《从分数到分式》教案、导学案、同步练习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《15.1.1 从分数到分式》教案
一、 教学目标
1.了解分式、有理式的概念.
2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.
二、重点、难点
1.重点:理解分式有意义的条件,分式的值为零的条件. 2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 三、课堂引入
1.让学生填写P2[思考],学生自己依次填出:,,
,.
2.学生看问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?
请同学们跟着教师一起设未知数,列方程. 设江水的流速为x 千米/时. 轮船顺流航行100千米所用的时间为
小时,逆流航行60千米所用时间
小时,所以
=
.
3. 以上的式子,,,,有什么共同点?它们与分数有什么相
同点和不同点?
四、例题讲解
P3例1. 当x 为何值时,分式有意义.
[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解 出字母x 的取值范围.
[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.
(补充)例2. 当m 为何值时,分式的值为0?
(1) (2) (3) 7
10a
s 33
200s v v
+20100v
-2060
v
+20100v
-2060v
+20100v
-2060a
s s
v 1-m m 3
2+-m m 112+-m m
[分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解.
[答案] (1)m=0 (2)m=2 (3)m=1 五、随堂练习
1.判断下列各式哪些是整式,哪些是分式? 9x+4, , , , ,
2. 当x 取何值时,下列分式有意义?
(1) (2) (3) 3. 当x 为何值时,分式的值为0?
(1) (2) (3)
六、课后练习
1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式? (1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.
(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.
(3)x 与y 的差于4的商是 .
2.当x 取何值时,分式 无意义?
3. 当x 为何值时,分式 的值为0?
七、答案:
五、1.整式:9x+4, , 分式: , ,
2.(1)x ≠-2 (2)x ≠ (3)x ≠±2 3.(1)x=-7 (2)x=0 (3)x=-1
六、1.18x, ,a+b,
,; 整式:8x, a+b, ; 分式:,
2. X = 3. x=-1 课后反思:
x
720
9y +54-m 238y y -9
1-x 20
9y +54-m x 7238y y -9
1-x b
a s +4
y x -4
y x -x
80b
a s +4
522--x x x x 235
-+2
3+x x
x 57+x
x
3217-x
x x --221
x
802
33
2x
x x --21
2
31
2-+x x
《15.1.1 从分数到分式》教案
教学目标
1.使学生了解分式的概念,明确分母不得为零是分式概念的组成部分. 2.使学生能够求出分式有意义的条件.
3.准确理解分式的意义,明确分母不得为零既是本节的重点,又是本节的难点.
教学过程 1、
情境引入:面对日益严重的土地沙化问题,某县决定分期分批固沙
造林,一期工程计划在一定期限内固沙造林2400公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前4个月完成原计划任务,原计划每月固沙造林多少公顷?
(1)这一问题中有哪些等量关系?
(2)如果设原计划每月固沙造林x 公顷,那么原计划完成一期工程需要____________个月,实际完成一期工程用了____________个月;根据题意,可得方程 ;
2、解读探究:
,, 认真观察上面的式子,方程有什么特点? 做一做1.正n 边形的每个内角为 度
2一箱苹果售价a 元,箱子与苹果的总质量为mkg ,箱子的质量为nkg ,则每千克苹果售价是多少元?
上面问题中出现的代数式,,;它们有什么共同特征?
(1)由学生分组讨论分式的定义,对于“两个整式相除叫做分式”等错误,由学生举反例一一加以纠正,得到结论:
x 2400302400+x 430
2400
2400=+-x x x 2400302400+x n
n 180
)2(⨯-
的分母.
(2)由学生举几个分式的例子.
(3)学生小结分式的概念中应注意的问题. ①分母中含有字母.
②如同分数一样,分式的分母不能为零.
(4)问:何时分式的值为零?(以(2)中学生举出的分式为例进行讨论)
例1(1)当a=1,2时,求分式
的值; (1) 当a 取何值时,分式有意义?
解:(1)当a=1时,当a=2时
(2)当分母的值等于零时,分式没有意义,除此以外,分式都有意义。 由分母2a=0,得a=0,所以,当a 取零以外的任何实数时,分式有意义。 例2当x 取何值时,下列分式有意义?
思考:若把题目要求改为:“当x 取何值时下列分式无意义?”该怎样做? 例3 当x 取何值时,下列分式的值为零?
解:由分子x+3=0得x =-3. 而当x =-3时,分母2x-7=-6-7≠0. ∴当x =-3时,原分式值为零.
小结:若使分式的值为零,需满足两个条件:①分子值等于零;②分母值不等于零.
课堂小结
a a 21
+a
a 21
+;1121121=⨯+=+a a 4
3
221221=⨯+=+a a a
a 21
+