2020-2021学年安徽省名校高二上学期期中联考文科数学试题

合集下载

2020-2021学年安徽省宿州市十三所重点中学高二上学期期中联考数学(文)试题

2020-2021学年安徽省宿州市十三所重点中学高二上学期期中联考数学(文)试题

宿州市十三所重点中学2020-2021学年度第一学期期中质量检测高二数学试卷(文科)注意事项:1.本试卷满分150分,考试时间120分钟。

2.考生务必将答题内容填写在答题卡上,写在试题卷上无效。

一、选择题120y -+=的倾斜角是()A .π6B .π3C .2π3D .5π62.如图,平行四边形O A B C ''''是四边形OABC 的直观图.若3O A ''=,2O C ''=,则原四边形OABC 的周长为()A .10B .12C .14D .163.若()2,3A -,()3,2B -,1,2C m ⎛⎫⎪⎝⎭三点共线,则实数m 的值为() A .2-B .2C .12-D .124.下列命题正确的是() A .底面是正多边形的棱锥是正棱锥 B .斜棱柱的侧面中可能有矩形C .用一个平面去截圆锥,得到的一定是一个圆锥和一个圆台D .在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线5.已知直线1l :3420x y --=和直线2l :3430x y -+=,则1l 与2l 之间的距离为()A .1BC .2D .36.如图,网格纸的各小格都是边长为1的正方形,粗实线画出的是一个几何体的三视图,则这个几何体的体积为()A .72B .64C .48D .247.在空间直角坐标系中,点()1,3,1P -和点()2,1,2Q 之间的距离为()AB CD 8.已知两条不同的直线m ,n ,三个不重合的平面α,β,γ,下列命题正确的是() A .若//m n ,//n α,则//m α B .若αγ⊥,βγ⊥,则//αβ C .若m α⊥,m β⊥,则//αβD .若αβ⊥,//m α,则m β⊥9.圆1O :()()22122x y -+-=与圆2O :224230x y x y +++-=的位置关系是() A .相离B .相交C .外切D .内切10.如图,正三棱柱111ABC A B C -的底面边长为1,侧棱长为4,一只蚂蚁从A 点出发沿每个侧面爬到1A ,路线为1A M N A →→→,则蚂蚁爬行的最短路程是()A .4B .5C 、6D .111.已知点E ,F 分别是三棱锥P ABC -的棱PA ,BC 的中点,6PC AB ==,若异面直线PC 与AB 所成角为60°,则线段EF 长为()A .3B .6C .6或D .3或12.若P 是直线l :260x y ++=上一动点,过P 作圆C :22230x y x ++-=的两条切线,切点分别为A ,B ,则四边形PACB 面积的最小值为()A .1B .2C .3D .4二、填空题13.若圆锥的母线长为4,底面半径为______.14.若圆222440x y x y ++-+=关于直线0x y m -+=对称,则实数m 的值为______.15.《九章算术》中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马.已知阳马P ABCD -,PA ⊥底面ABCD ,3PA =,1AB =,2BC =,则此阳马的外接球的表面积为______.16.已知直线y x b =+与曲线x =b 的取值范围为______. 三、解答题17.已知直线1l :2360x y ++=,求直线2l 的方程,使得: (1)2l 与1l 平行,且过点()2,1-;(2)2l 与1l 垂直,且2l 与两坐标轴围成的三角形面积为3.18.已知四棱锥P ABCD -,底面ABCD 为平行四边形,直线PA ⊥平面ABCD .(1)求证://BC 平面PAD ;(2)若AB AD =,求证:BD ⊥平面PAC .19.已知圆C :22870x y y +-+=,直线l :()20x my m m R +-=∈.(1)写出圆C 的圆心坐标和半径,并判定直线与圆的位置关系;(2)若直线l 与圆C 相交于A ,B 两点,且AB =时,求直线l 的方程.20.如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,且AB =,M 是CD 上异于C ,D 两点的一个动点.(1)证明:MC ⊥平面ADM ;(2)当四棱锥M ABCD -的体积最大且最大值为9时,求该四棱锥M ABCD -的侧面积. 21.已知圆C 与x 轴相切于点()1,0,且圆心C 在直线3y x =上, (1)求圆C 的方程;(2)若圆C 与直线y x m =+交于不同两点A ,B ,若直角坐标系的原点O ,在以线段AB 为直径的圆上,求实数m 的值.22.如图在Rt ABC △中,点M ,N 分别在线段AB ,AC 上,且//MN BC ,AB BC =,2AM MB =.若将AMN △沿MN 折起到PMN △的位置,使得60PMB ∠=︒. (1)求证:平面PBN ⊥平面BCNM ;(2)在棱PC 上是否存在点G ,使得//GN 平面PBM ?说明理由.宿州市十三所重点中学2020-021学年度第一学期期中质量检测 高二数学(文科)试卷参考答案 一、选择题二、填空题 13.8π 14.315.14π16.)1,2⎡⎣三、解答题17.解:(1)设2l :230x y m -+=,∵2l 过点()2,1-, ∴430m ++=,解得7m =-. 所以2l 的方程为:2370x y --=.(2)设2l :320x y p ++=,设2l 与x 轴交于点,03P M ⎛⎫-⎪⎝⎭,与y 轴交于点0,2P H ⎛⎫- ⎪⎝⎭∴13223MOH P PS =⋅=△,∴236P =.∴6P =±. 所以2l 的方程为:3260x y ++=或3260x y +-=. (其他解法,酌情赋分!)18.解:(1)证明:由题设易知://BC AD ,AD平面PAD ,BC ⊂/平面PAD ,∴//BC 平面PAD .(2)证明:连接AC 、BD 由题设易知AC BD ⊥又PA ⊥平面ABCD ,BD 平面ABCD ,PA BD ⊥AP 平面PAC ,AC 平面PAC ,AP AC A ⋂= ∴BD ⊥平面PAC .PC平面PAC ,BD PC ⊥.19.解:(1)由题设知圆C :()2249x y +-=.所以圆C 的圆心坐标为()0,4,半径为3. 又l :()20x m y +-=恒过()0,2M ,()2202449+-=<所以点M 在圆C 内,故直线必定与圆相交. (此问使用方程联立的方法也可!)(2)圆心C 到直线l的距离记为d =3r =,2AB= 又2222AB d r ⎛⎫+= ⎪⎝⎭,代入解得:3m =±. 所以直线l的方程为:30x +-=或30x +=. (其他解法,酌情赋分!)20.(1)证明:由题设知,平面CDM ⊥平面ABCD ,平面CDM ⋂平面ABCD CD =,AD CD ⊥,AD平面ABCD ,所以AD ⊥平面CDM .又MC平面CDM ,故AD MC ⊥.因为M 为CD 上异于C ,D 的点,且CD 为半圆弧CD 的直径, 所以DM MC ⊥. 又AD DM D ⋂=,AD 平面ADM ,MD平面ADM ,所以MC ⊥平面ADM .(2)由题意可知,当M 是半圆弧CD 的中点时,四棱锥M ABCD -的体积最大. 设BC a =,则AB CD ==,则21932M ABCD V a -=⋅=,解得3a =.此时,AB CD ==3AD BC ==.易知,此时MCD △为等腰直角三角形,可求得3MD MC ==. 由(1)知,AD ⊥平面CDM . 所以AD DM ⊥,BC CM ⊥.易证,MCD MBC MAD ≌≌△△△, 所以193322MCD MBC MAD S S S ===⨯⨯=△△△.又因为MA MB AB ===(2MAB S ==△. 故该四棱锥M ABCD -. (其他解法,酌情赋分!) 21.解:(1)由题意可得:圆心C 的横坐标为1,且圆心直线3y x =上,可得圆心C 坐标为()1,3,半径3r =, 则圆C 的方程为:()()22139x y -+-=.(2)由()()22139y x mx y =+⎧⎪⎨-+-=⎪⎩可得:()22228610x m x m m +-+-+= 设()11,A x y ,()22,B x y 则:122124612x x mm m x x +=-⎧⎪⎨-+⋅=⎪⎩,且241656m m ∆=-++,由题意可得:OA OB ⊥,且11y x m =+,22y x m =+, 所以1OA OB k k ⋅=-代入化简可得:2210m m -+= 求得:1m =,此时满足:2416560m m ∆=-++> 综上可知:1m =. (其他解法,酌情赋分!)22.解:解:(1)在Rt ABC △中,由AB BC =可知,BC AB ⊥. 因为//MN BC ,所以MN AB ⊥.翻折后垂直关系没变,仍有MN PM ⊥,MN BM ⊥. 又PM BMM ⋂=,所以MN ⊥平面PBM .又60PMB ∠=︒, 可令2PM=,则1BM =,由余弦定理得PB =所以222PB BM PM +=,即PB BM ⊥.又因为BM MN M ⋂=,所以PB ⊥平面BCNM .又因为PB 平面PBM ,所以平面PBM ⊥平面BCNM .(2)在PC 上是存在一点G ,当13CG CP =时,使得//GN 平面PMB . 证明如下:过点N 作//NH BM ,交BC 于点H ,则四边形BMNH 是平行四边形, 且2MN BH ==,1CH =. 又由NH ⊄平面PBM ,BM平面PBM 知,//NH 平面PBM .再过点H 作//GH PB ,交PC 于点G ,则13CH CG CB CP ==. 又由GH ⊄平面GHN ,PB 平面PBM 知,//GH 平面PBM .又NH面GHN ,GH面GHN ,GH HN H ⋂=,所以平面//GHN 平面PBM . 又GN平面PBM ,所以//GN 平面PBM .(其他解法,酌情赋分!)。

2020-2021学年度第一学期高三期末联考(文科数学)

2020-2021学年度第一学期高三期末联考(文科数学)

第一学期期末高三联考数学科(文科)试题本试卷分选择题和非选择题两部分,共4页,满分为150分,考试时间120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考号填写在答题卡上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

第一部分 选择题(共50分)一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.设I 是全集,I={0,1,2,3,4},集合A={0,l ,2,3},集合B={4},则=B C A C I I Y( )A .{0}B .{0,1}C .{0,1,2,3,4}D .{0,1,4} 2.2)3(31i i +-= ( )A .i 4341+ B .i 4341-- C .i 2321+ D .i 2321-- 3. 已知函数⎩⎨⎧≤>=)0(3)0(log )(2x x x x f x,则1[()]4f f 的值是 ( )A .9B .91C .-9D .-91 4.设,)cos 21,31(),43,(sin x b x a ==→-→-且→-→-b a //,则锐角x为 ( ) A .6π B .4π C .3πD .π1255.如图,该程序运行后输出的结果为 ( ) A .1 B .2 C .4 D .16 6.不等式组⎩⎨⎧≤≤-≥+--+210)1)(1(x y x y x 所表示的平面区域是 ( ) A .一个三角形 B .一个梯形 C .直角三角形 D .两个等腰直角三角形7.设下表是某班学生在一次数学考试中数学成绩的分布表分数段 [)0,90 [)90,100 [)100,110 [)110,120 [)120,130 [)130,150人 数7681266那么分数在[)100,110中的频率和分数不满110分的累积频率约分别是 ( ) A .0.18, 0.47 B .0.47, 0.18 C .0.18, 1 D .0.38, 18.已知等比数列}{n a 的首项为8,n S 是其前n 项的和,某同学经计算得1S =8,2S =20,3S =36,4S =65,后来该同学发现其中一个数算错了,则该数为 ( ) A .1S B .2S C .3S D .4S 9.已知  则实数 时均有 当 且a x f x a x x f a a x,21)()1,1(,)(,102<-∈-=≠>的取值范围是 ( )A .[)∞+⎥⎦⎤ ⎝⎛,,221 0Y B .(]4,11,41 Y ⎪⎭⎫⎢⎣⎡ C .(]2 11,21, Y ⎪⎭⎫⎢⎣⎡ D .[)∞+⎥⎦⎤ ⎝⎛, 441,0Y 10.定义两种运算:,22b a b a -=⊕a ⊗b=2)(b a -,则函数f(x)=2)2(2-⊗⊕x x 为( )A .奇函数B .偶函数C .奇函数且为偶函数D .非奇函数且非偶函数第二部分 非选择题(共100分)二、填空题:(每小题5分,共20分,其中14小题为选做题,考生从给出的两题中选择其中一道作答,若两题全答的只计算前一题得分。

海南中学2020-2021学年高二上学期期中考试 数学试题(含答案)

海南中学2020-2021学年高二上学期期中考试 数学试题(含答案)

海南中学2020-2021学年高二上学期期中考试化学试题(本试卷总分150分,总时量120分钟)一、单项选择题:本题共8小题,每小题5分,共40分. 1. 椭圆22:416C x y +=的焦点坐标为( )A .(±B .(±C .(0,±D .(0,±2. 已知向量(2,4,5)a =,(3,,)b x y =分别是直线12,l l 的方向向量,若12l l ∥,则( )A .6,15x y ==B .3,15x y ==C .810,33x y ==D .156,2x y ==3. 设0,0a b k >>>且1k ≠,则椭圆22122:1x y C a b +=和椭圆22222:x y C k a b+=具有相同的( )A .顶点B .焦点C .离心率D .长轴和短轴4. 已知直线1l 的方向向量(2,4,)a x =,直线2l 的方向向量(2,,2)b y =,若||6a =,且a b ⊥,则x y +的值是( ) A .1-或3B .1或3-C .3-D .15. 若直线0x y k --=与圆22(1)2x y -+=有两个不同的交点,则( )A .03k <<B .13k -≤≤C .1k <-或3k >D .13k -<<6. 已知平行六面体''''ABCD A B C D -中,4AB =,3AD =,'5AA =,90BAD ∠=,''60BAA DAA ∠=∠=.则'AC 的长为( )A B . C .12 D .7. 光线从(3,4)A -点射出,到x 轴上的B 点后,被x 轴反射到y 轴上的C 点,又被y 轴反射,这时反射线恰好过点(1,6)D -,则BC 所在直线的方程是( ) A .5270x y -+= B .310x y +-= C .3240x y -+= D .230x y --=8. 四棱锥-P ABCD 中,底面ABCD 是一个平行四边形,PA ⊥底面ABCD ,(2,1,4)AB =--,(4,2,0)AD =,(1,2,1)AP =--.则四棱锥-P ABCD 的体积为( )A .8B .16C .32D .48二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 9. 若,,a b c 是空间任意三个向量,R λ∈,下列关系中,不成立...的是( ) A .||||a b b a +=-B .()()a b c a b c +⋅=⋅+C .()a b a b λλλ+=+D .b a λ=10. 已知直线:10l y -+=,则下列结论正确的是( )A .直线l 的倾斜角是6πB .若直线:10m x -+=,则l m ⊥C .点0)到直线l 的距离是2D .过2)与直线l 40y --=11. 已知平面上一点(5,0)M ,若直线上存在点P ,使||4PM =,则称该直线为“点M 相关直线”,下列直线中是“点M 相关直线”的是( ) A .1y x =+B .2y =C .430x y -=D .210x y -+=12. 设椭圆22193x y +=的右焦点为F ,直线(0y m m =<<与椭圆交于,A B 两点,则( )A .||||AF BF +为定值B .ABF 的周长的取值范围是[6,12]C .当m =时,ABF 为直角三角形D .当1m =时,ABF三、填空题:本题共4小题,每小题5分,共20分.13. 若椭圆221(4)4x y m m+=<的离心率为12,则m = .14. 已知A ,B ,C 三点不共线,O 是平面ABC 外任一点,若1253OP OA OB OC λ=++,且P ∈平面ABC ,则λ= .15. 已知空间向量(3,0,4),(3,2,1)a b ==-,则向量b 在向量a 上的投影向量是 .16. 过点()3,0P -做直线()()21340m x m y m +-+--=的垂线,垂足为M ,已知点()2,3N ,则MN 的取值范围是 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17. (10分)已知三角形的三个顶点是(4,0)A ,(6,7)B -,(0,3)C -.(1)求BC 边上的中线所在直线的方程; (2)求BC 边上的高所在直线的方程.18. (12分)已知(1,0)A -,(2,0)B ,动点M 满足||1||2MA MB =,设动点M 的轨迹为C , (1)求动点M 的轨迹方程; (2)点(,)P x y 在轨迹C 上,求2yx -的最小值.19. (12分)如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,EA PD ∥,22AD PD EA ===,,,F G H 分别为,,PB EB PC 的中点. (1)求证:FG ∥平面PED ;(2)求平面FGH 与平面PBC 夹角的大小.20. (12分)已知关于x ,y 的方程22:240C x y x y m +--+=.(1)若圆C 与圆22812360x y x y +--+=外切,求m 的值; (2)若圆C 与直线:240l x y +-=相交于M ,N 两点,且45||MN =,求m 的值.21. (12分)四棱锥P ABCD -中,底面ABCD 为矩形,=90PAB ∠,2PA PD AD ===,(1)求证:平面PAD⊥平面ABCD.(2)在下列①②③三个条件中任选一个,补充在下面问题处,若问题中的四棱锥存在,求AB的长度;若问题中的四棱锥不存在,说明理由.①CF与平面PCD所成角的正弦值等于15;②DA与平面PDF所成角的正弦值等于34;③P A与平面PDF所成角的正弦值等于3.问题:若点F是AB的中点,是否存在这样的四棱锥,满足?(注:如果选择多个条件分别解答,按第一个解答计分.)22.(12分)已知椭圆2222:1(0)x yM a ba b+=>>的离心率为223,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为6+42.(1)求椭圆M的方程;(2)设直线:l x ky m=+与椭圆M交于A,B两点,若以AB为直径的圆经过椭圆的右顶点C,求m的值.参考答案一、单项选择题:本题共8小题,每小题5分,共40分. 23. 椭圆22:416C x y +=的焦点坐标为( )CA .(±B .(±C .(0,±D .(0,±24. 已知向量(2,4,5)a =,(3,,)b x y =分别是直线12,l l 的方向向量,若12l l ∥,则( )DA .6,15x y ==B .3,15x y ==C .810,33x y ==D .156,2x y ==25. 设0,0a b k >>>且1k ≠,则椭圆22122:1x y C a b +=和椭圆22222:x y C k a b+=具有相同的( )CA .顶点B .焦点C .离心率D .长轴和短轴26. 已知直线1l 的方向向量(2,4,)a x =,直线2l 的方向向量(2,,2)b y =,若||6a =,且a b ⊥,则x y +的值是( )B A .1-或3B .1或3-C .3-D .127. 若直线0x y k --=与圆22(1)2x y -+=有两个不同的交点,则( )DA .03k <<B .13k -≤≤C .1k <-或3k >D .13k -<<28. 已知平行六面体''''ABCD A B C D -中,4AB =,3AD =,'5AA =,90BAD ∠=,''60BAA DAA ∠=∠=.则'AC 的长为( )AA B . C .12 D .29. 光线从(3,4)A -点射出,到x 轴上的B 点后,被x 轴反射到y 轴上的C 点,又被y 轴反射,这时反射线恰好过点(1,6)D -,则BC 所在直线的方程是( )A A .5270x y -+= B .310x y +-= C .3240x y -+= D .230x y --=30. 四棱锥-P ABCD 中,底面ABCD 是一个平行四边形,PA ⊥底面ABCD ,(2,1,4)AB =--,(4,2,0)AD =,(1,2,1)AP =--.则四棱锥-P ABCD 的体积为( )BA .8B .16C .32D .48二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 31. 若,,a b c 是空间任意三个向量,R λ∈,下列关系中,不成立...的是( )ABD A .||||a b b a +=-B .()()a b c a b c +⋅=⋅+C .()a b a b λλλ+=+D .b a λ=32. 已知直线:10l y -+=,则下列结论正确的是( )CDA .直线l 的倾斜角是6πB .若直线:10m x -+=,则l m ⊥C .点0)到直线l 的距离是2D .过点2)且与直线l 40y --=33. 已知平面上一点(5,0)M ,若直线上存在点P ,使||4PM =,则称该直线为“点M 相关直线”,下列直线中是“点M 相关直线”的是( )BC A .1y x =+B .2y =C .430x y -=D .210x y -+=34. 设椭圆22193x y +=的右焦点为F ,直线(0y m m =<<与椭圆交于,A B 两点,则( )ACDA .||||AF BF +为定值B .ABF 的周长的取值范围是[6,12]C .当2m =时,ABF 为直角三角形D .当1m =时,ABF【解析】设椭圆的左焦点为F ',则||||AF BF '=,所以||||||||AF BF AF AF '+=+为定值6,A 正确;ABF ∆的周长为||||||AB AF BF ++,因为||||AF BF +为定值6,易知||AB 的范围是(0,6),所以ABF ∆的周长的范围是(6,12),B 错误;将y 与椭圆方程联立,可解得(A ,B ,又易知F ,所以2(60AF BF =+=,所以ABF ∆为直角三角形,C 正确;将1y =与椭圆方程联立,解得(A ,B ,所以112ABF S ∆=⨯=D 正确.三、填空题:本题共4小题,每小题5分,共20分.35. 若椭圆221(4)4x y m m+=<的离心率为12,则m = .336. 已知A ,B ,C 三点不共线,O 是平面ABC 外任一点,若1253OP OA OB OC λ=++,且P ∈平面ABC ,则λ= .21537. 已知空间向量(3,0,4),(3,2,1)a b ==-,则向量b 在向量a 上的投影向量是 .34(,0,)55--38. 过点()3,0P -做直线()()21340m x m y m +-+--=的垂线,垂足为M ,已知点()2,3N ,则MN 的取值范围是 .【解析】直线()()21340m x m y m +-+--=化为 (3)240m x y x y --+--=,令30{ 240x y x y --=--=,解得1{2x y -=.=∴直线()()21340m x m y m +-+--=过定点12Q -(,). ∴点M 在以PQ 为直径的圆上,圆心为线段PQ 的中点11C --(,)线段MN 长度的最大值5CN r =+==线段MN 长度的最大值5CN r =-==故答案为5⎡+⎣.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 39. (10分)已知三角形的三个顶点是(4,0)A ,(6,7)B -,(0,3)C -.(1)求BC 边上的中线所在直线的方程; (2)求BC 边上的高所在直线的方程. 解:(1)设线段BC 的中点为D . 因为B(6,−7),C(0,−3), 所以BC 的中点D(3,−5),所以BC 边上的中线所在直线的方程为y−0−5−0=x−43−4, 即5x −y −20=0.(2)因为B(6,−7),C(0,−3), 所以BC 边所在直线的斜率k BC =−3−(−7)0−6=−23,所以BC 边上的高所在直线的斜率为32,所以BC 边上的高所在直线的方程为y =32(x −4), 即3x −2y −12=0.40. (12分)已知(1,0)A -,(2,0)B ,动点M 满足||1||2MA MB =,设动点M 的轨迹为C , (1)求动点M 的轨迹方程; (2)求2yx -的最小值. 解:(1)设动点M(x,y), 根据题意得,√(x+1)2+y 2√(x−2)2+y 2=12,化简得,(x +2)2+y 2=4,所以动点M 的轨迹方程为(x +2)2+y 2=4. (2)设过点(2,0)的直线方程为y =k(x −2), 圆心到直线的距离d =√k 2+1≤2,解得−√33≤k ≤√33, 所以yx−2的最小值为−√33.41. (12分)如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,EA PD ∥,22AD PD EA ===,,,F G H 分别为,,PB EB PC 的中点. (1)求证:FG ∥平面PED ;(2)求平面FGH 与平面PBC 夹角的大小. (1)证明:∵F,G 分别为PB,EB 中点,∴FG PE ∥,,FG PED PE PED ⊄⊂平面平面,FG PED ∴平面∥. (2)解:EA ABCD EA PD ⊥平面,∥,PD ABCD ∴⊥平面. 又ABCD 四边形为矩形,,,DA DC DP ∴两两垂直.故以D 为坐标原点,DA,DC,DP 所在直线分别为x,y,z 轴建立空间直角坐标系,、则1(0,0,2),(2,2,0),(0,2,0),(2,0,1),(1,1,1),(2,1,),(0,1,1)2P B C E F G H ,(0,2,2),(2,0,0)PC CB =-=设平面PBC 的法向量为(,,)n x y z =,则0n PC n CB ⎧⋅=⎪⎨⋅=⎪⎩,即22020y z x -=⎧⎨=⎩,所以可取(0,1,1)n =,同理可取平面FGH 的法向量为(0,1,0)m =,设平面FGH 与平面PBC 的夹角为θ, 则||2cos ||||m n m n θ⋅==⋅,又[0,]2πθ∈,∴平面FGH 与平面PBC 夹角为4π.42. (12分)已知关于x ,y 的方程22:240C x y x y m +--+=.(1)若圆C 与圆22812360x y x y +--+=外切,求m 的值; (2)若圆C 与直线:240l x y +-=相交于M ,N 两点,且||MN =,求m 的值. 解:(1)把圆x 2+y 2−8x −12y +36=0, 化为标准方程得(x −4)2+(y −6)2=16, 所以圆心坐标为(4,6),半径为R =4,则两圆心间的距离d =√(42+(6−2)2=5, 因为两圆的位置关系是外切,所以d =R +r ,即4+√5−m =5,解得m =4, 故m 的值为4;(2)因为圆心C 的坐标为(1,2), 所以圆心C 到直线l 的距离d =√5=√55, 所以(√5−m)2=(12|MN|)2+d 2=(2√55)2+(√55)2,即5−m =1,解得m =4, 故m 的值为4.43. (12分)四棱锥P ABCD -中,底面ABCD 为矩形,=90PAB ∠,2PA PD AD ===,(1)求证:平面PAD ⊥平面ABCD .(2)在下列①②③三个条件中任选一个,补充在下面问题 处,若问题中的四棱锥存在,求AB 的长度;若问题中的四棱锥不存在,说明理由.①CF 与平面PCD 所成角的正弦值等于15; ②DA 与平面PDF 所成角的正弦值等于34; ③P A 与平面PDF 所成角的正弦值等于3. 问题:若点F 是AB 的中点,是否存在这样的四棱锥,满足 ? (注:如果选择多个条件分别解答,按第一个解答计分.) (1)证明:=90PAB ∠,AB PA ∴⊥, ∵底面ABCD 为矩形,∴AB AD ⊥, 又,PA AD PAD ⊂平面,且PAAD A =,AB PAD ∴⊥平面,又AB ABCD ⊂平面,故平面PAD ⊥平面ABCD.(2)解:取AD 中点为O ,∵4PA PD AD ===,∴OA ⊥OP ,以O 为原点,OA,OP 所在直线分别为x,z 轴建立空间直角坐标系,设2(0)AB a a =>, 则(1,0,0),(1,0,0),(0,0,3),(1,2,0),(1,2,0),(1,,0)A D P B a C a F a --, 选①:(2,,0),(0,2,0),(1,0,3)CF a DC a DP =-==,设平面PCD 的法向量为(,,)n x y z =,则00n DC n DP ⎧⋅=⎪⎨⋅=⎪⎩,即2030ay x z =⎧⎪⎨+=⎪⎩,∴可取(3,0,1)n =-,设CF 与平面PCD 所成角为θ,则2||315sin 5||||4CF n CF n aθ⋅===⋅+,解得1a =, ∴符合题意的四棱锥存在,此时22AB a ==. 选②:(2,0,0),(1,0,3)(2,,0)DA DP DF a ===,,设平面PDF 的法向量为(,,)n x y z =,则00n DP n DF ⎧⋅=⎪⎨⋅=⎪⎩,即3020x z x ay ⎧+=⎪⎨+=⎪⎩,∴可取(3,)n a a =--,设DA 与平面PDF 所成角为θ, 则||3sin 4||||2DA n DA n θ⋅===⋅,解得3a =, ∴符合题意的四棱锥存在,此时26AB a ==. 选③:易知P A 与平面PDF 所成角小于APD ∠,设P A 与平面PDF 所成角为θ,则sin sin sin32APD πθ<∠==,故不存在符合题意的四棱锥.44. (12分)已知椭圆2222:1(0)x y M a b a b +=>>的离心率为3,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为(1)求椭圆M 的方程;(2)设直线:l x ky m =+与椭圆M 交于A ,B 两点,若以AB 为直径的圆经过椭圆的 右顶点C ,求m 的值.解:(Ⅰ)因为椭圆M 上一点和它的两个焦点构成的三角形周长为6+4√2, 所以2a +2c =6+4√2,又椭圆的离心率为2√23, 即c a =2√23, 所以c =2√23a , 所以a =3,c =2√2.所以b =1, 椭圆M 的方程为x 29+y 2=1;(Ⅱ)由{x =ky +m x 29+y 2=1消去x 得(k 2+9)y 2+2kmy +m 2−9=0,设A(x 1,y 1),B(x 2,y 2),则有y 1+y 2=−2km k +9,y 1y 2=m 2−9k +9.①因为以AB 为直径的圆过点C ,所以CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =0.由CA ⃗⃗⃗⃗⃗ =(x 1−3,y 1),CB ⃗⃗⃗⃗⃗ =(x 2−3,y 2), 得(x 1−3)(x 2−3)+y 1y 2=0. 将x 1=ky 1+m ,x 2=ky 2+m 代入上式, 得(k 2+1)y 1y 2+k(m −3)(y 1+y 2)+(m −3)2=0. 将①代入上式,解得m =125或m =3.。

专题03 复数必刷100题(原卷版)

专题03 复数必刷100题(原卷版)

专题03 复数必刷100题任务一:善良模式(基础)1-50题一、单选题1.(四川省资阳市2021-2022学年高三第一次诊断考试数学(文)试题)已知复数2i1i-=-()A.3i22+B.13i22-C.33i22-D.1i22+2.(广东省清远市博爱学校2022届高三上学期11月月考数学试题)在复平面内,复数3i1iz+=-(其中i为虚数单位)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(山西省太原市第五中学2022届高三上学期第四次模块诊断数学(文)试题)已知复数z满足i2z z+=,则复数z的虚部为()A.1 B.i-C.i D.1-4.(四川省成都市第七中学2021-2022学年高三上学期期中考试文科数学试题)复数43i2iz-=+(其中i为虚数单位)的虚部为()A.2-B.1-C.1D.25.(云南省师范大学附属中学2022届高三高考适应性月考卷(四)数学(理)试题)复数i(,)a b a b+∈R 与1i+之积为实数的充要条件是()A.0a b==B.0ab=C.0a b+=D.0a b-=6.(四川省南充市2022届高考适应性考试(零诊)理科数学试题)已知2(1i)34iz-=+,其中i为虚数单位,则复数z在复平面内对应的点在第()象限A.一B.二C.三D.四7.(黑龙江省大庆市东风中学2021-2022学年高三上学期10月质量检测数学(文)试题)设复数1z =(i 是虚数单位),则z z +的值为( ) A .B .C .1D .28.(江苏省南京市中华中学2021-2022学年高三上学期10月阶段检测数学试题)设4-,则z 的共轭复数的虚部为( ) A .32 B .3i 2C .32-D .3i 2-9.(西南四省名校2021-2022学年高三上学期第一次大联考数学(理)试题)已知复数2,2,d q =⎧⎨=⎩,则z 的虚部为( ) A .1- B .i -C .1D .2i -10.(广东省深圳市普通中学2022届高三上学期质量评估(新高考I 卷)数学试题)若复数1ii iz a +=-+为纯虚数,则实数a 的值为( ) A .1- B .12-C .0D .111.(广东省深圳市罗湖区2022届高三上学期第一次质量检测数学试题)已知复数1(2)i z a a=+-(i 为虚数单位)在复平面内所对应的点在直线y x =上,若a ∈R ,则z =( ) AB .2C D .1012.(全国2022届高三第一次学业质量联合检测文科数学(老高考)试题)复数112i1iz +=+在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限13.(神州智达省级联测2021-2022学年高三上学期第一次考试数学试题)在复平面内,点A 和C 对应的复数分别为42i -和24i -+,若四边形OABC 为平行四边形,O (为坐标原点),则点B 对应的复数为( ) A .1i + B .1i - C .22i - D .22i +14.(广东省广州市西关外国语学校2022届高三上学期8月月考数学试题)已知复数()()1i 12i z =--,其中i 是虚数单位,则z 的共轭复数虚部为( ) A .3- B .3C .3i -D .3i15.(广东省深圳市龙岗布吉中学2020-2021学年高一下学期中数学试题)已知i 是虚数单位,则复数202120212i 2i z -=+对应的点所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限16.(湖南省岳阳市岳阳县第一中学2021-2022学年高三上学期入学考试数学试题)已知复数122,i(R)1iz z a a ==+∈+,若12,z z 在复平面内对应的向量分别为12,OZ OZ (O 为直角坐标系的坐标原点),且12||2OZ OZ +=,则a =( ) A .1 B .-3 C .1或-3 D .-1或317.(甘肃省天水市秦州区2020-2021学年高二下学期第一阶段检测数学(文)试题)关于复数z 的方程31z -=在复平面上表示的图形是( )A .椭圆B .圆C .抛物线D .双曲线18.(江苏省无锡市辅仁高级中学2020-2021学年高一下学期期中数学试题)欧拉是一位杰出的数学家,为数学发展作出了巨大贡献,著名的欧拉公式:i cos isin e θθθ=+,将三角函数的定义域扩大到复数集,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”.结合欧拉公式,复数i412i 1iz π-=+在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限19.(福建省2021届高三高考考前适应性练习卷(二)数学试题)法国数学家棣莫弗(1667-1754)发现的公式()cos isin cos isin nx x nx nx +=+推动了复数领域的研究.根据该公式,可得4ππcos isin 88⎛⎫+=⎪⎝⎭( ). A .1 B .i C .1- D .i -20.(福建省三明第一中学2021届高三5月校模拟考数学试题)复数z 满足21z -=,则z 的最大值为( ) A .1 BC .3D21.(重庆一中2021届高三高考数学押题卷试题(三))系数的扩张过程以自然数为基础,德国数学家克罗内克(Kronecker ,1823﹣1891)说“上帝创造了整数,其它一切都是人造的”设为虚数单位,复数Z 满足()202012Z i i =+,则Z 的共轭复数是( ) A .2i + B .2i - C .12i - D .12i +22.(福建省福州市八县(市、区)一中2022届高三上学期期中联考数学试题)下面是关于复数2i1iz =-(i 为虚数单位)的命题,其中真命题为( ) A .2z =B .复数z 在复平面内对应点在直线y x =上C .Z 的共轭复数为1i --D .z 的虚部为1-23.(江苏省南通市如皋市2021-2022学年高三上学期教学质量调研(一)数学试题)已知复数z 满足1i z z -=-,则在复平面上z 对应点的轨迹为( )A .直线B .线段C .圆D .等腰三角形24.(北京一零一中学2022届高三9月开学练习数学试题)已知复数z 满足z +z =0,且z ·z =4,则z=( ) A .±2 B .2C .2i ±D .2i25.(第十章复数10.1复数及其几何意义10.1.2复数的几何意义)向量1OZ 对应的复数是54i -,向量2OZ 对应的复数是54i -+,则1OZ +2OZ 对应的复数是( )A .108i -+B .108i -C .0D .108i +26.(广东省肇庆市2022届高三上学期一模考前训练(二)数学试题)已知i 为虚数单位,复数112i z =-,22i z =+,则复数12z z 在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限27.(福建省泉州科技中学2022届高三上学期第一次月考数学试题)若1i Z =+,则20202021()()Z Z ZZ --+的虚部为( ) A .i B .i - C .1 D .1-28.(河南省部分名校2021-2022学年高三上学期第一次阶段性测试文科数学试题)已知i 为虚数单位,复数z 满足1i 1iz +=+,则|z |等于( ) A .12BCD29.(河南省许昌市2022届高三第一次质量检测(一模)理科数学试题)已知复数z 满足12(1i)iz +=+,其中i 为虚数单位,则复数z 在复平面内所对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限30.(广西南宁市2022届高三高中毕业班上学期摸底测试数学(理)试题)已知复数13i z =+和21i z =+,则1122z z z z +=( ) A .34i + B .43i + C .36i + D .63i +二、多选题31.(河北省石家庄市藁城新冀明中学2022届高三上学期第一次月考数学试题)设()1i 2i z -=+,则下列叙述中正确的是( )A .z 的虚部为32-B .13i 22z =- C .∣z ∣D .在复平面内,复数z 对应的点位于第四象限32.(广东省珠海市艺术高级中学2020-2021学年高二下学期期中数学试题)若复数35i1iz -=-,则( ) A.z =B .z 的实部与虚部之差为3C .4i z =+D .z 在复平面内对应的点位于第四象限33.(重庆市第八中学2021届高三下学期高考适应性考试(三)数学试题)已知复数20211i 11iz +=+-(i 为虚数单位)、则下列说法正确的是( ) A .z 的实部为1 B .z 的虚部为1-C.z =D .1i z =+34.(湖南师范大学附属中学2020-2021学年高一下学期第一次大练习数学试题)已知i 为虚数单位,以下四个说法中正确的是( ) A .2340i i i i +++= B .复数3z i =-的虚部为i -C .若2(12)z i =+,则复平面内z 对应的点位于第二象限D .已知复数z 满足11z z -=+,则z 在复平面内对应的点的轨迹为直线35.(2021届新高考同一套题信息原创卷(四))已知,a b ∈R ,()1i 32i a b --=-,()1i a b z -=+,则( ) A .z 的虚部是2i B .2z =C .2i z =-D .z 对应的点在第二象限36.(在线数学135高一下)下面关于复数()1z i i =-+(i 是虚数单位)的叙述中正确的是( )A .z 的虚部为i -B .z =C .22z i =D .z 的共轭复数为1i +37.(云南省曲靖市罗平县第二中学2020-2021学年高一下期期末测试数学试题)已知复数21iz =+,则正确的是( ) A .z 的实部为﹣1 B .z 在复平面内对应的点位于第四象限 C .z 的虚部为﹣i D .z 的共轭复数为1i +38.(河北省唐山市英才国际学校2020-2021学年高一下学期期中数学试题)复数1i z =-,则( ) A .z 在复平面内对应的点的坐标为()1,1- B .z 在复平面内对应的点的坐标为()1,1 C .2z = D .z =39.(2021·湖北·高三月考)设1z ,2z 是复数,则( ) A .1212z z z z -=-B .若12z z ∈R ,则12z z =C .若120z z -=,则12z z =D .若22120z z +=,则120z z ==40.(2021·山东临沂·高三月考)已知m ,n R ∈,复数2i z m =+,()235i i z z n +=+,则( )A .1m =-B .1n =C .i m n +=D .m ni +在复平面内对应的点所在象限是第二象限第II 卷(非选择题)三、填空题41.(山西省新绛中学2022届高三上学期10月月考数学(文)试题)已知1?21z i +=,则z 的最大值为_______.42.(北京市第十三中学2022届高三上学期期中考试数学试题)在复平面内,复数z 所对应的点的坐标为(1,1)-,则z z ⋅=_____________.43.(安徽省合肥市庐阳高级中学2020-2021学年高三上学期10月第一次质检理科数学试题)复数z 满足22i z z =++,则1i z -+的最小值为___________.44.(广东省湛江市第二十一中学2022届高三上学期9月第2次月考数学试题)已知复数3i1iz +=+,则z =__________.45.(天津市第二中学2021-2022学年高三上学期期中数学试题)若复数z 满足ii i1z +=(i 为虚数单位),则z =_____.46.(上海市交通大学附属中学2022届高三上学期10月月考数学试题)若复数z 满足3iiz +=(其中i 是虚数单位),z 为z 的共轭复数,则z =___________.47.(上海市向明中学2022届高三上学期9月月考数学试题)已知复数()()()13i 1i 12i z +-=-,则z=___________.48.(双师301高一下)若复数()i z a a =+∈R 与它的共轭复数z 所对应的向量互相垂直,则a =_______.49.(2021·上海·格致中学高三期中)定义运算()(),,a b c d ad bc =-,则满足()(),1,232i z z =+的复数z =______.50.(2021·全国·高三月考(理))已知复数z 满足||||z i z i ++-=z 的最小值是_______.任务二:中立模式(中档)1-30题一、单选题1.(云南省昆明市第一中学2022届高三上学期第三次双基检测数学(理)试题)已知i 为虚数单位,则232021i i i i +++⋅⋅⋅+=( )A .iB .i -C .1D .-12.(辽宁省名校联盟2021-2022学年高三上学期10月联合考试数学试题)已知复数202120221111i i i i z -+⎛⎫⎛⎫=+ ⎪ ⎪+-⎝⎭⎝⎭,则z 的共轭复数z =( )A .1i +B .1i -C .1i -+D .1i --3.(上海市曹杨第二中学2022届高三上学期10月月考数学试题)设b 、c ∈R ,若2i -(i 为虚数单位)是一元二次方程20x bx c ++=的一个虚根,则( ) A .4b =,5c = B .4b =,3c = C .4b =-,5c = D .4b =-,3c =4.(第3章本章复习课-2020-2021学年高二数学(理)课时同步练(人教A 版选修2-2))若1是关于x 的实系数方程20x bx c ++=的一个复数根,则( ) A .2,3b c == B .2,1b c ==- C .2,1b c =-=- D .2,3b c =-=5.(专题1.3集合与幂指对函数相结合问题-备战2022年高考数学一轮复习一网打尽之重点难点突破)设集合{}22||cos sin |,M y y x x x R ==-∈,1N x =<⎧⎫⎨⎬⎩⎭,i 为虚数单位,x ∈R ,则M ∩N 为( ) A .(0,1) B .(0,1]C .[0,1)D .[0,1]6.(考点38复数-备战2022年高考数学一轮复习考点帮(新高考地区专用))若2ii(,,)1ia x y a x y +=+∈+R ,且1xy >,则实数a 的取值范围是( ) A .)+∞B .(,)-∞-⋃+∞C .()-⋃+∞ D .(,2)(2,)-∞-+∞7.(四川省成都市树德中学2021-2022学年高三上学期入学考试文科数学试题)已知复数()2231i z a a a =-+-,R a ∈,则“0a =”是“z 为纯虚数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件8.(第25讲数系的扩充与复数的引入(练)-2022年高考数学一轮复习讲练测(课标全国版))设复数1i1iz -=+,()202020191f x x x x =++++,则()f z =( )A .iB .i -C .1D .1-9.(河北正中实验中学2021届高三上学期第二次月考数学试题)棣莫弗定理:若两个复数111cos isin z θθ=+,222cos isin z θθ=+,则()()121212cos isin z z θθθθ⋅=+++,已知1i2a =,2021b a =,则a b +的值为( )A .i - B .i C .D10.(第25讲数系的扩充与复数的引入(讲)-2022年高考数学一轮复习讲练测(课标全国版))欧拉公式i co sin s i x e x x +=(i 是虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,i3e π表示的复数位于复平面中的( )A .第一象限B .第二象限C .第三象限D .第四象限11.(山东省济宁邹城市2021-2022学年高三上学期期中考试数学试题)定义运算a bad bc c d=-,若复数z 满足i 11i 1z z -=-,则z =( ) A .1i + B .1i - C .i - D .i12.(上海市徐汇中学2022届高三上学期期中数学试题)已知方程()20x x m m R ++=∈有两个虚根,αβ,若3αβ-=,则m 的值是( ) A .2-或52B .2-C .52 D .52-13.(专题12.3复数的几何意义(重点练)-2020-2021学年高一数学十分钟同步课堂专练(苏教版2019必修第二册))若z 是复数,|z +2-2i|=2,则|z +1-i|+|z |的最大值是( ) AB .C .2D .414.(专题07复数-备战2022年高考数学一轮复习核心知识全覆盖(新高考地区专用))如果复数z 满足|z +i|+|z -i|=2,那么|z +i +1|的最小值是( ) A .1 B .12C .2D15.(百师联盟2021届高三二轮复习联考(三)数学(理)全国Ⅰ卷试题)已知i 是虚数单位,复数z 的共轭复数为z ,下列说法正确的是( )A .如果12z z +∈R ,则1z ,2z 互为共轭复数B .如果复数1z ,2z 满足1212z z z z +=-,则120z z ⋅=C .如果2z z =,则1z =D .1212z z z z =16.(黑龙江省哈尔滨市第六中学2021届高三第四次模拟数学(理)试题)设z 为复数,则下列命题中错误的是( ) A .2z zz = B .若1z =,则i z +的最大值为2 C .22z z = D .若11z -=,则02z ≤≤17.(陕西省汉中市2021-2022学年高三上学期第一次校际联考文科数学试题)设复数1z ,2z 满足121z z ==,1212z z -=-,则12z z +=( )A .1B .12CD18.(江苏省常州市前黄高级中学2021届高三下学期学情检测(三)数学试题)设12,z z 为复数,则下列四个结论中不正确的是( ) A .1212z z z z +=+ B .1212||||||z z z z ⋅=⋅ C .11z z +一定是实数 D .22z z -一定是纯虚数19.(重庆市名校联盟2021届高三三模数学试题)若复数z 满足|1||12|z i i -+=-,其中i 为虚数单位,则z 对应的点(x ,y )满足方程( )A .22(1)(1)x y -++=B .22(1)(1)5x y -++= C .22(1)(1)x y ++-D .22(1)(1)5x y ++-=20.(陕西省西安中学2021届高三下学期第六次模拟数学(文)试题)已知复数122(z i i =-为虚数单位)在复平面内对应的点为1P ,复数2z 满足21z i -=,则下列结论不正确的是( ) A .1P 点的坐标为()2,2- B .122z i =+C .21z z -1 D .21z z -的最小值为二、多选题21.(江苏省扬州市公道中学2020-2021学年高二下学期第二次学情测试数学试题)在下列命题中,正确命题的个数为( ) A .两个复数不能比较大小;B .若22(1)(32)i x x x -+++是纯虚数,则实数1x =±;C .z R ∈的一个充要条件是z z =;D .||1z =的充要条件是1z z=.22.(江苏省常州市溧阳市2020-2021学年高一下学期期末数学试题)下列结论正确的是( ) A .若复数z 满足0z z +=,则z 为纯虚数B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 满足1R z ∈,则z R ∈D .若复数z 满足3i 1z -=,则||[2,4]z ∈23.(第七章复数7.2复数的四则运算7.2.1复数的加、减运算及其几何意义)已知复数012z i =+(i 为虚数单位)在复平面内对应的点为0P ,复数z 满足|1|||z z i -=-,下列结论正确的是( ) A .0P 点的坐标为(1,2)B .复数0z 的共轭复数对应的点与点0P 关于虚轴对称C .复数z 对应的点Z 在一条直线上D .0P 与z 对应的点Z24.(山东省济南市2020届高三6月针对性训练(仿真模拟)数学试题)已知复数ππ1cos 2sin 222z i θθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位)下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .2cos z θ=D .1z 的实部为1225.(2021·安徽·六安一中高一期末)设复数z 的共轭复数为z ,i 为虚数单位,则下列命题正确的是( )A .若0z z ⋅=,则0z =B .若z z R -∈,则z R ∈C .若2cos isin55z ππ=+,则1z =D .若12i 3i z z --=++,则z 的最小值是12第II 卷(非选择题)三、填空题26.(福建省仙游第一中学2020-2021学年高一下学期第一次月考数学试题)若12400z z ==,且12z z +=12z z -=___________.27.(重庆市万州纯阳中学2020-2021学年高二下学期第一次月考数学试题)已知复数z 满足21i z z -=--,则2i z z -+的最小值为_______.28.(江苏省南通市如东县2020-2021学年高一下学期期中数学试题)设复数1z ,2z ,满足13z =,22z =,124z z i +=,则12z z -=__________.29.(上海市2022届高三上学期一模暨春考模拟卷(五)数学试题)已知复数1z ,2z ,3z 满足1231z z z ===, 123||z z z r ++=(其中r 是给定的实数),则312231z z z z z z ++的实部是___________(用含有r 的式子表示).30.(2020·上海·高三专题练习)若z a bi =+,21zR z ∈+,则实数a ,b 应满足的条件为________.任务三:邪恶模式(困难)1-20题一、单选题1.(2022·全国·高三专题练习)已知复数()()cos sin 1i k k k z R θθθ=++∈对应复平面内的动点为()1,2k Z k =,模为1的纯虚数3z 对应复平面内的点为3Z ,若313212Z Z Z Z =,则12z z -=( )A .1 BCD .32.(2022·上海·高三专题练习)已知1z 、2z C ∈,且141z i -=,222z z i -=-(i 是虚数单位),则12z z -的最小值为( ) A .4 B .3 C .2 D .13.(2021·全国·高三专题练习(理))已知i 为虚数单位,则复数22019202012i 3i 2020i 2021i z =+++++的虚部为( )A .1011-B .1010-C .1010D .10114.(2022·全国·高三专题练习)瑞士数学家欧拉被认为是历史上最伟大的数学家之一,他发现了欧拉公式cos sin ix e x i x =+()x ∈R ,它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系.特别是当x π=时,得到一个令人着迷的优美恒等式10i e π+=,这个恒等式将数学中五个重要的数(自然对数的底e ,圆周率π,虚数单位i ,自然数的单位1和数字0)联系到了一起,若i e α表示的复数对应的点在第二象限,则α可以为( ) A .3πB .23π C .32π D .116π5.(2021·江苏·高三月考)若存在复数z 同时满足1z i -=,33z i t -+=,则实数t 的取值范围是( ) A .[0,4] B .(4,6) C .[4,6] D .(6,)+∞6.(2022·全国·高三专题练习(理))已知复数z 的模为1,复数23w z z =+.则在复平面内,复数w 所对应的点与点()4,0的距离的最大值是( ) A .6 B .254C .D .7.(2022·江苏·高三专题练习)已知复数123,,z z z 满足:1233421, 41, 1z i z i z z i +-=-=-=-,那么3132+z z z z --的最小值为( )A .2 B .C .2 D .8.(2020·全国·高三专题练习)设复数21ix i=-(i 是虚数单位),则112233202020202020202020202020C x C x C x C x +++⋅⋅⋅+=( )A .1i +B .i -C .iD .09.(2022·全国·高三专题练习)若集合()(){}|cos arcsin cos arccos ,,1N z z t i t t R t ==+⋅∈≤⎤⎦,1|,,1,01t t M z z i t R t t t t +⎧⎫==+∈≠-≠⎨⎬+⎩⎭,则MN 中元素的个数为( )A .0B .1C .2D .410.(2021·全国·高三专题练习(理))已知复数z 满足z z ⋅=4且z z ++|z |=0,则z 2019的值为 A .﹣1 B .﹣22019C .1D .2201911.(2020·湖南·湘潭一中高三月考(理))设i 是虚数单位,则2320192342020i i i i +++⋅⋅⋅+的值为( ) A .10101010i -- B .10111010i -- C .10111012i -- D .10111010i -12.(2019·贵州·贵阳一中高三月考(文))已知复数232019i i i i 1iz ++++=+,z 是z 的共轭复数,则z z ⋅=( )A .0B .12C .1D .2二、多选题13.(2021·全国·高三专题练习)下列说法正确的是() A .若2z =,则4z z ⋅=B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 的平方是纯虚数,则复数z 的实部和虚部相等D .“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件14.(2021·山东山东·高三月考)欧拉公式cos sin xi e x i x =+(其中i 为虚数单位,x ∈R )是由瑞士著名数学家欧拉创立的,该公式将指数函数的定义域扩大到复数,建立了三角函数与指数函数的关联,在复变函数论里面占有非常重要的地位,被誉为数学中的天骄,依据欧拉公式,下列选项正确的是( ) A .复数2i e 对应的点位于第三象限 B .π2i e 为纯虚数Cxi 的模长等于12D .π6i e 的共轭复数为1215.(2020·湖北·武汉大学高三)设复数z 的实部和虚部都是整数,则( )A .2z z -的实部都能被2 整除B .3z z -的实部都能被3 整除C .4z z -的实部都能被4 整除D .5z z -的实部都能被5 整除16.(2020·湖北·武汉大学高三)设12z z ,( ) AB .没有最小值C .最大值为2D .没有最大值第II 卷(非选择题)三、填空题17.(2021·全国·高三专题练习)在复平面内,等腰直角三角形12OZ Z 以2OZ 为斜边(其中O 为坐标原点),若2Z对应的复数21z =+,则直角顶点1Z 对应的复数1z =_____________.18.(2021·全国·高三专题练习)若复数z 满足2z =,则33z z ++-的取值范围是______.19.(2022·全国·高三专题练习)设复数1z =在复平面上对应的向量为OZ ,将OZ 绕原点O 逆时针旋转n 个56π角后得到向量()*1OZ n N ∈,向量1OZ 所对应的复数为1z ,若10z <,则自然数n 的最小数值为___________20.(2020·上海市奉贤区曙光中学高三期中)已知z C ∈,函数()()()13log 312x z f x x x R =++∈为偶函数,则212z z --=________.。

树德中学2020-2021学年高二上学期10月阶段性测 数学(文)试题(含答案)

树德中学2020-2021学年高二上学期10月阶段性测 数学(文)试题(含答案)

16.
已知椭圆 x2 a2
y2 b2
1(a
b
0)
与双曲线
C2
:
x2 m2
y2 n2
1(m 0, n 0) 有相同的焦点 F1, F2 ,其中
F1 为左焦点.点 P 为两曲线在第一象限的交点,e1、e2 分别为曲线 C1、C2 的离心率,若△PF1F2 是以 PF1 为底边的等腰三角形,则 e2﹣e1 的取值范围为_____. 三、解答题(本大题共 6 小题,共 70 分,解答应写出文字说明、证明过程或演算步骤) 17. 如图,圆 C 与 x 轴正半轴交于两点 A,B(B 在 A 的右方),与 y 轴相切
A. k 4 或 k 0 B. k 3 C. k 3 或 k 1 D. k 1
3
4
4
12.点 A 、 B
为椭圆 E :
x2 a2
y2 b2
1a
b
0 长轴的端点, C
、 D 为椭圆 E 短轴的端点,动点 M
满足
MA MB 2 ,若 MAB 面积的最大值为 8, MCD 面积的最小值为 1,则椭圆的离心率为
于点 M 0,1 ,已知 AB 2 3 .
(1)求圆 C 的标.准.方程; (2)求圆 C 在点 A 处的切线 l 的方程.
20.
设椭圆 M
:x2 a2
y2 b2
1a b 0 的离心率与双曲线 x2 y2
1的离心率互为倒数,且椭圆的长轴
长为 4.
(1)求椭圆 M 的方程;
(2)若直线 x 2 y m 交椭圆 M 于 A , B 两点, P 2,1 为椭圆 M 上一点,求 PAB 面积的最大
联立
x2 3
y
y2 1

2021年安徽省高三“五校联盟”第二次联考文科数学试题附答案

2021年安徽省高三“五校联盟”第二次联考文科数学试题附答案

模型狔=烅烄40sin(3π狓)+13,0≤狓<2,假设该人喝一瓶啤酒后至少经过狀(狀∈犖 )小时才可以驾车,则狀 烆90·e-0.5x+14,狓≥2,
的值为(参考数据:ln15≈2.71,ln30≈3.40)
车辆驾驶人Байду номын сангаас血液酒精含量阈值
驾驶行为类别
饮酒驾车
阈值(犿犵/100犿犔) [20,80)
由圆锥的底面周长犔 与高犺,计算其体积犞 的近似公式犞=316犔2犺,它实际上是将圆锥体积公式中的圆
周率π近似取为3,那么近似公式犞=318犔2犺,相当于将圆锥体积公式中的π近似取为
A.285
B.3 17 2
C.169
D.7265
5.已知平面单位向量犲1,犲2 满足|2犲1+犲2|=槡5,设向量犪=犲1+犲2,向量犫=3犲1+犲2,则|犪+犫|=
④|犅犘|随犿 的减小而增大
A.4
B.3
C.2
D.1
【文科数学试题 第 2页(共4页)】
二、填空题:本题共4小题,每小题5分,共20分. 烄狓-狔+1≥0,
13.若变量狓,狔 满足线性约束条件烅狓-2狔-1≤0,则目标函数狕=狓+2狔 的最小值 . 烆狓+狔-4≥0,
14.已知函数犳(狓+1)=狓3-2狓+1,曲线狔=犳(狓)在点(0,犳(0))处的切线方程为 . 15.已知点 犕(1,-1)和抛物线犆:狓2=4狔,过犆 的焦点且斜率为犽 的直线犾与犆 交于犃,犅 两点,犖 为犃犅
【文科数学试题 第 4页(共4页)】
颍上一中 涡阳一中 蒙城一中 淮南一中 怀远一中 2021届高三“五校联盟”第二次联考·文科数学
参考答案、提示及评分细则
一、选择题
题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C A D C D D A A B B B B

2020-2021学年高二上学期期末考试数学试卷(含解析)

2020-2021学年高二上学期期末考试数学试卷(含解析)

2020-2021学年高二上学期期末考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.若3324A 10A n n =,则n =( )A .1B .8C .9D .102.期末考试结束后,某班要安排6节课进行试卷讲评,要求课程表中要排入语文、数学、英语、物理、化学、生物共六节课,如果第一节课只能排语文或数学,最后一节不能排语文,则不同的排法共有( ) A .192种B .216种C .240种D .288种3.一台X 型号自动机床在一小时内不需要工人照看的概率为0.8,有4台这种型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是( ) A .0.1536B .0.1808C .0.5632D .0.97284.某市气象部门根据2021年各月的每天最高气温平均值与最低气温平均值(单位:℃)数据,绘制如下折线图:那么,下列叙述错误的是( )A .各月最高气温平均值与最低气温平均值总体呈正相关B .全年中,2月份的最高气温平均值与最低气温平均值的差值最大C .全年中各月最低气温平均值不高于10℃的月份有5个D .从2021年7月至12月该市每天最高气温平均值与最低气温平均值都呈下降趋势5.若()2N 1,X σ~,则()0.6827P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=,已知()21,3X N ~,则(47)P X <≤=( )A .0.4077B .0.2718C .0.1359D .0.04536.为了评价某个电视栏目的改革效果,在改革前后分别从居民点抽取了100位居民进行调查,经过计算()200.01P K k ≥=,根据这一数据分析,下列说法正确的是( )A .有1%的人认为该栏目优秀;B .有1%的把握认为该栏目是否优秀与改革有关系;C .有99%的把握认为电视栏目是否优秀与改革有关系;D .没有理由认为电视栏目是否优秀与改革有关系.7.若1021001210)x a a x a x a x =++++,则012310a a a a a -+-++的值为.A 1B 1C .101)D .101)8.关于()72x +的二项展开式,下列说法正确的是( ) A .()72x +的二项展开式的各项系数和为73B .()72x +的二项展开式的第五项与()72x +的二项展开式的第五项相同C .()72x +的二项展开式的第三项系数为4372CD .()72x +的二项展开式第二项的二项式系数为712C9.如图,某建筑工地搭建的脚手架局部类似于一个3×2×3的长方体框架,一个建筑工人欲从A 处沿脚手架攀登至B 处,则其最近的行走路线中不连续向上攀登的概率为( )A .528B .514C .29D .1210.三棱锥P ABC -中P A 、PB 、PC 两两互相垂直,4PA PB +=,3PC =,则其体积( ) A .有最大值4B .有最大值2C .有最小值2D .有最小值4二、填空题11.最小二乘法得到一组数据(),(1,2,3,4,5)i i x y i =的线性回归方程为ˆ23yx =+,若5125ii x==∑,则51i i y ==∑___________.12.某班举行的联欢会由5个节目组成,节目演出顺序要求如下: 节目甲不能排在第一个,并且节目甲必须和节目乙相邻.则该班联欢会节目演出顺序的编排方案共有____种. 13.若随机变量X 的概率分布如表,则表中a 的值为______.14.设随机变量ξ~B (2,p ),若P (ξ≥1)=59,则D (ξ)的值为_________.15.已知等差数列{}n a 中,33a =,则1a 和5a 乘积的最大值是______.16.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了5个问题就晋级下一轮的概率为___________.17.经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下:则该营业窗口上午9点钟时,至少有2人排队的概率是_____.18.点A ,B ,C 在球O 表面上,2AB =,BC =90ABC ∠=︒,若球心O 到截面ABC的距离为___________.19.如图,在三棱柱111ABC A B C -中,四边形11AAC C 是边长为4的正方形,平面ABC ⊥平面11AAC C ,3AB =,5BC =.(℃)求证:1AA ⊥平面;(℃)若点E 是线段的中点,请问在线段是否存在点E ,使得面11AAC C ?若存在,请说明点E 的位置,若不存在,请说明理由; (℃)求二面角的大小.20.四根绳子上共挂有10只气球,绳子上的球数依次为1,2,3,4,每枪只能打破一只球,而且规定只有打破下面的球才能打上面的球,则将这些气球都打破的不同打法数是________.三、解答题21.已知集合(){}()12,,,|,1,2,,1nn i R x x x x R i n n =∈=≥,定义n R 上两点()12,,,n A a a a ,()12,,,n B b b b 的距离()1,ni i i d A B a b ==-∑.(1)当2n =时,以下命题正确的有__________(不需证明): ℃若()1,2A ,()4,6B ,则(),7d A B =;℃在ABC 中,若90C =∠,则()()()222,,,d A C d C B d A B ⎡⎤⎡⎤⎡⎤+=⎣⎦⎣⎦⎣⎦; ℃在ABC 中,若()(),,d A B d A C =,则B C ∠=∠;(2)当2n =时,证明2R 中任意三点A B C ,,满足关系()()(),,,d A B d A C d C B ≤+;(3)当3n =时,设()0,0,0A ,()4,4,4B ,(),,P x y z ,其中x y z Z ∈,,,()()(),,,d A P d P B d A B +=.求满足P 点的个数n ,并证明从这n 个点中任取11个点,其中必存在4个点,它们共面或者以它们为顶点的三棱锥体积不大于83.22.今年4月,教育部办公厅印发了《关于加强义务教育学校作业管理的通知》,规定初中学生书面作业平均完成时长不超过90分钟.某市为了更好地贯彻落实“双减”工作要求,作教育决策,该市教育科学研究院就当前全市初三学生每天完成书面作业时长抽样调查,结果是学生书面作业时长(单位:分钟)都在区间[]50,100内,书面作业时长的频率分布直方图如下:(1)若决策要求:在国家政策范围内,若当前初三学生书面作业时长的中位数估计值大于或等于平均数(计算平均数时,同一组中的数据用该区间的中点值代表)估计值,则减少作业时长;若中位数估计值小于平均数,则维持现状.请问:根据这次调查,该市应该如何决策?(2)调查统计时约定:书面作业时长在区间[]90,100内的为A 层次学生,在区间[)80,90内的为B 层次学生,在区间[70,80)内的为C 层次学生,在其它区间内的为D 层次学生.现对书面作业时长在70分钟以上(含70分钟)的初三学生,按作业时长出现的频率用分层抽样的方法随机抽取8人,再从这8人中随机抽取3人作进一步调查,设这3人来自X 个不同层次,求随机变量X 的分布列及数学期望.23.国家文明城市评审委员会对甲、乙两个城市是否能入围“国家文明城市”进行走访调查.派出10人的调查组.先后到甲、乙两个城市的街道、社区进行问卷调查,然后打分(满分100分).他们给出甲、乙两个城市分数的茎叶图如图所示:(1)请你用统计学的知识分析哪个城市更应该入围“国家文明城市”,请说明理由;(2)从甲、乙两个城市的打分中各抽取2个,在已知有大于80分的条件下,求抽到乙城市的分数都小于80分的概率;(3)从对乙城市的打分中任取2个,设这2个分数中不小于80分的个数为X,求X的分布列和期望.参考答案:1.B【分析】根据排列数的运算求解即可.【详解】由332A 10A n n =得,2(21)(22)10(1)(2)n n n n n n --=--,又3,n n *≥∈N ,所以2(21)5(2)n n -=-,解得8n =, 所以正整数n 为8. 故选:B. 2.B【分析】对第一节课的安排进行分类讨论,结合分步乘法计数原理和分类加法计数原理可得结果.【详解】分以下两种情况讨论:℃若第一节课安排语文,则后面五节课的安排无限制,此时共有55A 种;℃若第一节课安排数学,则语文可安排在中间四节课中的任何一节,此时共有444A 种.综上所述,不同的排法共有54544216A A +=种.故选:B. 3.D【详解】设在一个小时内有ξ台机床需要工人照看,则ξ~B (4,0.2),所以P (ξ≤2)=04C (0.8)4+14C (0.8)3×0.2+24C (0.8)2×(0.2)2=0.972 8. 故选D 4.D【分析】利用折线图可以判断选项ABC 正确,从2021年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,所以选项D 错误.【详解】解:由2021年各月的每天最高气温平均值和最低气温平均值(单位:C)︒数据,绘制出的折线图,知:在A 中,各月最高气温平均值与最低气温平均值为正相关,故A 正确;在B 中,全年中,2月的最高气温平均值与最低气温平均值的差值最大,故B 正确; 在C 中,全年中各月最低气温平均值不高于10C ︒的月份有1月,2月,3月,11月,12月,共5个,故C 正确;在D 中,从2021年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,故D 错误. 故选:D . 5.C【分析】由题意,得(47)(2)P X P X μσμσ<≤=+<≤+,再利用3σ原则代入计算即可.【详解】℃()21,3X N ~,由()0.6827P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=,℃1(47)(2)(0.95450.6827)0.13592P X P X μσμσ<≤=+<≤+=-=.故选:C 6.C【分析】利用独立性检验的基本原理即可求出答案.【详解】解:℃()200.01P K k ≥=表示“电视栏目是否优秀与改革没有关系”的概率,℃有99%的把握认为电视栏目是否优秀与改革有关系, 故选:C .【点睛】本题主要考查独立性检验的基本应用,准确的理解判断方法是解决本题的关键,属于基础题. 7.D【详解】分析:令1021001210())f x x a a x a x a x ==++++,再求f(-1)的值得解.详解:令1021001210())f x x a a x a x a x ==++++,1001210(1)1)f a a a a -==-+++.故答案为D .点睛:(1)本题主要考查二项式定理中的系数求法问题,意在考查学生对这些基础知识 的掌握水平.(2) 二项展开式的系数0123,,,,n a a a a a ⋅⋅⋅的性质:对于2012()?··n n f x a a x a x a x =++++,0123(1)n a a a a a f ++++⋅⋅⋅+=, 0123(1)(1)n n a a a a a f -+-+⋅⋅⋅+-=-.8.A【分析】利用赋值法求出展开式各项系数和,即可判断A ,根据二项式展开式的通项,即可判断B 、C 、D ;【详解】解:()72x +展开式的通项为7172rrr r T C x -+=⋅⋅,故第二项的二项式系数为177C =,故D 错误; 第三项的系数为2572C ⋅,故C 错误;()72x +的展开式的第五项为43472C x ⋅⋅,()72x +的展开式的第五项为44372C x ⋅⋅,故B 错误; 令1x =则()7723x +=,即()72x +的二项展开式的各项系数和为73,故A 正确; 故选:A 9.B【解析】将问题抽象成“向左三次,向前两次,向上三次”,计算出总的方法数,然后利用插空法计算出最近的行走路线中不连续向上攀登的事件数,最后根据古典概型概率计算公式,计算出所求概率.【详解】从A 的方向看,行走方向有三个:左、前、上. 从A 到B 的最近的行走线路,需要向左三次,向前两次,向上三次,共8次.所以从A 到B 的最近的行走线路,总的方法数有88332332560A A A A =⋅⋅种. 不连续向上攀登的安排方法是:先将向左、向前的安排好,再对向上的方法进行插空.故方法数有:53563232200A C A A ⨯=⋅.所以最近的行走路线中不连续向上攀登的概率为200556014=. 故选:B【点睛】本小题主要考查古典概型的计算,考查有重复的排列组合问题,考查插空法,属于中档题. 10.B【分析】依题意可得1113332P ABC PABV PC SPA PB -=⋅=⨯⨯⋅再利用基本不等式计算可得; 【详解】解:依题意21111132332222P ABCPABPA PB V PC S PA PB PA PB -+⎛⎫=⋅=⨯⨯⋅=⋅≤= ⎪⎝⎭,当且仅当2PA PB ==时取等号,所以()max 2P ABC V -=, 故选:B11.65【分析】由最小二乘法得到的线性回归方程过点(),x y ,代入即可解决 【详解】由5125i i x ==∑可知,数据的平均数2555x ==, 又线性回归方程ˆ23yx =+过点(),x y , 所以25313y =⨯+=,故51551365i i y y ===⨯=∑故答案为:65 12.42【分析】由题意可知,甲可排在第二、三、四、五个,再根据甲、乙相邻,分别计算. 【详解】由题意可知,甲可排在第二、三、四、五个,当甲排在第二、三、四个时,甲乙相邻,有22A 种排法,将甲乙当做一个整体,剩下三个节目全排列,共3×22A ×33A =36种当甲排在第五个时,甲乙相邻,只有一种排法,剩下三个节目全排列,共33A =6种 综上,编排方案共36+6=42种【点睛】本题考查了分类计数原理,分类时要注意不重不漏;解决排列问题时,相邻问题常用捆绑法,特殊位置要优先考虑. 13.0.2【解析】利用概率和为1可求出答案. 【详解】由随机变量X 的概率分布表得: 0.20.30.31a +++=,解得0.2a =. 故答案为:0.2【点睛】本题考查的是分布列的性质,较简单. 14.49【分析】由二项分布的特征,先求出13p =,套公式即可求出D (ξ). 【详解】因为随机变量ξ~B (2,p ),且P (ξ≥1)=59,所以P (ξ≥1)=()11P ξ-<= ()10P ξ-==()25119p --=. 解得:13p =. 所以D (ξ)()12412339np p =-=⨯⨯=.故答案为:4915.9【分析】设出公差,根据等差数列的性质,表示出15,a a ,再列式即可求得结果. 【详解】因为{}n a 是等差数列,设公差为d ,可得13532,2a a d a a d =-=+,于是得()()2153322949a a a d a d d =-+=-≤,当且仅当d =0,即153a a ==时,取得最大值. 故答案为:9.【点睛】本题考查等差数列的下标和性质,属基础题. 16.1443125##0.04608 【分析】认真分析该选手所有可能的答题情况,是本题的关键【详解】由该选手恰好回答了5个问题就晋级下一轮,说明他第4、第5两个问题是连续答对的,第3个问题没有答对,第1和第2两个问题也没有全部答对,即他答题结果可能有三种情况:⨯⨯⨯√√或⨯√⨯√√或√⨯⨯√√,根据独立事件同时发生的概率公式,可得该选手恰好回答了5个问题就晋级下一轮的概率为0.20.20.20.80.8+0.20.80.20.80.8+0.80.20.20.80.8=0.04608⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯故答案为:0.04608 17.0.74【详解】试题分析:x 表示人数,(2)(2)(3)(4)(5)P x P x P x P x P x ≥==+=+=+≥0.30.30.10.040.74=+++=.考点:互斥事件的概率.18.【分析】根据截面圆性质,先求出截面圆半径,然后由求得球半径,从而求得体积.【详解】因为2AB =,BC =90ABC ∠=︒,所以4AC ==,所以三角形外接圆半径22ACr ==,又球心O 到截面ABC 的距离为R =球体积为(334433V R ππ==⨯=.故答案为:.19.(℃)(℃)(℃)见解析【详解】试题分析:(℃)由正方形的性质得1AC AA ⊥,然后由面面垂直的性质定理可证得结果;(℃)当点E 是线段1AB 的中点时,利用中位线定理可得1DE AC ,进而得出DE 面11AAC C ;(℃)利用二面角的定义先确定11C AC ∠是二面角111C A B C --的平面角,易求得11tan C A C ∠,从而求得二面角的平面角为的度数.试题解析:(℃)因为四边形11AAC C 为正方形,所以1AC AA ⊥. 因为平面ABC ⊥平面11AAC C ,且平面ABC ⋂平面11AAC C AC =, 所以1AA ⊥平面ABC .(℃)当点E 是线段1AB 的中点时,有DE 面11AAC C , 连结1AB 交1AB 于点E ,连结BC ,因为点E 是1AB 中点,点⊄是线段DE 的中点,所以1DE AC . 又因为BC ⊂面11AAC C ,11A C 面11AAC C ,所以DE 面11AAC C .(℃)因为1AA ⊥平面ABC ,所以.又因为,所以面11AAC C ,所以11A B ⊥面11AAC C ,所以11A B ⊥1A C ,11A B ⊥11A C ,所以11C AC ∠是二面角111C A B C --的平面角, 易得,所以二面角111C A B C --的平面角为45°.考点:1、线面垂直的判定;2、线面平行的判定;2、二面角.【方法点睛】立体几何中的探索性问题主要是对平行、垂直关系的探究,对条件和结论不完备的开放性问题的探究.解决这类问题时一般根据探索性问题的设问,假设其存在并探索出结论,然后在假设下进行推理,若得到合乎情理的结论就肯定假设,若得到矛盾就否定假设. 20.12600【详解】问题等价于编号为1,2,3,10的10个小球排列,其中2,3号,4,5,6号,7,8,9,10号的排列顺序是固定的,据此可得:将这些气球都打破的不同打法数是101023423412600A A A A =⨯⨯. 21.(1)℃;(2)证明见解析;(3)125n =,证明见解析.【解析】(1)℃根据新定义直接计算.℃根据新定义,写出等式两边的表达式,观察它们是否相同,即可判断;℃由新定义写出等式()(),,d A B d A C =的表达式,观察有无AB AC =; (2)由新定义,写出不等式两边的表达式,根据绝对值的性质证明;(3)根据新定义,及绝对值的性质得P 点是以AB 为对角线的正方体的表面和内部的整数点,共125个,把它们分布在五个平面(0,1,2,3,4)z =上,这五个面一个面取3个点,相邻面上取一个点,以它们为顶点构成三棱锥(能构成时),棱锥的体积不超过83,然后任取11点中如果没有4点共面,但至少有一个平面内有3个点.根据这3点所在平面分类讨论可得. 【详解】(1)当2n =时,℃若()1,2A ,()4,6B ,则(),41627d A B =-+-=,℃正确;℃在ABC 中,若90C =∠,则222AC BC AB +=,设112233(,),(,),(,)A x y B x y C x y ,所以222222131323231212()()()()()()x x y y x x y y x x y y -+-+-+-=-+-而()2221212121221212()()()2)),((x x y y x x y y d A x B x y y =⎡⎤⎣-+-+⎦=--+--, ()()22,,d A C d C B ⎡⎤⎡⎤+=⎣⎦⎣⎦22221313232313132323()()()()2()()2()()x x y y x x y y x x y y x x y y -+-+-+-+--+--,但1313232312122()()2()()2()()x x y y x x y y x x y y --+--=--不一定成立,℃错误; ℃在ABC 中,若()(),,d A B d A C =,在℃中的点坐标,有12121313x x y y x x y y -+-=-+-,但1212131322x x y y x x y y -⋅-=-⋅-不一定成立,因此AB AC =不一定成立,从而B C ∠=∠不一定成立,℃错误.空格处填℃(2)证明:设112233(,),(,),(,)A x y B x y C x y ,根据绝对值的性质有132312x x x x x x -+-≥-,132312y y y y y y -+-≥-,所以(,)(,)(,)d A C d B C d A B +≥.,(3)(,)12d A B =,44,44,44x x y y z z +-≥+-≥+-≥,所以(,)(,)12d A P d B P +≥,当且仅当以上三个等号同时成立,(,)(,)12d A P d B P +=又由已知()()(),,,d A P d P B d A B +=,℃04,04,04x y z ≤≤≤≤≤≤, 又,,x y z Z ∈,℃,,0,1,2,3,4x y z =,555125⨯⨯=,点P 是以AB 为对角线的正方体内部(含面上)的整数点,共125个,125n =. 这125个点在0,1,2,3,4z z z z z =====这五面内.这三个平面内,一个面上取不共线的3点,相邻面上再取一点构成一个三棱锥.则这个三棱锥的体积最大为118441323V =⨯⨯⨯⨯=,现在任取11个点,若有四点共面,则命题已成立,若其中无4点共面,但11个点分在5个平面上至少有一个平面内有3个点(显然不共线),若这三点在1,2,3z z z ===这三个平面中的一个上,与这个面相邻的两个面上如果有一点,那么这一点与平面上的三点这四点可构成三棱锥的四个顶点,其体积不超过83,否则还有8个点在平面0z =和4z =上,不合题意,若这三个点在平面0z =或5z =上,不妨设在平面0z =,若在平面1z =在一个点,则同样四点构成的三棱锥体积不超过83,否则剩下的8个点在2,3,4z z z ===三个平面上,只能是3,3,2分布,不管哪一种分布都有四点构成的三棱锥体积不超过83,综上,任取11个点,其中必存在4个点,它们共面或者以它们为顶点的三棱锥体积不大于83.【点睛】关键点点睛:本题新定义距离(,)d A B ,解题关键是利用新定义转化为绝对值,利用绝对值的性质解决一些问题.本题还考查了抽屉原理,11个放在5个平面上,至少有一个平面内至少有3点,由此分类讨论可证明结论成立. 22.(1)该市应该作出减少作业时长的决策; (2)分布列见解析;期望为167.【分析】(1)根据题意,结合频率分布直方图,分别求出中位数和平均数,即可求解; (2)根据题意,结合分层抽样以及离散型随机变量的分布列与期望求法,即可求解. (1)作业时长中位数的估计值为直方图中等分面积的线对立的值,设为x .0.01100.01100.02100.5⨯+⨯+⨯<. 0.01100.01100.02100.03100.5⨯+⨯+⨯+⨯>,()0.01100.01100.02100.03800.5x ∴⨯+⨯+⨯+⨯-=.解得2503x =,即中位数的故计值2503分钟.又作业时长平均数估计值为0.0110550.0110650.021075⨯⨯+⨯⨯+⨯⨯ 2500.0310850.031095813+⨯⨯+⨯⨯=<. 因为中位数的估计值2503分钟大于平均数估计值81分钟, 所以,根据这次调查,该市应该作出减少作业时长的决策. (2)由题,作业时长在70分钟以上(含70分钟)为[90.100],[80,90),[70,80)三个区间,其频率比为3:3:2,分别对应A ,B ,C 三个层次.根据分层抽样的方法,易知各层次抽取的人数分别为3,3,2, 因此X 的所有可能值为1,2,3.因为333821(1)28C P X C ⨯===,111233389(3)28C C C P X C ⋅⋅===, 121221333232382229(2)14C C C C C C P X C ⨯⋅+⨯⋅+⨯⋅===, 所以X 的分在列为:故数学期望19916()1232814287E X =⨯+⨯+⨯=. 23.(1)乙城市更应该入围“国家文明城市”.理由见解析. (2)425; (3)分布列见解析,期望为1.【分析】(1)根据得分的平均值与方差说明,极差最值也可用来说明;(2)记抽到的数据中有大于80分为事件A ,甲城市抽到的分数有大于80分为事件B ,乙城市抽到的分数有大于80分为事件C ,由()()(|)()()P AC P C P C A P A P A ==计算; (2)X 的可能值是0,1,2,分别求得概率得概率分布列,由期望公式计算出期望. (1)乙城市更应该入围“国家文明城市”. 理由如下:由茎叶图,计算两个城市的得分的均值为 甲:6365987910x +++==,乙:6568927910y +++==,均值相等,方差为甲:222211[(16)(14)19]13610s =-+-++=, 乙:222221[(14)(11)13]59.810s =-+-++=,甲的方差远大于乙的方差,说明乙的得分较稳定,甲极其不稳定,因此乙城市更应该入围“国家文明城市”. (2)记抽到的数据中有大于80分为事件A ,甲城市抽到的分数有大于80分为事件B ,乙城市抽到的分数有大于80分为事件C ,262102()13C P B C =-=,252107()19C P C C =-=,2725()1(1)(1)3927P A =--⨯-=,7()()9P AC P C ==, 所以()()()()749(|)1(|)111252527P AC P C P C A P C A P A P A =-=-=-=-=;(3)乙城市10个人中5个大于80分,5个小于80,X 的可能是0,1,2,252102(0)9C P X C ===,11552105(1)9C C P X C ===,252102(2)9C P X C ===,所以X 的分布列为:52()12199E X =⨯+⨯=.。

安徽省马鞍山二中2020-2021学年高二下学期期中文科数学试题

安徽省马鞍山二中2020-2021学年高二下学期期中文科数学试题
A.1,3,5,7,9B.5,15,25,35,45
C.11,22,33,44,50D.12,15,19,23,28
6.已知成线性相关关系的变量x,y之间的关系如下表所示,则回归直线一定过点()
x
0.1
0.2
0.3
0.5
y
2.11
2.85
4.08
10.15
A.(0.1,2.11)B.(0.2,2.85)
14.已知复数 ,复数 满足 0,则复数 ________.
15.已知 , , 为 的三个内角 , , 的对边,若 , , ,则 的面积为______.
16.在三棱锥 中, ,当三梭锥 的体积最大时,其外接球的表面积为__________.
三、解答题
17.选修4-5:不等式选讲
设函数 .
(Ⅰ)若 ,解不等式 ;
①若 , ,则 ②若 , ,则
③若 , ,则 ④若 , , ,则
其中正确的命题的个数是()
A.0个B.1个C.2个D.3个
二、填空题
13.调查某地若干户家庭的年收入 (单位:万元)和年饮食支出 (单位:万元),调查显示年收入 与年饮食支出 具有线性相关关系,并由调查数据得到 对 的回归直线方程: .由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加______万元.
5.B
【分析】
根据系统抽样的间隔为总体容量除以样本容量求解.
【详解】
因为系统抽样间隔为 ,故编号构成以10为公差的等差数列.
当 为纯虚数,则 , ,故必要.
故选:B
【点睛】
本题主要考查逻辑条件以及复数的概念,还考查了理解辨析的能力,属于基础题.
4.A
【分析】
利用若直线 与直线 平行,则有 求解.

2020-2021学年安徽省皖西南联盟高三(上)期末数学试卷(文科) (解析版)

2020-2021学年安徽省皖西南联盟高三(上)期末数学试卷(文科) (解析版)

2020-2021学年安徽省皖西南联盟高三(上)期末数学试卷(文科)一、选择题(共12小题).1.(1﹣i)(4+i)=()A.3+5i B.3﹣5i C.5+3i D.5﹣3i2.设集合A={x|(x﹣7)(x+12)<0},B={x|x+6>0},则A∩B=()A.{x|﹣6<x<12}B.{x|﹣6<x<7}C.{x|x>﹣12}D.{x|6<x<7} 3.函数f(x)=sin4x cos4x的最小正周期与最小值分别为()A.B.C.D.4.正八边形在生活中是很常见的对称图形,如图1中的正八边形的U盘,图2中的正八边形窗花.在图3的正八边形A1A2A3A4A5A6A7A8中,向量与的夹角为()A.B.C.D.5.若函数的极大值点与极小值点分别为a,b,则()A.a<b<a+b B.a<a+b<b C.b<a+b<a D.a+b<b<a6.在新冠肺炎疫情防控期间,某大型连锁药店开通网上销售业务,每天能完成600份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该药店某日积压800份订单未配货,预计第二天新订单超过1000份的概率为0.02.志愿者每人每天能完成35份订单的配货,为使第二天完成积压订单及当日订单配货的概率不小于0.98,则至少需要志愿者()A.32名B.33名C.34名D.35名7.若双曲线C:的实轴长与虚轴长的乘积等于离心率,则C的离心率为()A.B.C.D.8.已知一个扇形的圆心角为α(0<α<2π),弧长为,半径为2.若tanβ=2,则tan(α+2β)=()A.B.7C.D.﹣79.在正方体ABCD﹣A1B1C1D1中,E,F分别是棱A1B1,BC的中点,现有下列四个结论:①A,E,F,C1四点共面;②平面ACE⊥平面BDD1B1;③FC1∥平面ADD1A1;④FC1与平面ABCD所成角为60°.其中正确的结论的个数是()A.1B.2C.3D.410.设x,y满足约束条件,且z=ax+by(a>0,b>0)的最大值为1,则的最小值为()A.64B.81C.100D.12111.设函数f(x)=sin x﹣log3x,g(x)=3x﹣log0.5x,h(x)=sin x﹣log0.5x的零点分别为a,b,c,则()A.a>c>b B.c>b>a C.c>a>b D.a>b>c12.已知点P(m,n)是抛物线上一动点,则的最小值为()A.4B.5C.D.6二、填空题(共4小题).13.若从集合{1,2,3,5,7,8,10}中任选一个元素,则这个元素是奇数的概率为.14.在△ABC中,若,,AC=2,则AB=.15.已知f(x)是周期为4的奇函数,当0≤x≤1时,f(x)=x,当1<x≤2时,f(x)=﹣2x+4.若直线y=a与f(x)的图象在[﹣4,5]内的交点个数为m,直线与f(x)的图象在[﹣4,5]内的交点个数为n,且m+n=9,则a的取值范围是.16.在正方体ABCD﹣A1B1C1D1中,AB=2,E,F分别为棱AB,AA1的中点,则该正方体被平面CEF所截得的截面面积为,四面体BCEF外接球的表面积为.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题;共60分.17.已知数列{a n}的前n项和.(1)证明:{a n}是等比数列.(2)求数列{log3a n}的前n项和.18.某企业投资两个新型项目,投资新型项目A的投资额m(单位:十万元)与纯利润n (单位:万元)的关系式为n=1.7m﹣0.5(m=1,2,3,4,5),投资新型项目B的投资额x(单位:十万元)与纯利润y(单元:万元)的散点图如图所示.(1)求y关于x的线性回归方程;(2)根据(1)中的回归方程,若A,B两个项目都投资60万元,试预测哪个项目的收益更好.附:回归直线的斜率和截距的最小二乘估计分别为=,=﹣.19.如图,在直四棱柱(侧棱垂直底面的棱柱称为直棱柱)ABCD﹣A1B1C1D1中,底面是边长为2的菱形,且∠DAB=60°,AA1=AB,点E,F分别为DD1,CC1的中点,点G在D1F上.(1)证明:BG∥平面ACE;(2)求三棱锥B﹣ACE的体积.20.已知椭圆的离心率为,且焦距为8.(1)求C的方程;(2)设直线l的倾斜角为,且与C交于A,B两点,点O为坐标原点,求△AOB面积的最大值.21.已知函数f(x)=x3﹣6x2+9x+1.(1)求曲线y=f(x)在点(0,1)处的切线方程;(2)证明:(x+1﹣lnx)f(x)>2cos x对恒成立.(二)选考题:共10分.请考生从第22,23两题中任选一题作答.如果多做,则按所做的第一个题目计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C的参数方程为(α为参数,a<0),且曲线C经过坐标原点O.以O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为4ρcosθ﹣12ρsinθ+3a=0.(1)求C的极坐标方程;(2)设P是曲线C上一动点,l与极轴交于点A,求|PA|的取值范围.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣a3|+|x+3a|(a>0).(1)当a=1时,求不等式f(x)<6的解集;(2)若f(x)的最小值为4,且,证明:.参考答案一、选择题(共12小题).1.(1﹣i)(4+i)=()A.3+5i B.3﹣5i C.5+3i D.5﹣3i解:(1﹣i)(4+i)=1×4+1×i﹣i×4﹣i2=5﹣3i.故选:D.2.设集合A={x|(x﹣7)(x+12)<0},B={x|x+6>0},则A∩B=()A.{x|﹣6<x<12}B.{x|﹣6<x<7}C.{x|x>﹣12}D.{x|6<x<7}解:∵A={x|﹣12<x<7},B={x|x>﹣6},∴A∩B={x|﹣6<x<7}.故选:B.3.函数f(x)=sin4x cos4x的最小正周期与最小值分别为()A.B.C.D.解:,则,可得.故选:C.4.正八边形在生活中是很常见的对称图形,如图1中的正八边形的U盘,图2中的正八边形窗花.在图3的正八边形A1A2A3A4A5A6A7A8中,向量与的夹角为()A.B.C.D.解:因为正八边形的内角和为(8﹣2)π=6π,所以与的夹角为,故选:B.5.若函数的极大值点与极小值点分别为a,b,则()A.a<b<a+b B.a<a+b<b C.b<a+b<a D.a+b<b<a解:,当,f'(x)>0,当或时,f'(x)<0,故的极大值点与极小值点分别为,,则,,所以b<a+b<a,故选:C.6.在新冠肺炎疫情防控期间,某大型连锁药店开通网上销售业务,每天能完成600份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该药店某日积压800份订单未配货,预计第二天新订单超过1000份的概率为0.02.志愿者每人每天能完成35份订单的配货,为使第二天完成积压订单及当日订单配货的概率不小于0.98,则至少需要志愿者()A.32名B.33名C.34名D.35名解:由题意可知,第二天需要完成的订单数为800+1000=1800,因为.所以至少需要志愿者35名.故选:D.7.若双曲线C:的实轴长与虚轴长的乘积等于离心率,则C的离心率为()A.B.C.D.解:双曲线的标准方程为,依题意可得,解得,则.故选:C.8.已知一个扇形的圆心角为α(0<α<2π),弧长为,半径为2.若tanβ=2,则tan(α+2β)=()A.B.7C.D.﹣7解:因为tanβ=2,所以,又扇形的圆心角为α(0<α<2π),弧长为,半径为2,可得:,所以.故选:A.9.在正方体ABCD﹣A1B1C1D1中,E,F分别是棱A1B1,BC的中点,现有下列四个结论:①A,E,F,C1四点共面;②平面ACE⊥平面BDD1B1;③FC1∥平面ADD1A1;④FC1与平面ABCD所成角为60°.其中正确的结论的个数是()A.1B.2C.3D.4解:如图,因为AF与EC1异面,所以A,E,F,C1四点不共面,故①错误.在正方体中,AC⊥BD,AC⊥BB1,BD∩BB1=B,BD、BB1⊂平面BDD1B1,所以AC⊥平面BDD1B1,因为AC⊂平面ACE,所以平面ACE⊥平面BDD1B1,故②正确.因为平面BCC1B1∥平面ADD1A1,且FC1⊂平面BCC1B1,所以FC1∥平面ADD1A1,故③正确.因为FC1与平面ABCD所成角为∠C1FC,且tan∠C1FC=2,故④错误,所以正确的命题个数为2个,故选:B.10.设x,y满足约束条件,且z=ax+by(a>0,b>0)的最大值为1,则的最小值为()A.64B.81C.100D.121解:作出约束条件表示的可行域如图,∵a>0,b>0,∴当直线z=ax+by经过点(5,6)时,z取得最大值,则5a+6b=1,∴,当且仅当时,等号成立,∴的最小值为121.故选:D.11.设函数f(x)=sin x﹣log3x,g(x)=3x﹣log0.5x,h(x)=sin x﹣log0.5x的零点分别为a,b,c,则()A.a>c>b B.c>b>a C.c>a>b D.a>b>c解:设函数f1(x)=sin x,f2(x)=log3x,f3(x)=log0.5x,,则a是f1(x)与f2(x)图象交点的横坐标,b是f3(x)与f4(x)图象交点的横坐标,c是f1(x)与f3(x)图象交点的横坐标.在同一坐标系中,作出f1(x),f2(x),f3(x),f4(x)的图象,如图所示.由图可知a>c>b.故选:A.12.已知点P(m,n)是抛物线上一动点,则的最小值为()A.4B.5C.D.6解:由,得x2=﹣4y.则的焦点为F(0,﹣1).准线为l:y=1.几何意义是:点P(m,n)到F(0,﹣1)与点A(4,﹣5)的距离之和,根据抛物线的定义点P(m,n)到F(0,﹣1)的距离等于点P(m,n)到l的距离,所以的最小值为1﹣(﹣5)=6.故选:D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.若从集合{1,2,3,5,7,8,10}中任选一个元素,则这个元素是奇数的概率为.解:题中的集合里共有7个元素,其中4个是奇数,故所求概率为.故答案为:.14.在△ABC中,若,,AC=2,则AB=.解:因为=,可得cos C=,又sin2C+cos2C=1,所以,因为,AC=2,由正弦定理得,可得.故答案为:.15.已知f(x)是周期为4的奇函数,当0≤x≤1时,f(x)=x,当1<x≤2时,f(x)=﹣2x+4.若直线y=a与f(x)的图象在[﹣4,5]内的交点个数为m,直线与f(x)的图象在[﹣4,5]内的交点个数为n,且m+n=9,则a的取值范围是.解:依题意可作出f(x)在[﹣4,5]上的图象,如图所示.因为a<a+,由图可知,解得﹣≤a<0,故a的取值范围是.故答案为:.16.在正方体ABCD﹣A1B1C1D1中,AB=2,E,F分别为棱AB,AA1的中点,则该正方体被平面CEF所截得的截面面积为,四面体BCEF外接球的表面积为14π.解:因为平面CEF与平面CDD1C1的交线为CD1,所以截面为四边形CEFD1,而四边形CEFD1为等腰梯形,且,,故其面积为.设线段CE的中点为G,四面体BCEF外接球的球心为O,则OG⊥平面BCE.设球O的半径为R,则R2=OG2+EG2=AG2+(OG﹣AF)2.因为,所以,从而,故球O的表面积为4πR2=14π.故答案为:;14π.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题;共60分.17.已知数列{a n}的前n项和.(1)证明:{a n}是等比数列.(2)求数列{log3a n}的前n项和.【解答】(1)证明:当n≥2时,,又a1=S1=9,所以{a n}的通项公式为.因为,所以{a n}是首项为9,公比为3的等比数列.(2)解:因为,所以log3a n=n+1,所以数列{log3a n}的前n项T n=2+3+…+n+1==.18.某企业投资两个新型项目,投资新型项目A的投资额m(单位:十万元)与纯利润n (单位:万元)的关系式为n=1.7m﹣0.5(m=1,2,3,4,5),投资新型项目B的投资额x(单位:十万元)与纯利润y(单元:万元)的散点图如图所示.(1)求y关于x的线性回归方程;(2)根据(1)中的回归方程,若A,B两个项目都投资60万元,试预测哪个项目的收益更好.附:回归直线的斜率和截距的最小二乘估计分别为=,=﹣.解:(1)由散点图可得,,,=,,则y关于x的线性回归方程为;(2)当m=6时,n=1.7×6﹣0.5=9.7(万元),当x=6时,(万元).∵9.7>8,∴A项目收益更好.19.如图,在直四棱柱(侧棱垂直底面的棱柱称为直棱柱)ABCD﹣A1B1C1D1中,底面是边长为2的菱形,且∠DAB=60°,AA1=AB,点E,F分别为DD1,CC1的中点,点G在D1F上.(1)证明:BG∥平面ACE;(2)求三棱锥B﹣ACE的体积.【解答】(1)证明:连接BD交AC于点O,则O为BD的中点,连接BF,OE,BD1,则BD1∥OE.∵BD1⊄平面ACE,OE⊂平面ACE,∴BD1∥平面ACE.∵ED1∥CF,ED1=CF,∴四边形D1ECF为平行四边形,∴D1F∥EC.又∵D1F⊄平面ACE,EC⊂平面ACE,∴D1F∥平面ACE.∵BD1∩D1F=D1,BD1⊂平面BD1F,D1F⊂平面BD1F,∴平面BD1F∥平面ACE,∵BG⊂平面BD1F,∴BG∥平面ACE.(2)解:在△ABC中,AB=BC=2,∠CAB=30°,则AC边上的高为1,,∴.又点E到平面ABC的距离为DE,且DE=1,,∵V B﹣ACE=V E﹣ABC,∴.20.已知椭圆的离心率为,且焦距为8.(1)求C的方程;(2)设直线l的倾斜角为,且与C交于A,B两点,点O为坐标原点,求△AOB面积的最大值.解:(1)依题意可知,解得a=2,b=2,c=4故C的方程为.(2)依题意可设直线l的方程为,联立,整理得,则△=300m2﹣64(5m2﹣20)>0,解得﹣8<m<8.设A(x1,y1),B(x2,y2),则,,,原点到直线l的距离,则△AOB的面积,当且仅当m2=32,即时,△AOB的面积有最大值,且最大值为2.21.已知函数f(x)=x3﹣6x2+9x+1.(1)求曲线y=f(x)在点(0,1)处的切线方程;(2)证明:(x+1﹣lnx)f(x)>2cos x对恒成立.解:(1)f′(x)=3x2﹣12x+9,则f′(0)=9,故曲线y=f(x)在点(0,1)处的切线方程为:y=9x+1;(2)证明:令f′(x)>0,解得:x>3或x<1,令f′(x)<0,解得:1<x<3,故f(x)在(,1)递增,在(1,3)递减,在(3,+∞)递增,∵f()>f(3)=1,故f(x)在(,+∞)上的最小值是f(3)=1,设函数g(x)=x+1﹣lnx,则g′(x)=(x>0),令g′(x)>0,解得:x>1,令g′(x)<0,解得:x<1,故g(x)在(,1)递减,在(1,+∞)递增,故g(x)≥g(1)=2;从而(x+1﹣lnx)f(x)≥2,但由于f(x)≥1与g(x)≥2的取等条件不同,故(x+1﹣lnx)f(x)>2,∵2cos x≤2,∴(x+1﹣lnx)f(x)>2cos x对恒成立.(二)选考题:共10分.请考生从第22,23两题中任选一题作答.如果多做,则按所做的第一个题目计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C的参数方程为(α为参数,a<0),且曲线C经过坐标原点O.以O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为4ρcosθ﹣12ρsinθ+3a=0.(1)求C的极坐标方程;(2)设P是曲线C上一动点,l与极轴交于点A,求|PA|的取值范围.解:(1)由曲线C的参数方程为(α为参数,a<0),得x2+(y﹣a)2=16,即x2+y2﹣2ay=16﹣a2,因为曲线C经过坐标原点O,所以16﹣a2=0,又a<0,所以a=﹣4.故C的极坐标方程为ρ2+8ρsinθ=0,即ρ+8sinθ=0(或ρ=﹣8sinθ).(2)因为l的极坐标方程为4ρcosθ﹣12ρsinθ+3a=0,即4ρcosθ﹣12ρsinθ﹣12=0,所以l的直角坐标方程为x﹣3y﹣3=0.令y=0,得x=3,则A的直角坐标为(3,0),由(1)知,曲线C表示圆心为C(0,﹣4),半径为4的圆且|AC|=5,故|PA|的取值范围为[1,9].[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣a3|+|x+3a|(a>0).(1)当a=1时,求不等式f(x)<6的解集;(2)若f(x)的最小值为4,且,证明:.【解答】(1)解:当a=1时,由f(x)<6,得|x﹣1|+|x+3|<6.当x≤﹣3时,﹣2x﹣2<6,则﹣4<x≤﹣3;当﹣3<x<1时,4<6,则﹣3<x<1;当x≥1时,2x+2<6,则1≤x<2.故不等式f(x)<6的解集为(﹣4,2).(2)证明:因为f(x)=|x﹣a3|+|x+3a|≥|x﹣a3﹣(x+3a)|=|a3+3a|,且a>0,所以f(x)的最小值为a3+3a=4.因为函数g(a)=a3+3a为增函数,且g(1)=4,所以a=1.从而,因为m>0,n>0,所以由柯西不等式得,即,所以(当且仅当,时等号成立)。

2020-2021学年安徽师大附中高二上学期期中数学试卷(文科) (解析版)

2020-2021学年安徽师大附中高二上学期期中数学试卷(文科) (解析版)

2020-2021学年安徽师大附中高二(上)期中数学试卷(文科)一、选择题(共12小题).1.直线x﹣y+3=0的倾斜角是()A.30°B.45°C.60°D.150°2.下列关于斜二测画法所得直观图的说法中正确的有()①三角形的直观图是三角形.②平行四边形的直观图是平行四边形.③菱形的直观图是菱形.④正方形的直观图是正方形.A.①B.①②C.③④D.①②③④3.已知A(1,2),B(﹣1,0),C(4,m)三点在一条直线上,则m的值为()A.﹣3B.﹣5C.3D.54.下列命题正确的是()A.四边形确定一个平面B.一条直线与平面内一条直线平行,则该直线与此平面平行C.一条直线与平面内无数条直线垂直,则该直线与此平面垂直D.一个平面内两条相交直线与另一平面内两条相交直线分别平行,则这两个平面平行5.两圆x2+y2=5和x2+y2﹣8x+6y+17=0的位置关系是()A.相离B.外切C.相交D.内切6.已知直线l1:x﹣my+3=0与直线l2:mx+(m﹣2)y﹣8=0,且l1⊥l2,则m的值为()A.3或0B.3C.﹣2或1D.17.已知一个几何体的三视图如图所示,俯视图为正三角形,则该几何体的体积为()A.2B.6C.D.8.已知直线l1:mx﹣y+m﹣1=0与射线l2:x﹣y﹣2=0(x≥0)恒有公共点,则m的取值范围是()A.(﹣∞,﹣1]∪(1,+∞)B.(﹣∞,﹣1]∪[1,+∞)C.[﹣1,1)D.[﹣1,1]9.已知三角形△ABC的三个内角A,B,C对应的三边分别为a,b,c,∠C=90°,分别以BC,AC,AB所在直线为旋转轴旋转一周得到的几何体的外接球表面积分别为S1,S2,S3,则下列关系正确的是()A.S1+S2=S3B.C.D.10.已知点P(1,m)(m∈R),若过点P作圆C:(x+2)2+y2=4的两条切线PA,PB,切点分别为A,B,且∠APB≥,则m的取值范围是()A.﹣≤m≤B.﹣≤m≤C.﹣2≤m≤2D.﹣≤m≤11.已知正方体ABCD﹣A1B1C1D1,点E是AB中点,点F为BC的中点,平面D1EF与棱CC1的交点为P,则的值为()A.1B.C.D.12.已知过点M(x0,y0)向圆(x+1)2+(y﹣2)2=1引一条切线,切点为N,且|MN|=|MO|,O为坐标原点,则|MN|的最小值为()A.B.C.D.1二、填空题(共4小题).13.两平行直线x+3y﹣3=0与2x+6y+3=0之间的距离等于.14.已知三棱锥P﹣ABC三条侧棱PA、PB、PC两两垂直,且PA=PB=PC=2,则三棱锥P﹣ABC外接球的体积为.15.已知四棱锥P﹣ABCD的底面是ABCD是矩形,平面PCD⊥底面ABCD,且AB=4,BC =2,PC=PD=2,则直线PB与AC所成角的余弦值为.16.定义点M(x1,y1),N(x2,y2)之间的“直角距离”为d(M,N)=|x1﹣x2|+|y1﹣y2|,若点A(x,y)到点B(1,3)的“直角距离”等于2,其中x,y满足0≤x≤5,0≤y≤5,则所有满足条件的点A的轨迹的长度之和为.三、解答题(共6小题).17.已知△ABC的三个顶点坐标分别为A(﹣1,﹣2),B(1,1),C(3,5).(Ⅰ)求BC边上的中线AD所在直线方程:.(Ⅱ)求BC边上的高AE所在直线方程.18.如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,点D、E分别为AA1、B1C1的中点.(Ⅰ)证明:A1E∥平面DCB1;(Ⅱ)证明:平面DCB1⊥平面BB1C1C.19.已知圆C过点A(0,1),圆心C(a,b)(a>0)在直线l:x﹣3y=0上;(Ⅰ)若圆C被直线y=x截得的弦长为2,求圆C的方程;(Ⅱ)当圆C面积最小时,求圆C的方程.20.如图,在正方体ABCD﹣A1B1C1D1中,点E、F分别为是AB、B1C中点.(Ⅰ)证明:EF∥平面AB1C1;(Ⅱ)求直线CE与平面D1B1C所成角的正弦值.21.已知圆C经过坐标原点,且与直线x﹣y+2=0相切,切点为A(2,4).(1)求圆C的方程;(2)若斜率为﹣1的直线l与圆C相交于不同的两点M,N,求的取值范围.22.如图1所示在平行四边形ABCD中,AB=BD=,AD=2,点E是AD的中点,将△ABE沿BE折起,使得AC⊥BD得到如图2所示的四棱锥A﹣BCDE,点F为AC的中点.(Ⅰ)在图2中,证明BD⊥AE;(Ⅱ)在图2中,求点A到平面BEF的距离.参考答案一、选择题(共12小题).1.直线x﹣y+3=0的倾斜角是()A.30°B.45°C.60°D.150°解:设直线x﹣y+3=0的倾斜角为θ.由直线x﹣y+3=0化为y=x+3,∴tanθ=,∵θ∈[0,π),∴θ=60°.故选:C.2.下列关于斜二测画法所得直观图的说法中正确的有()①三角形的直观图是三角形.②平行四边形的直观图是平行四边形.③菱形的直观图是菱形.④正方形的直观图是正方形.A.①B.①②C.③④D.①②③④解:由斜二测画法规则知:三角形的直观图仍然是三角形,所以①正确;根据平行性不变知,平行四边形的直观图还是平行四边形,所以②正确;根据x′O′y′两轴的夹角为45°或135°知,菱形的直观图不再是菱形,所以③错误;根据平行于x轴的长度不变,平行于y轴的长度减半知,正方形的直观图不再是正方形,所以④错误.故选:B.3.已知A(1,2),B(﹣1,0),C(4,m)三点在一条直线上,则m的值为()A.﹣3B.﹣5C.3D.5解:∵A(1,2),B(﹣1,0),C(4,m)三点在同一条直线上,∴k AB=k AC,即=,解得:m=5,故选:D.4.下列命题正确的是()A.四边形确定一个平面B.一条直线与平面内一条直线平行,则该直线与此平面平行C.一条直线与平面内无数条直线垂直,则该直线与此平面垂直D.一个平面内两条相交直线与另一平面内两条相交直线分别平行,则这两个平面平行解:四边形可能是空间四边形,所以四边形确定一个平面不正确,所以A不正确;一条直线与平面内一条直线平行,则该直线与此平面平行,不正确,不满足直线与平面平行的判断定理,所以B不正确;一条直线与平面内无数条直线垂直,则该直线与此平面垂直,不正确,不满足直线与平面垂直的定义,也不满足直线与平面垂直的判断定理,所以C不正确;一个平面内两条相交直线与另一平面内两条相交直线分别平行,则这两个平面平行,正确,满足平面与平面平行的判断定理,所以D正确.故选:D.5.两圆x2+y2=5和x2+y2﹣8x+6y+17=0的位置关系是()A.相离B.外切C.相交D.内切解:∵圆C1:x2+y2=0的圆心为:C1(0,0),半径r1=,圆C2:x2+y2﹣8x+6y+17=0的圆心为:C2(4,﹣3),半径r2=2,∴|C1C2|==5,∵(+2)2=13+4=13+>13+12=25,∴|C1C2|<r2+r1,∴圆C1与C2相交,故选:C.6.已知直线l1:x﹣my+3=0与直线l2:mx+(m﹣2)y﹣8=0,且l1⊥l2,则m的值为()A.3或0B.3C.﹣2或1D.1解:∵直线l1:x﹣my+3=0与直线l2:mx+(m﹣2)y﹣8=0,且l1⊥l2,∴m﹣m(m﹣2)=0,解得m=0或m=3,故选:A.7.已知一个几何体的三视图如图所示,俯视图为正三角形,则该几何体的体积为()A.2B.6C.D.解:根据几何体的三视图转换为几何体为:该几何体为四棱锥体.如图所示:所以:V==.故选:C.8.已知直线l1:mx﹣y+m﹣1=0与射线l2:x﹣y﹣2=0(x≥0)恒有公共点,则m的取值范围是()A.(﹣∞,﹣1]∪(1,+∞)B.(﹣∞,﹣1]∪[1,+∞)C.[﹣1,1)D.[﹣1,1]解:联立,得x=,∵直线l1:mx﹣y+m﹣1=0与射线l2:x﹣y﹣2=0(x≥0)恒有公共点,∴x=≥0,解得﹣1≤m<1.∴m的取值范围是[﹣1,1).故选:C.9.已知三角形△ABC的三个内角A,B,C对应的三边分别为a,b,c,∠C=90°,分别以BC,AC,AB所在直线为旋转轴旋转一周得到的几何体的外接球表面积分别为S1,S2,S3,则下列关系正确的是()A.S1+S2=S3B.C.D.解:设以AC,BC所在直线为旋转轴旋转一周得到的几何体圆锥如右图:设球心为O,圆锥的底面圆的圆心为O',以AC为轴旋转得到的圆锥的底面半径为a,高为b,则R2=a2+(R﹣b)2,解得R==,S1=4πR2=π,同理可得S1=π,以AB所在直线为旋转轴旋转一周得到的几何体为两个圆锥,如右图,底面半径为,高为c,可得其外接球的半径为c,则S3=4π•c2=πc2,所以+=+===,故选:D.10.已知点P(1,m)(m∈R),若过点P作圆C:(x+2)2+y2=4的两条切线PA,PB,切点分别为A,B,且∠APB≥,则m的取值范围是()A.﹣≤m≤B.﹣≤m≤C.﹣2≤m≤2D.﹣≤m≤解:圆C:(x+2)2+y2=4的圆心坐标为C(﹣2,0),半径r=2,因为∠APB≥,由对称性可知∠APO≥,根据题意可得sin∠APO===≥,解得﹣≤m≤.故选:A.11.已知正方体ABCD﹣A1B1C1D1,点E是AB中点,点F为BC的中点,平面D1EF与棱CC1的交点为P,则的值为()A.1B.C.D.解:如图,在平面ABCD中,延长EF交DC的延长线于M,在平面CC1D1D中,连接D1M交CC1于P,在Rt△EBF与Rt△MCF中,∵∠EFB=∠MFC,∴Rt△EBF∽Rt△MCF,又F为BC的中点,∴CM=BE,∵E是AB中点,∴CM=EB=AB=CD,可得=,即|CP|=|DD1|=|CC1|,可得的值为.故选:B.12.已知过点M(x0,y0)向圆(x+1)2+(y﹣2)2=1引一条切线,切点为N,且|MN|=|MO|,O为坐标原点,则|MN|的最小值为()A.B.C.D.1解:圆(x+1)2+(y﹣2)2=1的圆心C(﹣1,2),半径为1,∵NM⊥CN,∴|CM|2=|MN|2+|CN|2,又|NM|=|MO|,∴(x0+1)2+(y0﹣2)2﹣1=x02+y02,整理得:x0﹣2y0+2=0.即动点M在直线x﹣2y+2=0上,所以|NM|的最小值就是|MO|的最小值,过点O作直线x﹣2y+2=0的垂线,垂足为P,可得|MP|==,故选:B.二、填空题:本题共4小题,每小题4分,共16分13.两平行直线x+3y﹣3=0与2x+6y+3=0之间的距离等于.解:两平行直线x+3y﹣3=0与2x+6y+3=0,即2x+6y﹣6=0与2x+6y+3=0,它们之间的距离为=,故答案为:.14.已知三棱锥P﹣ABC三条侧棱PA、PB、PC两两垂直,且PA=PB=PC=2,则三棱锥P﹣ABC外接球的体积为4π.解:三棱锥P﹣ABC三条侧棱PA、PB、PC两两垂直,且PA=PB=PC=2,设外接球的半径为r,则4r2=4+4+4,解得,所以V==4.故答案为:415.已知四棱锥P﹣ABCD的底面是ABCD是矩形,平面PCD⊥底面ABCD,且AB=4,BC =2,PC=PD=2,则直线PB与AC所成角的余弦值为.解:作PO⊥DC交DC于O点,分别以OD方向为x轴,以CD的中垂线向右的方向为y轴,以OP的方向为z轴,建立空间直角坐标系,如图示:,由题意得:A(2,2,0),C(﹣2,0,0),B(﹣2,2,0),P(0,0,2),故=(﹣2,2,﹣2),=(﹣4,﹣2,0),故•=8﹣4+0=4,||=4,||=2,故cos<,>==,故答案为:.16.定义点M(x1,y1),N(x2,y2)之间的“直角距离”为d(M,N)=|x1﹣x2|+|y1﹣y2|,若点A(x,y)到点B(1,3)的“直角距离”等于2,其中x,y满足0≤x≤5,0≤y≤5,则所有满足条件的点A的轨迹的长度之和为6.解:因为点A(x,y)到点B(1,3)的“直角距离”等于2,所以点A的轨迹方程为|x﹣1|+|y﹣3|=2,因为x,y满足0≤x≤5,0≤y≤5,所以当1≤x≤5,3≤y≤5时,x+y=6;当1≤x≤5,0≤y<3时,x﹣y=0;当0≤x<1,3≤y≤5时,﹣x+y=4;当0≤x<1,0≤y<3时,x+y=2.作出|x﹣1|+|y﹣3|=2在0≤x≤5,0≤y≤5表示的图形,由A(0,2),B(1,1),C(3,3),D(1,5),E(0,4),可得其周长为|AB|+|BC|+|CD|+|DE|=+2+2+=6,故答案为:6.三、解答题:本题共6小题,共48分.解答应写出文字说明、证明过程或演算步骤.17.已知△ABC的三个顶点坐标分别为A(﹣1,﹣2),B(1,1),C(3,5).(Ⅰ)求BC边上的中线AD所在直线方程:.(Ⅱ)求BC边上的高AE所在直线方程.解:(Ⅰ)因为B(1,1),C(3,5),所以BC的中点为M(2,3),因为A(﹣1,﹣2)在BC边上的中线上,所以所求直线方程为,即BC边上的中线所在直线的方程为5x﹣3y﹣1=0,(Ⅱ)因为B(1,1),C(3,5),所以直线BC的斜率为=2,因为BC边上的高所在直线与直线BC垂直,所以BC边上的高所在直线的斜率为﹣,因为A(﹣1,﹣2)在BC边上的高上,所以所求直线方程为y+2=﹣(x+1),即BC边上的高所在直线的方程为x+2y+5=0.18.如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,点D、E分别为AA1、B1C1的中点.(Ⅰ)证明:A1E∥平面DCB1;(Ⅱ)证明:平面DCB1⊥平面BB1C1C.【解答】证明:(Ⅰ)连接BC1交B1C于O,则O为矩形BB1C1C的中心,连接DO,OE,则OE∥BB1∥A1D,,可得四边形DA1EO为平行四边形,则A1E∥DO,∵DO⊂平面DCB1,A1E⊄平面DCB1,∴A1E∥平面DCB1;(Ⅱ)∵ABC﹣A1B1C1是直三棱柱,∴平面BB1C1C⊥底面A1B1C1,又A1B1=A1C1,E是B1C1的中点,∴A1E⊥B1C1,而平面BB1C1C∩底面A1B1C1=B1C1,A1E⊂平面A1B1C1,∴A1E⊥平面CBB1C1,由(Ⅰ)知A1E∥DO,∴DO⊥平面CBB1C1,而DO⊂平面DCB1,∴DCB1⊥平面BB1C1C.19.已知圆C过点A(0,1),圆心C(a,b)(a>0)在直线l:x﹣3y=0上;(Ⅰ)若圆C被直线y=x截得的弦长为2,求圆C的方程;(Ⅱ)当圆C面积最小时,求圆C的方程.解:(Ⅰ)∵圆心C(a,b)(a>0)在直线l:x﹣3y=0上,∴a﹣3b=0,即圆心C(3b,b).又圆C过点A(0,1),故它的半径为r==,且圆心C到直线y=x的距离为d==b.若圆C被直线y=x截得的弦长为2,则+=10b2﹣2b+1,求得b=1,故圆心C(3,1)、半径r=3,故圆C的方程为(x﹣3)2+(y﹣1)2=9.(Ⅱ)由于圆C的半径为=,故当半径最小时,圆的面积最小,故当b=时,圆的面积最小.此时,圆心C(,),半径为,圆的方程为+=.20.如图,在正方体ABCD﹣A1B1C1D1中,点E、F分别为是AB、B1C中点.(Ⅰ)证明:EF∥平面AB1C1;(Ⅱ)求直线CE与平面D1B1C所成角的正弦值.【解答】(Ⅰ)证明:取BB1的中点G,连接FG,EG,∵F为B1C的中点,∴FG∥BC∥B1C1,∵B1C1⊂平面AB1C1,FG⊄平面AB1C1,∴FG∥平面AB1C1,又E为AB的中点,∴EG∥AB1,∵AB1⊂平面AB1C1,EG⊄平面AB1C1,∴EG∥平面AB1C1,∵GF、EG⊂平面EFG,且GF∩EG=G,∴平面EFG∥平面AB1C1,则EF∥平面AB1C1;(Ⅱ)解:以D为坐标原点,建立如图所示空间直角坐标系,设正方体的棱长为2,则E(2,1,0),C(0,2,0),B1(2,2,2),D1(0,0,2),A(2,0,0),C1(0,2,2),,,,∵=0,=0,∴是平面D1B1C的一个法向量,又,设直线CE与平面D1B1C所成角为θ,则sinθ=|cos<,>|==.∴直线CE与平面D1B1C所成角的正弦值为.21.已知圆C经过坐标原点,且与直线x﹣y+2=0相切,切点为A(2,4).(1)求圆C的方程;(2)若斜率为﹣1的直线l与圆C相交于不同的两点M,N,求的取值范围.【解答】(1)解法一:圆的圆心为C,依题意得直线AC的斜率K AC=﹣1,∴直线AC的方程为y﹣4=﹣(x﹣2),即x+y﹣6=0.∵直线OA的斜率K OA==2,∴线段OA的垂直平分线为y﹣2=(x﹣1),即x+2y ﹣5=0.解方程组得圆心C的坐标为(7,﹣1).∴圆C的半径为r=|AC|==5,∴圆C的方程为(x﹣7)2+(y+1)2=50.解法二:设圆C的方程为(x﹣a)2+(y﹣b)2=r2,依题意得,解得,∴圆的方程为:(x﹣7)2+(y+1)2=50.(2)解:设直线l的方程为y=﹣x+m,M(x1,y1),N(x2,y2).由消去y得2x2﹣(2m+16)x+m2+2m=0.∴x1+x2=m+8,.∴=(x1﹣2)(x2﹣2)+(y1﹣4)(y2﹣4)=(x1﹣2)(x2﹣2)+(﹣x1+m﹣4)(﹣x2+m﹣4)=2x1•x2﹣(m﹣2)(x1+x2)+(m ﹣4)2+4=m2+2﹣(m﹣2)(m+8)+(m﹣4)2+4=m2﹣12m+36=(m﹣6)2.∵直线l与圆C相交于不同两点,∴<5,解得﹣4<m<16.∴0≤(m﹣6)2<100,∴的取值范围是[0,100).22.如图1所示在平行四边形ABCD中,AB=BD=,AD=2,点E是AD的中点,将△ABE沿BE折起,使得AC⊥BD得到如图2所示的四棱锥A﹣BCDE,点F为AC的中点.(Ⅰ)在图2中,证明BD⊥AE;(Ⅱ)在图2中,求点A到平面BEF的距离.【解答】证明:(Ⅰ)连接CE,在原平行四边形ABCD中,由AB=BD=,AD=2,点E是AD的中点,可得BE=,EC=,得sin∠ECB==,cos∠DBC=cos∠EDB==,∴sin∠ECB=cos∠DBC,即∠ECB+∠DBC=,可得BD⊥CE,又AC⊥BD,AC∩CE=C,∴BD⊥平面AEC,得BD⊥AE;解:(Ⅱ)设点A到平面BEF的距离为h,由(Ⅰ)知AE⊥BD,又AE⊥EB,EB∩BD=B,∴AE⊥平面BCDE,得AE⊥EC,又F为AC的中点,∴EF=AC=,由AE⊥平面BCDE,AE⊂平面ABE,得平面ABE⊥平面BCDE,而平面ABE∩平面BCDE=BE,BC⊥BE,可得BC⊥AB,则BF=AC=,则=,又V A﹣BEF=V F﹣ABE,∴,得,即h=.∴点A到平面BEF的距离为.。

安徽省合肥一中2020至2021高二上学期第一次月考 数学理试题

安徽省合肥一中2020至2021高二上学期第一次月考 数学理试题

合肥一中2020-2021学年高二上学期第一次段考理科数学试卷一选择题。

(每题4分,计40分) 1、垂直于同一条直线的两条直线一定( )A 、平行B 、相交C 、异面D 、以上都有可能 2、过直线l 外两点作与直线l 平行的平面,可以作( )A .1个B .1个或无数个C .0个或无数个D .0个、1个或无数个 3.下列关于用斜二测画法画直观图的说法中,错误..的是( ) A 用斜二测画法画出的直观图是在平行投影下画出的空间图形 B 几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同 C 水平放置的矩形的直观图是平行四边形 D 水平放置的圆的直观图是椭圆4.正方体的外接球与内切球的球面面积分别为S 1和S 2则( )A .S 1=2S 2B .S 1=3S 2C .S 1=4S 2D .S 1=23S 25、一个棱柱是正四棱柱的条件是( ) A .底面是正方形,有两个侧面是矩形 B .每个侧面都是全等矩形的四棱柱C .底面是菱形,且有一个顶点处的三条棱两两垂直D .底面是正方形,有两个相邻侧面垂直于底面6. 已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上.若AB =3,AC =4,AB ⊥AC ,AA 1=12.则球O 的半径为( )A.3172 B .210 C.132D .3107.关于直线a 、b 、l 及平面M 、N ,下列命题中正确的是( ) A 若a ∥M ,b ∥M ,则a ∥b B 若a ∥M ,b ⊥a ,则b ⊥M C 若a M ,b M ,且l ⊥a ,l ⊥b ,则l ⊥M D 若a ⊥M ,M ∥N ,则a ⊥N 8、给出下列命题①过平面外一点有且仅有一个平面与已知平面垂直 ②过直线外一点有且仅有一个平面与已知直线平行 ③过直线外一点有且仅有一条直线与已知直线垂直④过平面外一点有且仅有一条直线与已知平面垂直 其中正确命题的个数为( ) A .0个 B .1个C .2个D .3个9.如图,在一个倒置的正三棱锥容器内,放入一个钢球,钢球恰好与棱锥的四个面都接触上,经过棱锥的一条侧棱和高作截面,正确的截面图形是( )10. 有一个长方体容器1111D C B A ABCD -,装的水恰好占其容积的一半;α表示水平的桌面,容器一边BC 紧贴桌面,沿BC 将其翻转使之倾斜,最后水面(阴影部分)与其各侧棱的.....交点..分别是EFGH (如图),设翻转后容器中的水形成的几何体是M ,翻转过程中水和容器接触面积为S ,则下列说法正确..的是 ( ) A .M 是棱柱,S 逐渐增大 B .M 是棱柱,S 始终不变 C .M 是棱台,S 逐渐增大 D .M 是棱台,S 始终不变二.填空题(每题4分,计16分)11.如下图所示,AOB ∆是平面图形M 的直观图,则M 的面积是12.某几何体的三视图如图所示,则该几何体的体积是________.45︒BO A 2213.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(经过圆锥旋转轴的截面中两条母线的夹角)是14.关于图中的正方体1111D C B A ABCD -,下列说法正确的有: ___________.①P 点在线段BD 上运动,棱锥11D AB P -体积不变; ②P 点在线段BD 上运动,直线AP 与平面11D AB 所成角不变; ③一个平面α截此正方体,如果截面是三角形,则必为锐角三角形;④一个平面α截此正方体,如果截面是四边形,则必为平行四边形; ⑤平面α截正方体得到一个六边形(如图所示),则截面α在平面11D AB 与平面1BDC 间平行移动时此六边形周长先增大,后减小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽省名校2020-2021学年高二上学期期中联考文科数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}{}2|03,|20M x x N x x x =<≤=+-≤,则M N ⋂=() A .(]0,1B .(]0,3C .(]0,2D .(]2,1- 2.在平行四边形ABCD 中,34AE AC =,设AB a =,BC b =,则向量DE =() A .1344a b -B .3144a b -C .2133a b -D .1233a b - 3.正项等比数列{}n a 的公比是13,且241a a =,则其前3项的和3S =() A .14B .13C .12D .114.秦九韶是我国南宋时期的数学家,在他所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,给出如图所示的秦九韶算法程序框图,若输入,n x 的值分别为5,2,则输出v 的值是()A .259B .32C.65D .130 5.已知,x y 的取值如下表所示:若y 与x 线性相关,且回归直线方程为 1.460.61y x =-,则表格中实数m 的值为() A .6.5B .6.69C.7.5D .7.696.某空间几何体的三视图如图所示,则该几何体的表面积是()A ..323D .7.已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭图象上相邻两条对称轴之间的距离为2π,且若将函数()y f x =的图象向左平移3π个单位后,得到的图象关于y 轴对称,那么函数()y f x =的图象() A .关于点,012π⎛⎫⎪⎝⎭对称B .关于点,012π⎛⎫- ⎪⎝⎭对称 C.关于直线12x π=对称D .关于直线12x π=-对称 8.如图是函数()H x 图象的一部分,设函数()()1sin ,f x x g x x==,则()H x 可以表示为()A .()()f x g xB .()()f xg x C.()()f x g x +D .()()f x g x -9.若22cos sin 26sin cos αααα-=-+,则cos tan 4παα⎛⎫-= ⎪⎝⎭() A .32-B .32C.-3D .3 10.在平面四边形ABCD 中,,AB AD CB CD ==,将该四边形沿着对角线BD 折叠,得到空间四边形ABCD ,则异面直线,AC BD 所成的角是()A .6πB .4πC.3πD .2π 11.在ABC ∆中,()00cos 24,cos66AB =,()002cos69,2cos 21AC=,则ABC ∆的面积为()A.C.2D .312.设函数()(),1011,011x x f x x f x -<≤⎧⎪=⎨+<<⎪-⎩若函数()4y f x t =-在区间()1,1-内有且仅有两个零点,则实数t 的取值范围是() A .1,4⎛⎫-+∞ ⎪⎝⎭B .(),0-∞ C.1,04⎛⎫- ⎪⎝⎭D .1,04⎡⎫-⎪⎢⎣⎭二、填空题:本题共4小题,每小题5分,共20分,将答案填在答题纸上 13.已知角α的终边经过点()4,3P -,则2sin cos αα+的值是.14.某人将甲、乙两颗骰子先后各抛一次,,a b 分别表示抛掷甲、乙两颗骰子所得的点数,若点(),S a b 落在不等式组004x y x y >⎧⎪>⎨⎪+≤⎩表示的平面区域内的事件记为A ,则事件A 的概率是.15.已知一个圆锥的轴截面是边长为2的等边三角形,则此圆锥外接球的体积是.16.过点()1,2T 引直线l 分别交x y 、轴正半轴于A B 、两点,当OAB ∆的面积最小时,直线l 的方程是. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.已知圆221:4C x y +=和直线():1l y kx k R =-∈. (1)若直线l 与圆C 相交,求k 的取值范围;(2)若1k =,点P 是圆C 上一个动点,求点P 到直线l 距离的最大值和最小值.18.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[)[)[]0,0.5,0.5,1,,4,4.5分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a 的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由; (3)估计居民月均用水量的中位数.19.在矩形ABCD 中,将ABC ∆沿其对角线AC 折起来得到1AB C ∆,且平面1AB D ⊥平面ACD (如图所示).(1)证明:1AB ⊥平面1B CD ;(2)若1,2AB BC ==,求三棱锥1B ACD -的体积.20.在ABC ∆中,角,,A B C 的对边分别是,,a b c ,且向量,2b m a c ⎛⎫=- ⎪⎝⎭和向量,2a c n b +⎛⎫= ⎪⎝⎭互相垂直.(1)求角C 的大小;(2)若ABC ∆外接圆的半径是1,面积是2,求ABC ∆的周长.21.设函数()f z 对一切实数,m n 都有()()()21f m n f n m m n +-=++成立,且()()10,0f f c ==,圆C 的方程是()()2219x y c +++=.(1)求实数c 的值和()f z 的解析式;(2)若直线()2200,0ax by a b -+=>>被圆C 截得的弦长为6,求4a bab+的最小值. 22.设数列{}n a 的前n 项和2*,n S n n N =∈.(1)求数列{}n a 的通项公式; (2)若不等式1122318111log n n a a a a a a λ++++≥对任意*n N ∈恒成立,求实数λ的取值范围. 试卷答案一、选择题1-5:ABBDA6-10:BACDD11、12:CC1.因为{}{}{}2|01,|20|21M x x N x x x x x =<≤=+-≤=-≤≤, 所以{}(]|010,1MN x x =<≤=.2.()331444DE AE AD a b b a b =-=+-=-. 3.因为正项等比数列{}n a 满足241a a =,由于2243a a a =,所以223311,1,1a a a q ===.因为13q =,所以19a =.因此()3131131a q S q-==-.4.初始值5,2n x ==,程序运动过程如下表所示1v =;1246v =⨯+=;62315v =⨯+=;152232v =⨯+=;322165v =⨯+=;6520130v =⨯+=.1i =-,跳出循环,输出130v =.5.因为2345742x +++==, 2.2 3.8 5.511.544m my ++++==,所以11.571.460.6142m+=⨯-,解得 6.5m =6.几何体为直三棱柱,高为4,底面是腰为,底边是,底边上的高是4的等腰三角形,因此其表面积是1242442⨯⨯+⨯⨯⨯=7.由函数()y f x =图象相邻两条对称轴之间的距离为2π可知其周期为π,所以 22πωπ==,所以()()sin 2f x x ϕ=+,将函数()y f x =的图象向左平移3π个单位后,得到函数sin 23y x πϕ⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦图象.因为得到的图象关于y 轴对称,所以232k ππϕπ⨯+=+,k z ∈,即6k πϕπ=-,k z ∈.又2πϕ<,所以6πϕ=-,所以()sin 26f x x π⎛⎫=- ⎪⎝⎭,其图象关于点,012π⎛⎫⎪⎝⎭对称.8.首先考虑函数的奇偶性,发现()()sin x f x g x x =与()()sin f x x x g x =都是偶函数,立即排除A B 、.()()f x g x -和()()f x g x +都是奇函数,C D 、之一正确.当x 为正数,且非常小时()()1sin f x g x x x-=-为负数,且非常小,显然不符合图象特征,因此答案D 错误.9.222cos sin 22cos 2sin cos cos sin 2cos sin cos sin cos cos sin αααααααααααααα---==+++2cos tan 64παα⎛⎫=--=- ⎪⎝⎭,所以cos tan 34παα⎛⎫-= ⎪⎝⎭.10.取线段BD 的中点E ,连接,AE CE .易得,BD AE BD CE ⊥⊥, 从而BD⊥平面ACE .因此AC BD ⊥. 11.因为1,2AB AC ==,000002cos 24cos692cos66cos 212cos 45AB AC =+==cos AB AC AB AC A ==,cos ,sin 22A A ==. 于是ABC ∆的面积为1sin 22AB AC A =. 12.(),1011,011x x f x x x -<≤⎧⎪=⎨+<<⎪-⎩,其图象如下:函数()4y f x t =-在区间()1,1-内有且仅有两个零点, 等价于()40f x t -=在区间()1,1-内有且仅有两个实数根,又等价于函数()f x 的图象与直线4y t =在区间()1,1-内有且仅有两个公共点. 于是140t -<<,104t -<<. 13.答案25-因为5,4,3r x y ====-,所以34sin ,cos 55αα=-=.故22sin cos 5αα+=-. 14.答案16因抛掷一颗骰子有6种结果,所以抛掷两颗骰子有6636⨯=种不同结果.点(),S a b 在不等式所表示的区域内,有如下几种情况:当1a =时,1,2,3b =;当2a =时,1,2b =;当3a =时,1b =.共有()()()()()()1,1,1,2,1,3,2,1,2,2,3,1六个点落在条件区域内,故()61366P A ==.15.答案27如图,DAE ∆是等边三角形,其外接圆的半径就是圆锥外接球的半径,DAE ∆的边长是2,外接圆.故此圆锥外接球的体积为343327π⎛= ⎝⎭. 16.答案240x y +-=设()(),0,0,A a B b ,其中,0a b >,则直线l 的方程为1x ya b+=.因为()1,2T 在直线l 上,所以121a b+=.又12a b +≥,即8ab ≥.所以142OAB S ab ∆=≥,当且仅当12a b=时取等号,再结合121a b +=解得, 2,4a b ==,ABC ∆面积的最小值为4,此时直线l 的方程为124x y+=,即240x y +-=.17.(1)直线1y kx =-就是10kx y --=,圆C 的圆心是()0,0C ,半径是12. 由题意得,圆心()0,0C 到直线l12<,解得k <k >故k 的取值范围是((),3,-∞+∞.(2)当1k =时,直线l 与圆C 相离,圆心()0,0C 到直线:1l y x =-的距离是2d ==,故点P 到直线l 距离的最大值为12d r +=,最小值为12d r -=. 18.(1)由频率分布直方图可知,月用水量在[)0,0.5的频率为0.080.50.04⨯=.同理,在[)[)[)[)[)[]0.5,1,1.5,2,2,2.5,3,3.5,3.5,4,4,4.5等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由()10.040.080.210.250.060.040.0220.5a -++++++=⨯⨯,解得0.30a =; (2)由(1)知,100位居民月均水量不低于3吨的频率为0.060.040.020.12++=, 由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为3000000.1236000⨯=(人)(3)设中位数为x 吨,因为前5组的频率之和为0.040.080.150.210.250.730.5++++=>, 而前4组的频率之和为0.040.080.150.210.480.5+++=<, 所以2 2.5x ≤<,由()0.5020.50.48x ⨯-=-,解得 2.04x =, 故可估计居民月均用水量的中位数为2.04吨. 19.(1)因为平面1AB D ⊥平面ACD ,平面1AB D 平面ACD AD =,CD AD ⊥,所以CD ⊥平面1AB D .而1AB ⊂平面1AB D ,所以1AB CD ⊥, 又因为11AB B C ⊥,且1B C CD C ⋂=, 所以1AB ⊥平面1B CD .(2)在1Rt CDB ∆中,11,2CD AB B C BC ====,所以1B D ==故111111326B ACD A B CD V V --==⨯⨯=. 20.(1)因为,m n 互相垂直, 所以()()3022a c bm n a c b a +=-+-=,即222222,a c b a b c -=-+-=,由余弦定理得,222cos 222a b c C ab ab +-===,因为0C π<<,所以6C π=;(2)因为1sin 262ABC S ab π∆==,所以ab =222a b c +-=,就是2222sin 6a b π⎛⎫+-= ⎪⎝⎭,即()221a b ab +--=,因此()2217a b ab +=++=+2a b +=+, 故ABC ∆的周长是3a b c ++=21.(1)令1,0m n ==代入等式中可得,()02f =-,即2c =-, 再令m n =-得,()()()021f f n n n n -=--++,()22f n n n =+-,所以()22f z z z =+-.(2)因为直线被圆()()22129x y ++-=截得的弦长为6, 所以直线过圆心,有1a b +=, 于是由均值不等式得,()4141445549a b a ba b ab a b a b b a+⎛⎫=+=++=++≥+= ⎪⎝⎭, 当且仅当4a b b a =,即12,33a b ==时等号成立,故4a bab+的最小值是9. 22.(1)当2n ≥时,()221121n n n a S S n n n -=-=--=-, 在2n S n =中,令1n =,则111a S ==,满足21n a n =-, 故数列{}n a 的通项公式是*21,n a n n N =-∈;(2)因为一般项()()111111212122121n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭, 所以12231111111111111233557212121n n na a a a a a n n n +⎛⎫+++=-+-+-++-= ⎪-++⎝⎭ 1122318111log n n a a a a a a λ++++≥对任意*n N ∈恒成立, 也就是18log 21n n λ≤+对任意*n N ∈恒成立,1min 8log 21n n λ⎛⎫≤ ⎪+⎝⎭, 因为121111*********n n n n n +-⎛⎫==- ⎪+++⎝⎭是增函数,其最小值是11112213⎛⎫-= ⎪+⎝⎭,于是181log 3λ≤,12λ≥.故实数λ的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.。

相关文档
最新文档