材料成型基本原理习题答案
【免费下载】材料成型原理第三章答案
第三章1.试述等压时物质自由能G 随温度上升而下降以及液相自由能G L 随温度上升而下降的斜率大于固相G S 的斜率的理由。
并结合图3-1及式(3-6)说明过冷度ΔT 是影响凝固相变驱动力ΔG 的决定因素。
答:(1)等压时物质自由能G 随温度上升而下降的理由如下:由麦克斯韦尔关系式:(1)VdP SdT dG +-=并根据数学上的全微分关系: dy yF dx x F y x dF xy ⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=),(得:(2)dP P G dT T G dG TP ⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=比较(1)式和(2)式得: V P G S T G TP=⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂,等压时dP =0 ,此时 (3)dT T G SdT dG P⎪⎭⎫⎝⎛∂∂=-=由于熵恒为正值,故物质自由能G 随温度上升而下降。
(2)液相自由能G L 随温度上升而下降的斜率大于固相G S 的斜率的理由如下: 因为液态熵大于固态熵,即: S L > S S 所以:>即液相自由能G L 随温度上升而下降的斜率大于固相G S 的斜率 。
(3)过冷度ΔT 是影响凝固相变驱动 力ΔG 的决定因素的理由如下: 右图即为图3-1其中:表示液-固体积自由能之差V G ∆T m 表示液-固平衡凝固点从图中可以看出:T > T m 时,ΔG=Gs-G L ﹥0,此时 固相→液相T = T m 时,ΔG=Gs-G L =0,此时 液固平衡 T < T m 时,ΔG=Gs-G L <0,此时 液相→固相 所以ΔG 即为相变驱动力。
再结合(3-6)式来看,m m V T TH G ∆⋅∆-=∆(其中:ΔH m —熔化潜热, ΔT —过冷度))(T T m -=由于对某一特定金属或合金而言,T m 及ΔH m 均为定值,所以过冷度ΔT 是影响凝固相变驱动力ΔG 的决定因素 。
2.怎样理解溶质平衡分配系数K 0的物理意义及热力学意义?答:(1)K 0的物理意义如下:溶质平衡分配系数K 0定义为:特定温度T *下固相合金成分浓度C 与液相合金成分浓度*S C 达到平衡时的比值:*L K 0 =**LSC C K 0<1时,固相线、液相线构成的张角朝下,K 0越小,固相线、液相线张开程度越大,开始结晶时与终了结晶时的固相成分差别越大,最终凝固组织的成分偏析越严重。
材料成型参考答案
材料成型参考答案材料成型参考答案材料成型是指通过加工和处理原始材料,将其转变为具有特定形状和性能的制品的过程。
它是现代工业生产中不可或缺的环节,涉及到多种材料和多种成型方法。
在本文中,我们将探讨一些常见的材料成型参考答案,以便更好地理解和应用这些技术。
一、金属成型金属成型是指将金属材料加工成所需形状的过程。
常见的金属成型方法包括锻造、压力成型、铸造和粉末冶金等。
锻造是通过对金属材料施加压力和热力来改变其形状和结构的方法。
压力成型包括挤压、拉伸、冲压和深冲等,通过对金属材料施加压力来使其变形。
铸造是将液态金属注入到模具中,使其凝固成为特定形状的方法。
粉末冶金是将金属粉末压制成形状后进行烧结,使其成为坚固的金属制品。
二、塑料成型塑料成型是指将塑料材料加工成所需形状的过程。
常见的塑料成型方法包括注塑、挤出、吹塑和热压等。
注塑是将熔化的塑料材料注入到模具中,使其凝固成为特定形状的方法。
挤出是将熔化的塑料材料挤出成连续的形状,如管材和板材等。
吹塑是将熔化的塑料材料注入到膨胀的模具中,使其成为中空的形状,如瓶子和容器等。
热压是将熔化的塑料材料放置在模具中,通过加热和压力使其成形。
三、橡胶成型橡胶成型是指将橡胶材料加工成所需形状的过程。
常见的橡胶成型方法包括压延、压制和注塑等。
压延是将橡胶材料通过辊压的方式使其变薄并成为特定形状的方法。
压制是将橡胶材料放置在模具中,通过加热和压力使其成形。
注塑是将熔化的橡胶材料注入到模具中,使其凝固成为特定形状的方法。
四、陶瓷成型陶瓷成型是指将陶瓷材料加工成所需形状的过程。
常见的陶瓷成型方法包括注塑、挤压和烧结等。
注塑是将陶瓷材料注入到模具中,使其凝固成为特定形状的方法。
挤压是将陶瓷材料通过挤出的方式使其变形成特定形状。
烧结是将陶瓷材料在高温下进行加热,使其成为坚固的陶瓷制品。
总结起来,材料成型是一门综合性的技术,涉及到多种材料和多种成型方法。
通过合理选择和应用不同的成型方法,可以使原始材料转变为具有特定形状和性能的制品,满足各种工业生产的需求。
材料成型基本原理课后答案解析
第一章习题1 . 液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?答:(1)液体与固体及气体比较的异同点可用下表说明相同点不同点液体具有自由表面;可压缩性很低具有流动性,不能承受切应力;远程无序,近程有序固体不具有流动性,可承受切应力;远程有序液体完全占据容器空间并取得容器内腔形状;具有流动性远程无序,近程有序;有自由表面;可压缩性很低气体完全无序;无自由表面;具有很高的压缩性(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:①物质熔化时体积变化、熵变及焓变一般都不大。
金属熔化时典型的体积变化∆V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。
②金属熔化潜热∆H m约为气化潜热∆H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。
由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。
2 . 如何理解偶分布函数g(r) 的物理意义?液体的配位数N1、平均原子间距r1各表示什么?答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。
N1 表示参考原子周围最近邻(即第一壳层)原子数。
r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。
3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。
答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。
近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。
材料成形原理--固态成形部分
机械学院--固态成形部分《材料成形原理》习题解(1)绪论1、什么是金属的塑性?什么是塑性成形?塑性成形有何特点?答:在外力的作用下使金属材料发生永久的塑性变形而不破坏其完整性的能力称为金属的塑性。
金属材料在一定的外力作用下,利用其塑性而使其成形并获得一定力学性能的加工方法称为塑性成形。
塑性成形的特点是(1)组织、性能好;(2)材料利用率高;(3)如在模具中成型,尺寸精度高,生产效率高。
第六章1、如何完整的表示受力物体内任一点的应力状态?原因何在?答:为了完整的表示受力物体内任一点的应力状态,围绕该点切取一平行于坐标轴的六面体作应力单元体,用三个微分面上的应力来完整的描述该点的应力状态。
在一般情况下表示一点的应力状态须用九个应力分量来描述,由切应力互等定理,只须用六个应力分量来描述,如果以主轴作坐标系,一点的应力状态只须用三个应力分量来描述。
应力单元体,应力张量,应力莫尔圆,应力椭球面都是点的应力状态的表达方法。
2、叙述下列术语的定义或含义:张量:张量是矢量的推广,可以定义由若干个当坐标系改变时满足转换关系的分量所组成的集合为张量应力张量:在一定的外力条件下,受力物体内任一点的应力状态已被确定,如果取不同的坐标系,表示该点的应力状态的九个应力分量将有不同的数值,而该点的应力状态并没有变化,因此,在不同坐标系中的应力分量之间应该存在一定的关系。
符合数学上张量之定义,表示该点的应力状态的九个应力分量构成一个二阶张量,称为应力张量。
应力张量不变量:应力状态特征方程式中的系数J1、、J2、J3、不随坐标而变,所以将J1、、J2、J3、称为应力张量的第一、第二、第三不变量。
主应力:切应力为零的微分面称为主平面,主平面上的正应力称为主应力。
主切应力:切应力达极大值的微分面称为主切应力平面,主切应力平面上的切应力称为主切应力。
最大切应力:三个主切应力中绝对值最大的一个。
主应力简图:只用主应力的个数及符号来描述一点应力状态的简图。
材料成型基本原理作业及答案
第二章凝固温度场4. 比较同样体积大小的球状、块状、板状及杆状铸件凝固时间的长短。
解:一般在体积相同的情况下上述物体的表面积大小依次为:A 球<A 块<A 板<A 杆根据 K R =τ 与 11A V R = 所以凝固时间依次为: t 球>t 块>t 板>t 杆。
5. 在砂型中浇铸尺寸为30030020 mm 的纯铝板。
设铸型的初始温度为20℃,浇注后瞬间铸件-铸型界面温度立即升至纯铝熔点660℃,且在铸件凝固期间保持不变。
浇铸温度为670℃,金属与铸型材料的热物性参数见下表:热物性材料导热系数λ W/(m ·K) 比热容C J/(kg ·K) 密度ρ kg/m 3 热扩散率a m 2/s 结晶潜热 J/kg 纯铝212 1200 2700 6.510-5 3.9105砂型 0.739 1840 1600 2.510-7 试求:(1)根据平方根定律计算不同时刻铸件凝固层厚度s,并作出τ-s 曲线;(2)分别用“平方根定律”及“折算厚度法则”计算铸件的完全凝固时间,并分析差别。
解:(1) 代入相关已知数解得: 2222ρλc b =,=1475 ,()()[]S i T T c L T T b K -+ρπ-=10112022 = 0.9433 (m s m /)根据公式K ξτ=计算出不同时刻铸件凝固层厚度s 见下表,τξ-曲线见图3。
τ (s) 020 40 60 80 100 120 ξ (mm)0 4.22 6.00 7.31 8.44 9.43 10.3(2) 利用“平方根定律”计算出铸件的完全凝固时间:图3 τξ-关系曲线取ξ =10 mm , 代入公式解得: τ=112.4 (s) ;利用“折算厚度法则”计算铸件的完全凝固时间:11A V R = = 8.824 (mm) 2⎪⎭⎫ ⎝⎛=K R τ = 87.5 (s) 采用“平方根定律”计算出的铸件凝固时间比“折算厚度法则”的计算结果要长,这是因为“平方根定律”的推导过程没有考虑铸件沿四周板厚方向的散热。
材料成型原理第四章答案
第四章1. 何谓结晶过程中的溶质再分配它是否仅由平衡分配系数K 0所决定当相图上的液相线和固相线皆为直线时,试证明K 0为一常数。
答:结晶过程中的溶质再分配:是指在结晶过程中溶质在液、固两相重新分布的现象。
溶质再分配不仅由平衡分配系数K 0决定 ,还受自身扩散性质的制约,液相中的对流强弱等因素也将影响溶质再分配。
当相图上的液相线和固相线皆为直线时K 0为一常数,证明如下:如右图所示:液相线及固相线为直线,假设其斜率分别为m L 及m S ,虽然C *S 、C *L 随温度变化有不同值,但L m S m L S m T T m T T C C K /)(/)(0****--===SL m m =常数, 此时,K 0与温度及浓度无关,所以,当液相线和固相线为直线时,不同温度和浓度下K 0为定值。
2.B 开始凝固。
温度梯度大到足以使固-液界面保持平面生长。
假设固相无扩散,液相均匀混合。
试求:①α相与液相之间的平衡分配系数K 0;②凝固后共晶体的数量占试棒长度的百分之几③凝固后的试棒中溶质B 的浓度沿试棒长度的分布曲线。
解:(1)平衡分配系数K 0 的求解:由于液相线及固相线均为直线不同温度和浓度下K 0为定值,所以:如右图,当T=500℃时,K 0 =**L C C α=%60%30=0.5 K 0即为所求 α相与液相之间的 平衡分配系数.(2)凝固后共晶体的数量占试棒长度的百分数的计算:由固相无扩散液相均匀混合下溶质再分配的正常偏析方程代入已知的*L C = 60% , K 0 = 0.5, C 0= C B =40%可求出此时的L f = 44.4%由于T=500℃为共晶转变温度,所以此时残留的液相最终都将转变为共晶组织,所以凝固后共晶体的数量占试棒长度的百分数也即为44.4%.(3)凝固后的试棒中溶质B 的浓度沿试棒长度的分布曲线 (并注明各特征成分及其位置)如下:3. 在固相无扩散而液相仅有扩散凝固条件下,分析凝固速变大(R 1→R 2,且R 2>R 1)时,固相成分的变化情况,以及溶质富集层的变化情况。
材料成型传输原理课后答案(吴树森版)
第一章流体的主要物理性质1-1何谓流体,流体具有哪些物理性质?答:流体是指没有固定的形状、易于流动的物质。
它包括液体和气体。
流体的主要物理性质有:密度、重度、比体积压缩性和膨胀性。
1-2某种液体的密度ρ=900 Kg/m3,试求教重度γ和质量体积v。
解:由液体密度、重度和质量体积的关系知:∴质量体积为1.4某种可压缩液体在圆柱形容器中,当压强为2MN/m2时体积为995cm3,当压为多少?强为1MN/m2时体积为1000 cm3,问它的等温压缩率kT公式(2-1):解:等温压缩率KTΔV=995-1000=-5*10-6m3注意:ΔP=2-1=1MN/m2=1*106Pa将V=1000cm3代入即可得到K=5*10-9Pa-1。
T注意:式中V是指液体变化前的体积1.6 如图1.5所示,在相距h=0.06m的两个固定平行乎板中间放置另一块薄板,在薄板的上下分别放有不同粘度的油,并且一种油的粘度是另一种油的粘度的2倍。
当薄板以匀速v=0.3m/s被拖动时,每平方米受合力F=29N,求两种油的粘度各是多少?解:流体匀速稳定流动时流体对板面产生的粘性阻力力为平板受到上下油面的阻力之和与施加的力平衡,即代入数据得η=0.967Pa.s第二章流体静力学2-1作用在流体上的力有哪两类,各有什么特点?解:作用在流体上的力分为质量力和表面力两种。
质量力是作用在流体内部任何质点上的力,大小与质量成正比,由加速度产生,与质点外的流体无关。
而表面力是指作用在流体表面上的力,大小与面积成正比,由与流体接触的相邻流体或固体的作用而产生。
2-2什么是流体的静压强,静止流体中压强的分布规律如何?解:流体静压强指单位面积上流体的静压力。
静止流体中任意一点的静压强值只由该店坐标位置决定,即作用于一点的各个方向的静压强是等值的。
2-3写出流体静力学基本方程式,并说明其能量意义和几何意义。
解:流体静力学基本方程为:同一静止液体中单位重量液体的比位能可以不等,比压强也可以不等,但比位能和比压强可以互换,比势能总是相等的。
材料成型原理(材料成形热过程) 资料习题
材料成型原理(材料成形热过程) 资料习题1、与热处理相比,焊接热过程有哪些特点?答:(1)焊接过程热源集中,局部加热温度高(2)焊接热过程的瞬时性,加热速度快,高温停留时间短(3) 热源的运动性,加热区域不断变化,传热过程不稳定。
2、影响焊接温度场的因素有哪些?试举例分别加以说明。
•热源的性质•焊接工艺参数•被焊金属的热物理性质•焊件的板厚和形状3、何谓焊接热循环?答:焊接热循环:在焊接热源的作用下,焊件上某点的温度随时间的变化过程,即焊接过程中热源沿焊件移动时,焊件上某点温度由低而高,达到最高值后,又由高而低随时间的变化。
焊接热循环具有加热速度快、峰值温度高、冷却速度大和相变温度以上停留时间不易控制的特点3、焊接热循环的主要参数有哪些?它们对焊接有何影响?•加热速度•峰值温度•高温停留时间•冷却速度 或 冷却时间决定焊接热循环特征的主要参数有以下四个:(1)加热速度ωH 焊接热源的集中程度较高,引起焊接时的加热速度增加,较快的加热速度将使相变过程进行的程度不充分,从而影响接头的组织和力学性能。
(2)峰值温度Tmax 。
距焊缝远近不同的点,加热的最高温度不同。
焊接过程中的高温使焊缝附近的金属发生晶粒长大和重结晶,从而改变母材的组织与性能。
(3)相变温度以上的停留时间t H 在相变温度T H 以上停留时间越长,越有利于奥氏体的均匀化过程,增加奥氏体的稳定性,但同时易使晶粒长大,引起接头脆化现象,从而降低接头的质量。
(4)冷却速度ωC (或冷却时间t 8 / 5) 冷却速度是决定焊接热影响区组织和性能的重要参数之一。
对低合金钢来说,熔合线附近冷却到540℃左右的瞬时冷却速度是最重要的参数。
也可采用某一温度范围内的冷却时间来表征冷却的快慢,如800~500℃的冷却时间t 8 / 5,800~300℃的冷却时间t 8/3,以及从峰值温度冷至100℃的冷却时间t 100。
5、焊接热循环中冷却时间5/8t 、3/8t 、100t 的含义是什么?焊接热循环中的冷却时间5/8t 表示从800︒C 冷却到500︒C 的冷却时间。
材料成型基本原理习题答案答案
第一章习题1 .液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并 不是原子间结合力的全部破坏?答:(1)液体与固体及气体比较的异同点可用下表说明(2) 金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方 面说明: ① 物质熔化时体积变化、熵变及焓变一般都不大。
金属熔化时典型的体积变化 V/V 为3%~5左右,表明液体的原子间距接近于固体,在熔点附近 其系统混乱度只是稍大于固体而远小于气体的混乱度。
② 金属熔化潜热 Hn 约为气化潜热 H 的1/15~1/30,表明熔化时其内 部原子结合键只有部分被破坏。
由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内 原子的局域分布仍具有一定的规律性。
2 .如何理解偶分布函数g(r)的物理意义?液体的配位数 N I 、平均原子 间距r 1各表示什么?答:分布函数g(r)的物理意义:距某一参考粒子r 处找到另一个粒子的几 率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r 的位置的 数密度P (r)对于平均数密度P o (=N/V)的相对偏差。
N1表示参考原子周围最近邻(即第一壳层)原子数。
r如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实 验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学 短程序)。
1表示参考原子与其周围第一配位层各原子的平均原子间距,也表示 某液体的平均原子间距。
3. 答:(1 )长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。
近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡” 着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证① 偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数 g(r) 在任何位置均相等,呈一条直线 g(r)=1 。
晶态固体因原子以特定方式周期排列,其 g(r) 以相应的规律呈分立的若干尖锐峰。
合工大版材料成型原理课后习题参考答案(重要习题加整理)
第二章 凝固温度场P498. 对于低碳钢薄板,采用钨极氩弧焊较容易实现单面焊双面成形(背面均匀焊透)。
采用同样焊接规范去焊同样厚度的不锈钢板或铝板会出现什么后果?为什么?解:采用同样焊接规范去焊同样厚度的不锈钢板可能会出现烧穿,这是因为不锈钢材料的导热性能比低碳钢差,电弧热无法及时散开的缘故;相反,采用同样焊接规范去焊同样厚度的铝板可能会出现焊不透,这是因为铝材的导热能力优于低碳钢的缘故。
9. 对于板状对接单面焊焊缝,当焊接规范一定时,经常在起弧部位附近存在一定长度的未焊透,分析其产生原因并提出相应工艺解决方案。
解:(1)产生原因:在焊接起始端,准稳态的温度场尚未形成,周围焊件的温度较低,电弧热不足以将焊件熔透,因此会出现一定长度的未焊透。
(2)解决办法:焊接起始段时焊接速度慢一些,对焊件进行充分预热,或焊接电流加大一些,待焊件熔透后再恢复到正常焊接规范。
生产中还常在焊件起始端固定一个引弧板,在引弧板上引燃电弧并进行过渡段焊接,之后再转移到焊件上正常焊接。
第四章 单相及多相合金的结晶 P909.何为成分过冷判据?成分过冷的大小受哪些因素的影响? 答: “成分过冷”判据为:R G L <NLD RLL L e K K D C m δ-+-0011当“液相只有有限扩散”时,δN =∞,0C C L =,代入上式后得R G L<000)1(K K D C m L L -( 其中: G L — 液相中温度梯度 R — 晶体生长速度 m L — 液相线斜率 C 0 — 原始成分浓度 D L — 液相中溶质扩散系数 K 0 — 平衡分配系数K )成分过冷的大小主要受下列因素的影响:1)液相中温度梯度G L , G L 越小,越有利于成分过冷 2)晶体生长速度R , R 越大,越有利于成分过冷 3)液相线斜率m L ,m L 越大,越有利于成分过冷 4)原始成分浓度C 0, C 0越高,越有利于成分过冷 5)液相中溶质扩散系数D L, D L 越底,越有利于成分过冷6)平衡分配系数K 0 ,K 0<1时,K 0 越 小,越有利于成分过冷;K 0>1时,K 0越大,越有利于成分过冷。
材料成型基本原理习题整理完成版
一、概念1、温度场:是加热和冷却过程中某一瞬间的温度分布。
2、凝固:将固体材料加热到液态,然后使其按人们预定的尺寸、形状及组织形态再次冷却到固态的过程称为凝固。
3、粘度:原子承接相互阻碍运动的内摩擦力。
影响粘度因素:温度、表面活性元素、非表面活性元素。
4、体积成形:是在塑性成形过程中靠体积的转移和重新分配来实现的。
体积成形有自由锻造、模锻、轧制、挤压、拉拔等。
5、轧制:将金属坯料通过两个旋转轧辊间的特定孔形,使其形成一定截面形状的方法。
6、挤压:挤压是使大截面的毛坯在凸模的强大压力作用下产生塑性流动,迫使金属从模具型腔中挤出,从而获得一定形状和较小截面尺寸的工作。
7、拉拔:拉拔是将金属坯料的前端施以一定的拉力,使它通过锥形的凹模型腔,改变其截面的形状和尺寸的一种加工方法。
8、板料成形一般称为冲压,可分为落料、冲孔(分离工序,简称冲裁)、弯曲、拉深等工序。
9、加工硬化:冷态变形时,随着变形程度的增加,材料强度、硬度提高,塑性、韧性下降现象。
二、简答题1、材料加工的三要素:材料、能量、信息2、选择零件加工方法的原则:要考虑零件的形状、特征、工作条件及使用要求、生产批量和制造成本、现有环境条件等多因素,以达到技术上可行、质量可靠和经济上合理。
3、冷塑性变形的实质:多晶体变形主要是晶内变形,晶间变形起次要作用,而且需要有其他变形和机制相协调这是由于晶界强度高于晶内,其变形比晶内难,如发生晶界变形易引起晶界破坏和产生裂纹。
4、冷塑性变形特点:1.不是同时性;2.晶粒变形的相互协调性;3.晶粒之间和晶粒内部与晶界附近区域之间变形的不均匀性。
5、塑性板料成形方面发展方向:a.大批量向高速化、自动化发展。
b.发展多工位压力机。
c.发展冲压生产线。
d.小批量生产时期朝简易化、通用化发展,提高加工的“柔性”。
e.工艺过程模拟化和模具CAD/CAM。
6、柔性加工单元包括:开式双柱宽台面压力机、机器人、模具自动仓库、供料装置、堆垛起重机、成品传送带、废品传送带、操纵台等。
材料成型原理课后答案
材料成型原理课后答案材料成型原理是指在材料加工过程中,通过施加外力或温度等条件,使材料发生形状、结构或性能的改变,从而达到所需形状和性能的加工过程。
在工程实践中,材料成型原理是非常重要的,它涉及到材料的加工工艺、成型设备、成型模具等方面的知识。
下面我们来看一下材料成型原理课后答案。
首先,材料成型原理的基本原理是什么?材料成型原理的基本原理是利用外力或温度等条件,使材料发生形状、结构或性能的改变,从而达到所需形状和性能的加工过程。
在材料成型过程中,通常会施加挤压力、拉伸力、压缩力等外力,或者通过加热、冷却等温度条件,来改变材料的形状和性能。
其次,材料成型原理的主要分类有哪些?根据加工方式的不同,材料成型原理可以分为塑性成型和非塑性成型两大类。
塑性成型是指在加工过程中,材料会发生塑性变形,通常包括挤压、拉伸、冲压、锻造等工艺。
非塑性成型则是指在加工过程中,材料不会发生塑性变形,通常包括切割、焊接、涂覆等工艺。
再次,材料成型原理的影响因素有哪些?材料成型过程受到多种因素的影响,包括材料的性能、成型设备、成型模具、加工工艺等。
其中,材料的性能是影响成型质量的关键因素,包括材料的塑性、韧性、硬度等性能。
成型设备和成型模具的设计也会直接影响成型的效果,加工工艺的选择和控制也是影响成型质量的重要因素。
最后,材料成型原理的发展趋势是什么?随着科学技术的不断进步,材料成型原理也在不断发展。
未来,材料成型技术将更加注重节能环保、智能化、精准化和柔性化,同时也会更加注重材料的功能性和多功能性。
同时,材料成型原理也将更加注重与其他工艺的集成和协同,实现材料加工的高效、低成本和高质量。
综上所述,材料成型原理是材料加工中的重要理论基础,它涉及到材料的加工工艺、成型设备、成型模具等方面的知识。
在学习和掌握材料成型原理的过程中,我们需要深入理解其基本原理、主要分类、影响因素和发展趋势,从而更好地应用于工程实践中,为材料加工提供更好的技术支持。
材料成型基本原理习题整理完成版
材料成型基本原理习题整理完成版一、概念1、温度场:是加热和冷却过程中某一瞬间的温度分布。
2、凝固:将固体材料加热到液态,然后使其按人们预定的尺寸、形状及组织形态再次冷却到固态的过程称为凝固。
3、粘度:原子承接相互阻碍运动的内摩擦力。
影响粘度因素:温度、表面活性元素、非表面活性元素。
4、体积成形:是在塑性成形过程中靠体积的转移和重新分配来实现的。
体积成形有自由锻造、模锻、轧制、挤压、拉拔等。
5、轧制:将金属坯料通过两个旋转轧辊间的特定孔形,使其形成一定截面形状的方法。
6、挤压:挤压是使大截面的毛坯在凸模的强大压力作用下产生塑性流动,迫使金属从模具型腔中挤出,从而获得一定形状和较小截面尺寸的工作。
7、拉拔:拉拔是将金属坯料的前端施以一定的拉力,使它通过锥形的凹模型腔,改变其截面的形状和尺寸的一种加工方法。
8、板料成形一般称为冲压,可分为落料、冲孔(分离工序,简称冲裁)、弯曲、拉深等工序。
9、加工硬化:冷态变形时,随着变形程度的增加,材料强度、硬度提高,塑性、韧性下降现象。
二、简答题1、材料加工的三要素:材料、能量、信息2、选择零件加工方法的原则:要考虑零件的形状、特征、工作条件及使用要求、生产批量和制造成本、现有环境条件等多因素,以达到技术上可行、质量可靠和经济上合理。
3、冷塑性变形的实质:多晶体变形主要是晶内变形,晶间变形起次要作用,而且需要有其他变形和机制相协调这是由于晶界强度高于晶内,其变形比晶内难,如发生晶界变形易引起晶界破坏和产生裂纹。
4、冷塑性变形特点:1.不是同时性;2.晶粒变形的相互协调性;3.晶粒之间和晶粒内部与晶界附近区域之间变形的不均匀性。
5、塑性板料成形方面发展方向:a.大批量向高速化、自动化发展。
b.发展多工位压力机。
c.发展冲压生产线。
d.小批量生产时期朝简易化、通用化发展,提高加工的“柔性”。
e.工艺过程模拟化和模具CAD/CAM。
6、柔性加工单元包括:开式双柱宽台面压力机、机器人、模具自动仓库、供料装置、堆垛起重机、成品传送带、废品传送带、操纵台等。
材料成型基础试题及答案
材料成型基础试题及答案一、单项选择题(每题2分,共20分)1. 材料成型过程中,下列哪项不是影响材料成型质量的因素?A. 材料性质B. 成型温度C. 成型速度D. 材料颜色答案:D2. 金属材料在成型过程中,下列哪项不是其主要的成型方法?A. 铸造B. 锻造C. 挤压D. 焊接答案:D3. 在塑料成型中,注射成型的主要优点是什么?A. 适合小批量生产B. 生产效率高C. 材料浪费少D. 成型精度低答案:B4. 玻璃成型中,吹制法主要用于成型哪种类型的玻璃制品?A. 平板玻璃B. 瓶罐类C. 光学玻璃D. 纤维玻璃5. 陶瓷材料成型时,下列哪项不是常用的成型方法?A. 干压成型B. 注浆成型C. 挤出成型D. 热压成型答案:D6. 金属材料的锻造成型中,下列哪项不是锻造的基本工序?A. 切割B. 热处理C. 锻造D. 冷却答案:A7. 在材料成型中,下列哪项不是影响成型件尺寸精度的因素?A. 模具设计B. 材料性质C. 成型温度D. 成型后的装饰答案:D8. 塑料注射成型中,下列哪项不是注射机的主要组成部分?A. 注射系统B. 合模系统C. 冷却系统D. 切割系统答案:D9. 金属材料的热处理过程中,下列哪项不是常见的热处理方法?B. 正火C. 淬火D. 冷拔答案:D10. 在材料成型中,下列哪项不是影响成型件表面质量的因素?A. 模具表面粗糙度B. 成型温度C. 材料流动性D. 成型后的抛光答案:D二、多项选择题(每题3分,共15分)1. 材料成型中,影响成型件尺寸精度的因素包括哪些?A. 模具设计B. 成型温度C. 材料性质D. 成型压力答案:A, B, C, D2. 塑料成型中,下列哪些是常见的成型方法?A. 注射成型B. 吹塑成型C. 热压成型D. 挤出成型答案:A, B, D3. 金属材料的锻造成型中,常用的锻造方法包括哪些?A. 热锻B. 冷锻D. 锻造答案:A, B, C4. 玻璃成型中,下列哪些是常见的成型方法?A. 吹制法B. 压制法C. 拉丝法D. 浇铸法答案:A, B, D5. 陶瓷材料成型中,下列哪些是常用的成型方法?A. 干压成型B. 注浆成型C. 挤出成型D. 热压成型答案:A, B, C三、判断题(每题2分,共10分)1. 材料成型过程中,成型温度对成型质量没有影响。
材料成形原理 部分答案
半径相同的圆柱和球体比较,前者的误差大;大铸件和小铸件比较,后者误差大;金属型和砂型比较,后者误差大,因为后者的热物性参数随温度变化较快。
11、何谓凝固过程的溶质再分配?它受哪些因素的影响?
溶质再分配:合金凝固时液相内的溶质一部分进入固相,另一部分进入液相,溶质传输使溶质在固-液界面两侧的固相和液相中进行再分配。
金属凝固时,完全由热扩散控制,这样的过冷称为热过冷;
由固液界面前方溶质再分配引起的过冷称为成分过冷.
成分过冷的本质:由于固液界面前方溶质富集而引起溶质再分配,界面处溶质含量最高,离界面越远,溶质含量越低。由结晶相图可知,固液界面前方理论凝固温度降低,实际温度和理论凝固温度之间就产生了一个附加温度差△T,即成分过冷度,这也是凝固的动力。
2、液态金属表面张力和界面张力有何不同?表面张力和附加压力有何关系?
答:液体金属的表面张力是质点(分子、原子)间作用力不平衡引起的。而任意两相(固-固、固-液、固-气)的交界面称为界面,由界面间相互作用而产生的力叫界面张力,表面张力可说是界面张力的一个特例。界面张力与两个表面张力之间的关系为:
σAB=σA+σB–wAB,其中σA、σB分别是A、B两物体的表面张力,wAB为两个单位面积界面向外做的功。表面张力与附加压力的关系有拉普拉斯方程描述: ,其中R1、R2为曲面的曲率半径。
1类:这种生核剂通常是与欲细化相具有界面共格对应的高熔点物质或同类金属、非金属碎粒,他们与欲细化相间具有较小的界面能,润湿角小,直接作为衬底促进自发形核。
2类:生核剂中的元素能与液态金属中的某元素形成较高熔点的稳定化合物,这些化合物与欲细化相间界面共格关系和较小的界面能,而促进非均质形核。
材料成形基本原理课后习题答案
第一章习题1 . 液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:①物质熔化时体积变化、熵变及焓变一般都不大。
金属熔化时典型的体积变化∆V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。
②金属熔化潜热∆H m约为气化潜热∆H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。
由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。
2 . 如何理解偶分布函数g(r) 的物理意义?液体的配位数N1、平均原子间距r1各表示什么?答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。
N1 表示参考原子周围最近邻(即第一壳层)原子数。
r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。
3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。
答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。
近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。
晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。
而液体的g(r)出现若干渐衰的钝化峰直至几个原子间距后趋于直线g(r)=1,表明液体存在短程有序的局域范围,其半径只有几个原子间距大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章习题1 . 液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?答:(1)液体与固体及气体比较的异同点可用下表说明(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:①物质熔化时体积变化、熵变及焓变一般都不大。
金属熔化时典型的体积变化∆V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。
②金属熔化潜热∆H m约为气化潜热∆H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。
由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。
2 . 如何理解偶分布函数g(r) 的物理意义?液体的配位数N1、平均原子间距r1各表示什么?答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。
N1 表示参考原子周围最近邻(即第一壳层)原子数。
r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。
3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。
答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。
近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。
晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。
而液体的g(r)出现若干渐衰的钝化峰直至几个原子间距后趋于直线g(r)=1,表明液体存在短程有序的局域范围,其半径只有几个原子间距大小。
②从金属熔化过程看物质熔化时体积变化、熵变及焓变一般都不大。
金属熔化时典型的体积变化∆V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。
另一方面,金属熔化潜热∆H m约为气化潜热∆H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。
由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。
可以说,在熔点(或液相线)附近,液态金属(或合金)的原子集团内短程结构类似于固体。
③ Richter等人利用X衍射、中子及电子衍射手段,对碱金属、Au、Ag、Pb和Tl等熔体进行了十多年的系统研究,认为液体中存在着拓扑球状密排结构以及层状结构,它们的尺寸范围约为10-6-10-7cm。
④ Reichert观察到液态Pb局域结构的五重对称性及二十面体的存在,并推测二十面体存在于所有的单组元简单液体。
⑤在Li-Pb、Cs-Au、Mg-Bi、Mg-Zn、Mg-Sn、Cu-Ti、Cu-Sn、 Al-Mg、Al-Fe等固态具有金属间化合物的二元熔体中均被发现有化学短程序的存在。
4.如何理解实际液态金属结构及其三种“起伏”特征?答:理想纯金属是不存在的,即使非常纯的实际金属中总存在着大量杂质原子。
实际金属和合金的液体由大量时聚时散、此起彼伏游动着的原子团簇、空穴所组成,同时也含有各种固态、液态或气态杂质或化合物,而且还表现出能量、结构及浓度三种起伏特征,其结构相当复杂。
能量起伏是指液态金属中处于热运动的原子能量有高有低,同一原子的能量也在随时间不停地变化,时高时低的现象。
结构起伏是指液态金属中大量不停“游动”着的原子团簇不断地分化组合,由于“能量起伏”,一部分金属原子(离子)从某个团簇中分化出去,同时又会有另一些原子组合到该团簇中,此起彼伏,不断发生着这样的涨落过程,似乎原子团簇本身在“游动”一样,团簇的尺寸及其内部原子数量都随时间和空间发生着改变的现象。
浓度起伏是指在多组元液态金属中,由于同种元素及不同元素之间的原子间结合力存在差别,结合力较强的原子容易聚集在一起,把别的原于排挤到别处,表现为游动原子团簇之间存在着成分差异,而且这种局域成分的不均匀性随原子热运动在不时发生着变化的现象。
5. 根据图1-10及式(1-7)说明为动力学粘度η的物理意义,并讨论液体粘度η(内摩擦阻力)与液体的原子间结合力之间的关系。
答:物理意义:作用于液体表面的应力τ大小与垂直于该平面方向上的速度梯度dV X/dy的比例系数。
通常液体的粘度表达式为)/exp(T k U C B =η。
这里B k 为Bolzmann 常数,U 为无外力作用时原子之间的结合能(或原子扩散势垒),C 为常数,T 为热力学温度。
根据此式,液体的粘度η随结合能U 按指数关系增加,这可以理解为,液体的原子之间结合力越大,则内摩擦阻力越大,粘度也就越高。
6. 总结温度、原子间距(或体积)、合金元素或微量元素对液体粘度η高低的影响。
答:η与温度T 的关系受两方面(正比的线性及负的指数关系)所共同制约,但总的趋势随温度T 而下降。
粘度随原子间距δ增大而降低,与3δ成反比。
合金组元或微量元素对合金液粘度的影响比较复杂。
许多研究者曾尝试描述二元合金液的粘度规律,其中M-H (Moelwyn-Hughes )模型为:⎪⎪⎭⎫ ⎝⎛-+=RT H X X m 21)(2211ηηη (1-9) 式中η1、η2、X 1、X 2 分别为纯溶剂和溶质的粘度及各自在溶液中的mole 分数,R 为气体常数,H m 为两组元的混合热。
按 M-H 模型,如果混合热H m 为负值,合金元素的增加会使合金液的粘度上升。
根据热力学原理,H m 为负值表明异类原子间结合力大于同类原子,因此摩擦阻力及粘度随之提高。
M-H 模型得到了一些实验结果的验证。
当溶质与溶剂在固态形成金属间化合物,由于合金液中存在异类原子间较强的化学结合键,合金液的粘度将会明显高于纯溶剂金属液的粘度。
当合金液中存在表面及界面活性微量元素(如Al-Si 合金变质元素Na )时,由于冷却过程中微量元素抑制原子集团的聚集长大,将阻碍金属液粘度的上升。
通常,表面活性元素使液体粘度降低,非表面活性杂质的存在使粘度提高。
7.过共析钢液η=0.0049Pa ﹒S ,钢液的密度为7000kg/m 3,表面张力为1500mN/m ,加铝脱氧,生成密度为5400 kg/m 3的Al 2O 3 ,如能使Al 2O 3颗粒上浮到钢液表面就能获得质量较好的钢。
假如脱氧产物在1524mm 深处生成,试确定钢液脱氧后2min 上浮到钢液表面的Al 2O 3最小颗粒的尺寸。
答: 根据流体力学的斯托克斯公式:ηρρυ2)(92r g B m -⋅=,式中:υ为夹杂物和气泡的上浮速度,r 为气泡或夹杂的半径,ρm 为液体合金密度,ρB 为夹杂或气泡密度,g 为重力加速度。
41034.1)(29-⨯=-⋅=B m g r ρρυηm分析物质表面张力产生的原因以及与物质原子间结合力的关系。
答:表面张力是由于物体在表面上的质点受力不均所造成。
由于液体或固体的表面原子受内部的作用力较大,而朝着气体的方向受力较小,这种受力不均引起表面原子的势能比内部原子的势能高。
因此,物体倾向于减小其表面积而产生表面张力。
原子间结合力越大,表面内能越大,表面张力也就越大。
但表面张力的影响因素不仅仅只是原子间结合力,与上述论点相反的例子大量存在。
研究发现有些熔点高的物质,其表面张力却比熔点低的物质低,如Mg与Zn同样都是二价金属,Mg的熔点为650℃,Zn的熔点为420℃,但Mg的表面张力为559mN/m;Zn的表面张力却为782mN/m。
此外,还发现金属的表面张力往往比非金属大几十倍,而比盐类大几倍。
这说明单靠原子间的结合力是不能解释一切问题的。
对于金属来说,还应当从它具有自由电子这一特性去考虑。
9.表面张力与界面张力有何异同点?界面张力与界面两侧(两相)质点间结合力的大小有何关系?答:界面张力与界面自由能的关系相当于表面张力与表面自由能的关系,即界面张力与界面自由能的大小和单位也都相同。
表面与界面的差别在于后者泛指两相之间的交界面,而前者特指液体或固体与气体之间的交界面,但更严格说,应该是指液体或固体与其蒸汽的界面。
广义上说,物体(液体或固体)与气相之间的界面能和界面张力为物体的表面能和表面张力。
当两个相共同组成一个界面时,其界面张力的大小与界面两侧(两相)质点间结合力的大小成反比,两相质点间结合力越大,界面能越小,界面张力就越小;两相间结合力小,界面张力就大。
相反,同一金属(或合金)液固之间,由于两者容易结合,界面张力就小。
10.液态金属的表面张力有哪些影响因素?试总结它们的规律。
答:液态金属的表面张力的影响因素有:(1)原子间结合力原子间结合力越大,表面内能越大,表面张力也就越大。
但表面张力的影响因素不仅仅只是原子间结合力,研究发现有些熔点高的物质,其表面张力却比熔点低的物质低。
此外,还发现金属的表面张力往往比非金属大几十倍,而比盐类大几倍。
这说明单靠原子间的结合力是不能解释一切问题的。
对于金属来说,还应当从它具有自由电子这一特性去考虑。
(2)温度液态金属表面张力通常随温度升高而下降,因为原子间距随温度升高而增大。
(3)合金元素或微量杂质元素合金元素或微量杂质元素对表面张力的影响,主要取决于原子间结合力的改变。
向系统中加入削弱原子间结合力的组元,会使表面张力减小,使表面内能降低,这样,将会使表面张力降低。
合金元素对表面张力的影响还体现在溶质与溶剂原子体积之差。
当溶质的原子体积大于溶剂原子体积,由于造成原子排布的畸变而使势能增加,所以倾向于被排挤到表面,以降低整个系统的能量。
这些富集在表面层的元素,由于其本身的原子体积大,表面张力低,从而使整个系统的表面张力降低。
原子体积很小的元素,如O、S、N等,在金属中容易进入到熔剂的间隙使势能增加,从而被排挤到金属表面,成为富集在表面的表面活性物质。
由于这些元素的金属性很弱,自由电子很少,因此表面张力小,同样使金属的表面张力降低。
(4)溶质元素的自由电子数目大凡自由电子数目多的溶质元素,由于其表面双电层的电荷密度大,从而造成对金属表面压力大,而使整个系统的表面张力增加。
化合物表面张力之所以较低,就是由于其自由电子较少的缘故。
11.设凝固后期枝晶间液体相互隔绝,液膜两侧晶粒的拉应力为1.5×103Mpa,液膜厚度为1.1×10-6mm,根据液膜理论计算产生热裂的液态金属临界表面张力。