lg lg (lg )lg +⋅+-+
26、 若lga 、lgb 是方程01422
=+-x x 的两个实根,求2)(lg )lg(b
a a
b ⋅的值。

27、 若f(x)=1+log x 3, g(x)=2log x 2, 试比较f(x)与g(x)的大小.
28、计算:(log 2125+log 425+log 85)(log 52+log 254+log 1258)
29、已知b a ==5log 7log 1414,
,用a 、b 表示log 3528。

30、设M N a a a a
==-{}{lg }01112,,,,,,是否存在实数a ,使得M N ={}1。

相关文档
最新文档