高一函数奇偶性练习题
函数奇偶性练习题高一
![函数奇偶性练习题高一](https://img.taocdn.com/s3/m/9387ee6feffdc8d376eeaeaad1f34693daef10ad.png)
函数奇偶性练习题高一一、判断函数的奇偶性1. 判断函数 $f(x) = x^3 3x$ 的奇偶性。
2. 判断函数 $f(x) = \frac{1}{x}$ 的奇偶性。
3. 判断函数 $f(x) = \sqrt{x^2 + 1}$ 的奇偶性。
4. 判断函数 $f(x) = x^2 x^4$ 的奇偶性。
5. 判断函数 $f(x) = \cos(x)$ 的奇偶性。
二、证明函数的奇偶性6. 证明函数 $f(x) = x^2 + x$ 是偶函数。
7. 证明函数 $f(x) = x^3 x$ 是奇函数。
8. 证明函数 $f(x) = \ln(x^2)$ 是偶函数。
9. 证明函数 $f(x) = \tan(x)$ 是奇函数。
10. 证明函数 $f(x) = e^{x^2}$ 是偶函数。
三、求给定函数的奇偶部分11. 求函数 $f(x) = x^4 2x^2 + 1$ 的奇偶部分。
12. 求函数 $f(x) = \sin(x) + \cos(x)$ 的奇偶部分。
13. 求函数 $f(x) = x^5 3x^3 + 2x$ 的奇偶部分。
14. 求函数 $f(x) = \frac{1}{x^2 + 1}$ 的奇偶部分。
15. 求函数 $f(x) = \sqrt{x} \frac{1}{\sqrt{x}}$ 的奇偶部分。
四、综合运用16. 已知函数 $f(x) = ax^3 + bx^2 + cx + d$,若 $f(x)$ 是偶函数,求 $a$、$b$、$c$ 的关系。
17. 已知函数 $f(x) = ax^4 + bx^3 + cx^2 + dx + e$,若$f(x)$ 是奇函数,求 $a$、$b$、$c$、$d$ 的关系。
18. 设函数 $f(x)$ 是奇函数,且 $f(1) = 2$,求 $f(1)$ 的值。
19. 设函数 $f(x)$ 是偶函数,且 $f(2) = 3$,求 $f(2)$ 的值。
20. 已知函数 $f(x) = x^3 + g(x)$ 是奇函数,求 $g(x)$ 的表达式。
高一数学-函数的奇偶性及其判断练习题
![高一数学-函数的奇偶性及其判断练习题](https://img.taocdn.com/s3/m/352b3b09905f804d2b160b4e767f5acfa0c7835a.png)
函数的奇偶性及其判断【题型一、奇偶性判断】1.判断并证明下列函数的奇偶性 (1)2(+1)()=1x x f x x + (2)21()x f x x += (3)()22x x f x -=-【题型二、奇偶性概念】1.下列条件,可以说明函数是偶函数的是( )A.在定义域内存在,使得B.在定义域内存在,使得C.对定义域内任意,都有D.对定义域内任意,都有2.()f x 是定义在R 上的奇函数,下列说法错误的是( )A .()()f x f x =-B .()()f x f x -=-C .()()0f x f x -+=D .()()f x f x =--【题型三、奇偶性函数的定义域关于原点对称】3.函数y =f (x ),x ∈[-1,a ](a >-1)是奇函数,则a 等于( )A .-1B .0C .1D .无法确定4.已知一个奇函数的定义域为{-1,2,a ,b },则a +b 等于( )A .-1B .1C .0D .2【题型三、奇偶性之图像法】5.下列图象表示的函数具有奇偶性的是( )A B C D6.以下函数图象中为奇函数的一项是( ) A .B .C .D .7.函数y x x =的图象大致是( )A .B .C .D .8.函数f (x )=2x -1x 的图象关于( )A .y 轴对称B .直线y =-x 对称C .直线y =x 对称D .坐标原点对称9.函数()1f x x =+是( )A. 奇函数B. 偶函数C. 既是奇函数又是偶函数D. 非奇非偶函数10.函数()2f x x x =+( )A. 奇函数B. 偶函数C. 既是奇函数又是偶函数D. 非奇非偶函数11.已知函数1()f x x x x ⎛⎫=- ⎪⎝⎭,则函数( ) A .是奇函数但不是偶函数 B .是偶函数但不是奇函数 C .是奇函数也是偶函数 D .既不是奇函数也不是偶函数12.函数f (x )=23x +的奇偶性是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数13.下列函数中既不是奇函数也不是偶函数的是( )A .1y x= B .2y x = C .y x = D .y x = 14.下列函数是偶函数的是( ) A .y =x B .y =2x 2-3 C .y =1x D .y =x 2,x ∈[0,1]15.下列函数是奇函数的是( )A .y x =B .21y x =-+C .1y x = D .3y x =-16.下列函数中,是偶函数的函数是( )A .1y x x=+ B .||1y x =- C .y x = D .2y x x =-17.下列函数是奇函数的是( )A .x y =B .223y x =+C .y x =D .()2,1,1y x x =∈-18.下列四个函数中为偶函数的是( )A.2y x =B.541x x y x -=- C.22y x x =- D.y x =19.下列函数是奇函数的是( )A .y =x (x ∈[0,1])B .y =3x 2C .21y x =D .y =x |x |20.下列判断正确的是( )A .函数()22x x f x x -=-是奇函数B .函数()()111x f x x x+=--是偶函数 C .函数()1f x x =+是非奇非偶函数 D .函数()1f x =既是奇函数又是偶函数 21.下列函数中既是奇函数,又在区间()0,∞+上单调递减的函数为A .1y x = B .2y x =- C .y x = D .1x y x =+22.下列函数中,既是奇函数又是增函数的是( )A .1y x =+B .y x =-C .1y x = D .||y x x =23.下列函数中,既是偶函数,又在(0,)+∞上单调递增的是( )A .||y x x =B .4y x x=- C .2y x = D .|1|y x =+24.下列函数中既是偶函数又在(0,+∞)上是增函数的是( )A. y =x 3 B . y =|x |+1 C . y =-x 2+1 D . y =2x +125.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( )A . y =1xB . y =3x +1C . y =-x 2+1D . y =|x |26.下列函数中,既是偶函数又在(0,+∞)上单调递增的函数( )A . y =xB . y =|x |+1C . y =-x 2+1D .xy 2-=【学有余力】 1.函数y =21k x-+b 在(0,+∞)上是减函数,则( ). A .k >12 B .k <12 C .k > -12 D .k < -12 2.如果函数2()(1)5f x x a x =+-+在区间(,2]-∞上单调递减,那么实数a 的取值范围是( ) A .(,3]-∞- B .[3,)-+∞ C .(,5]-∞ D .[5,)+∞3.函数()()2212f x x a x =-+-+在(),4-∞上是增函数,则a 的取值范围是( )A .[)5,+∞B .[)3,+∞C .(],3-∞D .(],5-∞4.如果函数()223f x ax x =+-在区间(),4-∞上是单调递增的,则实数a 的取值范围是( ).A .14a >-B .14a ≥-C .104a -≤< D .104a -≤≤5.若函数y =ax 与y =-b x在(0,+∞)上都是单调递减的,则函数y =ax 2+bx 在(0,+∞)上( ) A .单调递增 B .单调递减 C .先增后减 D .先减后增6.若函数()()22,111,1x ax x f x a x x ⎧-+≥⎪=⎨-+<⎪⎩在R 上是增函数,则实数a 的取值范围是( ) A .(]1,2 B .35,22⎡⎤⎢⎥⎣⎦ C .3,22⎛⎤ ⎥⎝⎦D .31,2⎛⎤ ⎥⎝⎦ 7.若函数()28,12,1a x x x f x a x x⎧-+≤⎪⎪=⎨⎪>⎪⎩为R 上的减函数,则实数a 的取值范围是( ) A .()4,+∞ B .[)4,+∞ C .[]4,6 D .()0,∞+8.已知函数()23,01,0x a x f x x ax x -+≥⎧=⎨-+<⎩是(),-∞+∞上的减函数,则实数a 的取值范围是( ) A .10,3⎡⎤⎢⎥⎣⎦B .10,3⎛⎫ ⎪⎝⎭C .10,3⎛⎤ ⎥⎝⎦D .10,3⎡⎫⎪⎢⎣⎭9.已知()f x 是定义在[]1,1-上的增函数,且()()113f x f x -<-,则x 的取值范围是( )A .10,2⎡⎫⎪⎢⎣⎭B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎤ ⎥⎝⎦D .()1,+∞10.已知函数()f x 对()12,0,x x ∀∈+∞,都有()()12120f x f x x x -<-,且()()221f m f m ->+,则实数m 的取值范围是( ) A .1,3⎛+∞⎫ ⎪⎝⎭ B .1,3⎛⎫-∞ ⎪⎝⎭ C .1,13⎛⎫ ⎪⎝⎭D .11,3⎛⎫- ⎪⎝⎭11.设21(2)()((1))1(2)x x f x f f x x -≥⎧=⎨++<⎩,则(1)f =( ) A .3 B .4 C .5 D .611.若函数f (x ) = 2x +3 , g (x +2) = f (x ) , 则g (x )的解析式是 ( )A .g (x )=2x +1B .g (x )=2x -1C .g (x )=2x -3D .g (x )=2x +712.函数()21,11,1x x x f x x x⎧-+<⎪=⎨>⎪⎩的值域为( ) A .3,4⎡⎫+∞⎪⎢⎣⎭B .()0,1C .3,14⎡⎫⎪⎢⎣⎭D .()0,∞+13.集合{|P x y ==,5{|0}1y Q y y -=≤+,求()P Q =A.{}05y y ≤≤B.{}5y y >C.[5,)+∞D.(,1)[2,)-∞-+∞14.下列函数中,在定义域内是单调递增函数的是( ) A .y =|x |B .1y x =- C.y = D .1y x =- 15.函数2()68f x x x =-+的单调递增区间为( )A .[3,)-+∞B .(,2),(4,)-∞+∞C .(2,3),(4,)+∞D .(,2],[3,4]-∞-16.函数221y x x =+﹣的单调递增区间是( ) A .()1,0- B .(1,0)-和(1,)+∞ C .(,1)-∞- D .(,1)-∞-和(0,1)。
函数的奇偶性问题练习题(含答案)
![函数的奇偶性问题练习题(含答案)](https://img.taocdn.com/s3/m/001d946131126edb6f1a106d.png)
...函数的奇偶性问题一、选择题1.已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx () A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数 解析:f (x )=ax 2+bx +c 为偶函数,x x =)(ϕ为奇函数,∴g (x )=ax 3+bx 2+cx =f (x )·)(x ϕ满足奇函数的条件. 答案:A2.已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则() A .31=a ,b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =0 解析:由f (x )=ax 2+bx +3a +b 为偶函数,得b =0.又定义域为[a -1,2a ],∴a -1=2a ,∴31=a .故选A .3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的表达式是( )A .y =x (x -2)B .y =x (|x |-1)C .y =|x |(x -2)D .y =x (|x |-2) 解析:由x ≥0时,f (x )=x 2-2x ,f (x )为奇函数,∴当x <0时,f (x )=-f (-x )=-(x 2+2x )=-x 2-2x =x (-x -2). ∴(2)(0)()(2)(0),,x x x f x x x x ⎧⎨⎩-≥=--<即f (x )=x (|x |-2)答案:D4.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于( ) A .-26 B .-18 C .-10 D .10 解析:f (x )+8=x 5+ax 3+bx 为奇函数,f (-2)+8=18,∴f (2)+8=-18,∴f (2)=-26. 答案:A5.函数1111)(22+++-++=x xx x x f 是()A .偶函数B .奇函数C .非奇非偶函数D .既是奇函数又是偶函数 解析:此题直接证明较烦,可用等价形式f (-x )+f (x )=0. 答案:B 6.若)(x ϕ,g (x )都是奇函数,2)()(++=x bg a x f ϕ在(0,+∞)上有最大值5,则f (x )在(-∞,0)上有( )A .最小值-5B .最大值-5C .最小值-1D .最大值-3解析:)(x ϕ、g (x )为奇函数,∴()2()()f x a x bg x φ-=+为奇函数. 又f (x )在(0,+∞)上有最大值5, ∴f (x )-2有最大值3. ∴f (x )-2在(-∞,0)上有最小值-3, ∴f (x )在(-∞,0)上有最小值-1. 答案:C 二、填空题 7.函数2122)(xx x f ---=的奇偶性为____奇函数____(填奇函数或偶函数) .8.若y =(m -1)x 2+2mx +3是偶函数,则m =____0_____. 解析:因为函数y =(m -1)x 2+2mx +3为偶函数,∴f (-x )=f (x ),即(m -1)(-x )2+2m (-x )+3=(m —1)x 2+2mx +3,整理,得m =0.9.已知f (x )是偶函数,g (x )是奇函数,若11)()(-=+x x g x f ,则f (x )的解析式为____11)(2-=xx f ___.解析:由f (x )是偶函数,g (x )是奇函数,...可得11)()(--=-x x g x f ,联立11)()(-=+x x g x f ,∴11)1111(21)(2-=----=x x x x f . 10.已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和为___0 _____. 三、解答题11.设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),求实数m 的取值范围.(21<m ) 12.已知函数f (x )满足f (x +y )+f (x -y )=2f (x )·f (y )(x ∈R ,y ∈R ),且f (0)≠0,试证f (x )是偶函数.证明:令x =y =0,有f (0)+f (0)=2f (0)·f (0),又f (0)≠0,∴可证f (0)=1.令x =0,∴f (y )+f (-y )=2f (0)·f (y )⇒f (-y )=f (y ),故f (x )为偶函数.13.已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2—1,求f (x )在R 上的表达式.解析:本题主要是培养学生理解概念的能力.f (x )=x 3+2x 2-1.因f (x )为奇函数,∴f (0)=0.当x <0时,-x >0,f (-x )=(-x )3+2(-x )2-1=-x 3+2x 2-1, ∴f (x )=x 3-2x 2+1.因此,.)0()0()0(12012)(,,2323<=>+--+=⎪⎩⎪⎨⎧x x x x x x x x f 点评:本题主要考查学生对奇函数概念的理解及应用能力.14.f (x )是定义在(-∞,-5]Y [5,+∞)上的奇函数,且f (x )在[5,+∞)上单调递减,试判断f (x )在(-∞,-5]上的单调性,并用定义给予证明. 解析:任取x 1<x 2≤-5,则-x 1>-x 2≥-5.因f (x )在[5,+∞]上单调递减,所以f (-x 1)<f (-x 2)⇒f (x 1)<-f (x 2)⇒f (x 1)>f (x 2),即单调减函数.点评:此题要注意灵活运用函数奇偶性和单调性,并及时转化.15.设函数y =f (x )(x ∈R 且x ≠0)对任意非零实数x 1、x 2满足f (x 1·x 2)=f (x 1)+f (x 2),求证f (x )是偶函数.解析:由x 1,x 2∈R 且不为0的任意性,令x 1=x 2=1代入可证, f (1)=2f (1),∴f (1)=0. 又令x 1=x 2=-1,∴f [-1×(-1)]=2f (1)=0, ∴(-1)=0.又令x 1=-1,x 2=x ,∴f (-x )=f (-1)+f (x )=0+f (x )=f (x ),即f (x )为偶函数. 点评:抽象函数要注意变量的赋值,特别要注意一些特殊值,如,x 1=x 2=1,x 1=x 2=-1或x 1=x 2=0等,然后再结合具体题目要求构造出适合结论特征的式子即可.。
高一数学函数的奇偶性试题
![高一数学函数的奇偶性试题](https://img.taocdn.com/s3/m/d103ffffcc175527062208f3.png)
高一数学函数的奇偶性试题1.若函数是偶函数,则的递减区间是【答案】【解析】偶函数的图像关于轴对称,故,则,则的递减区间是。
【考点】(1)偶函数图像的性质;(2)二次函数单调区间的求法。
2.设函数和分别是上的偶函数和奇函数,则下列结论恒成立的是A.是偶函数B.是奇函数C.是偶函数D.是奇函数【答案】A【解析】由设函数f(x)和g(x)分别是R上的偶函数和奇函数,我们易得到|f(x)|、|g(x)|也为偶函数,进而根据奇+奇=奇,偶+偶=偶,逐一对四个结论进行判断,即可得到答案.∵函数f(x)和g(x)分别是R上的偶函数和奇函数,则|g(x)|也为偶函数,则f(x)+|g(x)|是偶函数,故A满足条件;f(x)-|g(x)|是偶函数,故B不满足条件;|f(x)|也为偶函数,则|f(x)|+g(x)与|f(x)|-g(x)的奇偶性均不能确定故选A【考点】函数奇偶性的判断3.若函数的图像关于原点对称,则。
【答案】【解析】试题分析:由题意知恒成立,即即恒成立,所用【考点】奇函数的应用.4.已知函数为奇函数,且当时,,则()A.B.C.D.【答案】D【解析】∵为奇函数,∴.【考点】函数的性质.5.设函数是定义在上的偶函数,当时,.若,则实数的值为 .【答案】【解析】若,则由,得,,解得成立.若,则由,得,即,,得,即,所以.【考点】函数的奇偶性.6.已知偶函数满足,且当时,,则.【答案】2【解析】由知此函数周期 4,因为为偶函数,所以【考点】函数奇偶性周期性7.已知函数是定义在上的奇函数,当时,,则当时, .【答案】【解析】解:由题意得:当时,时,设时,则,又是定义在上的奇函数,时,【考点】本题考查了奇偶性的应用.8.函数为定义在R上的奇函数,当上的解析式为=.【答案】【解析】设,则,所以;因为函数是奇函数,所以所以,当时,【考点】函数奇偶性的性质.9.函数f(x)=x5+x3的图象关于()对称().A.y轴B.直线y=x C.坐标原点D.直线y=-x【答案】C【解析】∵,∴函数是奇函数,它的图象关于原点对称.图象关于y轴对称的函数是偶函数。
函数奇偶性练习题及答案
![函数奇偶性练习题及答案](https://img.taocdn.com/s3/m/48d54a25360cba1aa911da90.png)
函数的奇偶性练习题1、判断以下函数的奇偶性。
〔1〕x xx x f -+-=11)1()(〔非奇非偶〕〔2〕 2|2|)1lg()(2---=x x x f 〔奇〕〔3〕33)(22-+-=x x x f 〔奇偶〕 〔4〕2||)(2+--=a x x x f 〔a=0,偶;a ≠0,非奇非偶〕 〔5〕1212)(-+=x x x f 〔奇〕 〔6〕)1lg(2x x y ++=〔奇〕 〔7〕1cos sin ()1cos sin x xf x x x-+=++ 〔8〕1()x f x +-=(奇)2、设函数)(x f 是定义在R 上的奇函数,对于R x ∈∀,都有)23()23(x f x f --=+成立。
〔1〕证明:)(x f 是周期函数,并指出周期。
)()()]23(23[]23)23[()3()()(),23()23(x f x f x f x f x f x f x f x f x f =--=+--=++=+∴=---=+ 所以,)(x f 是周期函数,且3=T 〔2〕假设2)1(=f ,求)3()2(f f +的值。
-23.设()f x 是定义在R 上的奇函数,当x ≤0时,()f x x x 2=2-,则()f 1=〔 A 〕A .-3B .-1C .1D .34.函数)(x f 的定义域为()()+∞⋃∞-,11,,且)1(+x f 为奇函数,当1>x 时, 16122)(2+-=x x x f ,则直线2=y 与函数)(x f 图象的所有交点的横坐标之和是〔 D 〕A .1B .2C .4D .5解:f(x+1)是奇函数所以 f(x+1)的图像关于(0,0)对称,且f(0+1)=0f(x+1)的图像向右平移1个单位,得到f(x)所以 f(x)的图像关于(1,0)对称, f(1)=0则当 x>1时〔1〕 2x²-12x+16=2x²-6x+7=0x=3±√2 两根都大于1即x>1时,y=2与函数f(x)图像交点的横坐标为3±√2〔2〕 2x²-12x+16=-2x²-6x+9=0x=3所以 x=3时,y=-2(3,-2)关于(1,0)的对称点为〔-1,2〕即 x<1时,y=2与函数f(x)图像交点的横坐标为-1所以 ,直线y=2与函数f(x)图象的所有交点的横坐标之和是3+√2+3-√2+(-1)=55.下面四个结论中,正确命题的个数是 ( A )①偶函数的图象一定与y 轴相交②奇函数的图象一定通过原点③偶函数的图象关于y 轴对称④既是奇函数,又是偶函数的函数一定是f 〔x 〕=0〔x ∈R 〕A.1B.2C.36.设f (x )是定义在R 上以2为周期的偶函数,已知x ∈(0,1)时,)1(log )(21x x f -=,则函数f (x )在(1,2)上( D )A .是增函数,且f (x )<0B .是增函数,且f (x )>0C .是减函数,且f (x )<0D .是减函数,且f (x )>07.已知函数)(x f y =,R x ∈,有以下4个命题:①假设)21()21(x f x f -=+,则)(x f 的图象关于直线1=x 对称;②)2(-x f 与)2(x f -的图象关于直线2=x 对称;③假设)(x f 为偶函数,且)()2(x f x f -=+,则)(x f 的图象关于直线2=x 对称;④假设)(x f 为奇函数,且)2()(--=x f x f ,则)(x f 的图象关于直线1=x 对称.其中正确命题的个数为 〔C 〕.A. 1个B. 2个C. 3个D. 4个 分析:①先用换元法将f 〔1+2x 〕=f 〔1-2x 〕转化,再由转化后的形式判断对称轴的方程.②y=f 〔x-2〕与y=f 〔2-x 〕的图象关于直线x=2对称可转化为证明y=f 〔x 〕与y=f 〔-x 〕的图象关于直线x=0对称的问题,再结合图象的平移知识进行判断.③用-x 换x ,由题设条件和偶函数的性质得,f 〔2-x 〕=-f 〔-x 〕=-f 〔x 〕=f 〔2+x 〕,故f 〔x 〕的图象关于直线x=2对称. ④用-x 换x ,由题设条件和奇函数的性质得,f 〔-x 〕=f 〔x-2〕,故y=f 〔x 〕的图象关于直线x=-1对称. 解答:解:①令t=1+2x ,可得2x=t-1,代入f 〔1+2x 〕=f 〔1-2x 〕得f 〔t 〕=f 〔2-t 〕由于|t-1|=|2-t-1|,故可知函数y=f 〔x 〕图象关于直线x=1对称即y=f 〔x 〕的图象关于直线x=1对称,故①是真命题.②由题设知y=f 〔2-x 〕=f[-〔x-2〕]由于函数y=f 〔x 〕与y=f 〔-x 〕的图象关于直线x=0对称,又y=f 〔x-2〕与y=f 〔2-x 〕的图象可由函数y=f 〔x 〕与y=f 〔-x 〕的图象右移动2个单位而得到, ∴y=f 〔x-2〕与y=f 〔2-x 〕的图象关于直线x=2对称,故②是真命题.③f 〔x 〕为偶函数,且f 〔2+x 〕=-f 〔x 〕,用-x 换x 得,f 〔2-x 〕=-f 〔-x 〕=-f 〔x 〕=f 〔2+x 〕 ∴f 〔x 〕的图象关于直线x=2对称,故③是真命题.④∵y=f 〔x 〕为奇函数,且f 〔x 〕=f 〔-x-2〕,用-x 换x 得,f 〔-x 〕=f 〔x-2〕,∴y=f 〔x 〕的图象关于直线x=-1对称,故④是假命题.故选C .8.设)(x f 是),(+∞-∞上的奇函数,),()2(x f x f -=+当10≤≤x 时,x x f =)(,则)5.7(f 等于〔 B 〕A.0.5B.C.D.9.设f (x )是连续的偶函数,且当x >0时是单调函数,则满足f (x )=f ⎝ ⎛⎭⎪⎫x +3x +4的所有x 之和为( C ) A .-3 B .3 C .-8 D .810.已知函数f (x )满足:f (1)=2,)(1)(1)1(x f x f x f -+=+,则f (2011)等于( C ) A .2 B .-3 C .-12 D.13[解析] 由条件知,f (2)=-3,f (3)=-12,f (4)=13,f (5)=f (1)=2,故f (x +4)=f (x ) (x ∈N *).∴f (x )的周期为4,故f (2011)=f (3)=-12.[点评] 严格推证如下:f (x +2)=1+f (x +1)1-f (x +1)=-1f (x ),∴f (x +4)=f [(x +2)+2]=f (x ).即f (x )周期为 11.函数y =log 22-x 2+x的图象( A ) A .关于原点对称 B .关于直线y =-x 对称C .关于y 轴对称D .关于直线y =x 对称12.已知f 〔x 〕是奇函数,当x ∈〔0,1〕时,f 〔x 〕=lgx +11,那么当x ∈〔-1,0〕时,f 〔x 〕的表达式是__________.解析:当x ∈〔-1,0〕时,-x ∈〔0,1〕,∴f 〔x 〕=-f 〔-x 〕=-lg x-11=lg 〔1-x 〕.答案:lg 〔1-x 〕13.定义在R 上的奇函数f (x )满足:当x >0时,f (x )=2008x +log 2008x ,则方程f (x )=0的实根的个数为 3 .14.假设y =〔m -1〕x 2+2mx +3是偶函数,则m =_________.0解析:因为函数y =〔m -1〕x 2+2mx +3为偶函数,∴f 〔-x 〕=f 〔x 〕,即〔m -1〕〔-x 〕2+2m 〔-x 〕+3=〔m —1〕x 2+2mx +3,整理,得m =0.(15.已知函数f(x)定义域为R ,则以下命题:①y=f(x)为偶函数,则y=f(x+2)的图像关于y 轴对称;②y=f(x+2)为偶函数,则y=f(x)的图像关于直线x=2对称;③假设函数f(2x+1)是偶函数,则f(2x)的图像关于直线x=1/2对称; ④假设f(x-2)=f(2-x),则y=f(x)的图像关于直线x=2对称;⑤y=f(x-2)和y=f(2-x)的图像关于x=2对称。
函数的奇偶性练习题含答案
![函数的奇偶性练习题含答案](https://img.taocdn.com/s3/m/23ac8937ce2f0066f4332298.png)
函数的奇偶性练习题(1)1.如图,函数y =f(x)的图象为折线ABC ,设g (x)=f[f(x)],则函数y =g(x)的图象为( )A. B.C.D.2. 设x ,y 为实数,且满足{(x −1)3+2019(x −1)=−5,(y −1)3+2019(y −1)=5,则x +y =( ) A.2B.5C.10D.20193. 已知y =f (x )在R 上的奇函数,当x ≥0时,f (x )=2x +m ,则f (−2)=( )A.−3B.54C.−54D.34. 下列函数中,是偶函数的为( )A.y =|x|B.y =x 3C.y =(12)xD.y =log 2x<0的解集为5. 设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式f(x)−f(−x)x()A.(−1,0)∪(1,+∞)B.(−∞,−1)∪(0,1)C.(−∞,−1)∪(1,+∞)D.(−1,0)∪(0,1)6. 已知f(x)满足对∀x∈R,f(−x)+f(x)=0,且x≥0时,f(x)=e x+m(m为常数),则f(−ln5)的值为( )A.4B.−4C.6D.−67. 已知函数y=f(2x+1)是定义在R上的奇函数,函数y=g(x)的图象与函数y=f(x)的图象关于直线y=x对称,则g(x)+g(−x)的值为()A.2B.0C.1D.不能确定8. 已知函数f(x)是偶函数,且f(5−x)=f(5+x),若g(x)=f(x)sinπx,ℎ(x)=f(x)cosπx,则下列说法正确的是()A.函数y=g(x)是偶函数B.10是函数f(x)的一个周期C.对任意的x∈R,都有g(x+5)=g(x−5)D.函数y=ℎ(x)的图象关于直线x=5对称9. 下列函数中,既是偶函数又在(0, +∞)上单调递减的函数是()A.y=x3B.y=|x|C.y=−x2+1D.y=10. 已知函数f(x)=x5+ax3+bx−6,且f(−2)=10,则f(2)=________.11. 设奇函数f(x)的定义域为[−6, 6],当x∈[0, 6]时,f(x)的图象如图所示,不等式f(x)<0的解集用区间表示为________.12. 定义在[−2,2]上的奇函数f(x),已知当x∈[−2,0]时,f(x)=2x+a⋅3x(a∈R),则f(x)在[0,2]上的解析式为________.(化成最简形式)13. 已知函数f(x)是定义在R上的奇函数,且当x≥0时f(x)=x2,若对任意的x∈[a−1, a+1],恒有f(x2+a)>a2f(x),则实数a的取值范围为________.14. 已知f(x)是定义在R上的奇函数,当x>0时,f(x)=x2−x,则不等式f(x)>0的解集用区间表示为________.15. 已知函数f(x)=lg3−x3+x(1)判断并证明函数f(x)的奇偶性;(2)当x≥0时函数g(x)与f(x)相同,且g(x)为偶函数,求g(x)=的定义域及其表达式.16. 已知定义在R上的函数f(x)满足:(1)f(2−x)=f(x);(2)f(x+4)=f(x)(3)x1,x2∈[1, 3]时,(x1−x2)[f(x1)−f(x2)]<0.则f(2018),f(2019),f(2020)大小关系()A.f(2018)>f(2019)>f(2020)B.f(2020)>f(2018)>f(2019)C.f(2020)=f(2018)>f(2019)D.f(2018)>f(2019)=f(2020)17. 定义在R上的奇函数,当x>0时,f(x)=x2−4x.(1)设g(x)=f(x),x∈[−4, 4],求函数g(x)的值域;(2)当m>0时,若|f(m)|=3,求实数m的值.参考答案与试题解析函数的奇偶性练习题(1)一、选择题(本题共计 7 小题,每题 5 分,共计35分)1.【答案】A【考点】函数的图象变换函数奇偶性的性质【解析】函数y=f(x)的图象为折线ABC,其为偶函数,所研究x≥0时g(x)的图象即可,首先根据图象求出x≥0时f(x)的图象及其值域,再根据分段函数的性质进行求解,可以求出g(x)的解析式再进行判断;【解答】解:函数y=f(x)的图象为折线ABC,函数f(x)为偶函数,我们可以研究x≥0的情况即可,若x≥0,可得B(0, 1),C(1, −1),则直线BC的方程为:l BC:y=−2x+1,x∈[0, 1],其中−1≤f(x)≤1;若x<0,可得l AB:y=2x+1,∴f(x)={−2x+1(0≤x≤1),2x+1(−1≤x<0),我们讨论x≥0的情况:如果0≤x≤12,解得0≤f(x)≤1,此时g(x)=f[f(x)]=−2(−2x+1)+1=4x−1;若12<x≤1,解得−1≤f(x)<0,此时g(x)=f[f(x)]=2(−2x+1)+1=−4x+3;∴x∈[0, 1]时,g(x)={4x−1(0≤x≤12),−4x+3(12<x≤1).故选A.2.【答案】A【考点】函数奇偶性的性质【解析】将方程组中的方程,形式化成相同,构造函数f(t)=t3+1997t+1,确定函数f(t)为单调递增函数,即可求得结论.【解答】解:设函数f(m)=(m−1)3+2019(m−1),则f(1+m)=(1+m−1)3+2019(1+m−1)=m3+2019m,f(1−m)=(1−m −1)3+2019(1−m −1)=−m 3−2019m ,所以f(1+m)+f(1−m)=0,所以函数f(m)关于(1,0)中心对称,又因为{(x −1)3+2019(x −1)=−5,(y −1)3+2019(y −1)=5所以f(x)+f(y)=0,所以x +y =2.故选A .3.【答案】A【考点】函数奇偶性的性质【解析】根据题意,f (x )为定义在R 上的奇函数,可知f (0)=0,即可求出m =−1,即当x ≥0时f (x )=2x −1,可得f (2)=22−1=3,再根据f (x )为奇函数,可得f (−2)=−f (2)=−3.【解答】解:根据题意,f (x )为定义在R 上的奇函数,则f (0)=20+m =0,解得:m =−1.∵ 当x ≥0时,f (x )=2x −1,∴ f (−2)=−f (2)=−(22−1)=−3.故选A .4.【答案】A【考点】函数奇偶性的判断【解析】此题暂无解析【解答】解:A .该函数定义域为R ,设y =f(x),f(−x)=|−x|=|x|=f(x),是偶函数; B .该函数定义域为R ,设y =f(x),f(−x)=(−x)3=−x 3=−f(x),是奇函数; C .该函数定义域为R ,设y =f(x),f(−x)=(12)−x ≠f(x), f(−x)=(12)−x ≠−f(x),该函数是非奇非偶函数;D .该函数定义域为(0,+∞),不关于原点对称,该函数是非奇非偶函数.故选A .5.【答案】D【考点】奇偶性与单调性的综合此题暂无解析【解答】∵f(x)为奇函数,f(−x)=−f(x),∴f(x)−f(−x)x <0⇔2f(x)x<0.∵f(x)在(0,+∞)上为增函数,且f(1)=0,∴f(x)在(−∞,0)上为增函数,且f(−1)=0,∴不等式f(x)x<0的解集为(−1,0)∪(0,1).6.【答案】B【考点】函数奇偶性的性质【解析】首先利用奇偶性,求出m,再利用奇偶性求值即可.【解答】解:∵f(x)满足对∀x∈R,f(−x)+f(x)=0,故f(−x)=−f(x),故f(0)=0,∵x≥0时,f(x)=e x+m,∴f(0)=1+m=0,解得m=−1,即x≥0时,f(x)=e x−1,则f(ln5)=4,∴f(−ln5)=−f(ln5)=−4.故选B.7.【答案】A【考点】奇偶函数图象的对称性【解析】利用奇函数的定义可把已知转化为f(t)+f(2−t)=0,从而可得函数f(x)关于(1, 0)对称,函数y=g(x)的图象与函数y=f(x)的图象关于直线y=x对称,则g(x)关于(0, 1)对称,代入可求.【解答】解:∵函数y=f(2x+1)是定义在R上的奇函数∴f(−2x+1)=−f(2x+1)令t=1−2x代入可得f(t)+f(2−t)=0函数f(x)关于(1, 0)对称由函数y=g(x)的图象与函数y=f(x)的图象关于直线y=x对称函数g(x)关于(0, 1)对称从而有g(x)+g(−x)=2故选A二、多选题(本题共计 2 小题,每题 5 分,共计10分)8.B,C,D【考点】函数奇偶性的性质与判断【解析】根据题意,依次分析选项,综合即可得答案.【解答】根据题意,依次分析选项:对于A,g(x)=f(x)sinπx,g(−x)=f(−x)sinπ(−x)=−f(−x)sinπx,又由函数f(x)是偶函数,则g(−x)=−f(x)sinπx,即函数g(x)为奇函数,A错误对于B,由于f(x)是偶函数,且f(5−x)=f(5+x),得f(5−x)=f(5+x)=f(x−5),即f(10+x)=f(x),则f(x)是周期为10的周期函数,所以ℎ(x+10)=f(x+10)cos(πx+10π)=f(x)cosπx=ℎ(x),则y=ℎ(x)是的最小正周期为10,故B正确;对于C,g(x+5)=f(x+5)sin(π(x+5))=f(5−x)sin(πx+5π)=f(5−x)(−sinπx)=−f(x−5)(−sinπx)=f(x−5)sinπx=g(x−5),故C正确;对于D,ℎ(5−x)=f(5−x)cos(5π−5x)=f(5+x)cos(5x−5π)=f(5+x)cos(5x−5π+10π)=f(5+x)cos(5x+5π)=ℎ(5+x),所以函数y=ℎ(x)的图象关于直线x=5对称,D正确;9.【答案】C,D【考点】函数单调性的性质与判断函数奇偶性的性质与判断奇偶性与单调性的综合【解析】根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案.【解答】对于A,y=x3为奇函数,所以该选项不符合题意;对于B,x>0时,y=|x|=x,所以函数y=|x|的(0, +∞)上为增函数,所以该选项不符合题意;对于C,该函数定义域为R,设y=f(x),显然f(−x)=f(x),所以该函数为偶函数,且该函数在(0, +∞)上单调递减,所以该选项符合题意;对于D,该函数定义域为{x|x≠0},设y=f(x),显然f(−x)=f(x),所以该函数为偶函数,且该函数在(0, +∞)上单调递减,可知该选项符合题意.三、填空题(本题共计 5 小题,每题 5 分,共计25分)10.【答案】−22【考点】函数奇偶性的性质与判断【解析】根据奇函数的性质建立方程组关系进行求解决即可.∵f(x)=x5+ax3+bx−6,且f(−2)=10,∴f(−2)=−25−a⋅23−2b−6=10,则f(2)=25+a⋅23−2b−6,两式相加得10+f(2)=−6−6=−12,则f(2)=−10−12=−22,11.【答案】[−6, −3)∪(0, 3)【考点】函数的图象与图象的变换【解析】此题暂无解析【解答】此题暂无解答12.【答案】3−x−2−x【考点】函数奇偶性的性质函数解析式的求解及常用方法【解析】由题意设x>0利用已知的解析式求出f(−x)=x2+2x,再由f(x)=−f(−x),求出x>0时的解析式.【解答】解:∵ f(x)为奇函数,∴ f(0)=20+a⋅30=1+a=0,∴ a=−1,f(x)=2x−3x.∴ 在x∈[0,2]上时,f(x)=−f(−x)=3−x−2−x.故答案为:3−x−2−x.13.【答案】(0, +∞)【考点】函数奇偶性的性质与判断函数恒成立问题【解析】由当x≥0时,f(x)=x2,函数是奇函数,可得当x<0时,f(x)=−x2,从而f(x)在R上是单调递增函数,且满足a2f(x)=f(ax),再根据不等式f(x2+a)>a2f(x)=f(ax),在x∈[a−1, a+1],恒成立,利用二次函数的性质,可得不等式,即可得出答案.【解答】当x≥0时,f(x)=x2,∵函数是奇函数,∴当x<0时,f(x)=−x2,∴f(x)={x2,x≥0,−x2,x<0∴f(x)在R上是单调递增函数,且满足a2f(x)=f(ax),∵不等式f(x2+a)>a2f(x)=f(ax)在x∈[a−1, a+1]恒成立,∴x2+a>ax在x∈[a−1, a+1]恒成立,令g(x)=x2−ax+a,函数的对称轴为x=a2,当a2<a−1,即a>2时,不等式恒成立,可得g(a−1)=(a−1)2−a(a−1)+a=1>0,恒成立;当a−1≤a2≤a+1,即−2≤a≤2时,不等式恒成立,可得g(a2)=( a2)2−a(a2)+a>0恒成立,解得a∈(0, 2];当a2>a+1,即a<−2时,不等式恒成立,可得g(a+1)=(a+1)2−a(a+1)+a=2a+1>0不恒成立;综上:a>0.14.【答案】(−1, 0)∪(1, +∞)【考点】函数奇偶性的性质与判断【解析】根据条件可设x<0,从而得出f(−x)=x2+x=−f(x),即得出x<0时,f(x)=−x2−x,这样即可得出:x>0时,由f(x)>0得出x2−x>0;x<0时,由f(x)> 0得出−x2−x>0,解出x的范围即可.【解答】∵f(x)是定义在R上的奇函数,且x>0时,f(x)=x2−x,∴设x<0,−x>0,则f(−x)=x2+x=−f(x),∴f(x)=−x2−x,∴ ①x>0时,由f(x)>0得,x2−x>0,解得x>1;②x<0时,由f(x)>0得,−x2−x>0,解得−1<x<0,∴原不等式的解集为(−1, 0)∪(1, +∞).四、解答题(本题共计 3 小题,每题 10 分,共计30分)15.【答案】根据题意,函数f(x)=lg3−x3+x是奇函数,证明:对于函数f(x)=lg3−x3+x ,必有3−x3+x>0,解可得:−3<x<3,即函数的定义域为(−3, 3),关于原点对称,又由f(x)+f(−x)=lg3−x3+x +lg3+x3−x=lg1=0,则有f(−x)=−f(x),则函数f(x)为奇函数;根据题意,有(1)的结论,函数f(x)的定义域为(−3, 3),当0≤x<3时,g(x)=f(x)=lg3−x3+x,设−3<x<0,则0<−x<3,则g(−x)=lg 3+x 3−x ,又由函数g(x)为偶函数,则g(x)=lg 3+x 3−x ,综合可得:g(x)={lg 3+x 3−x ,−3<x <0lg 3−x 3+x ,0≤x <3. 【考点】函数奇偶性的性质与判断【解析】(1)根据题意,先求出函数f(x)的定义域,进而分析可得f(x)+f(−x)=0,由函数奇偶性的定义分析可得答案;(2)根据题意,分2种情况讨论:当0≤x <3时,g(x)=f(x)=lg3−x 3+x ,当−3<x <0,利用偶函数的性质求出g(x)的解析式,综合即可得答案.【解答】根据题意,函数f(x)=lg 3−x 3+x 是奇函数,证明:对于函数f(x)=lg 3−x 3+x ,必有3−x 3+x >0,解可得:−3<x <3,即函数的定义域为(−3, 3),关于原点对称,又由f(x)+f(−x)=lg 3−x 3+x +lg 3+x 3−x =lg 1=0,则有f(−x)=−f(x),则函数f(x)为奇函数;根据题意,有(1)的结论,函数f(x)的定义域为(−3, 3),当0≤x <3时,g(x)=f(x)=lg 3−x 3+x ,设−3<x <0,则0<−x <3,则g(−x)=lg 3+x 3−x ,又由函数g(x)为偶函数,则g(x)=lg3+x 3−x , 综合可得:g(x)={lg 3+x 3−x ,−3<x <0lg 3−x 3+x ,0≤x <3. 16.【答案】,f(2019)=f,f(2020)=f(0)=f,故f (2020)=f (2018)>f (2019),【考点】抽象函数及其应用【解析】根据已知可得函数 f (x)的图象关于直线x =1对称,周期为4,且在[1, 3]上为减函数,进而可比较f(2018),f(2019),f(2020)的大小.【解答】,f(2019)=f,f(2020)=f(0)=f,故f(2020)=f(2018)>f(2019),17.【答案】根据题意,f(x)为定义在R 上的奇函数,则f(0)=0,则有g(0)=0,当0<x <4时,f(x)=x 2−4x ,此时g(x)=x 2−4x ,当−4<x <0时,0<−x <4,f(−x)=x 2−4x ,又由f(x)为奇函数,则f(x)=−f(−x)=−x 2−4x ,此时g(x)=−x 2−4x ;综合可得:g(x)=f(x)={−x 2−4x,x <00,x =0x 2−4x,x >0当−4≤x ≤0时,0≤g(x)≤4;当0<x ≤4时,−4≤g(x)≤0.g(x)的值域为[−4, 4]根据题意,m >0时,|f(m)|={−m 2+4m,0<m ≤4m 2−4m,m >4, 1)当0<m ≤4时,令−m 2+4m =3,解得m =1或m =3;2)当m >4时,令m 2−4m =3,解得m =2+√7或m =2−√7(舍去)综合1),2)得m =1或m =3或m =2+√7【考点】函数奇偶性的性质与判断【解析】(1)根据题意,由函数的解析式以及奇函数的性质分析可得g(x)的解析式,进而分析可得答案;(2)根据题意,m >0时,|f(m)|={−m 2+4m,0<m ≤4m 2−4m,m >4,据此分析可得答案. 【解答】根据题意,f(x)为定义在R 上的奇函数,则f(0)=0,则有g(0)=0,当0<x <4时,f(x)=x 2−4x ,此时g(x)=x 2−4x ,当−4<x <0时,0<−x <4,f(−x)=x 2−4x ,又由f(x)为奇函数,则f(x)=−f(−x)=−x 2−4x ,此时g(x)=−x 2−4x ;综合可得:g(x)=f(x)={−x 2−4x,x <00,x =0x 2−4x,x >0当−4≤x ≤0时,0≤g(x)≤4;当0<x ≤4时,−4≤g(x)≤0.g(x)的值域为[−4, 4]根据题意,m >0时,|f(m)|={−m 2+4m,0<m ≤4m 2−4m,m >4,1)当0<m≤4时,令−m2+4m=3,解得m=1或m=3;2)当m>4时,令m2−4m=3,解得m=2+√7或m=2−√7(舍去)综合1),2)得m=1或m=3或m=2+√7。
函数的奇偶性试题(含答案)
![函数的奇偶性试题(含答案)](https://img.taocdn.com/s3/m/223360e0e45c3b3566ec8b02.png)
函数的奇偶性试题(含答案)一、选择题1.下列命题中错误的是( )①图象关于原点成中心对称的函数一定为奇函数②奇函数的图象一定过原点③偶函数的图象与y轴一定相交④图象关于y轴对称的函数一定为偶函数A.①② B.③④C.①④D.②③[答案] D[解析] f(x)=1x为奇函数,其图象不过原点,故②错;y=Error!为偶函数,其图象与y轴不相交,故③错.2.如果奇函数f(x)在(0,+∞)上是增函数,则f(x)在(-∞,0)上( )A.减函数B.增函数C.既可能是减函数也可能是增函数D.不一定具有单调性[答案] B3.已知f(x)=x7+ax5+bx-5,且f(-3)=5,则f(3)=( )A.-15 B.15C.10 D.-10[答案] A[解析] 解法1:f(-3)=(-3)7+a(-3)5+(-3)b-5=-(37+a·35+3b-5)-10=-f(3)-10=5,∴f(3)=-15.解法2:设g(x)=x7+ax5+bx,则g(x)为奇函数,∵f(-3)=g(-3)-5=-g(3)-5=5,∴g(3)=-10,∴f(3)=g(3)-5=-15.4.若f(x)在[-5,5]上是奇函数,且f(3)<f(1),则下列各式中一定成立的是( )A.f(-1)<f(-3) B.f(0)>f(1)C.f(2)>f(3) D.f(-3)<f(5)[答案] A[解析] ∵f(3)<f(1),∴-f(1)<-f(3),∵f(x)是奇函数,∴f(-1)<f(-3).5.设f(x)是定义在R上的奇函数,且当x>0时,f(x)=2x-3,则f(-2)的值等于( )A.-1 B.1C.114D.-114[答案] A[解析] ∵x>0时,f(x)=2x-3,∴f(2)=22-3=1,又f(x)为奇函数,∴f(-2)=-f(2)=-1.6.设f(x)在[-2,-1]上为减函数,最小值为3,且f(x)为偶函数,则f(x)在[1,2]上( )A.为减函数,最大值为3B.为减函数,最小值为-3C.为增函数,最大值为-3D.为增函数,最小值为3[解析] ∵f(x)在[-2,-1]上为减函数,最大值为3,∴f(-1)=3,又∵f(x)为偶函数,∴f(x)在[1,2]上为增函数,且最小值为f(1)=f(-1)=3.7.(胶州三中高一模块测试)下列四个函数中,既是偶函数又在(0,+∞)上为增函数的是( )A.y=x3B.y=-x2+1C.y=|x|+1 D.y=2-|x|[答案] C[解析] 由偶函数,排除A;由在(0,+∞)上为增函数,排除B,D,故选C.8.(09·辽宁文)已知偶函数f(x)在区间[0,+∞)单调递增,则满足f(2x-1)<f(13)的x取值范围是( )A.(13,23)B.[13,23)C.(12,23)`D.[12,23)[答案] A[解析] 由题意得|2x-1|<13⇒-13<2x-1<13⇒23<2x<43⇒13<x<23,∴选A.9.若函数f(x)=(x+1)(x+a)为偶函数,则a=( ) A.1 B.-1C.0 D.不存在[解析] 解法1:f(x)=x2+(a+1)x+a为偶函数,∴a+1=0,∴a=-1.解法2:∵f(x)=(x+1)(x+a)为偶函数,∴对任意x∈R,有f(-x)=f(x)恒成立,∴f(-1)=f(1),即0=2(1+a),∴a=-1.10.奇函数f(x)当x∈(-∞,0)时,f(x)=-2x+3,则f(1)与f(2)的大小关系为( )A.f(1)<f(2) B.f(1)=f(2)C.f(1)>f(2) D.不能确定[答案] C[解析] 由条件知,f(x)在(-∞,0)上为减函数,∴f(-1)<f(-2),又f(x)为奇函数,∴f(1)>f(2).[点评] 也可以先求出f(x)在(0,+∞)上解析式后求值比较,或利用奇函数图象对称特征画图比较.二、填空题11.若f(x)=ax2+bx+c(a≠0)为偶函数,则g(x)=ax3+bx2+cx 的奇偶性为________.[答案] 奇函数[解析] 由f(x)=ax2+bx+c(a≠0)为偶函数得b=0,因此g(x)=ax3+cx,∴g(-x)=-g(x),∴g(x)是奇函数.12.偶函数y=f(x)的图象与x轴有三个交点,则方程f(x)=0的所有根之和为________.[答案] 0[解析] 由于偶函数图象关于y轴对称,且与x轴有三个交点,因此一定过原点且另两个互为相反数,故其和为0.三、解答题13.判断下列函数的奇偶性:(1)f(x)=Error!;(2)f(x)=1x2+x.[解析] (1)f(-x)=Error!,∴f(-x)=-f(x),∴f(x)为奇函数.(2)f(-x)=1x2-x≠f(x),f(-x)≠-f(x),∴f(x)既不是奇函数,又不是偶函数.14.已知f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=x2+x-2,求f(x),g(x)的表达式.[解析] f(-x)+g(-x)=x2-x-2,由f(x)是偶函数,g(x)是奇函数得,f(x)-g(x)=x2-x-2又f(x)+g(x)=x2+x-2,两式联立得:f(x)=x2-2,g(x)=x.15.函数f(x)=ax+b1+x2是定义在(-1,1)上的奇函数,且f(12)=25,求函数f(x)的解析式.[解析] 因为f(x)是奇函数且定义域为(-1,1),所以f(0)=0,即b=0.又f(12)=25,所以12a1+(12)2=25,所以a=1,所以f(x)=x1+x2.16.定义在(-1,1)上的奇函数f(x)是减函数,且f(1-a)+f(1-a2)<0,求实数a的取值范围.[解析] 由f(1-a)+f(1-a2)<0及f(x)为奇函数得,f(1-a)<f(a2-1),∵f(x)在(-1,1)上单调减,∴Error! 解得0<a<1.故a的取值范围是{a|0<a<1}.17.f(x)是奇函数,当x≥0时,f(x)的图象是经过点(3,-6),顶点为(1,2)的抛物线的一部分,求f(x)的解析式,并画出其图象.[解析] 设x≥0时,f(x)=a(x-1)2+2,∵过(3,-6)点,∴a(3-1)2+2=-6,∴a=-2.即f(x)=-2(x-1)2+2.当x<0时,-x>0,f(-x)=-2(-x-1)2+2=-2(x+1)2+2,∵f(x)为奇函数,∴f(-x)=-f(x),∴f(x)=2(x+1)2-2,即f(x)=Error!,其图象如图所示.。
高一数学函数的性质(奇偶性)题组训练(含答案解析)
![高一数学函数的性质(奇偶性)题组训练(含答案解析)](https://img.taocdn.com/s3/m/b96ab83976eeaeaad0f33084.png)
函数的性质(奇偶性)题组训练【奇偶性的判断】1.(2020·全国高一专题练习)判断下列函数的奇偶性: (1)f (x )=x 3+x ;(2)()f x =(3)222()1x xf x x +=+;(4)1,0()0,0,1,0x x f x x x x -<⎧⎪==⎨⎪+>⎩2.(2019·全国高一课时练习)判断下列函数的奇偶性:(1)()21x xf x x +=+;(2)()f x =3.(2018·上海市上南中学高一期中)已知函数()f x =,求(1)函数()f x 的定义域; (2)判断函数()f x 的奇偶性.【利用奇偶性求解析式】1.(2016·徐汇。
上海中学高一期末)已知()f x 是定义在R 上的奇函数,当0x <时,2()f x x x =+,则函数()f x 的解析式为()f x =______.2.(2020·浙江高一课时练习)函数()f x 在(,)-∞+∞上为奇函数,且当0x 时,()(1)f x x x =+,则当(0,)x ∈+∞时,()f x =________.3.(2020·吉林宁江.松原市实验高级中学高三其他(文))已知()f x 是定义在R 上的偶函数,且当0x <时,()23f x x =-,则当0x >时,()f x =______.4.(2020·呼和浩特开来中学高二期末(文))已知定义在R 上的奇函数()f x ,当0x >时, ()21f x x x =+-,那么当0x <时, ()f x 的解析式为( ). A .()21f x x x =++B .()21f x x x =--+C .()21f x x x =-+-D .()21f x x x =-++【利用奇偶性求参数】1.(2020·林芝市第二高级中学高二期末(文))已知函数()33f x x x =+,若()2f a -=,则()f a 的值为( )A .2B .2-C .1D .1-2.(2020·上海高一开学考试)函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(1)1f =-,则满足1(2)1f x -≤-≤的x 取值范围是( )A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]3.(2019·浙江南湖。
高一数学函数的奇偶性习题
![高一数学函数的奇偶性习题](https://img.taocdn.com/s3/m/aec9e929ae1ffc4ffe4733687e21af45b207fe65.png)
高一数学函数的奇偶性习题一、选择题1. 已知函数f(x)为偶函数,当x=2时,f(x)=4,则f(-2)的值为:A. 4B. 2C. -2D. -42. 设函数f(x)是一个奇函数,且当x=-3时,f(x)=1,则f(3)的值为:A. 1B. -1C. 3D. -33. 设f(x)为函数,且f(2x+1)=3x+4,则f(-2)的值为:A. -1B. 0C. 1D. 24. 已知函数f(x)为偶函数,且f(1)=2,则f(-1)的值为:A. 1B. -1C. 2D. -25. 若函数f(x)=x^3+2x^2-3x,则f(-1)的值为:A. 0B. -4C. -6D. 4二、计算题1. 设函数f(x)为奇函数,且当x=2时,f(x)=4,则求f(-2)的值。
解:由于f(x)为奇函数,故有f(-x)=-f(x)。
当x=2时,f(2)=4,代入到f(-x)=-f(x)的式子中可得f(-2)=-f(2)=-4。
因此,f(-2)的值为-4。
2. 已知函数f(x)为偶函数,且当x=-2时,f(x)=3,则求f(2)的值。
解:由于f(x)为偶函数,故有f(-x)=f(x)。
当x=-2时,f(-2)=3,代入到f(-x)=f(x)的式子中可得f(2)=f(-2)=3。
因此,f(2)的值为3。
3. 设函数f(x)=3x^2-2x+1,求证f(x)为偶函数。
证明:对于任意的x,有f(-x)=3(-x)^2-2(-x)+1=3x^2+2x+1=f(x)。
因此,根据偶函数的定义,f(x)为偶函数。
4. 若函数f(x)=2x^3-x^2+4x-5,求证f(x)为奇函数。
证明:对于任意的x,有f(-x)=2(-x)^3-(-x)^2+4(-x)-5=-2x^3-x^2-4x-5=-f(x)。
因此,根据奇函数的定义,f(x)为奇函数。
5. 已知函数f(x)为奇函数,且当x=1时,f(x)=-3,则求f(-1)的值。
解:由于f(x)为奇函数,故有f(-x)=-f(x)。
高一数学函数的奇偶性试题
![高一数学函数的奇偶性试题](https://img.taocdn.com/s3/m/bda86a580029bd64793e2c71.png)
高一数学函数的奇偶性试题1.已知函数为偶函数,且若函数,则= .【答案】2014【解析】由函数为偶函数,且得从而,故应填入2014.【考点】函数的奇偶性.2.下列函数中,既是偶函数又在区间上单调递增的函数是()A.B.C.D.【答案】D【解析】A为偶函数,在上单调递减;B为奇函数,单调递增;C为偶函数,上不单调;D为偶函数,在上单调递增.【考点】函数的奇偶性、单调性.3.设函数是定义在上的偶函数,当时,.若,则实数的值为 .【答案】【解析】若,则由,得,,解得成立.若,则由,得,即,,得,即,所以.【考点】函数的奇偶性.(4x+1)+kx(k∈R)是偶函数.4.已知函数f(x)=log4(1)求k的值;(2)探究函数f(x)=ax+(a、b是正常数)在区间和上的单调性(只需写出结论,m=0有解的m的取值范围.不要求证明).并利用所得结论,求使方程f(x)-log4【答案】(1);(2)函数f(x)=ax+ (a、b是正常数)在区间上为减函数,在区间上为增函数;.【解析】(1)由已知函数的定义域为关于原点对称,又是偶函数,则可根据偶函数的定义(或者利用特殊值代入计算亦可,如),得到一个关于的方程,从而求出的值;(2)由函数在区间上为减函数,在区间上为增函数,结合是可知函数在区间上为单调递减函数,在区间上为单调递增函数.由题意知方程,即为方程,若使方程有解,则对数式的值要在函数的值域范围内,所以首先要求出函数的值域,对函数进行化归得,故原方程可化为,令,,则在区间上为减函数,在区间上为增函数,故函数的最小值为,即当,时函数的值,所以函数的值域为,从而可求出. 试题解析:(1)由函数f(x)是偶函数,可知.∴.即, 2分, 4分∴对一切恒成立.∴. 5分(注:利用解出,亦可得满分)(2)结论:函数 (a、b是正常数)在区间上为减函数,在区间上为增函数. 6分由题意知,可先求的值域,. 8分设,又设,则,由定理,知在单调递减,在单调递增,所以, 11分∵为增函数,由题意,只须,即故要使方程有解,的取值范围为. 13分【考点】1.偶函数;2.对数函数;3.函数;4.复合函数值域.5.已知定义在上的偶函数,当时,,那么时,_____.【答案】【解析】先由函数是偶函数得,然后将所求区间利用运算转化到已知区间上,代入到时,,即可的时,函数的解析式.这类题一般是求那一部设那一部分.当时则因为是偶函数,所以所以时,【考点】函数解析式的求解及常用方法;函数奇偶性的性质.6.若函数为偶函数,则实数的值为__________.【解析】根据偶函数的定义,对定义域中的任意,有,即,故.【考点】函数的奇偶性.7.已知定义在R上的单调递增函数满足,且。
(完整版)函数奇偶性基础练习
![(完整版)函数奇偶性基础练习](https://img.taocdn.com/s3/m/289c1055d15abe23482f4daf.png)
函数奇偶性练习基础卷一、选择题1.下列图象能表示函数且具有奇偶性的是()解析:图象关于原点或y轴对称的函数具有奇偶性.选项A,D中的图形关于原点或y轴均不对称,故排除;选项C中的图形虽然关于坐标原点对称,但是过(0,-1)和(0,1)两点,这说明当x=0时,y=±1,不符合函数的概念,不是函数的图象,故排除;选项B中图形关于y轴对称,是偶函数.故选B.答案:B2.下列说法中错误的个数为()①图象关于坐标原点对称的函数是奇函数;②图象关于y轴对称的函数是偶函数;③奇函数的图象一定过坐标原点;④偶函数的图象一定与y轴相交.A.4B.3C.2 D.0解析:①②由奇、偶函数的性质知正确;对于③,如f(x)=1,x∈(-∞,0)∪(0,+∞),它是奇函数,但它的图象不x过原点;对于④,如f (x )=1x 2,x ∈(-∞,0)∪(0,+∞),它是偶函数,但它的图象不与y 轴相交.答案:C3.函数f (x )=x(-1﹤x ≦1)的奇偶性是( )A .奇函数非偶函数B .偶函数非奇函数C .奇函数且偶函数D .非奇非偶函数答案选D4.若函数f (x )=(x +1)(x -a )为偶函数,则a 等于( )A .-2B .-1C .1D .2 解析:利用定义求值. ∵f (x )=(x +1)(x -a )为偶函数, ∴f (-x )=f (x ).即(-x +1)(-x -a )=(x +1)(x -a ), ∴x ·(a -1)=x ·(1-a ), 故1-a =0,∴a =1,故选C. 答案:C5.(课本习题改编)若函数f (x )=x (2x +1)(x -a )为奇函数,则a =( )A.12B.23C.34D .1 【解析】∵f (x )=x (2x +1)(x -a )是奇函数,利用赋值法,∴f (-1)=-f (1).∴-1(-2+1)(-1-a )=-1(2+1)(1-a ),∴a +1=3(1-a ),解得a =12. 选A 。
高一函数奇偶性练习及答案
![高一函数奇偶性练习及答案](https://img.taocdn.com/s3/m/89ed34d588eb172ded630b1c59eef8c75fbf958b.png)
1.已知函数【1】f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数2.已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则( )A .31=a ,b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =04.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于( ) A .-26 B .-18 C .-10 D .105.函数1111)(22+++-++=x x x x x f 是( )A .偶函数B .奇函数C .非奇非偶函数D .既是奇函数又是偶函数 6.若)(x ϕ,g (x )都是奇函数,2)()(++=x bg a x f ϕ在(0,+∞)上有最大值5,则f (x )在(-∞,0)上有( )A .最小值-5B .最大值-5C .最小值-1D .最大值-37.函数2122)(x x x f ---=的奇偶性为________(填奇函数或偶函数) .8.若y =(m -1)x 2+2mx +3是偶函数,则m =_________.9.已知f (x )是偶函数,g (x )是奇函数,若11)()(-=+x x g x f ,则f (x )的解析式为_______.10.已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和为________.11.设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),求实数m 的取值范围.12.已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2—1,求f (x )在R 上的表达式.13.设函数y =f (x )(x ∈R 且x ≠0)对任意非零实数x 1、x 2满足f (x 1·x 2)=f (x 1)+f(x 2),求证f (x )是偶函数.1. 解析:f (x )=ax 2+bx +c 为偶函数,x x =)(ϕ为奇函数,∴g (x )=ax 3+bx 2+cx =f (x )·)(x ϕ满足奇函数的条件. 答案:A2.解析:由f (x )=ax 2+bx +3a +b 为偶函数,得b =0.又定义域为[a -1,2a ],∴a -1=2a ,∴31=a .故选A .4.解析:f (x )+8=x 5+ax 3+bx 为奇函数,f (-2)+8=18,∴f (2)+8=-18,∴f (2)=-26. 答案:A5.解析:此题直接证明较烦,可用等价形式f (-x )+f (x )=0. 答案:B 6.解析:)(x ϕ、g (x )为奇函数,∴)()(2)(x bg x a x f +=-ϕ为奇函数. 又f (x )在(0,+∞)上有最大值5, ∴f (x )-2有最大值3.∴f (x )-2在(-∞,0)上有最小值-3, ∴f (x )在(-∞,0)上有最小值-1. 答案:C 7.答案:奇函数8.答案:0解析:因为函数y =(m -1)x 2+2mx +3为偶函数,∴f (-x )=f (x ),即(m -1)(-x )2+2m (-x )+3=(m —1)x 2+2mx +3,整理,得m =0. 9.解析:由f (x )是偶函数,g (x )是奇函数,可得11)()(--=-x x g x f ,联立11)()(-=+x x g x f ,∴11)1111(21)(2-=----=x x x x f .答案:11)(2-=x x f 10.答案:0 11.答案:21<m13. f (x )=x 3+2x 2-1.因f (x )为奇函数,∴f (0)=0.当x <0时,-x >0,f (-x )=(-x )3+2(-x )2-1=-x 3+2x 2-1, ∴f (x )=x 3-2x 2+1.因此,.)0()0()0(12012)(,,2323<=>+--+=⎪⎩⎪⎨⎧x x x x x x x x f15.解析:由x 1,x 2∈R 且不为0的任意性,令x 1=x 2=1代入可证,f (1)=2f (1),∴f (1)=0. 又令x 1=x 2=-1,∴f[-1×(-1)]=2f(1)=0,∴(-1)=0.又令x1=-1,x2=x,∴f(-x)=f(-1)+f(x)=0+f(x)=f(x),即f(x)为偶函数.。
高中数学必修一《函数的奇偶性练习题》
![高中数学必修一《函数的奇偶性练习题》](https://img.taocdn.com/s3/m/13afadb55ef7ba0d4a733b93.png)
函数的奇偶性练习题1.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .y =-x 3,x ∈R B .y =sin2x ,x ∈RC .y =2x ,x ∈RD .y =-⎝⎛⎭⎫13x ,x ∈R2.函数f (x )=a 2x -1ax (a >0,a ≠1)的图象( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称3.设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=( ) A .-3 B .-1 C .1 D .34. 已知y =f (x )是奇函数,若g (x )=f (x )+2且g (1)=1,则g (-1)=________.能力提升5.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=x ,则f ⎝⎛⎭⎫-134=( ) A.32 B .-32 C.12 D .-126. 已知函数f (x )是定义在R 上的奇函数,且f (x +2)=-f (x ),若f (1)=1,则f (3)-f (4)=( )A .-1B .1C .-2D .27. 若函数f (x )=|x -2|+a 4-x 2的图象关于原点对称,则f a2=( )A.33 B .-33C .1D .-1 8.已知定义在R 上的奇函数f (x )是一个减函数,若x 1+x 2<0,x 2+x 3<0,x 3+x 1<0,则f (x 1)+f (x 2)+f (x 3)的值( )A .大于0B .小于0C .等于0D .以上都有可能9. 已知f (x )是定义在R 上的函数,且满足f (x +1)+f (x )=3,当x ∈[0,1]时,f (x )=2-x ,则f (-2 005.5)=________.10. 函数f (x )是定义在R 上的奇函数,下列结论中,正确结论的序号是________.①f (-x )+f (x )=0;②f (-x )-f (x )=-2f (x );③f (x )f (-x )≤0;④f (x )f (-x )=-1.11. 若函数f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2+ax ,x <0是奇函数,则满足f (x )>a 的x 的取值范围是________.12.(13分)[2012·衡水中学一调] 已知函数f (x )=x m -2x 且f (4)=72.(1)求m 的值;(2)判定f (x )的奇偶性;(3)判断f (x )在(0,+∞)上的单调性,并给予证明.难点突破13.(12分)已知定义域为R 的函数f (x )=-2x +b2x +1+a是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.1. 下列函数中既是奇函数,又在区间(-1,1)上是增函数的为( ) A .y =|x | B .y =sin xC .y =e x +e -x D .y =-x 32.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( )A .-13 B.13 C.12 D .-123.已知f (x )=⎩⎪⎨⎪⎧x 2-x +1(x >0),-x 2-x -1(x <0),则f (x )为( )A .奇函数B .偶函数C .非奇非偶函数D .不能确定奇偶性4. 设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则f ⎝⎛⎭⎫32=________.能力提升5. 设函数f (x )=⎩⎪⎨⎪⎧2x,x <0,0,x =0,g (x ),x >0,且f (x )为奇函数,则g (3)=( )A .8 B.18 C .-8 D .-186.已知y =f (x )是定义在R 上的偶函数,且f (x )在(0,+∞)上是增函数,如果x 1<0,x 2>0,且|x 1|<|x 2|,则有( )A .f (-x 1)+f (-x 2)>0B .f (x 1)+f (x 2)<0C .f (-x 1)-f (-x 2)>0D .f (x 1)-f (x 2)<07.] 已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (-2 012)+f (2 011)的值为( )A .1B .2C .-2D .-18.命题p :∀x ∈R ,3x >x ;命题q :若函数y =f (x -1)为奇函数,则函数y =f (x )的图象关于点(1,0)成中心对称.以下说法正确的是( ) A .p ∨q 真 B .p ∧q 真 C .綈p 真 D .綈q 假 9.函数f (x )对于任意实数x 满足条件f (x +2)f (x )=1,若f (1)=-5,则f (-5)=________. 10. 设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________.11.设定义在[-2,2]上的奇函数f (x )在[0,2]上单调递减,若f (3-m )≤f (2m 2),则实数m 的取值范围是________.12.(13分)已知函数f (x )=lg 1+x1-x.(1)求证:对于f (x )的定义域内的任意两个实数a ,b ,都有f (a )+f (b )=f ⎝ ⎛⎭⎪⎫a +b 1+ab ;(2)判断f (x )的奇偶性,并予以证明.难点突破13.(12分)函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f(1)的值;(2)判断f(x)的奇偶性并证明你的结论;(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.1.A [解析] y =sin2x 在R 上不单调,y =-13x 不是奇函数,y =2x 为增函数,所以B ,C ,D 均错.故选A.2.A [解析] 因为f (-x )=a -x -1a-x =-(a x -a -x )=-f (x ),所以f (x )是奇函数,其图象关于原点对称.故选A.3.A [解析] 依题意当x >0时,f (x )=-f (-x )=-(2x 2+x ),所以f (1)=-3.故选A. 4.3 [解析] 考查函数的奇偶性和转化思想,解此题的关键是利用y =f (x )为奇函数. 已知函数y =f (x )为奇函数,由已知得g (1)=f (1)+2=1, ∴f (1)=-1,则f (-1)=-f (1)=1,所以g (-1)=f (-1)+2=1+2=3. 【能力提升】5.A [解析] 依题意f -134=f -54=f 34=32.故选A.6.A [解析] 由f (x +2)=-f (x )得f (x +4)=-f (x +2)=f (x ),根据f (x )为R 上的奇函数,得f (0)=0,所以f (3)=f (-1)=-f (1)=-1,f (4)=f (0)=0,所以f (3)-f (4)=-1.故选A.7.A [解析] 函数f (x )定义域为{x |-2<x <2},依题意函数f (x )为奇函数,所以f (0)=0,得a =-2,所以f a 2=f (-1)=|-1-2|-24-1=33.故选A.8.A [解析] 由x 1+x 2<0,得x 1<-x 2. 又f (x )为减函数,所以f (x 1)>f (-x 2),又f (x )为R 上的奇函数,所以f (x 1)>-f (x 2). 所以f (x 1)+f (x 2)>0.同理f (x 2)+f (x 3)>0,f (x 1)+f (x 3)>0, 所以f (x 1)+f (x 2)+f (x 3)>0.故选A.9.1.5 [解析] 由f (x +1)+f (x )=3得f (x )+f (x -1)=3,两式相减得f (x +1)=f (x -1),所以f (x +2)=f (x ),所以函数f (x )是周期为2的周期函数,所以f (-2 005.5)=f (-1.5)=f (-2+0.5)=f (0.5)=1.5.10.①②③ [解析] 因为函数f (x )是定义在R 上的奇函数,所以①正确,由f (-x )+f (x )=0,可推得选项②,③正确,④中,要求f (-x )≠0,故④错误.11.(-1-3,+∞) [解析] 由函数f (x )是奇函数,所以当x <0时,-x >0,f (-x )=(-x )2-2(-x )=x 2+2x =-f (x )=x 2-ax ,所以a =-2.当x <0时,f (x )>a 即-x 2-2x >-2⇒x 2+2x -2<0,解得-1-3<x <0;当x ≥0时,f (x )>-2恒成立.综上,满足f (x )>a 的x 的取值范围是(-1-3,+∞).12.解:(1)因为f (4)=72,所以4m -24=72,所以m =1.(2)因为f (x )的定义域为{x |x ≠0},又f (-x )=-x -2-x=-x -2x =-f (x ),所以f (x )是奇函数.(3)设x 1>x 2>0,则f (x 1)-f (x 2)=x 1-2x 1-x 2-2x 2=(x 1-x 2)1+2x 1x 2,因为x 1>x 2>0,所以x 1-x 2>0,1+2x 1x 2>0,所以f (x 1)>f (x 2),所以f (x )在(0,+∞)上为单调递增函数.(或用求导数的方法) 【难点突破】13.解:(1)因为f (x )是定义域为R 的奇函数,所以f (0)=0, 即-1+b 2+a =0,所以b =1.所以f (x )=-2x +12x +1+a.又由f (1)=-f (-1)知-2+14+a =--12+11+a ,所以a =2.(2)方法一:由(1)知f (x )=-2x +12x +1+2=-12+12x +1.易知f (x )在(-∞,+∞)上为减函数.又因f (x )是奇函数,从而不等式f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<f (-2t 2+k ). 因f (x )是减函数,所以t 2-2t >-2t 2+k . 即对一切t ∈R 有3t 2-2t -k >0.从而判别式Δ=4+12k <0,解得k <-13.方法二:由(1)知f (x )=-2x +12x +1+2,又由题设条件得-2t 2-2t +12t 2-2t +1+2+-22t 2-k +122t 2-k +1+2<0,即(22t 2-k +1+2)(-2t 2-2t +1)+(2t 2-2t +1+2)(-22t 2-k +1)<0. 整理得23t 2-2t -k >1,因底数2>1,故3t 2-2t -k >0.上式对一切t ∈R 均成立,从而判别式Δ=4+12k <0,解得k <-13.课时作业(六)B【基础热身】1.B [解析] 由题中选项可知,y =|x |,y =e x +e -x 为偶函数,排除A ,C ;而y =-x 3在R 上递减,故选B.2.B [解析] 因为函数f (x )=ax 2+bx 在[a -1,2a ]上为偶函数,所以b =0,且a -1+2a =0,即b =0,a =13.所以a +b =13.3.A [解析] 若x <0,则-x >0,所以f (-x )=(-x )2-(-x )+1=x 2+x +1=-f (x ).若x >0,则-x <0,所以f (-x )=-(-x )2-(-x )-1=-x 2+x -1=-f (x ).所以f (x )为奇函数.4.32[解析] 函数f (x )是定义在R 上的周期为2的偶函数,且当x ∈[0,1]时,f (x )=x +1,那么f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-32=f ⎝⎛⎭⎫2-32=f ⎝⎛⎭⎫12=32.【能力提升】5.D [解析] 因为f (x )为奇函数,所以x >0时,f (x )=-f (-x )=-2-x ,即g (x )=-2-x ,所以g (3)=-2-3=-18.故选D.6.D [解析] 因为x 1<0,x 2>0,|x 1|<|x 2|,所以0<-x 1<x 2.又f (x )是(0,+∞)上的增函数,所以f (-x 1)<f (x 2).又f (x )为定义在R 上的偶函数,所以f (x 1)<f (x 2),所以f (x 1)-f (x 2)<0.选D.7.A [解析] 由已知f (x )是偶函数且是周期为2的周期函数,则f (-2 012)=f (2 012)=f (0)=log 21=0,f (2 011)=f (1)=log 22=1,所以f (-2 012)+f (2 011)=0+1=1,故选择A.8.A [解析] 命题p 是真命题.对于命题q ,函数y =f (x -1)为奇函数,将其图象向左平移1个单位,得到函数y =f (x )的图象,该图象的对称中心为(-1,0),而得不到对称中心为(1,0),所以命题q 为假命题,所以p ∨q 是真命题.故选A.9.-15[解析] 因为f (x +2)f (x )=1,所以f (x +4)f (x +2)=1,于是有f (x +4)=f (x ),所以f (x )是以4为周期的周期函数,f (-5)=f (-1)=1f (-1+2)=1f (1)=-15.10.-9 [解析] 由f (a )=a 3cos a +1=11得a 3cos a =10, 所以f (-a )=(-a )3cos(-a )+1=-a 3cos a +1=-10+1=-9.11.{1} [解析] 因为f (x )是定义在[-2,2]上的奇函数,且在[0,2]上单调递减,所以f (x )在[-2,2]上单调递减,所以f (3-m )≤f (2m 2)等价于⎩⎪⎨⎪⎧-2≤3-m ≤2,-2≤2m 2≤2,3-m ≥2m 2⇔⎩⎪⎨⎪⎧1≤m ≤5,-1≤m ≤1,-32≤m ≤1,即m =1,所以m 的取值范围是{1}.12.解:函数的定义域为{x |-1<x <1}=(-1,1).(1)证明:∀a ,b ∈(-1,1),f (a )+f (b )=lg 1+a 1-a +lg 1+b 1-b =lg (1+a )(1+b )(1-a )(1-b ),f a +b 1+ab =lg 1+a +b 1+ab 1-a +b 1+ab=lg 1+ab +a +b 1+ab -a -b =lg (1+a )(1+b )(1-a )(1-b ), 所以f (a )+f (b )=f a +b1+ab.(2)∀x ∈(-1,1),f (-x )+f (x )=lg 1-x 1+x +lg 1+x 1-x =lg (1-x )(1+x )(1+x )(1-x )=lg1=0,即f (-x )=-f (x ),所以f (x )是奇函数. 【难点突破】13.解:(1)因为对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2), 所以令x 1=x 2=1,得f (1)=2f (1),所以f (1)=0. (2)令x 1=x 2=-1,有f (1)=f (-1)+f (-1),所以f (-1)=12f (1)=0.令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ), 所以f (-x )=f (x ),所以f (x )为偶函数.(3)依题设有f (4×4)=f (4)+f (4)=2,f (16×4)=f (16)+f (4)=3, 又f (3x +1)+f (2x -6)≤3, 即f ((3x +1)(2x -6))≤f (64).(*) 方法一:因为f (x )为偶函数, 所以f (|(3x +1)(2x -6)|)≤f (64). 又f (x )在(0,+∞)上是增函数, 所以0<|(3x +1)(2x -6)|≤64.解上式,得3<x ≤5或-73≤x <-13或-13<x <3.所以x 的取值范围为x ⎪⎪-73≤x <-13或-13<x <3或3<x ≤5. 方法二:因为f (x )在(0,+∞)上是增函数, 所以(*)等价于不等式组⎩⎪⎨⎪⎧(3x +1)(2x -6)>0,(3x +1)(2x -6)≤64或⎩⎪⎨⎪⎧(3x +1)(2x -6)<0,-(3x +1)(2x -6)≤64, ⎩⎨⎧x >3或x <-13,-73≤x ≤5或⎩⎪⎨⎪⎧-13<x <3,x ∈R .所以3<x ≤5或-73≤x <-13或-13<x <3.所以x 的取值范围为 x⎪⎪⎪ )-73≤x <-13或-13<x <3或3<x ≤5.。
高一函数奇偶性题型练习(全)
![高一函数奇偶性题型练习(全)](https://img.taocdn.com/s3/m/7e7d70a8e109581b6bd97f19227916888486b92c.png)
)
A 函 数 才 z) 土 叹 是 奇 函 数
B 函 数 (z) + Iz| 是 偶 函 数
C. 函 数 “ 个(z是 )奇 函 数
D. 函数 lzIf是(偶z)函 数
5. 已 知 f【z),g(z) 分 别 是 定 义 在R 上 的 偶 函 数 和 奇 函 数 ,昆 ) g 一 史 十 吉 +1, 则 D+50 = ( )
2 已 知 函 数 () = 2 八 史 丁 是 定 义 在 (-10) 上 的 奇 函 数 , 则 常 数 m,n 的 值
分 别 为.
题 型六 抽 象 函 数 奇偶 性
1. 设 函 数 f(a) 是 定 义 在 R 上 的 奇 函 数 , 则 下 列 结 论 中 一 定 正 确 的 是 (
)
A 函 数 扎 (e) + 史 是 奇 函 数 “ B, 函 数 (z) + Iz| 是 健 函 数
表 达 式是 (
)
A fl@)=2"+2
B. fl@)=-a*-2z
c. f@=a-20
p f(@)=-2'+2
3. 已 知 书 a) 是 定 义 在 R 上 的 奇 函 数 , 当 a > onf, (@) 一 古 土 8z 一 1, 求 仪 ) 的 解 析 式.
4 已 知 y = 丁 (z) 是 定 义 在 R 上 的 奇 函 数 ,当 z 么 0 时 , 了 四 二 史 一 2z, 则 f(a在 )R 上 的解 析 式 为 .
9(2)
f@)+g(@) | f@)—9(@ | [fl2)g(=)
俩 函数
佳 丽敌
俊 函数
俊 函数
不: 能 一确 确定定 奇奇俊倩 f性
高一数学函数的奇偶性试题
![高一数学函数的奇偶性试题](https://img.taocdn.com/s3/m/5eb0e4eb4431b90d6d85c7a0.png)
高一数学函数的奇偶性试题1.若函数是偶函数,则的递减区间是【答案】【解析】偶函数的图像关于轴对称,故,则,则的递减区间是。
【考点】(1)偶函数图像的性质;(2)二次函数单调区间的求法。
2.设函数为奇函数,,,则=()A.0B.C.D.-【答案】C.【解析】由题意知,,又因为函数为奇函数,所以,且,再令中得,,即,所以,故选C.【考点】函数的奇偶性;抽象函数.3.若函数的图像关于原点对称,则。
【答案】【解析】试题分析:由题意知恒成立,即即恒成立,所用【考点】奇函数的应用.4.已知函数为奇函数,且当时,,则()A.B.C.D.【答案】D【解析】∵为奇函数,∴.【考点】函数的性质.5.设是定义在上的奇函数,当时,为常数),则.【答案】【解析】是定义在上的奇函数,所以,求得;而,由奇函数可知.【考点】函数奇偶性.6.函数的图像大致是()【答案】A【解析】因为的定义域为且,所以为上的偶函数,该函数的图像关于轴对称,只能是图像A、C选项之一,而,故选A.【考点】1.函数的图像;2.函数的奇偶性.7.已知是奇函数,且,则.【答案】【解析】令,因为此函数是奇函数,所以。
即,所以。
【考点】函数奇偶性。
8.设函数 ().(1)若为偶函数,求实数的值;(2)已知,若对任意都有恒成立,求实数的取值范围.【答案】(1)0;(2)【解析】(1)根据偶函数定义,得到,平方后可根据对应系数相等得到a的值,也可将上式两边平方得恒成立,得a的值。
(2)应先去掉绝对值将其改写为分段函数,在每段上求函数在时的最小值,在每段求最值时都属于定轴动区间问题,需讨论。
最后比较这两个最小值的大小取最小的那个,即为原函数的最小值。
要使恒成立,只需的最小值大于等于1即可,从而求得a的范围试题解析:(1)若的为偶函数,则,,故,两边平方得,展开时,为偶函数。
(2)设,①求,即的最小值:若,;若,②求,即的最小值,比较与,的大小:,故“对恒成立”即为“()”令,解得。
函数奇偶性练习题(内含答案)
![函数奇偶性练习题(内含答案)](https://img.taocdn.com/s3/m/36d7dff1336c1eb91b375d52.png)
函数奇偶性练习(内含答案)一、选择题1.已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx ( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数2.已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则( )A .31=a ,b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =0 3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的表达式是( )A .y =x (x -2)B .y =x (|x |-1)C .y =|x |(x -2)D .y =x (|x |-2)4.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于( )A .-26B .-18C .-10D .105.函数1111)(22+++-++=x x x x x f 是( )A .偶函数B .奇函数C .非奇非偶函数D .既是奇函数又是偶函数6.若)(x ϕ,g (x )都是奇函数,2)()(++=x bg a x f ϕ在(0,+∞)上有最大值5,则f (x )在(-∞,0)上有( )A .最小值-5B .最大值-5C .最小值-1D .最大值-3二、填空题7.函数2122)(xx x f ---=的奇偶性为________(填奇函数或偶函数) . 8.若y =(m -1)x 2+2mx +3是偶函数,则m =_________.9.已知f (x )是偶函数,g (x )是奇函数,若11)()(-=+x x g x f ,则f (x )的解析式为_______.10.已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和为________.三、解答题11.设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),求实数m 的取值范围.12.已知函数f(x)满足f(x+y)+f(x-y)=2f(x)·f(y)(x∈R,y∈R),且f(0)≠0,试证f(x)是偶函数.13.已知函数f(x)是奇函数,且当x>0时,f(x)=x3+2x2—1,求f(x)在R上的表达式.(x)是定义在(-∞,-5] [5,+∞)上的奇函数,且f(x)在[5,+∞)上单调递减,试判断f(x)在(-∞,-5]上的单调性,并用定义给予证明.15.设函数y=f(x)(x∈R且x≠0)对任意非零实数x1、x2满足f(x1·x2)=f(x1)+f(x2),求证f(x)是偶函数.函数的奇偶性练习参考答案1. 解析:f (x )=ax 2+bx +c 为偶函数,x x =)(ϕ为奇函数, ∴g (x )=ax 3+bx 2+cx =f (x )·)(x ϕ满足奇函数的条件. 答案:A 2.解析:由f (x )=ax 2+bx +3a +b 为偶函数,得b =0.又定义域为[a -1,2a ],∴a -1=2a ,∴31=a .故选A . 3.解析:由x ≥0时,f (x )=x 2-2x ,f (x )为奇函数,∴当x <0时,f (x )=-f (-x )=-(x 2+2x )=-x 2-2x =x (-x -2).∴,,)0()0()2()2()(<≥---=⎩⎨⎧x x x x x x x f 即f (x )=x (|x |-2)答案:D4.解析:f (x )+8=x 5+ax 3+bx 为奇函数, f (-2)+8=18,∴f (2)+8=-18,∴f (2)=-26. 答案:A5.解析:此题直接证明较烦,可用等价形式f (-x )+f (x )=0. 答案:B6.解析:)(x ϕ、g (x )为奇函数,∴)()(2)(x bg x a x f +=-ϕ为奇函数.又f (x )在(0,+∞)上有最大值5, ∴f (x )-2有最大值3.∴f (x )-2在(-∞,0)上有最小值-3, ∴f (x )在(-∞,0)上有最小值-1. 答案:C7.答案:奇函数8.答案:0解析:因为函数y =(m -1)x 2+2mx +3为偶函数,∴f (-x )=f (x ),即(m -1)(-x )2+2m (-x )+3=(m —1)x 2+2mx +3,整理,得m =0.9.解析:由f (x )是偶函数,g (x )是奇函数,可得11)()(--=-x x g x f ,联立11)()(-=+x x g x f ,∴11)1111(21)(2-=----=x x x x f . 答案:11)(2-=x x f 10.答案:0 11.答案:21<m 12.证明:令x =y =0,有f (0)+f (0)=2f (0)·f (0),又f (0)≠0,∴可证f (0)=1.令x =0,∴f (y )+f (-y )=2f (0)·f (y )⇒f (-y )=f (y ),故f (x )为偶函数.13.解析:本题主要是培养学生理解概念的能力.f (x )=x 3+2x 2-1.因f (x )为奇函数,∴f (0)=0.当x <0时,-x >0,f (-x )=(-x )3+2(-x )2-1=-x 3+2x 2-1, ∴f (x )=x 3-2x 2+1. 因此,.)0()0()0(12012)(,,2323<=>+--+=⎪⎩⎪⎨⎧x x x x x x x x f 点评:本题主要考查学生对奇函数概念的理解及应用能力.14.解析:任取x 1<x 2≤-5,则-x 1>-x 2≥-5.因f (x )在[5,+∞]上单调递减,所以f (-x 1)<f (-x 2)⇒f (x 1)<-f (x 2)⇒f (x 1)>f (x 2),即单调减函数.点评:此题要注意灵活运用函数奇偶性和单调性,并及时转化.15.解析:由x 1,x 2∈R 且不为0的任意性,令x 1=x 2=1代入可证,f (1)=2f (1),∴f (1)=0.又令x 1=x 2=-1,∴f [-1×(-1)]=2f (1)=0,∴(-1)=0.又令x 1=-1,x 2=x ,∴f (-x )=f (-1)+f (x )=0+f (x )=f (x ),即f (x )为偶函数. 点评:抽象函数要注意变量的赋值,特别要注意一些特殊值,如,x 1=x 2=1,x 1=x 2=-1或x 1=x 2=0等,然后再结合具体题目要求构造出适合结论特征的式子即可.。
函数的奇偶性问题练习题(含答案)
![函数的奇偶性问题练习题(含答案)](https://img.taocdn.com/s3/m/a780319da1c7aa00b42acb57.png)
函数的奇偶性问题一、选择题1.已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx () A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数 解析:f (x )=ax 2+bx +c 为偶函数,x x =)(ϕ为奇函数,∴g (x )=ax 3+bx 2+cx =f (x )·)(x ϕ满足奇函数的条件. 答案:A2.已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则() A .31=a ,b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =0 解析:由f (x )=ax 2+bx +3a +b 为偶函数,得b =0. 又定义域为[a -1,2a ],∴a -1=2a ,∴31=a .故选A . 3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的表达式是( )A .y =x (x -2)B .y =x (|x |-1)C .y =|x |(x -2)D .y =x (|x |-2) 解析:由x ≥0时,f (x )=x 2-2x ,f (x )为奇函数,∴当x <0时,f (x )=-f (-x )=-(x 2+2x )=-x 2-2x =x (-x -2). ∴(2)(0)()(2)(0),,x x x f x x x x ⎧⎨⎩-≥=--<即f (x )=x (|x |-2)答案:D4.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于( ) A .-26 B .-18 C .-10 D .10 解析:f (x )+8=x 5+ax 3+bx 为奇函数,f (-2)+8=18,∴f (2)+8=-18,∴f (2)=-26. 答案:A5.函数1111)(22+++-++=x xx x x f 是()A .偶函数B .奇函数C .非奇非偶函数D .既是奇函数又是偶函数 解析:此题直接证明较烦,可用等价形式f (-x )+f (x )=0. 答案:B 6.若)(x ϕ,g (x )都是奇函数,2)()(++=x bg a x f ϕ在(0,+∞)上有最大值5,则f (x )在(-∞,0)上有( )A .最小值-5B .最大值-5C .最小值-1D .最大值-3 解析:)(x ϕ、g (x )为奇函数,∴()2()()f x a x bg x φ-=+为奇函数. 又f (x )在(0,+∞)上有最大值5, ∴f (x )-2有最大值3. ∴f (x )-2在(-∞,0)上有最小值-3, ∴f (x )在(-∞,0)上有最小值-1. 答案:C 二、填空题 7.函数2122)(xx x f ---=的奇偶性为____奇函数____(填奇函数或偶函数) .8.若y =(m -1)x 2+2mx +3是偶函数,则m =____0_____. 解析:因为函数y =(m -1)x 2+2mx +3为偶函数,∴f (-x )=f (x ),即(m -1)(-x )2+2m (-x )+3=(m —1)x 2+2mx +3,整理,得m =0.9.已知f (x )是偶函数,g (x )是奇函数,若11)()(-=+x x g x f ,则f (x )的解析式为____11)(2-=xx f ___.解析:由f (x )是偶函数,g (x )是奇函数,可得11)()(--=-x x g x f ,联立11)()(-=+x x g x f ,∴11)1111(21)(2-=----=x x x x f . 10.已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和为___0 _____. 三、解答题11.设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),求实数m 的取值范围.(21<m ) 12.已知函数f (x )满足f (x +y )+f (x -y )=2f (x )·f (y )(x ∈R ,y ∈R ),且f (0)≠0,试证f (x )是偶函数.证明:令x =y =0,有f (0)+f (0)=2f (0)·f (0),又f (0)≠0,∴可证f(0)=1.令x =0,∴f (y )+f (-y )=2f (0)·f (y )⇒f (-y )=f (y ),故f (x )为偶函数.13.已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2—1,求f (x )在R上的表达式.解析:本题主要是培养学生理解概念的能力.f (x )=x 3+2x 2-1.因f (x )为奇函数,∴f (0)=0.当x <0时,-x >0,f (-x )=(-x )3+2(-x )2-1=-x 3+2x 2-1,∴f (x )=x 3-2x 2+1.因此,.)0()0()0(12012)(,,2323<=>+--+=⎪⎩⎪⎨⎧x x x x x x x x f 点评:本题主要考查学生对奇函数概念的理解及应用能力.(x )是定义在(-∞,-5] [5,+∞)上的奇函数,且f (x )在[5,+∞)上单调递减,试判断f (x )在(-∞,-5]上的单调性,并用定义给予证明. 解析:任取x 1<x 2≤-5,则-x 1>-x 2≥-5.因f (x )在[5,+∞]上单调递减,所以f (-x 1)<f (-x 2)⇒f (x 1)<-f (x 2)⇒f (x 1)>f (x 2),即单调减函数.点评:此题要注意灵活运用函数奇偶性和单调性,并及时转化.15.设函数y =f (x )(x ∈R 且x ≠0)对任意非零实数x 1、x 2满足f (x 1·x 2)=f (x 1)+f (x 2),求证f (x )是偶函数.解析:由x 1,x 2∈R 且不为0的任意性,令x 1=x 2=1代入可证,f (1)=2f (1),∴f (1)=0.又令x 1=x 2=-1,∴f [-1×(-1)]=2f (1)=0,∴(-1)=0.又令x 1=-1,x 2=x ,∴f (-x )=f (-1)+f (x )=0+f (x )=f (x ),即f (x )为偶函数.点评:抽象函数要注意变量的赋值,特别要注意一些特殊值,如,x 1=x 2=1,x 1=x 2=-1或x1=x2=0等,然后再结合具体题目要求构造出适合结论特征的式子即可.。
高一数学函数的奇偶性练习题
![高一数学函数的奇偶性练习题](https://img.taocdn.com/s3/m/99d26bd9162ded630b1c59eef8c75fbfc77d9419.png)
高一数学函数的奇偶性练习题1、判断奇偶性:$f(x)=x^2-1+1-x^2$2、已知$f(x)=x^5+ax^3+bx-8$且$f(-2)=10$,求$f(2)$。
3、判断函数$f(x)=\begin{cases}x^2(x\geq0)\\-x^2(x<0)\end{cases}$的奇偶性。
4、若$f(x)=(k-2)x+(k-3)x+3$是偶函数,讨论函数$f(x)$的单调区间。
5、定义在$\mathbb{R}$上的偶函数$f(x)$在$(-\infty,+\infty)$是单调递减,若$f(a-6)<f(2a)$,则$a$的取值范围是多少?6、设奇函数$f(x)$的定义域为$[-5,5]$。
若当$x\in[0,5]$时,$f(x)$的图象如右图,则不等式$f(x)<0$的解是什么?7、函数$f(x)$在区间$(-2,3)$上是增函数,则$y=f(x+5)$的递增区间是什么?8、已知定义域为$\mathbb{R}$的函数$f(x)$在区间$(-\infty,5)$上单调递减,对任意实数$t$,都有$f(5+t)=f(5-t)$,那么下列式子一定成立的是$f(9)<f(-1)<f(13)$。
9、已知函数$f(x)=x^2+2(a-1)x+2$在区间$(-\infty,4]$上是减函数,则实数$a$的取值范围是$a\leq3$。
10、定义在$\mathbb{R}$上的函数$y=f(x)$在$(-\infty,2)$上是增函数,且$y=f(x+2)$图象的对称轴是$x=0$,则$f(-1)<f(3)$。
11、已知$f(x)$是定义在$(-2,2)$上的减函数,且$f(m-1)-f(1-2m)>0$,求实数$m$的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数奇偶性练习题
1、若函数R x x f y ∈=),(是奇函数,且)2()1(f f <,则必有 ( )
A .)2()1(-<-f f B. )2()1(->-f f C.)2()1(-=-f f D.不确定
2、函数)(x f 是R 上的偶函数,且在),0[+∞上单调递增,则下列各式成立的是
( )
A .)1()0()2(f f f >>- B. )0()1()2(f f f >->-
C.)2()0()1(->>f f f
D.)0()2()1(f f f >->
3、已知函数f(x)为奇函数,且x>0时,f(x)=x(1+x 3),则x<0时,f(x)=( )
A. x(1+x 3)
B. -x(1+x 3)
C. -x(1-x 3)
D. x(1-x 3)
4、已知8)(35-++=bx ax x x f 且10)2(=-f ,那么=)2(f __________
5、设奇函数f(x)的定义域为[-5,5].若当x ∈[0,5]时, f(x)
的图象如右图,
则()0<x f 的解
是 .
6.若函数2()(32)f x k k x b =-++在R 上是减函数,则k 的取值范围为_____________
7.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是 __________________
8.若函数2
()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是____________
9、判断函数⎩⎨⎧<≥-=)0()0()(22x x x x x f 的奇偶性。
10、若3)3()2()(2
+-+-=x k x k x f 是偶函数,讨论函数)(x f 的单调区间?
11、已知函数)0()(23≠++=a cx bx ax x f 是偶函数,判cx bx ax x g ++=23)(的奇偶性。
12.已知函数[]2
()22,5,5f x x ax x =++∈-. 当1a =-时,求函数的最大值和最小值;
13.已知奇函数f(x)是定义在][1,1-上的增函数,且f(x-1)+f(1-2x)<0,求实数x 的取值范围。
14.若f(x)是定义在R 的奇函数,当x<0时,f(x)=x(1-x),求函数f(x)的解析式.。