化学键合固定相的基本理论

化学键合固定相的基本理论
化学键合固定相的基本理论

将有机官能团通过化学反应共价键合到硅胶表面的游离羟基上而形成的固定相称为化学键合相。这类固定相的突出特点是耐溶剂冲洗,并且可以通过改变键合相有机官能团的类型来改变分离的选择性。

1.键合相的性质

目前,化学键合相广泛采用微粒多孔硅胶为基体,用烷烃二甲基氯硅烷或烷氧基硅烷与硅胶表面的游离硅醇基反应,形成Si-O-Si-C键形的单分子膜而制得。硅胶表面的硅醇基密度约为5个/nm2,由于空间位阻效应(不可能将较大的有机官能团键合到全部硅醇基上)和其它因素的影响,使得大约有40~50%的硅醇基未反应。

残余的硅醇基对键合相的性能有很大影响,特别是对非极性键合相,它可以减小键合相表面的疏水性,对极性溶质(特别是碱性化合物)产生次级化学吸附,从而使保留机制复杂化(使溶质在两相间的平衡速度减慢,降低了键合相填料的稳定性。结果使碱性组分的峰形拖尾)。为尽量减少残余硅醇基,一般在键合反应后,要用三甲基氯硅烷(TMCS)等进行钝化处理,称封端(或称封尾、封顶,end-capping),以提高键合相的稳定性。另一方面,也有些ODS 填料是不封尾的,以使其与水系流动相有更好的"湿润"性能。

由于不同生产厂家所用的硅胶、硅烷化试剂和反应条件不同,因此具有相同键合基团的键合相,其表面有机官能团的键合量往往差别很大,使其产品性能有很大的不同。键合相的键合量常用含碳量(C%)来表示,也可以用覆盖度来表示。所谓覆盖度是指参与反应的硅醇基数目占硅胶表面硅醇基总数的比例。

pH值对以硅胶为基质的键合相的稳定性有很大的影响,一般来说,硅胶键合相应在pH=2~8的介质中使用。

2.键合相的种类

化学键合相按键合官能团的极性分为极性和非极性键合相两种。

常用的极性键合相主要有氰基(-CN)、氨基(-NH2)和二醇基(DIOL)键合相。极性键合相常用作正相色谱,混合物在极性键合相上的分离主要是基于极性键合基团与溶质分子间的氢键作用,极性强的组分保留值较大。极性键合相有时也可作反相色谱的固定相。

常用的非极性键合相主要有各种烷基(C1~C18)和苯基、苯甲基等,以C18应用最广。非极性键合相的烷基链长对样品容量、溶质的保留值和分离选择性都有影响,一般来说,样品容量随烷基链长增加而增大,且长链烷基可使溶质的保留值增大,并常常可改善分离的选择性;但短链烷基键合相具有较高的覆盖度,分离极性化合物时可得到对称性较好的色谱峰。苯基键合相与短链烷基键合相的性质相似。

另外C18柱稳定性较高,这是由于长的烷基链保护了硅胶基质的缘故,但C18基团空间体积较大,使有效孔径变小,分离大分子化合物时柱效较低。

3.固定相的选择

分离中等极性和极性较强的化合物可选择极性键合相。氰基键合相对双键异构体或含双键数不等的环状化合物的分离有较好的选择性。氨基键合相具有较强的氢键结合能力,对某些多官能团化合物如甾体、强心甙等有较好的分离能力;氨基键合相上的氨基能与糖类分子中的羟基产生选择性相互作用,故被广泛用于糖类的分析,但它不能用于分离羰基化合物,如甾酮、还原糖等,因为它们之间会发生反应生成Schiff 碱。二醇基键合相适用于分离有机酸、甾体和蛋白质。

分离非极性和极性较弱的化合物可选择非极性键合相。利用特殊的反相色谱技术,例如反相离子抑制技术和反相离子对色谱法等,非极性键合相也可用于分离离子型或可离子化的化合

物。ODS(octadecyl silane)是应用最为广泛的非极性键合相,它对各种类型的化合物都有很强的适应能力。短链烷基键合相能用于极性化合物的分离,而苯基键合相适用于分离芳香化合物。

另外,美国药典对色谱法规定较严,它规定了柱的长度,填料的种类和粒度,填料分类也较详细,这样使色谱图易于重现;而中国药典仅规定填料种类,未规定柱的长度和粒度,这使检验人员难于重现实验,在某些情况下还浪费时间和试剂。

色谱柱固定液英汉对照

阿皮松(真空润滑脂).................................................Apeizon-

八(2-羟内基)蔗糖 .............................................Hyprose SP-80

苯磺酸钠乳化剂 ......................................................Otonite-

苯喹啉 .....................................................7.8-Benzoquinoline

苯乙腈 ..........................................................Bebzylcyanide

苄基联苯 .......................................................Benzyldiphenyl

丙烷壬酸三甲酯(纤烷丝酯)............................... Celanese Ester No.9

NN-一,二(2氰乙基)甲酰胺 ...............N,N-Bis-(2cyanoethyl)formamide(BCEF)

N,N-一,二甲基硬脂酸酰胺(混以十四十六烷碱) .......................Hallcomiol

M- 二甲基双十八烷基皂士 ...........................................Bentone34

癸二腈 .......................................................Sebaconitrile

癸二酸二(2-乙氧基乙)酯 ...................Bis-(2-ethoxyethyl)Sebacate.BEES

癸二酸二辛酯.......................................... Dioctyl Sebacate(DOS)

环氧树脂................................................................EPON-

已二酸二(2-甲氧基乙)酯 ....................Bis-(2-moethoxyethyl)adipate(bmea)

已二酸二(2-乙氧基乙)酯 ....................Bis-(2-moethoxyethyl)adipate(bmea)

甲基硅氧烷与聚乙醇丁二酸共聚物 ........................................ECSS-X

甲基三氧苯基(10%)硅氧烷 .......................................Versilube F-50

甲基硅油(甲基硅氧烷) .....................................................OV-

角鲨烷 ...............................................................Spulane

角鲨烯 ...............................................................Squlene

季戊四醇四氰乙基醚 ..............Tetracyanoethylanted penterythriyriol(tcepe)

聚1,4-丁二醇丁二基酸酯 .......................Butanel,1,4-diol suceinate(BDS)

聚乙烯基吡咯烷酮 ....................................Polyinylpyrrolidone(PVP)

聚苯基二乙醇胺丁二酸酯 .................Phenyldiethanolqnine succinate(PDEAS)

聚苯醚 ........................................................Polyhenylether

聚苯醚砜 .............................................................Poly-S-

聚丙二醇已二酸酯.................................................... Roplex400

聚二乙二醇丁二酸酯 ................Dienthyeneglycol succinate(DECS,LAC-3R-728)

聚二乙二醇已二酸酯 ..................Dienthyeneglycol adipate(DEGA,LAC-1R-296)

聚环已烷二甲醇丁二酸酯 .................Cyclohexanedimetheanolsuccinate(CHDMS)

聚三氟氟乙烯油 ....................................................Kel-FOil#10

聚碳硼烷甲基硅氧烷 ....................................................Dexsil-

聚烷撑二醇 ..............................................................UCON-

聚酰胺 ................................................................Poly-A-

聚新戊二醇丁二酸酯.............................Neeopentyl glyol succinate(NGS)

聚亚酰胺110 ..........................................................Poly-110-

聚乙二醇 ........................................................Carbowax-,PEC-

聚乙二醇20M与2-硝基对苯二甲酸反应物 ...............................EfFAP,OV-351 ..

聚乙二醇20M与对苯二甲酯反应物 ..................................Carbowax20M-TPA

聚乙醇单硬脂酸脂 ...................................................Ethofat60/25

聚乙二醇丁二酸脂 .......................Ethylene glycol succinate(EGS,LAC-4-R866

聚乙二醇已二酸脂 ...................................Ethylene glycol adipate(EGA)

聚乙二醇壬基苯基醚.................................................... Lgepal CO

邻苯二甲酸二三(2-丁氧基乙)酯 .........................Bis(2-butoxyethyl)phthalan

邻苯二甲酸二癸酯 ......................................DI-N-decyl phthalate(DDP)

邻苯二甲酸二壬酯.......................................... Dinonylphthalate(DNP)

邻苯二甲酸二辛酯.......................................... Diocyl phthalate(DOP)

邻苯二甲酸二(2-乙基已)酯 ............................Bis(2-ethylthexyl)phthalate

邻苯二甲酸二异癸酯..................................... Diisodecyl phthalate(DDP)

磷酸邻三甲苯酯 ..............................................Tricresy phosphate.

β,β一硫代二丙腈..................................β,β-Thiodipripionitrile(TDPN)

碳油 ............................................................Halocarbon oit-

马来酸二正丁酯 ...........................................Di-n-butyl maleate(DBM)

1-羟基-2十七碳烷基噗唑啉............................................... Amine-220

氰丙基苯基硅氧烷 ..........................................................Silar-

氰乙基甲基硅氧烷与聚乙二醇丁二酸酯共聚物 .................................ECNSSM.

曲拉通 ....................................................................Triton

1、2、3-三(2-氰乙氧基)丙烷 .................1.2.3-Tris-(2-Cyanothoxy)pronane(TGEP) 三氟丙基(50%)甲基硅氧烷 .......................................................QF-

三乙醇胺 ........................................................Triethanolamin.e

山梨糖醇 ................................................................Sorbitol

双甘油 ................................................................Diglycerol

四(2-羟乙基)乙二胺...................... Tetrahydroxyethyl ethylenediamine(THEND)

四乙二醇二甲醚T ................................eraethylene gycol dimethyl ether

β-β-氧二丙腈.......................................β,β-Oxydipropionitrile(ODPN)

液体石蜡 ....................................................................Nujo

液晶 ....................................................................BMBTBMBI

有机皂士............................................................ -34Bentone34

正十六烷 ............................................................n-Hexadecath

聚酰胺树脂........................................................... Versamid900

聚新戊二醇已二酸酯.................................. Neeopentyl glyol adipate(NGA

化学键、晶体类型0

“化学键、晶体类型”高考选择题锦集 1.(90)下列各组物质气化或熔化时,所克服的微粒间的作用(力),属同种类型的是AD A.碘和干冰的升华B.二氧化硅和生石灰的熔化 C.氯化钠和铁的熔化D.苯和已烷的蒸发 2.(91)碳化硅(SiC)的一种晶体具有类似金刚石的结构,其中碳原子和硅原子的位置是交替的.在下列三种晶体①金刚石、②晶体硅、③碳化硅中,它们的熔点从高到低的顺序是A A.①③②B.②③①C.③①②D.②①③ 3.(91)下列说法中正确的是 D A.分子中键能越大,键越长,则分子越稳定 B.失电子难的原子获得电子的能力一定强 C.在化学反应中,某元素由化合态变为游离态,该元素被还原 D.电子层结构相同的不同离子,其半径随核电荷数增多而减小 4.(92)下列分子中,属于含有极性键的非极性分子的是 D A.H2O B.Cl2C.NH3D.CCl4 5.(92)下列晶体中,不属于原子晶体的是 A A.干冰B.水晶C.晶体硅D.金刚石 6.(93)下列各组物质的晶体中,化学键类型相同、晶体类型也相同的是 B A.SO2和Si B.CO2和H2O C.NaCl和HCl D.CCl4和KCl 7.(96)关于化学键的下列叙述中,正确的是AD A.离子化合物可能含共价键B.共价化合物可能含离子键 C.离子化合物中只含离子键D.共价化合物中不含离子键 8.(98)下列叙述正确的是BC A.同主族金属的原子半径越大熔点越高 B.稀有气体原子序数越大沸点越高 C.分子间作用力越弱分子晶体的熔点越低 D.同周期元素的原子半径越小越易失去电子 9.(99)关于晶体的下列说法正确的是 A A.在晶体中只要有阴离子就一定有阳离子 B.在晶体中只要有阳离子就一定有阴离子 C.原子晶体的熔点一定比金属晶体的高 D.分子晶体的熔点一定比金属晶体的低 10.(2000)下列每组物质发生状态变化所克服的微粒间的相互作用属于同类型的是C A.食盐和蔗糖熔化B.钠和硫熔化 C.碘和干冰升华D.二氧化硅和氧化钠熔化 11.(2004上海)有关晶体的下列说法中正确的是AB A.晶体中分子间作用力越大,分子越稳定

分析化学

单选题(共6题,每题10分) 1 .以高压液体为流动相的色谱法被称为() 2 A.液相色谱B.高速色谱 ?C.高压色谱 ?D.高效液相色谱 ?E.高分辨色谱 参考答案:D 2 .高效液相色谱法英文缩写为() ?A.HPLC ?B.TLC ?C.HTLC ?D.HSLC ?E.HRLC 参考答案:A 3 .正相液-液色谱法,流动相极性()固定相极性,()的组分先流出色谱柱。?A.大于;小极性 ?B.大于;大极性 ?C.小于;大极性 ?D.小于;小极性 ?E.小于;不肯定 参考答案:D 4 .以化学键合相作为固定相的色谱法叫做( ) ?A.固相色谱法 ?B.键合相色谱法 ?C.正相键合相 ?D.化学色谱法 ?E.反相色谱法 参考答案:B 答案解析:暂无 5 .高效液相色谱法结构流程图为() ?A.载气源→色谱柱→进样系统→检测器→记录仪 ?B.载气源→进样系统→色谱柱→检测器→记录仪 ?C.储液瓶→高压泵→色谱柱→检测器→记录仪 ?D.储液瓶→色谱柱→高压泵→检测器→记录仪 ?E.进样系统→储液瓶→色谱柱→检测器→记录仪 参考答案:C 6 .以化学键合相作为固定相的色谱法叫做( )

?A.固相色谱法 ?B.键合相色谱法 ?C.正相键合相 ?D.化学色谱法 ?E.反相色谱法 参考答案:B 单选题(共18题,每题4分) 1 .常用于定性定量分析紫外光谱区的波长范围是()。 ?A.200-400 nm ?B.400-800 nm ?C.100-200 nm ?D.100-800 nm ?E.200-800 nm 参考答案:A 2 .物质分子吸收光子能量而被激发,然后从激发态的最低振动能级返回到基态所发射出的光称为()?A.红外光 ?B.紫外光 ?C.光致发光 ?D.荧光 ?E.磷光 参考答案:D 3 .荧光分析法是根据物质的荧光谱线位置及其强度进行物质()的方法。 ?A.结构式测定 ?B.化学性质测定 ?C.物理性质测定 ?D.元素测定 ?E.鉴定和含量测定 参考答案:E 4 .原子吸收分光光度法基于蒸气相中被测元素的基态原子对其( ) 的吸收来测定试样中该元素含量的一 种方法。 ?A.分子能级跃迁 ?B.电子能级跃迁 ?C.原子共振辐射 ?D.分子共振辐射 ?E.分子衍射能量 参考答案:C

化学键合固定相的基本理论

将有机官能团通过化学反应共价键合到硅胶表面的游离羟基上而形成的固定相称为化学键合相。这类固定相的突出特点是耐溶剂冲洗,并且可以通过改变键合相有机官能团的类型来改变分离的选择性。 1.键合相的性质 目前,化学键合相广泛采用微粒多孔硅胶为基体,用烷烃二甲基氯硅烷或烷氧基硅烷与硅胶表面的游离硅醇基反应,形成Si-O-Si-C键形的单分子膜而制得。硅胶表面的硅醇基密度约为5个/nm2,由于空间位阻效应(不可能将较大的有机官能团键合到全部硅醇基上)和其它因素的影响,使得大约有40~50%的硅醇基未反应。 残余的硅醇基对键合相的性能有很大影响,特别是对非极性键合相,它可以减小键合相表面的疏水性,对极性溶质(特别是碱性化合物)产生次级化学吸附,从而使保留机制复杂化(使溶质在两相间的平衡速度减慢,降低了键合相填料的稳定性。结果使碱性组分的峰形拖尾)。为尽量减少残余硅醇基,一般在键合反应后,要用三甲基氯硅烷(TMCS)等进行钝化处理,称封端(或称封尾、封顶,end-capping),以提高键合相的稳定性。另一方面,也有些ODS 填料是不封尾的,以使其与水系流动相有更好的"湿润"性能。 由于不同生产厂家所用的硅胶、硅烷化试剂和反应条件不同,因此具有相同键合基团的键合相,其表面有机官能团的键合量往往差别很大,使其产品性能有很大的不同。键合相的键合量常用含碳量(C%)来表示,也可以用覆盖度来表示。所谓覆盖度是指参与反应的硅醇基数目占硅胶表面硅醇基总数的比例。 pH值对以硅胶为基质的键合相的稳定性有很大的影响,一般来说,硅胶键合相应在pH=2~8的介质中使用。 2.键合相的种类 化学键合相按键合官能团的极性分为极性和非极性键合相两种。 常用的极性键合相主要有氰基(-CN)、氨基(-NH2)和二醇基(DIOL)键合相。极性键合相常用作正相色谱,混合物在极性键合相上的分离主要是基于极性键合基团与溶质分子间的氢键作用,极性强的组分保留值较大。极性键合相有时也可作反相色谱的固定相。 常用的非极性键合相主要有各种烷基(C1~C18)和苯基、苯甲基等,以C18应用最广。非极性键合相的烷基链长对样品容量、溶质的保留值和分离选择性都有影响,一般来说,样品容量随烷基链长增加而增大,且长链烷基可使溶质的保留值增大,并常常可改善分离的选择性;但短链烷基键合相具有较高的覆盖度,分离极性化合物时可得到对称性较好的色谱峰。苯基键合相与短链烷基键合相的性质相似。 另外C18柱稳定性较高,这是由于长的烷基链保护了硅胶基质的缘故,但C18基团空间体积较大,使有效孔径变小,分离大分子化合物时柱效较低。 3.固定相的选择 分离中等极性和极性较强的化合物可选择极性键合相。氰基键合相对双键异构体或含双键数不等的环状化合物的分离有较好的选择性。氨基键合相具有较强的氢键结合能力,对某些多官能团化合物如甾体、强心甙等有较好的分离能力;氨基键合相上的氨基能与糖类分子中的羟基产生选择性相互作用,故被广泛用于糖类的分析,但它不能用于分离羰基化合物,如甾酮、还原糖等,因为它们之间会发生反应生成Schiff 碱。二醇基键合相适用于分离有机酸、甾体和蛋白质。 分离非极性和极性较弱的化合物可选择非极性键合相。利用特殊的反相色谱技术,例如反相离子抑制技术和反相离子对色谱法等,非极性键合相也可用于分离离子型或可离子化的化合

分析化学

单选题(共6题,每题10分) 1.以高压液体为流动相的色谱法被称为() 2A.液相色谱 B.高速色谱 C.高压色谱 D.高效液相色谱 E.高分辨色谱 参考答案:D 2 .高效液相色谱法英文缩写为() A.HPLC B.TLC C.HTLC D.HSLC E.HRLC 参考答案:A 3 .正相液-液色谱法,流动相极性()固定相极性,()的组分先流出色谱柱。 A.大于;小极性 B.大于;大极性 C.小于;大极性 D.小于;小极性 E.小于;不肯定 参考答案:D

4 .以化学键合相作为固定相的色谱法叫做 ( ) A.固相色谱法 B.键合相色谱法 C.正相键合相 D.化学色谱法 E.反相色谱法 参考答案:B 答案解析:?暂无 5 .高效液相色谱法结构流程图为() A.载气源→色谱柱→进样系统→检测器→记录仪 B.载气源→进样系统→色谱柱→检测器→记录仪 C.储液瓶→高压泵→色谱柱→检测器→记录仪 D.储液瓶→色谱柱→高压泵→检测器→记录仪 E.进样系统→储液瓶→色谱柱→检测器→记录仪参考答案:C 6 .以化学键合相作为固定相的色谱法叫做 ( ) A.固相色谱法 B.键合相色谱法 C.正相键合相 D.化学色谱法 E.反相色谱法 参考答案:B

单选题(共18题,每题4分) 1 .常用于定性定量分析紫外光谱区的波长范围是()。 A.200-400 nm B.400-800 nm C.100-200 nm D.100-800 nm E.200-800 nm 参考答案:A 2 .物质分子吸收光子能量而被激发,然后从激发态的最低振动能级返回到基态所发射出的光称为() A.红外光 B.紫外光 C.光致发光 D.荧光 E.磷光 参考答案:D 3 .荧光分析法是根据物质的荧光谱线位置及其强度进行物质()的方法。 A.结构式测定 B.化学性质测定 C.物理性质测定 D.元素测定

化学键类型及其与物质类别的关系

本章重难点专题突破 1化学键类型及其与物质类别的关系 1.化学键类型及其比较 A.SiO2和CO2中,Si和O、C和O之间都是共价键 B.C、Si和Ge的最外层电子数都是4,次外层电子数都是8 C.CO2和SiO2都是酸性氧化物,在一定条件下都能和氧化钙反应 D.该族元素的主要化合价是+4价和+2价 解析C的原子序数为6,最外层电子数是4,次外层电子数为2,所以B不正确;CO2和SiO2都是共价化合物、酸性氧化物,因此A、C正确;第ⅣA族元素的主要化合价为+4价和+2价,D正确。 答案 B 2.化学键与物质类别的关系 (1)只含非极性共价键的物质:同种非金属元素构成的单质,如金刚石、晶体硅、氮气等。

(2)只含极性共价键的物质:一般是不同非金属元素构成的化合物,如HCl、NH3等。 (3)既有极性键又有非极性键的物质,如H2O2、C2H2、C2H6等。 (4)离子化合物中一定有离子键,可能还有共价键。如MgO、NaCl中只含有离子键,NaOH、Na2O2、NH4Cl中既含有离子键,又含有共价键。 (5)共价化合物中只有共价键,一定没有离子键。 (6)构成稀有气体的单质分子,由于原子已达到稳定结构,在这些原子的分子中不存在化学键。 (7)非金属元素的原子之间也可以形成离子键,如NH4Cl等。 (8)金属键只存在于金属单质或合金中。 3.离子键、共价键与离子化合物、共价化合物的关系 极性分子: 非极性分子:、O==C==O A.两种非金属原子间不可能形成离子键 B.非金属原子间不可能形成离子化合物 C.离子化合物中不可能有共价键 D.共价化合物中可能有离子键 解析两种非金属原子间不能得失电子,不能形成离子键,A对;当非金属原子组成原子团时,可以形成离子化合物,如NH4Cl,B错;离子化合物中可以有共价键,如:NaOH中的O—H键,C错;有离子键就是离子化合物,D错。 答案 A

化学键的三种基本类型

化学键主要有三种基本类型,即离子键、共价键和金属键。 一、离子键 离子键是由电子转移(失去电子者为阳离子,获得电子者为阴离子)形成的。即正离子和负离子之间由于静电引力所形成的化学键。离子既可以是单离子,如Na+、CL-;也可以由原子团形成;如SO4 2-,NO3-等。 离子键的作用力强,无饱和性,无方向性。离子键形成的矿物总是以离子晶体的形式存在。 二、共价键 — 共价键的形成是相邻两个原子之间自旋方向相反的电子相互配对,此时原子轨道相互重叠,两核间的电子云密度相对地增大,从而增加对两核的引力。共价键的作用力很强,有饱和性与方向性。因为只有自旋方向相反的电子才能配对成键,所以共价键有饱和性;另外,原子轨道互相重叠时,必须满足对称条件和最大重叠条件,所以共价键有方向性。共价键又可分为三种: (1)非极性共价键形成共价键的电子云正好位于键合的两个原子正中间,如金刚石的C—C 键。 (2)极性共价键形成共价键的电子云偏于对电子引力较大的一个原子,如Pb—S 键,电子云偏于S一侧,可表示为Pb→S。 (3)配价键共享的电子对只有一个原子单独提供。如Zn—S键,共享的电子对由锌提供,Z:+ ¨..S:=Z n→S 共价键可以形成两类晶体,即原子晶体共价键与分子晶体。原子晶体的晶格结点上排列着原子。原子之间有共价键联系着。在分子晶体的晶格结点上排列着分子(极性分子或非极性分子),在分子之间有分子间力作用着,在某些晶体中还存在着氢键。关于分子键精辟氢键后面要讲到。 · 三、金属键 由于金属晶体中存在着自由电子,整个金属晶体的原子(或离子)与自由电子形成化学键。这种键可以看成由多个原子共用这些自由电子所组成,所以有人把它叫做改性的共价键。对于这种键还有一种形象化的说法:“好象把金属原子沉浸在自由电子的海洋中”。金属键没有方向性与饱和性。 和离子晶体、原子晶体一样,金属晶体中没独立存在的原子或分子;金属单质的化学式(也叫分子式)通常用化学符号来表示。

第一章第三节化学键知识点归纳总结

高中化学必修2知识点归纳总结 第一章 物质结构 元素周期律 第三节 化学键 知识点一化学键的定义 一、化学键:使离子相结合或使原子相结合的作用力叫做化学键。相邻的(两个或多个)离子或原子间的强烈的相互作用。 【对定义的强调】(1)首先必须相邻。不相邻一般就不强烈 (2)只相邻但不强烈,也不叫化学键 (3)“相互作用”不能说成“相互吸引”(实际既包括吸引又包括排斥) 一定要注意“相邻..”和“强烈..”。如水分子里氢原子和氧原子之间存在化学键,而两个氢原子之间及水分子与水分子之间是不存在化学键的。 二、形成原因:原子有达到稳定结构的趋势,是原子体系能量降低。 三、类型: 离子键 化学键 共价键 极性键 非极性键 知识点二离子键和共价键 一、离子键和共价键比较 二、非极性键和极性键

知识点三离子化合物和共价化合物 通常以晶体形态存在 离子键为主,该化合物也称为离子化合物(3)只有 ..当化合物中只存在共价键时,该化合物才称为共价化合物。(4)在离子化合物中一般既含有金属元素又含有非金属元素;共价化合物一般只含有非金属元素(NH4+例外) 注意:(1)离子化合物中不一定含金属元素,如NH4NO3,是离子化合物,但全部由非金属元素组成。(2)含金属元素的化合物不一定是离子化合物,如A1C13、BeCl2等是共价化合物。 二、化学键与物质类别的关系 、

知识点四电子式和结构式的书写方法 一、电子式: 1.各种粒子的电子式的书写: (1)原子的电子式:常把其最外层电子数用小黑点“·”或小叉“×”来表示。 例如: (2)简单离子的电子式: ①简单阳离子:简单阳离子是由金属原子失电子形成的,原子的最外层已无电子,故用阳离子符号表示,如Na+、Li+、Ca2+、Al3+等。②简单阴离子:书写简单阴离子的电子式时不但要画出最外层电子数,而且还应用括号“[]” 括起来,并在右上角标出“n—”电荷字样。例如:氧离子、氟离子。 ③原子团的电子式:书写原子团的电子式时,不仅要画出各原子最外层电子数,而且还应用括号“[]”括起来,并在右上角标出“n—”或“n+”电荷字样。 例如:铵根离子、氢氧根离子。 (3)部分化合物的电子式: ①离子化合物的电子式表示方法:在离子化合物的形成过程中,活泼的金属离子失去电子变成金属阳离子,活泼的非金属离子得到电子变成非金属阴离子,然后阴阳离子通过静电作用结合成离子键,形成离子化合物。所以,离子化合物的电子式是由阳离子和带中括号的阴离子组成,且简单的阳离子不带最外层电子,而阴离子要标明最外层电子多少。 如:。 ②共价化合物的电子式表示方法:在共价化合物中,原子之间是通过共用电子对形成的共价键的作用结合在一起的,所以本身没有阴阳离子,因此不会出现阴阳离子和中括号。 如: 2.用电子式表示化学反应的实质: (1)用电子式表示离子化合物的形成过程: (2)用电子式表示共价化合物的形成过程: 说明:用电子式表示化合物的形成过程时要注意: (1)反应物要用原子的电子式表示,而不是用分子或分子的电子式表示。用弯箭头表示电子的转移情况,而共价化合物不能标。

(完整版)化学键与晶体类型

第八讲化学键与晶体类型 考试大纲要求 1.理解离子键、共价键的涵义,了解键的极性。 2.了解几种晶体类型(离子晶体、原子晶体、分子晶体)及其性质。 知识规律总结 一、化学键与分子间作用力 二、化学键的分类 表4-2离子键、共价键和金属键的比较 三、共价键的类型 表4-3非极性键和极性键的比较 四、分子的极性

1.非极性分子和极性分子 表4-4 非极性分子和极性分子的比较 2.常见分子的类型与形状 表4-5常见分子的类型与形状比较 3.分子极性的判断 (1)只含有非极性键的单质分子是非极性分子。 (2)含有极性键的双原子化合物分子都是极性分子。 (3)含有极性键的多原子分子,空间结构对称的是非极性分子;空间结构不对称的为极性分子。 注意:判断AB n型分子可参考使用以下经验规律:①若中心原子A的化合价的绝对值等于该元素所在的主族序数,则为非极性分子,若不等则为极性分子;②若中心原子有孤对电子(未参与成键的电子对)则为极性分子,若无孤对电子则为非极性分子。 五、晶体类型 1.分类 表4-6各种晶体类型的比较 2

极性溶剂,熔化时能够导电,溶沸点高多数溶剂,导电性 差,熔沸点很高 液能够导电, 溶沸点低 电和热的良 导体,熔沸点 高或低 实例食盐晶体金刚石氨、氯化氢镁、铝 2.物质溶沸点的比较 (1)不同类晶体:一般情况下,原子晶体>离子晶体>分子晶体 (2)同种类型晶体:构成晶体质点间的作用大,则熔沸点高,反之则小。 ①离子晶体:离子所带的电荷数越高,离子半径越小,则其熔沸点就越高。 ②分子晶体:对于同类分子晶体,式量越大,则熔沸点越高。 ③原子晶体:键长越小、键能越大,则熔沸点越高。 (3)常温常压下状态 ①熔点:固态物质>液态物质 ②沸点:液态物质>气态物质 3.“相似相溶”规律 极性分子组成的溶质易溶于由极性分子组成的溶剂;非极性分子组成的溶质易溶于由非极性分子组成的溶剂。 思维技巧点拨 一、化学键及分子极性的判断 【例1】下列叙述正确的是 A.P4和NO2都是共价化合物 https://www.360docs.net/doc/1613005101.html,l4和NH3都是以极性键结合的极性分子 C.在CaO和SiO2晶体中,都不存在单个小分子 D.甲烷的结构式:是对称的平面结构,所以是非极性分子 【解析】P4和NO2分子中都含有共价键,但P4是单质,故选项A错误。CCl4是含有极性键的非极性分子,故选项B错误。原子晶体、离子晶体和金属晶体中不存在小分子,只有分子晶体中才存在小分子,故选项C正确。甲烷分子为正四面体形的非极性分子,故选项D错误。本题正确答案为C。 【例2】关于化学键的下列叙述中,正确的是 A.离子化合物可能含共价键 B.共价化合物可能含离子键 C.离子化合物中含离子键 D.共价化合物中不含离子键 【解析】凡含有离子键的化合物不管是否含有共价键,一定属于离子化合物,所以共价化合物中不可能含有离子键。本题正确答案为ACD。 二、熔沸点判断 【例3】碳化硅(SiC)的一种晶体具有类似金刚石的结构,其中碳原子和硅原子的 第3页

化学键分类

化学键分类 1.电负性 电负性是元素的原子在化合物中吸引电子能力的标度, 元素电负性数值越大,表示其原子在化合物中吸引电子的能力越强;反之,电负性数值越小,相应原子在化合物中吸引电子的能力越弱(稀有气体原子除外)。 2.化学键 化学键(英语:Chemical Bond)是一种粒子间的吸引力,其中粒子可以是原子、离子或分子。化学键种类繁多,其能量大小、键长亦有所不同;能量较高的“强化学键”包括共价键、离子键,而分子间力、氢键等“弱化学键”能量较低。 2.1离子键 阳离子、阴离子通过静电作用形成的化学键称作离子键。两个原子间的电负性相差极大时,一般是金属与非金属,例如:氯与钠,若他们要结合,电负性大的氯会从电负性小的钠抢走一个电子,以符合八隅体。之后氯会以-1价的方式存在,而钠则以+1价的方式存在,两者再以库仑静电力因正负相吸而结合在一起,因此也有人说离子键是金属与非金属结合用的键结方式。 离子键亦有强弱之分。其强弱影响该离子化合物的熔点、沸点和溶解性等性质。离子键越强,其熔点越高。离子半径越小或所带电荷越多,阴、阳离子间的作用就越强。例如钠离子Na+的微粒半径比钾离子K+的微粒半径小,则氯化钠NaCl中的离子键较氯化钾KCl中的离子键强,而氯化钠的熔点比氯化钾的高。 离子化合物 根据化合物中所含化学键类型的不同,把含有离子键的化合物称为离子化合物(ionic

compound),碱类(如KOH)、大多数盐类(如MgCl2)、大多数金属氧化物(如CaO)都是离子化合物。离子化合物中可能存在共价键,这与其定义并不矛盾(参看下文对共价化合物的定义),如NH4Cl、NaOH便是既具有共价键又具有离子键的离子化合物。 2.2共价键 原子间通过共用电子形成的化学键,叫做共价键。它通过两个电负度相近的原子,例如两个氧,互相共用其外围电子以符合八隅体的键结方式结合,因此也有人说这是非金属元素间的结合方式。而共价键有键角及方向的限制,因此不能随意延伸,也就是有分子结构。 共价键广泛存在于气体之中,例如氢气、氯气、二氧化碳。有些物质如金刚石,则是由碳原子通过共价键(巨型共价结构)形成的。 共价键又可分为极性共价键与非极性共价键。 共价化合物 只含有共价键的化合物称为共价化合物(covalent compound),如HCl(在溶液中会成为H+及Cl?)、H2O、CO2、CH4、NH3等。因此根据其定义,共价化合物中肯定不存在离子键。键能强,通常具有高熔点特性。 2.3金属键 浸没在公有化的电子云中的正离子和负电子云间的库仑相互作用形成的化学键。金属键则是金属原子间的键结方式,金属阳离子透过与带负电的电子海间的库仑静电力,金属原子间共用游走于空价轨域的电子海,而结合成稳定态,因此金属有很高的延性及展性,而且有很高的熔点(汞除外),并无分子结构。 2.4氢键 与电负性大、半径小的原子X(氟、氧、氮等)以共价键结合,若与电负性大的原子Y

高效液相色谱法习题答案

第二十章高效液相色谱法 思考题和习题 1.简述高效液相色谱法和气相色谱法的主要异同点。 相同点:均为高效、高速、高选择性的色谱方法,兼具分离和分析功能,均可以在线检测不同点: 分析对象及范围流动相的选择操作条件 GC 能气化、热稳定性好、且沸 点较低的样品,占有机物的20% 流动相为有限的几种 “惰性”气体,只起运载作 用,对组分作用小 加温常压操作 HPLC 溶解后能制成溶液的样品, 高沸点、高分子量、难气化、离 子型的稳定或不稳定化合物,占 有机物的80% 流动相为液体或各种液 体的混合。它除了起运载作用 外,还可通过溶剂来控制和改 进分离。 室温、高压下进行 2.何谓化学键合相?常用的化学键合相有哪几种类型?分别用于哪些液相色谱法中? 采用化学反应的方法将固定液键合在载体表面上,所形成的填料称为化学键合相。优点是使用过程不流失,化学性能稳定,热稳定性好,适于作梯度淋洗。 目前常用的Si-O-Si-C型键合相,按极性分为非极性,中等极性与极性三类。①非极性键合相:常见如ODS键合相,既有分配又有吸附作用,用途非常广泛,用于分析非极性或弱极性化合物;②中等圾性键合相:常见的有醚基键合相,这种键合相可作正相或反相色谱的固定相,视流动相的极性而定:③极性键合相:常用氨基、氰基键合相,用作正相色谱的固定相,氨基键合相还是分离糖类最常用的固定相。 3.什么叫正相色谱?什么叫反相色谱?各适用于分离哪些化合物? 正相色谱法:流动相极性小于固定相极性的色谱法。用于分离溶于有机溶剂的极性及中等极性的分子型物质,用于含有不同官能团物质的分离。 反相色谱法:流动相极性大于固定相极性的色谱法。用于分离非极性至中等极性的分子型化合物。 4.简述反相键合相色谱法的分离机制。 典型的反相键合色谱法是用非极性固定相和极性流动相组成的色谱体系。固定相,常用十八烷基(ODS或C18)键合相;流动相常用甲醇-水或乙腈-水。非典型反相色谱系统,用弱极性或中等极性的键合相和极性大于固定相的流动相组成。 反相键合相表面具有非极性烷基官能团,及未被取代的硅醇基。硅醇基具有吸附性能,剩余硅醇基的多寡,视覆盖率而定。对于反相色谱的分离机制目前,保留机制还没有一致的看法,大致有两种观点,一种认为属于分配色谱,另一种认为属于吸附色谱。分配色谱的作用机制是假设混合溶剂(水十有机溶剂)中极性弱的有机溶剂吸附于非极性烷基配合基表面,组分分子在流动相中与被非极性烷基配合基所吸附的液相中进行分配。吸附色谱的作用机制可用疏溶剂理论来解释。这种理论把非极性的烷基键合相,看作是在硅胶表面上覆盖了一层键合的十八烷基的"分子毛",这种"分子毛'有强的疏水特性。当用水与有机溶剂所组成的极性溶剂为流动相来分离有机化合物时,一方面,非极性组分分子或组分分子的非极性部分,由于疏溶剂作用,将会从水中被"挤"出来,与固定相上的疏水烷基之间产生缔合作用,其结果使组分分子在固定相得到保留。另一方面,被分离物的极性部分受到极性流动相的作用,使它离开固定相,减小保留值,此即解缔过程,显然,这两种作用力之差,决定了分子在色谱中的保留行为。一般说来,固定相上的烷基配合基或被分离分子中非极性部分的表面积越

化学键知识点与练习题(含答案)

第三节 化学键 一、化学键:使离子相结合或使原子相结合的作用力叫做化学键。相邻的(两个或多个)离子或原子间的强烈的相互作用。 二、形成原因:原子有达到稳定结构的趋势,是原子体系能量降低。 三、类型: 化学键 离子键 共价键 极性键 非极性键 一、离子键和共价键比较 二、非极性键和极性键

通常以晶体形态存在 (1)当一个化合物中只存在离子键时,该化合物是离子化合物(2)当一个化合中同时存在离子键和共价键时,以离子键为主,该化合物也称为离子化合物(3)只有 ..当化合物中只存在共价键时,该化合物才称为共价化合物。(4)在离子化合物中一般既含有金属元素又含有非金属元素;共价化合物一般只含有非金属元素(NH4+例外) 注意:(1)离子化合物中不一定含金属元素,如NH4NO3,是离子化合物,但全部由非金属元素组成。(2)含金属元素的化合物不一定是离子化合物,如A1C13、BeCl2等是共价化合物。 二、化学键与物质类别的关系 、

一、电子式: 1.各种粒子的电子式的书写: (1)原子的电子式:常把其最外层电子数用小黑点“·”或小叉“×”来表示。 例如: (2)简单离子的电子式: ①简单阳离子:简单阳离子是由金属原子失电子形成的,原子的最外层已无电子,故用阳离子符号表示,如Na+、Li+、Ca2+、Al3+等。 ②简单阴离子:书写简单阴离子的电子式时不但要画出最外层电子数,而且还应用括号“[]”括起来,并在右上 角标出“n—”电荷字样。例如:氧离子、氟离子。 ③原子团的电子式:书写原子团的电子式时,不仅要画出各原子最外层电子数,而且还应用括号“[]”括起来,并在右上角标出“n—”或“n+”电荷字样。 例如:铵根离子、氢氧根离子。 (3)部分化合物的电子式: ①离子化合物的电子式表示方法:在离子化合物的形成过程中,活泼的金属离子失去电子变成金属阳离子,活泼的非金属离子得到电子变成非金属阴离子,然后阴阳离子通过静电作用结合成离子键,形成离子化合物。所以,离子化合物的电子式是由阳离子和带中括号的阴离子组成,且简单的阳离子不带最外层电子,而阴离子要标明最外层电子多少。 如:。 ②共价化合物的电子式表示方法:在共价化合物中,原子之间是通过共用电子对形成的共价键的作用结合在一起的,所以本身没有阴阳离子,因此不会出现阴阳离子和中括号。 如: 2.用电子式表示化学反应的实质: (1)用电子式表示离子化合物的形成过程: (2)用电子式表示共价化合物的形成过程:

9-4-化学键合相色法-离子交换键合相 中国药科大学药物色谱分析讲义

1、离子交换键合相色谱 定义:在化学键合的有机硅烷分子中带上固定的离子交换基团,便成了离子交换键合相。 阳离子交换剂:磺酸基(-SO 3H)、羧酸基(-COOH) 阴离子交换剂:季氨基(-R 4N +)、氨基(-NH 2) 中国药科大学药物分析教研室 中国药科大学色谱分析课程 第 九 章 -4 化学键合相色谱 离子交换键合相色谱 ion exchange chromatography ,IEC 中国药科大学药物分析教研室

中国药科大学药物分析教研室 + + + + + + ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ + + + + + + + + + + + + + ++ + + + + + + + + + + + + + + + + 5μm + + + + + + + + + + ++ + + + + + + + + + + + + + + + + + + + + ++ ++ 阴离子交换剂 离子交换键合相色谱 ? 基质:薄壳型或全多孔微粒硅胶 ? 优点:具有较高的耐压性; 化学及热稳定性; 由于有较好的机械强度,耐压; 可以高压匀浆装柱。 ? 缺点:pH 适用范围只能在pH 2-8。 pH >9时,硅胶便容易溶解,未键合的残留硅羟基易 生成硅酸盐。 中国药科大学药物分析教研室

[BH + R - ][M + ] [BH + ][R - M + ] R :固定相带负电荷的交换基团 K A BH :样品离子 M :流动相离子 1)阳离子交换 4、分离机理 中国药科大学药物分析教研室 测定方法:酸碱滴定法 薄壳型(表面多孔层): 优点:传质快,渗透性好 缺点:表面积较小,样品容量小 (μmol/g ) 2、离子交换容量 ? 交换容量是指单位质量的离子交换剂所能与其它离子发生交换的量。 ? 交换容量越大,负载能力越大,k'值也越大。 ? 离子交换键合相的交换容量与固定相的表面积直接有关。 优点:表面积大,样品容量大 全多孔微粒型固定相: (mmol/g )

化学键的三种基本类型

化学键的三种基本类型 This manuscript was revised on November 28, 2020

化学键主要有三种基本类型,即离子键、共价键和金属键。 一、离子键 离子键是由电子转移(失去电子者为阳离子,获得电子者为阴离子)形成的。即正离子和负离子之间由于静电引力所形成的化学键。离子既可以是单离子,如Na+、CL-;也可以由原子团形成;如SO42-,NO3-等。 离子键的作用力强,无饱和性,无方向性。离子键形成的矿物总是以离子晶体的形式存在。 二、共价键 共价键的形成是相邻两个原子之间自旋方向相反的电子相互配对,此时原子轨道相互重叠,两核间的电子云密度相对地增大,从而增加对两核的引力。共价键的作用力很强,有饱和性与方向性。因为只有自旋方向相反的电子才能配对成键,所以共价键有饱和性;另外,原子轨道互相重叠时,必须满足对称条件和最大重叠条件,所以共价键有方向性。共价键又可分为三种: (1)非极性共价键形成共价键的电子云正好位于键合的两个原子正中间,如金刚石的C—C键。 (2)极性共价键形成共价键的电子云偏于对电子引力较大的一个原子,如Pb—S键,电子云偏于S一侧,可表示为Pb→S。 (3)配价键共享的电子对只有一个原子单独提供。如Zn—S键,共享的电子对由锌提供,Z:+¨..S:=Zn→S 共价键可以形成两类晶体,即原子晶体共价键与分子晶体。原子晶体的晶格结点上排列着原子。原子之间有共价键联系着。在分子晶体的晶格结点上排列着分子(极性分子或非极性分子),在分子之间有分子间力作用着,在某些晶体中还存在着氢键。关于分子键精辟氢键后面要讲到。 三、金属键 由于金属晶体中存在着自由电子,整个金属晶体的原子(或离子)与自由电子形成化学键。这种键可以看成由多个原子共用这些自由电子所组成,所以有人把它叫做改性的共价键。对于这种键还有一种形象化的说法:“好象把金属原子沉浸在自由电子的海洋中”。金属键没有方向性与饱和性。 和离子晶体、原子晶体一样,金属晶体中没独立存在的原子或分子;金属单质的化学式(也叫分子式)通常用化学符号来表示。 上述三种化学键是指分子或晶体内部原子或离子间的强烈作用力。但它没有包括所有其他可能的作用力。比如,氯气,氨气和二氧化碳气在一定的条件下都可以液化或凝固成液氯、液氨和干冰(二氧化碳的晶体)。说明在分子之间还有一种作用力存在着,这种作用力叫做分子间力(范德华力),有的叫分子键。分子间力的分子的极性有关。分子有极性分子和非极性分子,其根据是分子中的正负电荷中心是否重合,重合者为非极性分子,不重合者为极性分子。分子间力包括三种作用力,即色散力、诱导力和取向力。(1)当非极性分子相互靠近时,由于电子的不断运动和原子核的不断振动,要使每一瞬间正、负电荷中心都重合是不可能的,在某一瞬间总会有一个偶极存在,这种偶极叫做瞬时偶极。由于同极相斥,异极相吸,瞬时偶极之间产生的分子间力叫做色散力。任何分子(不论极性或非极性)互相靠近时,都存在色散力。(2)当极性分子和非极性分子靠近时,除了存在色散力作用外,由于非极性分子受极性分子电场的影响产生诱导偶极,这种诱导偶极和极性.

1 化学键类型及其与物质类别的关系(生)

1.化学键类型及其比较 【典例1】对于ⅣA族元素,下列叙述中不正确的是() A.SiO2和CO2中,Si和O、C和O之间都是共价键 B.C、Si和Ge的最外层电子数都是4,次外层电子数都是8 C.CO2和SiO2都是酸性氧化物,在一定条件下都能和氧化钙反应D.该族元素的主要化合价是+4和+2 2.化学键与物质类别的关系 (1)只含非极性共价键的物质:同种非金属元素构成的单质,如金刚石、晶体硅、氮气等。 (2)只含极性共价键的物质:一般是不同非金属元素构成的化合物,如HCl、NH3等。 (3)既有极性键又有非极性键的物质,如H2O2、C2H2、C2H6等。 (4)离子化合物中一定有离子键,可能还有共价键。如MgO、NaCl中只含有离子键,NaOH、Na2O2、NH4Cl中既含有离子键,又含有共价键。 (5)共价化合物中只有共价键,一定没有离子键。 (6)构成稀有气体的单质分子,由于原子已达到稳定结构,在这些原子的分子中不存在化学键。 (7)非金属元素的原子之间也可以形成离子键,如NH4Cl等。 (8)金属键只存在于金属单质或合金中。

3.离子键、共价键与离子化合物、共价化合物的关系 化学键的种类实例非金属单质 无化学键稀有气体分子(单原子分子)He、Ne 非极性共价键O===O、Cl—Cl、H—H(均为非极性分子) 共价化 合 物只有共价键特例:AlCl3 离子化合 物 只有离子键 离子键、极性共价键 离子键、 非极性共价键 离子键、极性共价 键、配位键 【典例2】下列叙述正确的是() A.两种非金属原子间不可能形成离子键B.非金属原子间不可能形成离子化合物C.离子化合物中不可能有共价键D.共价化合物中可能有离子键

HPLC的固定相和流动相

HPLC的固定相和流动相 IV.固定相和流动相 在色谱分析中,如何选择最佳的色谱条件以实现最理想分离,是色谱工作者的重要工作,也是用计算机实现HPLC分析方法建立和优化的任务之一。本章着重讨论填料基质、化学键合固定相和流动相的性质及其选择。 一、基质(担体) HPLC填料可以是陶瓷性质的无机物基质,也可以是有机聚合物基质。无机物基质主要是硅胶和氧化铝。无机物基质刚性大,在溶剂中不容易膨胀。有机聚合物基质主要有交联苯乙烯-二乙烯苯、聚甲基丙烯酸酯。有机聚合物基质刚性小、易压缩,溶剂或溶质容易渗入有机基质中,导致填料颗粒膨胀,结果减少传质,最终使柱效降低。 1.基质的种类 1)硅胶 硅胶是HPLC填料中最普遍的基质。除具有高强度外,还提供一个表面,可以通过成熟的硅烷化技术键合上各种配基,制成反相、离子交换、疏水作用、亲水作用或分子排阻色谱用填料。硅胶基质填料适用于广泛的极性和非极性溶剂。缺点是在碱性水溶性流动相中不稳定。通常,硅胶基质的填料推荐的常规分析pH范围为2~8。 硅胶的主要性能参数有: ①平均粒度及其分布。 ②平均孔径及其分布。与比表面积成反比。 ③比表面积。在液固吸附色谱法中,硅胶的比表面积越大,溶质的k值越大。

④含碳量及表面覆盖度(率)。在反相色谱法中,含碳量越大,溶质的k值越大。 ⑤含水量及表面活性。在液固吸附色谱法中,硅胶的含水量越小,其表面硅醇基的活性越强,对溶质的吸附作用越大。 ⑥端基封尾。在反相色谱法中,主要影响碱性化合物的峰形。 ⑦几何形状。硅胶可分为无定形全多孔硅胶和球形全多孔硅胶,前者价格较便宜,缺点是涡流扩散项及柱渗透性差;后者无此缺点。 ⑧硅胶纯度。对称柱填料使用高纯度硅胶,柱效高,寿命长,碱性成份不拖尾。 2)氧化铝 具有与硅胶相同的良好物理性质,也能耐较大的pH范围。它也是刚性的,不会在溶剂中收缩或膨胀。但与硅胶不同的是,氧化铝键合相在水性流动相中不稳定。不过现在已经出现了在水相中稳定的氧化铝键合相,并显示出优秀的pH稳定性。 3)聚合物 以高交联度的苯乙烯-二乙烯苯或聚甲基丙烯酸酯为基质的填料是用于普通压力下的HP LC,它们的压力限度比无机填料低。苯乙烯-二乙烯苯基质疏水性强。使用任何流动相,在整个pH范围内稳定,可以用NaOH或强碱来清洗色谱柱。甲基丙烯酸酯基质本质上比苯乙烯-二乙烯苯疏水性更强,但它可以通过适当的功能基修饰变成亲水性的。这种基质不如苯乙烯-二乙烯苯那样耐酸碱,但也可以承受在pH13下反复冲洗。 所有聚合物基质在流动相发生变化时都会出现膨胀或收缩。用于HPLC的高交联度聚合物填料,其膨胀和收缩要有限制。溶剂或小分子容易渗入聚合物基质中,因为小分子在聚合物基质中的传质比在陶瓷性基质中慢,所以造成小分子在这种基质中柱效低。对于大分子像蛋白质或合成的高聚物,聚合物基质的效能比得上陶瓷性基质。因此,聚合物基质广泛用于分离大分子物质。

分析化学 高效液相色谱法

第十八章 高效液相色谱 学习指导与基本要求: 高效液相色谱法又称为高压液相色谱法或高速液相色谱法。它是在经典液相柱色谱法的基础上,引入了气相色谱的理论,在技术上采用了高压输液泵、高效固定相和高灵敏度的检测器而发展起来的快速分离分析技术,具有分离效率高、检测限低、操作自动化和应用范围广的特点。 具体要求如下:掌握高效液相色谱法和气相色谱法区别和联系; 掌握高效液相色谱仪的组成,采用梯度洗脱的优点; 掌握高效液相色谱仪的检测器:紫外光度检测器、荧光检测器、示差折光检测器工作原理; 掌握影响色谱峰扩展的因素及分离条件选择; 掌握高效液相色谱固定相和流动相; 了解:高效液相色谱分离类型的选择;高效液相色谱在药物分析和临床检验中的应用。 概述 高效液相色谱法(HPLC)是20世纪60年代末70年代初发展起来的一种新型分离分析技术,它是在气相色谱和经典色谱的基础上发展起来的。随着不断改进与发展,目前已成为应用极为广泛的化学分离分析的重要手段。它是在经典液相色谱基础上,引入了气相色谱的理论,在技术上采用了高压泵、高效固定相和高灵敏度检测器,现代液相色谱和经典液相色谱没有本质的区别。不同点仅仅是现代液相色谱比经典液相色谱有较高的效率和实现了自动化操作。 经典的液相色谱法,流动相在常压下输送,所用的固定相柱效低,分析周期长。而现代液相色谱法引用了气相色谱的理论,流动相改为高压输送(最高输送压力可达 4.9×107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。因此,高效液相色谱具有分析速度快、分离效能高、灵敏度高、操作自动化等特点。所以人们称它为高压、高速、高效或现代液相色谱法。 为了更好地了解高效液相色谱法优越性,现从两方面进行比较: 一、HPLC与经典LC区别 HPLC与经典LC的主要区别在于固定相、输液设备和检测手段。 经典LC仅做为一种分离手段;其柱内径1~3cm,固定相粒径>100μm 且不均匀;采用常压输送流动相,柱效低(H↑,n↓),分析周期长,无法在线检测。

共价键的类型

专题三 第三单元 共价键 原子晶体 第二课时 共价键的类型 【学习目标】 1.知道共价键的主要类型δ键和π键。 2. 说出δ键和π键的明显差别和一般规律。 【阅读要求及检测】 一. σ键的形成 (1) s-s σ键的形成 例:H 2的形成 (2)s-p σ键的形成 (3)p-p σ键的形成 (4)小结: ①σ键重叠方式:采用“__________”重叠。在任何方向都能最大重叠,使作用力最大,即化学键不易断裂。②σ键的特征:以形成_______的两个原子核的连线为轴作______操作,共价键电子云的_____,这种特征称为___________。③种类:σ键、σ键、 σ键 注意:P 轨道和P 轨道除能形成σ键外,还能形成π键 二.π键的形成:p 轨道和p 轨道形成π键的过程如图所示: (1)π键的重叠方式:是由个原子的轨道“”重叠形成的。形成π键时原子轨道重叠程度比σ键__________,故π键不如σ键__________,比较容易。个人收集整理 勿做商业用途 子云相互靠拢 电子云相互重叠 未成对电子的 电子云相互靠拢 电子云相互重叠 两个原子相互接近 原子轨道重叠 π键的电子云

(2)π键的特征:每个π键的原子轨道由块组成,分别位于由构成的平面的两侧,如果以它们之间包含原子核的平面为镜面,它们互为_______,这种特征称为____________。 【要点精讲及典型例题】 三.σ键、π键比较 1.小结 2.共价键类型与化学性质的关系 (1)σ键:在形成σ键时,原子轨道发生了最大程度的重叠,键能,稳定性,且σ键的两成键原子绕着键轴可以任意相对旋转而键不被。因此,σ键强度大,不易。 (2)π键:是原子轨道沿着键轴“”重叠形成的。π键重叠程度较,其键能于σ键,稳定性较;另外,形成π键的两原子不能相对自由旋转,否则π键将被破坏。因此,π键的稳定性于σ键,π键的电子活动性较,含有π键的物质化学性质活泼,发生化学反应。例如,乙烯比乙烷活泼。 [例1]乙烷分子中由__________键组成;乙烯分子中由__________________________键组成;乙炔分子中由______________________键组成。 [例2] 对δ键的认识不正确的是() A.δ键不属于共价键,是另一种化学键B.S-Sδ键与S-Pδ键的对称性相同C.分子中含有共价键,则至少含有一个δ键 D.含有π键的化合物与只含δ键的化合物化学性质不同 [例3]下列有关σ键和π键的说法错误的是() A.含有π键的分子在反应时,π键是化学反应的积极参与者 B.当原子形成分子时,首先形成σ键,可能形成π键 C.有些原子在与其他原子形成分子时,只能形成σ键,不能形成π键 D.在分子中,化学键可能只有π键而没有σ键 四.非极性键和极性键 1.判断方法:A-A,非极性键;A-B,极性键。 2.难点突破: (1)非金属单质(稀有气体除外)都含非极性键; (2)共价化合物中一定含极性键;某些离子化合物中也存在极性键;

相关文档
最新文档