函数的单调性和奇偶性典型例题

合集下载

高中数学:函数的单调性、奇偶性、最值问题练习及答案

高中数学:函数的单调性、奇偶性、最值问题练习及答案

高中数学:函数的单调性、奇偶性、最值问题练习及答案1.已知奇函数f(x)的定义域为(-∞,0)∪(0,+∞),且不等式>0对任意两个不相等的正实数x1,x2都成立,则下列不等式中,正确的是()A.f(-5)>f(3)B.f(-5)<f(3)C.f(-3)>f(-5)D.f(-3)<f(-5)2.设f(x)是R上的偶函数,且在(0,+∞)上是减函数,若x1<0且x1+x2>0,则()A.f(-x1)>f(-x2)B.f(-x1)=f(-x2)C.f(-x1)<f(-x2)D.f(-x1)与f(-x2)的大小不确定3.已知函数f(x)是奇函数,且在(-∞,+∞)上为增函数,若x,y满足等式f(2x2-4x)+f(y)=0,则4x+y的最大值是()A.10B.-6C.8D.94.已知f(x)=ax2+bx+c(a≠0),且方程f(x)=x无实根.现有四个说法:①若a>0,则不等式f(f (x))>x对一切x∈R成立;②若a<0,则必存在实数x0使不等式f(f(x0))>x0成立;③方程f(f(x))=x一定没有实数根;④若a+b+c=0,则不等式f(f(x))<x对一切x∈R成立.其中说法正确的个数是()A.1B.2C.3D.45.区间[a,b]和[-b,-a]关于原点对称.(1)若f(x)为奇函数,且在[a,b]上有最大值M,则f(x)在[-b,-a]上有最________值________. (2)若f(x)为奇函数,f(x)+2在[a,b]上有最大值M,则f(x)+2在[-b,-a]上有最________值________.6.设定义在(-1,1)上的奇函数f(x)在[0,1)上单调递增,且有f(1-m)+f<0,求实数m的取值范围.7.已知定义在R上的奇函数f(x),当x>0时,f(x)=-x2+2x.(1)求函数f(x)在R上的解析式;(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.8.定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a,b∈R,有f(a+b)=f(a)f(b).(1)求证:f(0)=1;(2)求证:对任意的x∈R,恒有f(x)>0;(3)求证:f(x)是R上的增函数.9.若f(x)是定义在(0,+∞)上的增函数,且对一切x,y>0,满足f()=f(x)-f(y).(1)求f(1)的值;(2)若f(6)=1,解不等式f(x+3)-f()<2.10.定义在(0,+∞)上的函数f(x)满足f(mn)=f(m)+f(n)(m,n>0),且当x>1时,f(x)>0. (1)求f(1)的值;(2)求证f=f(m)-f(n);(3)求证f(x)在(0,+∞)上是增函数;(4)若f(2)=1,解不等式f(x+2)-f(2x)>2;(5)比较f的大小.11.若函数f(x)的定义域是R,且对任意x,y∈R,都有f(x+y)=f(x)+f(y)成立.(1)试判断f(x)的奇偶性;(2)若f(8)=4,求f(-)的值.12.已知f(x)是定义在R上的不恒为0的函数,且对于任意的x,y∈R,有f(x·y)=xf(y)+yf(x). (1)求f(0),f(1)的值;(2)判断函数f(x)的奇偶性,并证明你的结论.13.已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(1)=-2.(1)判断f(x)的奇偶性;(2)求证:f(x)是R上的减函数;(3)求f(x)在区间[-3,3]上的值域;(4)若对任意x∈R,不等式f(ax2)-2f(x)<f(x)+4恒成立,求a的取值范围.14.设f(x)是定义在[-1,1]上的奇函数,且对任意a,b∈[-1,1],当a+b≠0时,都有>0.(1)若a>b,试比较f(a)与f(b)的大小;(2)解不等式f(x-)<f(x-);(3)如果g(x)=f(x-c)和h(x)=f(x-c2)这两个函数的定义域的交集是空集,求c的取值范围.15.已知函数f(x)是定义在区间[-1,1]上的奇函数,且f(1)=1,若对于任意的m,n∈[-1,1]有>0. (1)判断函数的单调性(不要求证明);(2)解不等式f<f(1-x);(3)若f(x)≤-2at+2对于任意的x∈[-1,1],a∈[-1,1]恒成立,求实数t的取值范围.16.已知函数f(x)=x-.(1)判断函数f(x)的奇偶性,并加以证明;(2)用定义证明函数f(x)在区间[1,+∞)上为增函数;(3)若函数f(x)在区间[2,a]上的最大值与最小值之和不小于,求a的取值范围.17.已知函数f(x)=x2+2.(1)求函数f(x)的定义域和值域;(2)判断函数f(x)的奇偶性和单调性;(3)求函数f(x)在区间(-1,2]上的最大值和最小值.18.已知函数f(x)=ax2+bx+1(a,b均为实数),x∈R,F(x)=(1)若f(-1)=0,且函数f(x)的值域为[0,+∞),求F(x)的解析式;(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;(3)设mn<0,m+n>0,a>0,且f(x)为偶函数,判断F(m)+F(n)是否大于零,并说明理由.19.已知函数f(x)=-(常数a>0).(1)设m·n>0,证明:函数f(x)在[m,n]上单调递增;(2)设0<m<n,且f(x)的定义域和值域都是[m,n],求n-m的最大值.20.已知函数y=f(x)是定义在R上的奇函数,且当x≥0时,f(x)=-x2+ax.(1)若a=-2,求函数f(x)的解析式;(2)若函数f(x)为R上的单调减函数,①求a的取值范围;②若对任意实数m,f(m-1)+f(m2+t)<0恒成立,求实数t的取值范围.21.已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.(1)求f(x)的解析式;(2)若f(x)在区间[3a,a+1]上不单调,求实数a的取值范围;(3)在区间[-1,1]上,y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的取值范围.22.已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,有>0成立. (1)判断f(x)在[-1,1]上的单调性;(2)解不等式f(x+)<f();(3)若f(x)≤m2-2am+1对所有的a∈[-1,1]恒成立,求实数m的取值范围.答案1.已知奇函数f(x)的定义域为(-∞,0)∪(0,+∞),且不等式>0对任意两个不相等的正实数x1,x2都成立,则下列不等式中,正确的是()A.f(-5)>f(3)B.f(-5)<f(3)C.f(-3)>f(-5)D.f(-3)<f(-5)【答案】C【解析】设0<x1<x2,则x1-x2<0,由>0,得f(x1)-f(x2)<0,即f(x1)<f(x2),∴f(x)在(0,+∞)上为增函数,∴f(x)在(-∞,0)上也是增函数,∴由-3>-5,可得f(-3)>f(-5).2.设f(x)是R上的偶函数,且在(0,+∞)上是减函数,若x1<0且x1+x2>0,则()A.f(-x1)>f(-x2)B.f(-x1)=f(-x2)C.f(-x1)<f(-x2)D.f(-x1)与f(-x2)的大小不确定【答案】A【解析】∵x1<0,x1+x2>0,∴x2>-x1>0,又f(x)在(0,+∞)上是减函数,∴f(x2)<f(-x1),∵f(x)是偶函数,∴f(-x2)=f(x2)<f(-x1).3.已知函数f(x)是奇函数,且在(-∞,+∞)上为增函数,若x,y满足等式f(2x2-4x)+f(y)=0,则4x+y的最大值是()A.10B.-6C.8D.9【答案】C【解析】∵奇函数f(x)在(-∞,+∞)上是增函数,∴f(2x2-4x)=-f(y)=f(-y),∴2x2-4x=-y,∴4x+y=4x-2x2+4x=-2(x-2)2+8≤8,故选C.4.已知f(x)=ax2+bx+c(a≠0),且方程f(x)=x无实根.现有四个说法:①若a>0,则不等式f(f (x))>x对一切x∈R成立;②若a<0,则必存在实数x0使不等式f(f(x0))>x0成立;③方程f(f(x))=x一定没有实数根;④若a+b+c=0,则不等式f(f(x))<x对一切x∈R成立.其中说法正确的个数是()A.1B.2C.3D.4【答案】C【解析】∵方程f(x)=x无实根,∴f(x)-x>0或f(x)-x<0.∵a>0,∴f(x)-x>0对一切x∈R成立,∴f(x)>x,用f(x)代替x,∴f(f(x))>f(x)>x,∴说法①正确;同理若a<0,则有f(f(x))<x,∴说法②错误;说法③正确;∵a+b+c=0,∴f(1)-1<0,∴必然归为a<0,有f(f(x))<x,∴说法④正确.故选C.填空5.区间[a,b]和[-b,-a]关于原点对称.(1)若f(x)为奇函数,且在[a,b]上有最大值M,则f(x)在[-b,-a]上有最________值________. (2)若f(x)为奇函数,f(x)+2在[a,b]上有最大值M,则f(x)+2在[-b,-a]上有最________值________.【答案】(1)小-M(2)小-M+4【解析】(1)设x∈[-b,-a],则-x∈[a,b],∴f(-x)≤M且存在x0∈[a,b],使f(x0)=M.∵f(x)为奇函数,∴-f(x)≤M,f(x)≥-M,且存在-x0∈[-b,-a],使f(-x0)=-M.∴f(x)在[-b,-a]上有最小值-M.(2)由(1)知,f(x)在[a,b]上有最大值M-2时,f(x)在[-b,-a]上有最小值-M+2.∴f(x)+2在[-b,-a]上有最小值-M+4.解答6.设定义在(-1,1)上的奇函数f(x)在[0,1)上单调递增,且有f(1-m)+f<0,求实数m的取值范围.【答案】由于函数f(x)的定义域为(-1,1),则有解得0<m<.又f(1-m)+f<0,所以f(1-m)<-f.而函数f(x)为奇函数,则有f(1-m)<f.因为函数f(x)是奇函数,且在[0,1)上单调递增,所以函数f(x)在定义域(-1,1)上单调递增,则有1-m<2m-,解得m>,故实数m的取值范围为.7.已知定义在R上的奇函数f(x),当x>0时,f(x)=-x2+2x.(1)求函数f(x)在R上的解析式;(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.【答案】(1)设x<0,则-x>0,f(-x)=-(-x)2+2(-x)=-x2-2x.又f(x)为奇函数,所以f(-x)=-f(x).于是当x<0时f(x)=x2+2x,又因为f(x)为奇函数,所以f(0)=0,所以f(x)=(2)要使f(x)在[-1,a-2]上单调递增,结合f(x)的图象知所以1<a≤3,故实数a的取值范围是(1,3].8.定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a,b∈R,有f(a+b)=f(a)f(b).(1)求证:f(0)=1;(2)求证:对任意的x∈R,恒有f(x)>0;(3)求证:f(x)是R上的增函数.【答案】(1)令a=b=0,则f(0)=[f(0)]2,∵f(0)≠0,∴f(0)=1.(2)令a=x,b=-x,则f(0)=f(x)f(-x),∴f(-x)=.由已知当x>0时,f(x)>1>0,则当x<0时,-x>0,f(-x)>0,∴f(-x)=>0,又当x=0时,f(0)=1>0,∴对任意x∈R,f(x)>0.(3)任取x2>x1,则f(x2)>0,f(x1)>0,x2-x1>0,∴=((x 2)·f(-x1)=f(x2-x1)>1,∴f(x2)>f(x1),∴f(x)在R上是增函数.9.若f(x)是定义在(0,+∞)上的增函数,且对一切x,y>0,满足f()=f(x)-f(y).(1)求f(1)的值;(2)若f(6)=1,解不等式f(x+3)-f()<2.【答案】(1)在f()=f(x)-f(y)中,令x=y=1,则有f(1)=f(1)-f(1),∴f(1)=0.(2)∵f(6)=1,∴f(x+3)-f()<2=f(6)+f(6),∴f(3x+9)-f(6)<f(6).即f()<f(6).∵f(x)是定义在(0,+∞)上的增函数,∴解得-3<x<9,即不等式的解集为(-3,9).10.定义在(0,+∞)上的函数f(x)满足f(mn)=f(m)+f(n)(m,n>0),且当x>1时,f(x)>0. (1)求f(1)的值;(2)求证f=f(m)-f(n);(3)求证f(x)在(0,+∞)上是增函数;(4)若f(2)=1,解不等式f(x+2)-f(2x)>2;(5)比较f与的大小.【答案】(1)令m=n=1,由条件得f(1)=f(1)+f(1),∴f(1)=0.(2)f(m)=f(·n)=f()+f(n),即f()=f(m)-f(n).(3)任取x1,x2∈(0,+∞),且x1<x2,则>1.由(2)得f(x2)-f(x1)=f()>0,即f(x2)>f(x1).∴f(x)在(0,+∞)上是增函数.(4)由于f(2)=1,∴2=f(2)+f(2)=f(4),∴f(x+2)-f(2x)>2⇒f(x+2)>f(2x)+f(4)⇒f(x+2)>f(8x).又f(x)在(0,+∞)上为增函数,∴解得0<x<.故不等式f(x+2)-f(2x)>2的解集为{x|0<x<}.(5)∵f(mn)=f(m)+f(n),∴=f(mn),f()=[f()+f()]=f[()2],∵()2-mn=()2≥0,∴()2≥mn(当且仅当m=n时取等号),又f(x)在(0,+∞)上是增函数,∴f[()2]≥f(mn).∴f()≥11.若函数f(x)的定义域是R,且对任意x,y∈R,都有f(x+y)=f(x)+f(y)成立.(1)试判断f(x)的奇偶性;(2)若f(8)=4,求f(-)的值.【答案】(1)在f(x+y)=f(x)+f(y)中,令x=y=0,得f(0+0)=f(0)+f(0),∴f(0)=0.再令y=-x,得f(x-x)=f(x)+f(-x),即f(x)+f(-x)=0,∴f(-x)=-f(x),故f (x)为奇函数.(2)令y=x,由条件f(x+y)=f(x)+f(y),得f(2x)=2f(x).由此可得f(8)=2·f(4)=2·2f(2)=2·2·2f(1)=24·f=4,∴f=,∴f=-f=-.12.已知f(x)是定义在R上的不恒为0的函数,且对于任意的x,y∈R,有f(x·y)=xf(y)+yf(x). (1)求f(0),f(1)的值;(2)判断函数f(x)的奇偶性,并证明你的结论.【答案】(1)∵f(x·y)=xf(y)+yf(x),令x=y=0,得f(0)=0+0=0,即f(0)=0.令x=y=1,得f(1)=1·f(1)+1·f(1),∴f(1)=0.(2)∵f(1)=f[(-1)·(-1)]=(-1)f(-1)+(-1)f(-1)=0,∴f(-1)=0.对任意的x∈R,f(-x)=f[(-1)·x]=(-1)f(x)+xf(-1)=-f(x),∴f(x)是奇函数.13.已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(1)=-2.(1)判断f(x)的奇偶性;(2)求证:f(x)是R上的减函数;(3)求f(x)在区间[-3,3]上的值域;(4)若对任意x∈R,不等式f(ax2)-2f(x)<f(x)+4恒成立,求a的取值范围.【答案】(1)取x=y=0,则f(0+0)=2f(0),∴f(0)=0.取y=-x,则f(x-x)=f(x)+f(-x),∴f(-x)=-f(x)对任意x∈R恒成立,∴f(x)为奇函数.(2)任取x1,x2∈(-∞,+∞),且x1<x2,则x2-x1>0,f(x2)+f(-x1)=f(x2-x1)<0,∴f(x2)<-f(-x1).又f(x)为奇函数,∴f(x1)>f(x2),∴f(x)是R上的减函数.(3)由(2)知f(x)在R上为减函数,∴对任意x∈[-3,3],恒有f(3)≤f(x)≤f(-3),∵f(3)=f(2)+f(1)=f(1)+f(1)+f(1)=-2×3=-6,∴f(-3)=-f(3)=6,f(x)在[-3,3]上的值域为[-6,6].(4)f(x)为奇函数,整理原式得f(ax2)+f(-2x)<f(x)+f(-2),则f(ax2-2x)<f(x-2),∵f(x)在(-∞,+∞)上是减函数,∴ax2-2x>x-2,当a=0时,-2x>x-2在R上不是恒成立,与题意矛盾;当a>0时,ax2-2x-x+2>0,要使不等式恒成立,则Δ=9-8a<0,即a>;当a<0时,ax2-3x+2>0在R上不是恒成立,不合题意.综上所述,a的取值范围为(,+∞).14.设f(x)是定义在[-1,1]上的奇函数,且对任意a,b∈[-1,1],当a+b≠0时,都有>0.(1)若a>b,试比较f(a)与f(b)的大小;(2)解不等式f(x-)<f(x-);(3)如果g(x)=f(x-c)和h(x)=f(x-c2)这两个函数的定义域的交集是空集,求c的取值范围. 【答案】(1)任取-1≤x 1<x2≤1,则f(x2)-f(x1)=f(x2)+f(-x1)=·(x2-x1)>0,∴f(x2)>f(x1),∴f(x)在[-1,1]上是增函数.∵a,b∈[-1,1],且a>b,∴f(a)>f(b).(2)∵f(x)是[-1,1]上的增函数,∴由不等式f(x-)<f(x-)得解得∴-≤x≤,∴原不等式的解集是{x|-≤x≤}.(3)设函数g(x),h(x)的定义域分别是P和Q,则P={x|-1≤x-c≤1}={x|c-1≤x≤c+1},Q={x|-1≤x-c2≤1}={x|c2-1≤x≤c2+1}于是P∩Q=∅的条件是c-1>c2+1(无解),或c+1<c2-1,即c2-c-2>0,解得c>2或c<-1.故c的取值范围是{c|c>2或c<-1}.15.已知函数f(x)是定义在区间[-1,1]上的奇函数,且f(1)=1,若对于任意的m,n∈[-1,1]有>0. (1)判断函数的单调性(不要求证明);(2)解不等式f<f(1-x);(3)若f(x)≤-2at+2对于任意的x∈[-1,1],a∈[-1,1]恒成立,求实数t的取值范围.【答案】(1)函数f(x)在区间[-1,1]上是增函数.(2)由(1)知函数f(x)在区间[-1,1]上是增函数,由f<f(1-x),得解得0≤x<.所以不等式f<f(1-x)的解集为.(3)因为函数f(x)在区间[-1,1]上是增函数,且f(1)=1,要使得对于任意的x∈[-1,1],a∈[-1,1]都有f(x)≤-2at+2恒成立,只需对任意的a∈[-1,1],-2at+2≥1恒成立.令y=-2at+1,此时y可以看作a的一次函数,且在a∈[-1,1]时,y≥0恒成立.因此只需解得-≤t≤,所以实数t的取值范围为.16.已知函数f(x)=x-.(1)判断函数f(x)的奇偶性,并加以证明;(2)用定义证明函数f(x)在区间[1,+∞)上为增函数;(3)若函数f(x)在区间[2,a]上的最大值与最小值之和不小于,求a的取值范围. 【答案】(1)函数f(x)=x-是奇函数,∵函数f(x)=x-的定义域为(-∞,0)∪(0,+∞),在x轴上关于原点对称,且f(-x)=-x-=-(x-)=-f(x),∴函数f(x)=x-是奇函数.(2)证明设任意实数x1,x2∈[1,+∞),且x1<x2,则f(x1)-f(x2)=(x1-)-(x2-)=,∵1≤x1<x2,∴x1-x2<0,x1x2>0,x1x2+1>0,∴<0,∴f(x1)-f(x2)<0,即f(x1)<f(x2),∴函数f(x)在区间[1,+∞)上为增函数.(3)∵[2,a]⊆[1,+∞),∴函数f(x)在区间[2,a]上也为增函数.∴f(x)max=f(a)=a-,f(x)min=f(2)=,若函数f(x)在区间[2,a]上的最大值与最小值之和不小于,则a-+≥-,∴a≥4,∴a的取值范围是[4,+∞).17.已知函数f(x)=x2+2.(1)求函数f(x)的定义域和值域;(2)判断函数f(x)的奇偶性和单调性;(3)求函数f(x)在区间(-1,2]上的最大值和最小值.【答案】(1)定义域为R,值域为{y|y≥2}.(2)因为f(x)定义域关于原点对称,且f(-x)=f(x),所以f(x)为偶函数;在区间(0,+∞)上单调递增,在区间(-∞,0]上单调递减.(3)f(x)的对称轴为x=0,f(x)min=f(0)=2,f(-1)=3,f(2)=6,所以f(x)max=6.18.已知函数f(x)=ax2+bx+1(a,b均为实数),x∈R,F(x)=(1)若f(-1)=0,且函数f(x)的值域为[0,+∞),求F(x)的解析式;(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;(3)设mn<0,m+n>0,a>0,且f(x)为偶函数,判断F(m)+F(n)是否大于零,并说明理由. 【答案】(1)∵若f(-1)=0,∴a-b+1=0,①又∵函数f(x)的值域为[0,+∞),∴a≠0.由y=a(x+)2+,知=0,即4a-b2=0.②解①②,得a=1,b=2.∴f(x)=x2+2x+1=(x+1)2.∴F(x)=(2)由(1)得g(x)=f(x)-kx=x2+2x+1-kx=x2+(2-k)x+1=(x+)2+1-. 又∵当x∈[-2,2]时,g(x)=f(x)-kx是单调函数.∴≤-2或≥2,即k≤-2或k≥6,故实数k的取值范围为(-∞,-2]∪[6,+∞).(3)大于零,理由如下:∵f(x)为偶函数,∴f(x)=ax2+1,∴F(x)=不妨设m>n,则n<0.由m+n>0,得m>-n>0,∴|m|>|-n|,又a>0,∴F(m)+F(n)=f(m)-f(n)=(am2+1)-(an2+1)=a(m2-n2)>0,∴F(m)+F(n)大于零.19.已知函数f(x)=-(常数a>0).(1)设m·n>0,证明:函数f(x)在[m,n]上单调递增;(2)设0<m<n,且f(x)的定义域和值域都是[m,n],求n-m的最大值.【答案】(1)证略;(2)因为f(x)在[m,n]上单调递增,f(x)的定义域、值域都是[m,n]⇔f(m)=m,f(n)=n,即m,n是方程f(x)=x的两个根,即方程-=x有两个正根.整理得a2x2-(2a2+a)x+1=0,所以n-m==,令=t(t>0),n-m==,所以当t=时,n-m最大值为.20.已知函数y=f(x)是定义在R上的奇函数,且当x≥0时,f(x)=-x2+ax.(1)若a=-2,求函数f(x)的解析式;(2)若函数f(x)为R上的单调减函数,①求a的取值范围;②若对任意实数m,f(m-1)+f(m2+t)<0恒成立,求实数t的取值范围.【答案】(1)当x<0时,-x>0,又∵f(x)为奇函数,且a=-2,∴当x<0时,f(x)=-f(-x)=x2-2x,∴f(x)=(2)①当a≤0时,对称轴x=≤0,∴f(x)=-x2+ax在[0,+∞)上单调递减,由于奇函数在关于原点对称的区间上单调性相同,∴f(x)在(-∞,0)上单调递减,又在(-∞,0)上f(x)>0,在(0,+∞)上f(x)<0,∴当a≤0时,f(x)为R上的单调减函数.当a>0时,f(x)在上单调递增,在上单调递减,不合题意.∴函数f(x)为单调减函数时,a的取值范围为a≤0.②∵f(m-1)+f(m2+t)<0,∴f(m-1)<-f(m2+t),又∵f(x)是奇函数,∴f(m-1)<f(-t-m2),又∵f(x)为R上的单调减函数,∴m-1>-t-m2恒成立,∴t>-m2-m+1=-2+对任意实数m恒成立,∴t>.即t的取值范围是.21.已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.(1)求f(x)的解析式;(2)若f(x)在区间[3a,a+1]上不单调,求实数a的取值范围;(3)在区间[-1,1]上,y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的取值范围. 【答案】(1)由已知,得函数f(x)图象的对称轴为直线x=1,可设f(x)=a(x-1)2+1,由f(0)=3,得a=2,故f(x)=2x2-4x+3.(2)要使函数f(x)在区间[3a,a+1]上不单调,则3a<1<a+1,解得0<a<.(3)由已知y=f(x)的图象恒在y=2x+2m+1的图象上方,得2x2-4x+3>2x+2m+1恒成立,化简得x2-3x+1-m>0恒成立,其中-1≤x≤1.设g(x)=x2-3x+1-m,则只要g(x)min>0即可,而g(x)min =g(1)=-1-m,由-1-m>0,得m<-1.22.已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,有>0成立.(1)判断f(x)在[-1,1]上的单调性;(2)解不等式f(x+)<f();(3)若f(x)≤m2-2am+1对所有的a∈[-1,1]恒成立,求实数m的取值范围. 【答案】(1)任取x1,x2∈[-1,1],且x1<x2,则-x2∈[-1,1].∵f(x)为奇函数,∴f(x 1)-f(x2)=f(x1)+f(-x2)=·(x1-x2).由已知得>0,又x1-x2<0,∴f(x1)-f(x2)<0,即f(x1)<f(x2),∴f(x)在[-1,1]上单调递增.(2)∵f(x)在[-1,1]上单调递增,∴结合不等式的性质及二次函数的图象,得-≤x<-1.故原不等式的解集为{x|-≤x<-1}.(3)∵f(1)=1,且f(x)在[-1,1]上单调递增,∴在[-1,1]上,f(x)≤1.问题转化为m2-2am+1≥1,即m2-2am≥0,对a∈[-1,1]成立.设g(a)=-2m·a+m2,①若m=0,则g(a)=0≥0,对a∈[-1,1]恒成立.②若m≠0,则g(a)为关于a的一次函数,若g(a)≥0对a∈[-1,1]恒成立,必须有g(-1)≥0,且g(1)≥0,即结合相应各函数图象,得m≤-2或m≥2.综上所述,实数m的取值范围是(-∞,-2]∪{0}∪[2,+∞).。

函数的单调性和奇偶性经典例题

函数的单调性和奇偶性经典例题

经典例题透析类型一、函数的单调性的证明1.证明函数上的单调性.证明:在(0,+∞)上任取x1、x2(x1≠x2),令△x=x2-x1>0则∵x1>0,x2>0,∴∴上式<0,∴△y=f(x2)-f(x1)<0∴上递减.总结升华:[1]证明函数单调性要求使用定义;[2]如何比较两个量的大小?(作差)[3]如何判断一个式子的符号?(对差适当变形)举一反三:【变式1】用定义证明函数上是减函数.思路点拨:本题考查对单调性定义的理解,在现阶段,定义是证明单调性的唯一途径.证明:设x1,x2是区间上的任意实数,且x1<x2,则∵0<x1<x2≤1 ∴x1-x2<0,0<x1x2<1 ∵0<x1x2<1故,即f(x1)-f(x2)>0∴x1<x2时有f(x1)>f(x2) 上是减函数.总结升华:可以用同样的方法证明此函数在上是增函数;在今后的学习中经常会碰到这个函数,在此可以尝试利用函数的单调性大致给出函数的图象.类型二、求函数的单调区间2. 判断下列函数的单调区间;(1)y=x2-3|x|+2;(2)解:(1)由图象对称性,画出草图∴f(x)在上递减,在上递减,在上递增.(2)∴图象为∴f(x)在上递增.举一反三:【变式1】求下列函数的单调区间:(1)y=|x+1|;(2)(3).解:(1)画出函数图象,∴函数的减区间为,函数的增区间为(-1,+∞);(2)定义域为,其中u=2x-1为增函数,在(-∞,0)与(0,+∞)为减函数,则上为减函数;(3)定义域为(-∞,0)∪(0,+∞),单调增区间为:(-∞,0),单调减区间为(0,+∞).总结升华:[1]数形结合利用图象判断函数单调区间;[2]关于二次函数单调区间问题,单调性变化的点与对称轴相关.[3]复合函数的单调性分析:先求函数的定义域;再将复合函数分解为内、外层函数;利用已知函数的单调性解决.关注:内外层函数同向变化→复合函数为增函数;内外层函数反向变化→复合函数为减函数.类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值)3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小.解:又f(x)在(0,+∞)上是减函数,则.4. 求下列函数值域:(1);1)x∈[5,10];2)x∈(-3,-2)∪(-2,1);(2)y=x2-2x+3;1)x∈[-1,1];2)x∈[-2,2].思路点拨:(1)可应用函数的单调性;(2)数形结合.解:(1)2个单位,再上移2个单位得到,如图1)f(x)在[5,10]上单增,;2);(2)画出草图1)y∈[f(1),f(-1)]即[2,6];2).举一反三:【变式1】已知函数.(1)判断函数f(x)的单调区间;(2)当x∈[1,3]时,求函数f(x)的值域.思路点拨:这个函数直接观察恐怕不容易看出它的单调区间,但对解析式稍作处理,即可得到我们相对熟悉的形式.,第二问即是利用单调性求函数值域.解:(1)上单调递增,在上单调递增;(2)故函数f(x)在[1,3]上单调递增∴x=1时f(x)有最小值,f(1)=-2 x=3时f(x)有最大值∴x∈[1,3]时f(x)的值域为.5. 已知二次函数f(x)=x2-(a-1)x+5在区间上是增函数,求:(1)实数a的取值范围;(2)f(2)的取值范围.解:(1)∵对称轴是决定f(x)单调性的关键,联系图象可知只需;(2)∵f(2)=22-2(a-1)+5=-2a+11又∵a≤2,∴-2a≥-4∴f(2)=-2a+11≥-4+11=7 .举一反三:【变式1】(2011 北京理13)已知函数,若关于x的方程有两个不同的实根,则实数k的取值范围是________.解:单调递减且值域(0,1],单调递增且值域为,由图象知,若有两个不同的实根,则实数k的取值范围是(0,1).类型四、判断函数的奇偶性6. 判断下列函数的奇偶性:(1)(2)(3)f(x)=x2-4|x|+3 (4)f(x)=|x+3|-|x-3| (5)(6(7)思路点拨:根据函数的奇偶性的定义进行判断.解:(1)∵f(x)的定义域为,不关于原点对称,因此f(x)为非奇非偶函数;(2)∵x-1≥0,∴f(x)定义域不关于原点对称,∴f(x)为非奇非偶函数;(3)对任意x∈R,都有-x∈R,且f(-x)=x2-4|x|+3=f(x),则f(x)=x2-4|x|+3为偶函数;(4)∵x∈R,f(-x)=|-x+3|-|-x-3|=|x-3|-|x+3|=-f(x),∴f(x)为奇函数;(5),∴f(x)为奇函数;(6)∵x∈R,f(x)=-x|x|+x ∴f(-x)=-(-x)|-x|+(-x)=x|x|-x=-f(x),∴f(x)为奇函数;(7),∴f(x)为奇函数.举一反三:【变式1】判断下列函数的奇偶性:(1);(2)f(x)=|x+1|-|x-1|;(3)f(x)=x2+x+1;(4).思路点拨:利用函数奇偶性的定义进行判断.解:(1);(2)f(-x)=|-x+1|-|-x-1|=-(|x+1|-|x-1|)=-f(x) ∴f(x)为奇函数;(3)f(-x)=(-x)2+(-x)+1=x2-x+1∴f(-x)≠-f(x)且f(-x)≠f(x) ∴f(x)为非奇非偶函数;(4)任取x>0则-x<0,∴f(-x)=(-x)2+2(-x)-1=x2-2x-1=-(-x2+2x+1)=-f(x)任取x<0,则-x>0 f(-x)=-(-x)2+2(-x)+1=-x2-2x+1=-(x2+2x-1)=-f(x)x=0时,f(0)=-f(0) ∴x∈R时,f(-x)=-f(x) ∴f(x)为奇函数.举一反三:【变式2】已知f(x),g(x)均为奇函数,且定义域相同,求证:f(x)+g(x)为奇函数,f(x)·g(x)为偶函数.证明:设F(x)=f(x)+g(x),G(x)=f(x)·g(x)则F(-x)=f(-x)+g(-x)=-f(x)-g(x)=-[f(x)+g(x)]=-F(x)G(-x)=f(-x)·g(-x)=-f(x)·[-g(x)]=f(x)·g(x)=G(x)∴f(x)+g(x)为奇函数,f(x)·g(x)为偶函数.类型五、函数奇偶性的应用(求值,求解析式,与单调性结合)7.已知f(x)=x5+ax3-bx-8,且f(-2)=10,求f(2).解:法一:∵f(-2)=(-2)5+(-2)3a-(-2)b-8=-32-8a+2b-8=-40-8a+2b=10∴8a-2b=-50 ∴f(2)=25+23a-2b-8=8a-2b+24=-50+24=-26法二:令g(x)=f(x)+8易证g(x)为奇函数∴g(-2)=-g(2) ∴f(-2)+8=-f(2)-8∴f(2)=-f(-2)-16=-10-16=-26.举一反三:【变式1】(2011 湖南文12)已知为奇函数,,则为:解:,又为奇函数,所以.8. f(x)是定义在R上的奇函数,且当x<0时,f(x)=x2-x,求当x≥0时,f(x)的解析式,并画出函数图象.解:∵奇函数图象关于原点对称,∴x>0时,-y=(-x)2-(-x)即y=-x2-x又f(0)=0,,如图9.设定义在[-3,3]上的偶函数f(x)在[0,3]上是单调递增,当f(a-1)<f(a)时,求a的取值范围.解:∵f(a-1)<f(a) ∴f(|a-1|)<f(|a|)而|a-1|,|a|∈[0,3].类型六、综合问题10.定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间的图象与f(x)的图象重合,设a>b>0,给出下列不等式,其中成立的是_________.①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a).答案:①③.11. 求下列函数的值域:(1)(2)(3)思路点拨:(1)中函数为二次函数开方,可先求出二次函数值域;(2)由单调性求值域,此题也可换元解决;(3)单调性无法确定,经换元后将之转化为熟悉二次函数情形,问题得到解决,需注意此时t 的范围.解:(1);(2)经观察知,,;(3)令.12. 已知函数f(x)=x2-2ax+a2-1.(1)若函数f(x)在区间[0,2]上是单调的,求实数a的取值范围;(2)当x∈[-1,1]时,求函数f(x)的最小值g(a),并画出最小值函数y=g(a)的图象.解:(1)∵f(x)=(x-a)2-1 ∴a≤0或a≥2(2)1°当a<-1时,如图1,g(a)=f(-1)=a2+2a2°当-1≤a≤1时,如图2,g(a)=f(a)=-13°当a>1时,如图3,g(a)=f(1)=a2-2a,如图13. 已知函数f(x)在定义域(0,+∞)上为增函数,f(2)=1,且定义域上任意x、y都满足f(xy)=f(x)+f(y),解不等式:f(x)+f(x-2)≤3.解:令x=2,y=2,∴f(2×2)=f(2)+f(2)=2 ∴f(4)=2再令x=4,y=2,∴f(4×2)=f(4)+f(2)=2+1=3 ∴f(8)=3∴f(x)+f(x-2)≤3可转化为:f[x(x-2)]≤f(8).14. 判断函数上的单调性,并证明.证明:任取0<x1<x2,∵0<x1<x2,∴x1-x2<0,x1·x2>0(1)当时0<x1·x2<1,∴x1·x2-1<0∴f(x1)-f(x2)>0即f(x1)>f(x2)上是减函数.(2)当x1,x2∈(1,+∞)时,上是增函数.难点:x1·x2-1的符号的确定,如何分段.15. 设a为实数,函数f(x)=x2+|x-a|+1,x∈R,试讨论f(x)的奇偶性,并求f(x)的最小值. 解:当a=0时,f(x)=x2+|x|+1,此时函数为偶函数;当a≠0时,f(x)=x2+|x-a|+1,为非奇非偶函数.(1)当x≥a时,[1]且[2]上单调递增,上的最小值为f(a)=a2+1.(2)当x<a时,[1]上单调递减,上的最小值为f(a)=a2+1[2]上的最小值为综上:.。

函数奇偶性和单调性(包含详细答案)

函数奇偶性和单调性(包含详细答案)

函数的奇偶性和单调性1.对任意实数x,下列函数中的奇函数是()A.y=2x-3 B.y=-3x2C.y=ln5x D.y=-|x|cos x答案 C2.对于定义在R上的任意奇函数f(x),均有()A.f(x)-f(-x)>0 B.f(x)-f(-x)≤0C.f(x)·f(-x)>0 D.f(x)·f(-x)≤0答案 D解析∵f(-x)=-f(x),∴f(-x)f(x)=-f2(x)≤0.3.若f(x)=ax2+bx+c(a≠0)是偶函数,则g(x)=ax3+bx2+cx是() A.奇函数B.偶函数C.非奇非偶函数D.既奇又偶函数答案 A解析由f(x)是偶函数知b=0,∴g(x)=ax3+cx是奇函数.4.(2013·山东)已知函数f(x)为奇函数,且当x>0时,f(x)=x2+1x,则f(-1)=()A.2 B.1C.0 D.-2答案 D解析由f(x)为奇函数知f(-1)=-f(1)=-2.5.函数f(x)在定义域R上不是常数函数,且f(x)满足:对任意x∈R,都有f(2+x)=f(2-x),f(1+x)=-f(x),则f(x)是()A.奇函数但非偶函数B.偶函数但非奇函数C.既是奇函数又是偶函数D.非奇非偶函数答案 B解析依题意,得f(x+2)=-f(x+1)=f(x),即函数f(x)是以2为周期的函数,所以f(-x+2)=f(-x).又f(2+x)=f(2-x),因此有f(-x)=f(x),即f(x)是偶函数;若f(x)是奇函数,则有f(-x)=-f(x)=f(x),得f(x)=0,这与“f(x)不是常数函数”相矛盾,因此f(x)是偶函数但不是奇函数,选B.6.(2011·湖北)若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=e x,则g(x)=()A.e x-e-x B.12(ex+e-x)C.12(e-x-e x) D.12(ex-e-x)答案 D解析由f(x)+g(x)=e x,可得f(-x)+g(-x)=e-x.又f(x)为偶函数,g(x)为奇函数,可得f(x)-g(x)=e-x,则两式相减,可得g(x)=e x-e-x2,选D.7.(2013·辽宁)已知函数f(x)=ln(1+9x2-3x)+1,则f(lg2)+f(lg 12)=()A.-1 B.0C.1 D.2答案 D解析由已知,得f(-x)=ln(1+9x2+3x)+1,所以f(x)+f(-x)=2.因为lg2,lg 12互为相反数,所以f(lg2)+f(lg12)=2.8.f(x)是定义在R上的奇函数,满足f(x+2)=f(x),当x∈(0,1)时,f(x)=2x-2,则f(log126)的值等于()A.-43B.-72C.12D.-12答案 C解析f(log126)=-f(-log126)=-f(log26)9.(2014·湖北八校)已知函数f(x)是(-∞,+∞)上的偶函数,若对于x≥0,都有f(x+2)=-f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(2 013)+f(-2 014)的值为()A.-2 B.-1C.1 D.2答案 C解析依题意得,x≥0时,f(x+4)=-f(x+2)=f(x),即x≥0时,f(x)是以4为周期的函数.因此,f(2 013)+f(-2 014)=f(2 013)+f(2 014)=f(1)+f(2).而f(2)=-f(0)=-log2(0+1)=0,f(1)=log2(1+1)=1,故f(2 013)+f(-2 014)=1.10.下列判断中正确的是________.①f(x)=(x)2是偶函数;②f(x)=x3是奇函数;③y=x0及y=(x-1)0都是偶函数;④f(x)=ln(1-x2-x)是非奇非偶函数;⑤f(x)=3-x2+91-|x|是偶函数.答案⑤11.函数f(x)=x3+sin x+1的图像关于________点对称.答案(0,1)解析f(x)的图像是由y=x3+sin x的图像向上平移一个单位得到的.12.(2014·金华十校联考)定义在R上的偶函数f(x)满足对任意x∈R,都有f(x+8)=f(x)+f(4),且x∈[0,4]时,f(x)=4-x,则f(2 015)的值为________.答案 3解析∵f(4)=0,∴f(x+8)=f(x),∴T=8.∴f(2 015)=f(7)=f(-1)=f(1)=3.13.已知定义在R上的函数f(x)满足f(x)=-f(x+32),且f(1)=3,则f(2 014)=________.答案 3解析∵f(x)=-f(x+3 2),∴f(x+3)=f[(x+32)+32]=-f(x+32)=f(x).∴f(x)是以3为周期的周期函数.则f(2 014)=f(671×3+1)=f(1)=3.14.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=3x+m(m为常数),则f(-log35)的值为________.答案-415.定义在(-∞,+∞)上的函数y=f(x)在(-∞,2)上是增函数,且函数y=f(x+2)为偶函数,则f(-1),f(4),f(512)的大小关系是__________.答案f(512)<f(-1)<f(4)解析∵y=f(x+2)为偶函数,∴y=f(x)关于x=2对称.又y=f(x)在(-∞,2)上为增函数,∴y=f(x)在(2,+∞)上为减函数,而f(-1)=f(5),∴f(512)<f(-1)<f(4).16.定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函数,给出下列关于f(x)的判断:①f(x)是周期函数;②f(x)关于直线x=1对称;③f(x)在[0,1]上是增函数;④f(x)在[1,2]上是减函数;⑤f(2)=f(0).其中正确的序号是________.答案①②⑤解析由f(x+1)=-f(x),得f(x+2)=-f(x+1)=f(x).∴f(x)是周期为2的函数,①正确.f (x )关于直线x =1对称,②正确.f (x )为偶函数,在[-1,0]上是增函数,∴f (x )在[0,1]上是减函数,[1,2]上为增函数,f (2)=f (0).因此③、④错误,⑤正确.综上,①②⑤正确.17.设函数f (x )=x 3+x ,若0≤θ≤π2时,f (m cos θ)+f (1-m )>0恒成立,求实数m 的取值范围.答案 (-∞,1)解析 f (x )=x 3是R 上的奇函数与增函数,因此,由f (m cos θ)+f (1-m )>0,得f (m cos θ)>-f (1-m )=f (m -1),m cos θ>m -1,即m (1-cos θ)<1对任意θ∈[0,π2]恒成立.而当θ=0时,不等式m (1-cos θ)<1成立,当θ∈(0,π2]时,cos θ∈[0,1),1-cos θ∈(0,1],11-cos θ∈[1,+∞).由m (1-cos θ)<1,得m <11-cos θ,即m <1.因此,m 的取值范围是(-∞,1).18.若f (x )和g (x )都是奇函数,且F (x )=af (x )+bg (x )+2在(0,+∞)上有最大值8,求F (x )在(-∞,0)上的最小值.答案 -4解析 由题意知,当x >0时,F (x )≤8.∵f (x ),g (x )都是奇函数,且当x <0时,-x >0.∴F (-x )=af (-x )+bg (-x )+2=-af (x )-bg (x )+2=-[af (x )+bg (x )+2]+4≤8.∴af (x )+bg (x )+2≥-4.∴F (x )=af (x )+bg (x )+2在(-∞,0)上有最小值-4.。

函数的单调性奇偶性综合应用练习

函数的单调性奇偶性综合应用练习

函数的单调性、奇偶性综合应用一、利用函数单调性求函数最值例1、已知函数y=f(x)对任意x,y ∈R 均为f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)= -32. (1)判断并证明f(x)在R 上的单调性;(2)求f(x)在[-3,3]上的最大、小值。

思维分析:抽象函数的性质要紧扣定义,并同时注意特殊值的应用。

解:(1)令x=y=0,f(0)=0,令x=-y 可得:f(-x)= -f(x),在R 上任取x 1<x 2,则x 2-x 1>0,所以f(x 2) -f(x 1)=f(x 2)+f(-x 1)=f(x 2-x 1).因为x 1<x 2,所以x 2-x 1>0。

又因为x>0时f(x)<0,所以f(x 2-x 1)<0,即f(x 2)<f(x 1).由定义可知f(x)在R 上是减函数.(2)因为f(x)在R 上是减函数,所以f(x)在[-3,3]上也是减函数.所以f(-3)最大,f(3)最小。

所以f(-3)= -f(3)=2即f(x)在[-3,3]上最大值为2,最小值为-2。

二、复合函数单调性例2、求函数y=322--x x 的单调区间,并对其中一种情况证明。

思维分析:要求出y=322--x x 的单调区间,首先求出定义域,然后利用复合函数的判定方法判断.解:设u=x 2-2x -3,则y=u .因为u ≥0,所以x 2-2x -3≥0.所以x ≥3或x ≤-1.因为y=u 在u ≥0时是增函数,又当x ≥3时,u 是增函数,所以当x ≥3时,y 是x 的增函数。

又当 x ≤-1时,u 是减函数,所以当x ≤-1时,y 是x 的减函数。

所以y=322--x x 的单调递增区间是[3,+ ∞),单调递减区间是(-∞,-1]。

证明略三、利用奇偶性,讨论方程根情况例3、已知y=f(x)是偶函数,且图象与x 轴四个交点,则方程f(x)=0的所有实根之和是( )A.4B.2C.0D.不知解析式不能确定 思维分析:因为f(x)是偶函数且图象与x 轴有四个交点,这四个交点每两个关于原点一定是对称的,故x 1+x 2+x 3+x 4=0.答案:C四、利用奇偶性,单调性解不等式例4、设f(x)是定义在[-2,2]上的偶函数,当x ≥0时,f(x)单调递减,若f(1-m)<f(m)成立,求m 的取值范围。

《函数的单调性和奇偶性》经典例题解析

《函数的单调性和奇偶性》经典例题解析

类型二、求函数的单调区间2. 判断下列函数的单调区间;(1)y=x2-3|x|+2;(2)解:(1)由图象对称性,画出草图∴f(x)在上递减,在上递减,在上递增.(2)∴图象为∴f(x)在上递增.举一反三:【变式1】求下列函数的单调区间:(1)y=|x+1|;(2)(3).解:(1)画出函数图象,∴函数的减区间为,函数的增区间为(-1,+∞);(2)定义域为,其中u=2x-1为增函数,在(-∞,0)与(0,+∞)为减函数,则上为减函数;(3)定义域为(-∞,0)∪(0,+∞),单调增区间为:(-∞,0),单调减区间为(0,+∞). 类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值)3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小.解:又f(x)在(0,+∞)上是减函数,则.4. 求下列函数值域:(1);1)x∈[5,10];2)x∈(-3,-2)∪(-2,1);(2)y=x2-2x+3;1)x∈[-1,1];2)x∈[-2,2].1)f(x)在[5,10]上单增,;2);(2)画出草图1)y∈[f(1),f(-1)]即[2,6];2).举一反三:【变式1】已知函数.(1)判断函数f(x)的单调区间;(2)当x∈[1,3]时,求函数f(x)的值域.解:(1)上单调递增,在上单调递增;(2)故函数f(x)在[1,3]上单调递增∴x=1时f(x)有最小值,f(1)=-2 x=3时f(x)有最大值∴x∈[1,3]时f(x)的值域为.5. 已知二次函数f(x)=x2-(a-1)x+5在区间上是增函数,求:(1)实数a的取值范围;(2)f(2)的取值范围.解:(1)∵对称轴是决定f(x)单调性的关键,联系图象可知只需;(2)∵f(2)=22-2(a-1)+5=-2a+11又∵a≤2,∴-2a≥-4∴f(2)=-2a+11≥-4+11=7 .举一反三:【变式1】(2011 北京理13)已知函数,若关于x的方程有两个不同的实根,则实数k的取值范围是________.解:单调递减且值域(0,1],单调递增且值域为,由图象知,若有两个不同的实根,则实数k的取值范围是(0,1).类型四、判断函数的奇偶性6. 判断下列函数的奇偶性:(1)(2)(3)f(x)=x2-4|x|+3 (4)f(x)=|x+3|-|x-3| (5)(6(7)解:(1)∵f(x)的定义域为,不关于原点对称,因此f(x)为非奇非偶函数;(2)∵x-1≥0,∴f(x)定义域不关于原点对称,∴f(x)为非奇非偶函数;(3)对任意x∈R,都有-x∈R,且f(-x)=x2-4|x|+3=f(x),则f(x)=x2-4|x|+3为偶函数;(4)∵x∈R,f(-x)=|-x+3|-|-x-3|=|x-3|-|x+3|=-f(x),∴f(x)为奇函数;(5),∴f(x)为奇函数;(6)∵x∈R,f(x)=-x|x|+x ∴f(-x)=-(-x)|-x|+(-x)=x|x|-x=-f(x),∴f(x)为奇函数;(7),∴f(x)为奇函数.举一反三:【变式1】判断下列函数的奇偶性:(1);(2)f(x)=|x+1|-|x-1|;(3)f(x)=x2+x+1;(4).思路点拨:利用函数奇偶性的定义进行判断.解:(1);(2)f(-x)=|-x+1|-|-x-1|=-(|x+1|-|x-1|)=-f(x) ∴f(x)为奇函数;(3)f(-x)=(-x)2+(-x)+1=x2-x+1∴f(-x)≠-f(x)且f(-x)≠f(x) ∴f(x)为非奇非偶函数;(4)任取x>0则-x<0,∴f(-x)=(-x)2+2(-x)-1=x2-2x-1=-(-x2+2x+1)=-f(x)任取x<0,则-x>0 f(-x)=-(-x)2+2(-x)+1=-x2-2x+1=-(x2+2x-1)=-f(x)x=0时,f(0)=-f(0) ∴x∈R时,f(-x)=-f(x) ∴f(x)为奇函数.类型五、函数奇偶性的应用(求值,求解析式,与单调性结合)7.已知f(x)=x5+ax3-bx-8,且f(-2)=10,求f(2).解:法一:∵f(-2)=(-2)5+(-2)3a-(-2)b-8=-32-8a+2b-8=-40-8a+2b=10∴8a-2b=-50 ∴f(2)=25+23a-2b-8=8a-2b+24=-50+24=-26法二:令g(x)=f(x)+8易证g(x)为奇函数∴g(-2)=-g(2) ∴f(-2)+8=-f(2)-8∴f(2)=-f(-2)-16=-10-16=-26.举一反三:【变式1】(2011 湖南文12)已知为奇函数,,则为:解:,又为奇函数,所以.8. f(x)是定义在R上的奇函数,且当x<0时,f(x)=x2-x,求当x≥0时,f(x)的解析式,并画出函数图象.解:∵奇函数图象关于原点对称,∴x>0时,-y=(-x)2-(-x)即y=-x2-x又f(0)=0,,如图9.设定义在[-3,3]上的偶函数f(x)在[0,3]上是单调递增,当f(a-1)<f(a)时,求a的取值范围.解:∵f(a-1)<f(a) ∴f(|a-1|)<f(|a|)而|a-1|,|a|∈[0,3].类型六、综合问题10.定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间的图象与f(x)的图象重合,设a>b>0,给出下列不等式,其中成立的是_________.①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a).答案:①③.11. 求下列函数的值域:(1)(2)(3)思路点拨:(1)中函数为二次函数开方,可先求出二次函数值域;(2)由单调性求值域,此题也可换元解决;(3)单调性无法确定,经换元后将之转化为熟悉二次函数情形,问题得到解决,需注意此时t 的范围.解:(1);(2)经观察知,,;(3)令.12. 已知函数f(x)=x2-2ax+a2-1.(1)若函数f(x)在区间[0,2]上是单调的,求实数a的取值范围;(2)当x∈[-1,1]时,求函数f(x)的最小值g(a),并画出最小值函数y=g(a)的图象.解:(1)∵f(x)=(x-a)2-1 ∴a≤0或a≥2(2)1°当a<-1时,如图1,g(a)=f(-1)=a2+2a2°当-1≤a≤1时,如图2,g(a)=f(a)=-13°当a>1时,如图3,g(a)=f(1)=a2-2a,如图13. 已知函数f(x)在定义域(0,+∞)上为增函数,f(2)=1,且定义域上任意x、y都满足f(xy)=f(x)+f(y),解不等式:f(x)+f(x-2)≤3.解:令x=2,y=2,∴f(2×2)=f(2)+f(2)=2 ∴f(4)=2再令x=4,y=2,∴f(4×2)=f(4)+f(2)=2+1=3 ∴f(8)=3∴f(x)+f(x-2)≤3可转化为:f[x(x-2)]≤f(8).14. 判断函数上的单调性,并证明.证明:任取0<x1<x2,∵0<x1<x2,∴x1-x2<0,x1·x2>0(1)当时0<x1·x2<1,∴x1·x2-1<0∴f(x1)-f(x2)>0即f(x1)>f(x2)上是减函数.(2)当x1,x2∈(1,+∞)时,上是增函数.15. 设a为实数,函数f(x)=x2+|x-a|+1,x∈R,试讨论f(x)的奇偶性,并求f(x)的最小值. 解:当a=0时,f(x)=x2+|x|+1,此时函数为偶函数;当a≠0时,f(x)=x2+|x-a|+1,为非奇非偶函数.(1)当x≥a时,[1]且[2]上单调递增,上的最小值为f(a)=a2+1.(2)当x<a时,[1]上单调递减,上的最小值为f(a)=a2+1[2]上的最小值为综上:.。

《函数的单调性和奇偶性》经典例题

《函数的单调性和奇偶性》经典例题

类型二、求函数的单调区间2. 判断下列函数的单调区间;(1)y=x2-3|x|+2;(2)解:(1)由图象对称性,画出草图∴f(x)在上递减,在上递减,在上递增.(2)∴图象为∴f(x)在上递增.举一反三:【变式1】求下列函数的单调区间:(1)y=|x+1|;(2)(3).解:(1)画出函数图象,∴函数的减区间为,函数的增区间为(-1,+∞);(2)定义域为,其中u=2x-1为增函数,在(-∞,0)与(0,+∞)为减函数,则上为减函数;(3)定义域为(-∞,0)∪(0,+∞),单调增区间为:(-∞,0),单调减区间为(0,+∞). 类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值)3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小.解:又f(x)在(0,+∞)上是减函数,则.4. 求下列函数值域:(1);1)x∈[5,10];2)x∈(-3,-2)∪(-2,1);(2)y=x2-2x+3;1)x∈[-1,1];2)x∈[-2,2].1)f(x)在[5,10]上单增,;2);(2)画出草图1)y∈[f(1),f(-1)]即[2,6];2).举一反三:【变式1】已知函数.(1)判断函数f(x)的单调区间;(2)当x∈[1,3]时,求函数f(x)的值域.解:(1)上单调递增,在上单调递增;(2)故函数f(x)在[1,3]上单调递增∴x=1时f(x)有最小值,f(1)=-2 x=3时f(x)有最大值∴x∈[1,3]时f(x)的值域为.5. 已知二次函数f(x)=x2-(a-1)x+5在区间上是增函数,求:(1)实数a的取值范围;(2)f(2)的取值范围.解:(1)∵对称轴是决定f(x)单调性的关键,联系图象可知只需;(2)∵f(2)=22-2(a-1)+5=-2a+11又∵a≤2,∴-2a≥-4∴f(2)=-2a+11≥-4+11=7 .举一反三:【变式1】(2011 北京理13)已知函数,若关于x的方程有两个不同的实根,则实数k的取值范围是________.解:单调递减且值域(0,1],单调递增且值域为,由图象知,若有两个不同的实根,则实数k的取值范围是(0,1).类型四、判断函数的奇偶性6. 判断下列函数的奇偶性:(1)(2)(3)f(x)=x2-4|x|+3(4)f(x)=|x+3|-|x-3| (5)(6(7)解:(1)∵f(x)的定义域为,不关于原点对称,因此f(x)为非奇非偶函数;(2)∵x-1≥0,∴f(x)定义域不关于原点对称,∴f(x)为非奇非偶函数;(3)对任意x∈R,都有-x∈R,且f(-x)=x2-4|x|+3=f(x),则f(x)=x2-4|x|+3为偶函数;(4)∵x∈R,f(-x)=|-x+3|-|-x-3|=|x-3|-|x+3|=-f(x),∴f(x)为奇函数;(5),∴f(x)为奇函数;(6)∵x∈R,f(x)=-x|x|+x ∴f(-x)=-(-x)|-x|+(-x)=x|x|-x=-f(x),∴f(x)为奇函数;(7),∴f(x)为奇函数.举一反三:【变式1】判断下列函数的奇偶性:(1);(2)f(x)=|x+1|-|x-1|;(3)f(x)=x2+x+1;(4).思路点拨:利用函数奇偶性的定义进行判断.解:(1);(2)f(-x)=|-x+1|-|-x-1|=-(|x+1|-|x-1|)=-f(x) ∴f(x)为奇函数;(3)f(-x)=(-x)2+(-x)+1=x2-x+1∴f(-x)≠-f(x)且f(-x)≠f(x) ∴f(x)为非奇非偶函数;(4)任取x>0则-x<0,∴f(-x)=(-x)2+2(-x)-1=x2-2x-1=-(-x2+2x+1)=-f(x)任取x<0,则-x>0 f(-x)=-(-x)2+2(-x)+1=-x2-2x+1=-(x2+2x-1)=-f(x)x=0时,f(0)=-f(0) ∴x∈R时,f(-x)=-f(x) ∴f(x)为奇函数.类型五、函数奇偶性的应用(求值,求解析式,与单调性结合)7.已知f(x)=x5+ax3-bx-8,且f(-2)=10,求f(2).解:法一:∵f(-2)=(-2)5+(-2)3a-(-2)b-8=-32-8a+2b-8=-40-8a+2b=10∴8a-2b=-50 ∴f(2)=25+23a-2b-8=8a-2b+24=-50+24=-26法二:令g(x)=f(x)+8易证g(x)为奇函数∴g(-2)=-g(2) ∴f(-2)+8=-f(2)-8∴f(2)=-f(-2)-16=-10-16=-26.举一反三:【变式1】(2011 湖南文12)已知为奇函数,,则为:解:,又为奇函数,所以.8. f(x)是定义在R上的奇函数,且当x<0时,f(x)=x2-x,求当x≥0时,f(x)的解析式,并画出函数图象.解:∵奇函数图象关于原点对称,∴x>0时,-y=(-x)2-(-x)即y=-x2-x又f(0)=0,,如图9.设定义在[-3,3]上的偶函数f(x)在[0,3]上是单调递增,当f(a-1)<f(a)时,求a的取值范围.解:∵f(a-1)<f(a) ∴f(|a-1|)<f(|a|)而|a-1|,|a|∈[0,3].类型六、综合问题10.定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间的图象与f(x)的图象重合,设a>b>0,给出下列不等式,其中成立的是_________.①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a).答案:①③.11. 求下列函数的值域:(1)(2)(3)思路点拨:(1)中函数为二次函数开方,可先求出二次函数值域;(2)由单调性求值域,此题也可换元解决;(3)单调性无法确定,经换元后将之转化为熟悉二次函数情形,问题得到解决,需注意此时t 的范围.解:(1);(2)经观察知,,;(3)令.12. 已知函数f(x)=x2-2ax+a2-1.(1)若函数f(x)在区间[0,2]上是单调的,求实数a的取值范围;(2)当x∈[-1,1]时,求函数f(x)的最小值g(a),并画出最小值函数y=g(a)的图象.解:(1)∵f(x)=(x-a)2-1 ∴a≤0或a≥2(2)1°当a<-1时,如图1,g(a)=f(-1)=a2+2a2°当-1≤a≤1时,如图2,g(a)=f(a)=-13°当a>1时,如图3,g(a)=f(1)=a2-2a,如图13. 已知函数f(x)在定义域(0,+∞)上为增函数,f(2)=1,且定义域上任意x、y都满足f(xy)=f(x)+f(y),解不等式:f(x)+f(x-2)≤3.解:令x=2,y=2,∴f(2×2)=f(2)+f(2)=2 ∴f(4)=2再令x=4,y=2,∴f(4×2)=f(4)+f(2)=2+1=3 ∴f(8)=3∴f(x)+f(x-2)≤3可转化为:f[x(x-2)]≤f(8).14. 判断函数上的单调性,并证明.证明:任取0<x1<x2,∵0<x1<x2,∴x1-x2<0,x1·x2>0(1)当时0<x1·x2<1,∴x1·x2-1<0∴f(x1)-f(x2)>0即f(x1)>f(x2)上是减函数.(2)当x1,x2∈(1,+∞)时,上是增函数.15. 设a为实数,函数f(x)=x2+|x-a|+1,x∈R,试讨论f(x)的奇偶性,并求f(x)的最小值. 解:当a=0时,f(x)=x2+|x|+1,此时函数为偶函数;当a≠0时,f(x)=x2+|x-a|+1,为非奇非偶函数.(1)当x≥a时,[1]且[2]上单调递增,上的最小值为f(a)=a2+1.(2)当x<a时,[1]上单调递减,上的最小值为f(a)=a2+1[2]上的最小值为综上:.。

高中数学必修1函数单调性和奇偶性专项练习(含答案)

高中数学必修1函数单调性和奇偶性专项练习(含答案)

高中数学必修1函数单调性和奇偶性专项练习(含答案)高中数学必修1 第二章函数单调性和奇偶性专项练一、函数单调性相关练题1、(1)函数f(x)=x-2,x∈{1,2,4}的最大值为3.在区间[1,5]上的最大值为9,最小值为-1.2、利用单调性的定义证明函数f(x)=(2/x)在(-∞,0)上是减函数。

证明:对于x1<x2.由于x1和x2都小于0,所以有x1<x2<0,因此有f(x2)-f(x1)=2/x1-2/x2=2(x2-x1)/x1x2<0.因此,f(x)在(-∞,0)上是减函数.3、函数f(x)=|x|+1的图像是一条V型曲线,单调区间为(-∞,0]和[0,∞).4、函数y=-x+2的图像是一条斜率为-1的直线,单调区间为(-∞,+∞).5、已知二次函数y=f(x)(x∈R)的图像是一条开口向下且对称轴为x=3的抛物线,比较大小:(1)f(6)与f(4);(2)f(2)与f(15).1) 因为f(x)是开口向下的抛物线,所以对于x>3,f(x)是减函数,对于x<3,f(x)是增函数。

因此,f(6)<f(4).2) 因为f(x)是开口向下的抛物线,所以对于x3,f(x)是增函数。

因此,f(2)>f(15).6、已知y=f(x)在定义域(-1,1)上是减函数,且f(1-a)<f(3a-2),求实数a的取值范围.因为f(x)在(-1,1)上是减函数,所以对于0f(3a-2)。

因此,实数a的取值范围为0<a<1.7、求下列函数的增区间与减区间:1) y=|x^2+2x-3|的图像是一条开口向上的抛物线,单调区间为(-∞,-3]和[1,+∞).2) y=1-|x-1|的图像是一条V型曲线,单调区间为(-∞,1]和[1,+∞).3) y=-x^2-2x+3的图像是一条开口向下的抛物线,单调区间为(-∞,-1]和[1,+∞).4) y=1/(x^2-x-20)的图像是一条双曲线,单调区间为(-∞,-4]和[-1,1]和[5,+∞).8、函数f(x)=ax^2-(3a-1)x+a^2在[1,+∞)上是增函数,求实数a的取值范围.因为f(x)在[1,+∞)上是增函数,所以对于x>1,有f(x)>f(1)。

函数的性质:单调性、奇偶性、周期性、对称性训练

函数的性质:单调性、奇偶性、周期性、对称性训练

函数的性质:单调性、奇偶性、周期性、对称性训练题型一:单调性的定义及判断1.下列函数在(),0∞-上单调递减的是()A .1y x=-B .2y x =C .3y x =D .y x=2.(2024·高三·黑龙江齐齐哈尔·期末)设函数()2f x x x x =-,则()f x ()A .是偶函数,且在()1,∞+上单调递增B .是奇函数,且在()1,1-上单调递减C .是偶函数,且在(),1∞--上单调递增D .是奇函数,且在(),1∞--上单调递减3.(2024·高三·上海静安·期中)已知函数2()(0)2x x af x a a =->,且(0)0f =.(1)求a 的值,并指出函数()f x 的奇偶性;(2)在(1)的条件下,运用函数单调性的定义,证明函数()f x 在(,)-∞+∞上是增函数.题型二:复合函数单调性的判断4.函数()()22log 45f x x x =-++的单调递增区间是()A .(),2-∞B .()2,+∞C .()2,5D .()1,2-5.函数()13f x ⎛= ⎪⎝⎭的单调增区间为()A .(],1-∞-B .(],1-∞C .[)1,+∞D .[)3,+∞6.已知函数()()2lg 12f x x ax =-+在[]1,3-上单调递减,则实数a 的取值范围是()A .[)6,+∞B .[)6,7C .(],2-∞-D .(]13,2--题型三:分段函数的单调性7.(2024·高三·云南大理·期中)已知函数()()2,211,282a x x f x x x ⎧-≥⎪=⎨--<⎪⎩,满足对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,则实数a 的取值范围为()A .(),2-∞B .13,8⎛⎫-∞ ⎪⎝⎭C .(],2-∞D .13,8⎛⎤-∞ ⎥⎝⎦8.已知函数()252,122,1x ax x f x a x x⎧-+<⎪⎪=⎨-⎪≥⎪⎩满足对于任意实数12x x ≠,都有()()12120f x f x x x -<-成立,则实数a 的取值范围是()A .()1,2B .[)1,2C .31,2⎛⎫ ⎪⎝⎭D .31,2⎡⎤⎢⎥⎣⎦9.已知函数()322,0()1202a x x ax a x f x x -⎧-+≤⎪=⎨->⎪⎩,若函数()f x 在R 上单调递增,则实数a 的取值范围是()A .3,22⎡⎤⎢⎥⎣⎦B .10,2⎡⎤⎢⎥⎣⎦C .30,2⎡⎤⎢⎥⎣⎦D .[]0,210.(2024·高三·内蒙古赤峰·开学考试)已知0a >,且1a ≠,函数()()3,2log 11,2a a x x f x x x -<⎧=⎨--≥⎩在R 上单调,则a 的取值范围是()A .()1,+∞B .12,33⎡⎤⎢⎥⎣⎦C .2,13⎡⎫⎪⎢⎣⎭D .1,13⎡⎫⎪⎢⎣⎭题型四:利用函数单调性求函数最值11.(2024·上海松江·二模)已知02a <<,函数()1241,22,2x a x a x y a x -⎧-++≤=⎨>⎩,若该函数存在最小值,则实数a 的取值范围是.12.(2024·高三·北京东城·期末)设函数()221,,x x af x x a x a⎧-<=⎨+≥⎩①若2a =-,则()f x 的最小值为.②若()f x 有最小值,则实数a 的取值范围是.13.(2024·贵州·模拟预测)已知函数223()2xx f x -++=,则()f x 的最大值是.14.函数25y x =+的最大值为.题型五:利用函数单调性求参数的范围15.(2024·广东揭阳·二模)已知函数()21f x x ax =-++在()2,6上不单调,则a 的取值范围为()A .()2,6B .(][),26,-∞+∞ C .()4,12D .(][),412,-∞+∞ 16.(2024·山东·二模)已知函数()221f x x mx =-+在区间[)1,-+∞上单调递增,则()1f 的取值范围是().A .[)7,+∞B .()7,+∞C .(],7-∞D .(),7-∞17.(2024·陕西榆林·一模)已知函数()e e ax xf x =-在[)0,∞+上单调递增,则a 的取值范围是()A .[)0,∞+B .()1,+∞C .()e,+∞D .[)2e,+∞18.设函数()1()(2x x a f x +=在区间(0,1)上单调递增,则实数a 的取值范围为()A .(],2-∞-B .(]2,0-C .(]0,2D .[)2,+∞题型六:利用函数的单调性比较函数值大小19.已知定义在R 上的函数()f x 满足()(2)f x f x =-,且当[1,)x ∈+∞时,()e e x x f x -=+,若()2347π2,log 3,sin 5a f b f c f ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则()A .c a b >>B .c b a >>C .a b c >>D .b a c>>20.(2024·北京西城·一模)设()11,,2a t b t c t t t t=-=+=+,其中10t -<<,则()A .b a c <<B .c<a<bC .b<c<aD .c b a<<21.已知偶函数()f x 在区间(0,)+∞上单调递增,且0.35log 2ln 32a b c -==-=,,则()()()f a f b f c ,,的大小关系为()A .()()()f c f a f b >>B .()()()f b f c f a >>C .()()()f a f b f c >>D .()()()f c f b f a >>题型七:函数的奇偶性的判断与证明22.设函数()(),f x g x 的定义域为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是()A .()()f x g x 是偶函数B .()()f x g x 是奇函数C .()()f x g x 是偶函数D .()()||f x g x 是奇函数23.(2024·重庆·三模)设函数()22xf x x-=+,则下列函数中为奇函数的是()A .()21f x -+B .()22f x -+C .()22f x ++D .()21f x ++24.(2024·高三·江西)设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则()A .()()y f x g x =⋅是偶函数B .()()y f x g x =⋅是偶函数C .()()y f x g x =⋅是奇函数D .()()y f x g x =⋅是奇函数25.(多选题)下列函数中为奇函数的是()A .()3f x x=B .()5f x x=C .()1f x x x=+D .()21f x x =26.判断下列函数的奇偶性:(1)()1lg 1x f x x -=+;(2)())lgf x x =.题型八:已知函数的奇偶性求参数27.设函数,1()11,1xx f x x x ⎧≠-⎪=+⎨⎪=-⎩,若()()g x f x a b =++为奇函数,则a b +=28.(2024·陕西西安·模拟预测)函数()52223g x ax x x ⎛⎫=-- ⎪⎝⎭为奇函数,则=a .29.(2024·四川内江·三模)若函数22,0()2,0x ax x f x bx x x ⎧+≥=⎨-<⎩是奇函数,则a b +=.30.设奇函数()cos ,0cos sin ,0a x x c x f x xb xc x ⎧+≥⎪=⎨+-<⎪⎩,则a c +的值为.题型九:已知函数的奇偶性求表达式、求值31.(2024·云南昆明·模拟预测)已知()f x ,()g x 分别为定义在R 上的奇函数和偶函数,()()32f x g x x ax a +=++,则()3f =.32.已知偶函数()f x 和奇函数()g x 均定义在R 上,且满足()()224359xf xg x x x +=-++,则()()13f g -+=.33.已知()f x ,()g x 是分别定义在R 上的奇函数和偶函数,且()()321f x g x x x -=++,则()()12f g +=.34.(2024·黑龙江哈尔滨·)已知()f x 为奇函数,()g x 为偶函数,且满足()()e xf xg x x +=+,则()g x =()A .e e 2x x--B .e e 2x x-+C .e e 22x x x ---D .e e 22x x x --+题型十:奇函数的中值模型35.(2024·陕西榆林·三模)已知函数()y f x =为奇函数,且最大值为1,则函数()21y f x =+的最大值和最小值的和为.36.(2024·全国·模拟预测)已知函数()(ln 1xxa f xb xc a=+++,其中0a >且1a ≠,b ∈R ,c Z ∈,则()1f 和()1f -的值一定不会是()A.2和3-B .-3和4C .3和-1D.3437.已知函数())1f x x =+,正实数,a b 满足(2)(4)2f a f b +-=,则242b a a ab b ++的最小值为.38.已知函数())ln1f x x =+,则()()1g x f x =-是(填“奇”“偶”或“非奇非偶”)函数;若()4f a =,则()f a -=.39.(2024·安徽安庆·三模)若,x y R ∀∈,都有()()()4x y f x f f y ++=+成立,则函数()()()2221x f x x f x g x x +++=在[]2019,2019-上的最大值与最小值的和为.题型十一:利用单调性与奇偶性求解函数不等式40.已知函数2()2e 1x f x x =--+,若()2(2)20f m f m +-+>恒成立,则实数m 的取值范围是()A .(2,1)-B .(1,2)-C .(0,2)D .(2,4)41.(2024·大连)设函数3333()sin πe e 3x x f x x x --=+--+则满足()(32)4f x f x +-<的x 的取值范围是()A .(3,)+∞B .(3),-∞C .(1,)+∞D .(,1)-∞42.(2024·云南贵州·二模)若函数()f x 的定义域为R 且图象关于y 轴对称,在[)0,+¥上是增函数,且()30f -=,则不等式()0f x <的解是()A .()3∞--,B .()3∞+,C .()33-,D .()()33∞∞--⋃+,,43.(2024·辽宁·一模)已知函数()()2log 4162xf x x =+--,若()()121f a f a -≥+成立,则实数a 的取值范围为()A .(],2-∞-B .(][),20,-∞-+∞ C .42,3⎡⎤-⎢⎥⎣⎦D .(]4,2,3⎡⎫-∞-+∞⎪⎢⎣⎭题型十二:函数对称性的应用44.(2024·陕西宝鸡·二模)请写出一个图像关于点()1,0对称的函数的解析式.45.(2024·四川泸州·一模)函数()1xf x x =-的对称中心为.46.已知函数1()1f x x -=-,函数()g x 满足(1)(1)0g x g x -++=,若()f x 与()g x 的图象有6个交点,则所有交点横坐标之和等于.47.下列函数中,其图象与函数2log y x =的图象关于直线2x =对称的是()A .()2log 2y x =+B .()2log 2y x =-C .()2log 4y x =+D .()2log 4y x =-48.(2024·高三·陕西汉中·期中)已知函数()()R f x x ∈满足()21f x +为奇函数,若函数sin πy x =与()y f x =的图象的交点为11(,)x y ,22(,)x y ,…,(),m m x y ,则()1mi i i x y =+∑等于()A .0B .mC .2mD .4m题型十三:函数周期性的应用49.已知函数()f x 的定义域是R ,3322f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,()()60f x f x +-=,当302x ≤≤时,()242=-f x x x ,则()2024f =.50.(2024·宁夏银川·一模)若定义在R 上的函数()f x 满足(1)y f x =+是奇函数,(4)()f x f x +=-,(2)2f =,则(1)(2)(3)(30)f f f f ++++=.51.(2024·山东枣庄·一模)已知()2f x +为偶函数,且()()26f x f x ++=-,则()2027f =.52.(多选题)设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,()2f x ax b =+.若()()036f f +=,则下列关于()f x 的说法正确的有()A .()f x 的一个周期为4B .点()6,0是函数的一个对称中心C .[]1,2x ∈时,()222f x x =-D .2025522f ⎛⎫=⎪⎝⎭题型十四:对称性与周期性的综合应用53.(2024·四川南充·三模)已知函数()()f x g x 、的定义域均为R ,函数(21)1f x -+的图象关于原点对称,函数(1)g x +的图象关于y 轴对称,(2)(1)1,(4)0f x g x f +++=--=,则(2030)(2017)f g -=()A .4-B .3-C .3D .454.(2024·云南昆明·一模)已知函数()f x ,()g x 的定义域均为R ,()f x 为偶函数且()()23f x f x ++=,()()102g x g x +-=,则[]91()()i f i g i =+=∑()A .21B .22C .452D .47255.(2024·高三·河南濮阳·开学考试)已知函数()f x 的定义域为R ,且()41f x +的图象关于点()0,2中心对称,若()()2240f x f x x +--+=,则()1001i f i ==∑.56.(2024·江西)已知定义在R 上的函数()f x 满足(0)0,(3)4()f f x f x ==且(1)()2f x f x -+=,则23f ⎛⎫=⎪⎝⎭A .32B .12C .23D .1357.(2024·山东日照·二模)已知()f x 是定义域为R 的偶函数,()5.54f =,()()()1g x x f x =-,若()1g x +是偶函数,则()0.5g -=()A .6-B .4-C .4D .658.已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若(21),(2)f x g x --均为偶函数,且当[1,2]x ∈时,3()2f x mx x =-,则(2024)g =.题型十五:类周期与倍增函数59.(2024·江西上饶·一模)已知函数211,[2,0]()12(2),(0,)x x f x x f x x ⎧-⎪+∈-=⎨-⎪-∈+∞⎩,若函数()()21g x f x x m =--+在区间[-2,4]内有3个零点,则实数m 的取值范围是.A .11|22m m ⎧⎫-<<⎨⎬⎩⎭B .1|12m m ⎧⎫-<≤⎨⎩⎭C .1|112m m m ⎧⎫-<<=⎨⎬⎩⎭或D .11|122m m m ⎧⎫-<<=⎨⎬⎩⎭或。

函数的奇偶性与单调性经典练习题

函数的奇偶性与单调性经典练习题

函数的奇偶性与单调性【基础训练】1.在下列命题中,正确的是 ( )A .函数y = 1x 是奇函数,且在定义域内为减函数B .函数y =3x 3(x -1)0是奇函数,且在定义域内为增函数C .函数y = x 2是偶函数,且在(-3,0)上为减函数D .函数y = ax 2+c (ac ≠0)是偶函数,且在(0,2)上为增函数2.定义在(a ,c )上的函数f (x ),在区间(a ,b )及(b ,c )上均为增函数,函数f (x )在区间(a ,c )上是否为增函数如何?请举例说明 .3.下列函数中是偶函数的为 ( ) A .f (x ) = x 2|x |(x ∈(-1,1]) B .f (x ) = xx +21C .f (x ) = lgxx-+11 D .f (x ) = ⎩⎨⎧x ,x ≥0-x ,x <04.给出下列四个函数:①f (x )=1-x 2;②f (x )= -3x +1;③f (x )=x 2;④f (x )=12--x x x .其中既是奇函数又是定义域上的减函数的函数个数是 ( )A .0B .1C .2D .35.已知xa x a x f -+-=2log )(3是奇函数,则a a20032003+= . 【例题讲解】 例1 试判断下列函数的奇偶性:(1)f (x )=|x +2| + |x -2|;(2)f (x )2|2|22-+-=x x ;(3)0)1(||)(-=x x x x f .变题1 函数2)1ln()(xe xf x-+=是 ( ) A .奇非偶函数 B .偶非奇函数 C .既奇又偶函数 D .非奇非偶函数变题2: 定义在R 上的任意函数f (x )都可以表示为一个奇函数g (x )和一个偶函数h (x )之和,若f (x )=lg(10x +1),则 ( )A .g (x ) = x ,h (x ) = lg(10x+ 10– x+2)B .g (x ) = ])110[lg(21x x++,h (x ) = ])110[lg(21x x-+C .g (x ) =2x ,h (x ) = lg(10x+1) - 2xD .g (x ) = -2x ,h (x ) = lg(10x+1) - 2x 例2 已知定义在(-∞,+∞)上的函数f (x )的图像关于原点对称,且当x >0时,f (x )= x 2-2x +2,求函数f (x )的解析式.变题1 已知函数211)(xa x x f ---=是奇函数,则实数a 的值为 ( )A .1-B .1C .21-D .21变题2 )(x f 是定义域为R 的奇函数,方程0)(=x f 的解集为M ,且M 中有有限个元素,则M ( )A .可能是∅B .中元素个数是偶数C .中元素个数是奇数D .中元素个数可以是偶数,也可以是奇数 例3 函数f (x ) = log 3(x 2-2x -8)的单调减区间为__________。

函数的单调性及奇偶性经典练习及答案

函数的单调性及奇偶性经典练习及答案

[基础巩固]1.(多选)下面四个选项,不正确的有( )A .偶函数的图象一定与y 轴相交B .奇函数的图象一定通过原点C .偶函数的图象关于y 轴对称D .既是奇函数又是偶函数的函数一定是f (x )=0(x ∈R ).解析 偶函数的图象关于y 轴对称,但不一定与y 轴相交,如y =1x 2,故A 错误,C 正确.奇函数的图象关于原点对称,但不一定经过原点,如y =1x,故B 错误.若y =f (x )既是奇函数又是偶函数,由定义可得f (x )=0,但未必x ∈R ,如f (x )=1-x 2+x 2-1,其定义域为{-1,1},故D 错误.故选A 、C 、D.答案 ACD2.函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=-x +1,则当x <0时,f (x )的解析式为( )A .f (x )=-x +1B .f (x )=-x -1C .f (x )=x +1D .f (x )=x -1解析 设x <0,则-x >0.∴f (-x )=x +1,又函数f (x )是奇函数.∴f (-x )=-f (x )=x +1,∴f (x )=-x -1(x <0).答案 B3.已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x,则f (-1)=________. 解析 当x >0时,f (x )=x 2+1x, ∴f (1)=12+11=2. ∵f (x )为奇函数,∴f (-1)=-f (1)=-2.答案 -24.若f (x )为R 上的奇函数,给出下列四个说法:①f (x )+f (-x )=0;②f (x )-f (-x )=2f (x );③f (x )·f (-x )<0;④f (x )f (-x )=-1. 其中一定正确的为________.(填序号)解析 ∵f (x )在R 上为奇函数,∴f (-x )=-f (x ).∴f (x )+f (-x )=f (x )-f (x )=0,故①正确.f (x )-f (-x )=f (x )+f (x )=2f (x ),故②正确.当x =0时,f (x )·f (-x )=0,故③不正确.当x =0时,f (x )f (-x )分母为0,无意义,故④不正确. 答案 ①②5.函数f (x )=x 3-x 图象的一部分如图所示,根据f (x )的奇偶性画出它在y 轴左侧的图象.解析 函数f (x )=x 3-x 的定义域是R ,定义域关于坐标原点对称,对任意的x ∈R ,都有f (-x )=(-x )3-(-x )=-(x 3-x )=-f (x ),∴f (x )=x 3-x 是奇函数.∴函数的图象关于原点对称.将函数f (x )=x 3-x 图象上位于y 轴右侧的部分作关于原点对称的对称图象,得函数f (x )=x 3-x 在y 轴左侧的图象,如图所示.[能力提升]6.(2022·珠海模拟)已知f ()x 是R 上的偶函数,在(-∞,0]上单调递增,且f (2)=0,则下列不等式成立的是( )A .0<f ()1<f ()5<f ()-3B .f ()5<f ()-3<0<f ()1C .f ()-3<f ()-1<0<f ()1D .f ()-3<0<f ()1<f ()5解析 因为f ()x 是R 上的偶函数,在(-∞,0]上单调递增,所以f ()x 在()0,+∞上单调递减,f ()-3=f (3).又f (2)=0,且1<2<3<5,f ()x 在(0,+∞]上单调递减,所以f ()1>f ()2>f ()3>f ()5,即f ()5<f ()-3<0<f ()1.故选B.答案 B7.设奇函数f (x )在(0,+∞)上为减函数,且f (1)=0,则不等式f (x )-f (-x )x<0的解集为( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)解析 因为f (x )为奇函数,f (x )-f (-x )x<0, 即f (x )x<0, 因为f (x )在(0,+∞)上为减函数且f (1)=0,所以当x >1时,f (x )<0.因为奇函数图象关于原点对称,所以在(-∞,0)上f (x )为减函数且f (-1)=0,即x <-1时,f (x )>0.综上,使f (x )x<0的解集为(-∞,-1)∪(1,+∞). 答案 C8.已知函数f (x )=x +m x 2+nx +1是定义在(-1,1)上的奇函数,则常数m ,n 的值分别为________.解析 由题意知f (0)=0,故得m =0.由f (x )是奇函数知f (-x )=-f (x ),即-x x 2-nx +1=-x x 2+nx +1, ∴x 2-nx +1=x 2+nx +1,∴n =0.答案 0,09.已知偶函数f (x )在区间[0,+∞)上单调增加,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 取值范围是________.解析 偶函数f (x )在区间[0,+∞)上单调递增,所以函数f (x )在区间(-∞,0]上单调递减.由于f (x )是偶函数,所以f (-x )=f (x ),则f ⎝⎛⎭⎫-13=f ⎝⎛⎭⎫13. 由f (2x -1)<f ⎝⎛⎭⎫13,得⎩⎪⎨⎪⎧ 2x -1≥0,2x -1<13①或⎩⎪⎨⎪⎧ 2x -1<0,2x -1>-13②, 解①得12≤x <23,解②得13<x <12. 综上,得13<x <23,故x 的取值范围是⎝⎛⎭⎫13,23. 答案 ⎝⎛⎭⎫13,2310.已知函数f (x )=⎩⎪⎨⎪⎧ -x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数. (1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解析 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ).于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3, 故实数a 的取值范围是(1,3].[探索创新]11.设f (x )是定义在R 上的奇函数,且对任意a ,b ∈R ,当a +b ≠0时,都有f (a )+f (b )a +b>0.(1)若a >b ,试比较f (a )与f (b )的大小关系;(2)若f (1+m )+f (3-2m )≥0,求实数m 的取值范围.解析 (1)因为a >b ,所以a -b >0,由题意得f (a )+f (-b )a -b>0, 所以f (a )+f (-b )>0.又f (x )是定义在R 上的奇函数,所以f (-b )=-f (b ),所以f (a )-f (b )>0,即f (a )>f (b ).(2)由(1)知f(x)为R上的增函数,因为f(1+m)+f(3-2m)≥0,所以f(1+m)≥-f(3-2m),即f(1+m)≥f(2m-3),所以1+m≥2m-3,所以m≤4.所以实数m的取值范围为(-∞,4].。

函数单调性及奇偶性练习(含答案)

函数单调性及奇偶性练习(含答案)

1、已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则( )A .31=a ,b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =0 2、已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的表达式是( )A .y =x (x -2)B .y =x (|x |-1)C .y =|x |(x -2)D .y =x (|x |-2)3、函数1111)(22+++-++=x x x x x f 是( )A .偶函数B .奇函数C .非奇非偶函数D .既是奇函数又是偶函数4、若)(x ϕ,g (x )都是奇函数,2)()(++=x bg a x f ϕ在(0,+∞)上有最大值5, 则f (x )在(-∞,0)上有( )A .最小值-5B .最大值-5C .最小值-1D .最大值-35、已知()f x 是偶函数,x R ∈,当0x >时,()f x 为增函数,若120,0x x <>,且12||||x x <, 则 ( )A .12()()f x f x ->-B .12()()f x f x -<-C .12()()f x f x ->-D . 12()()f x f x -<-6、定义在(-1,1)上的函数f(x)是奇函数,并且在(-1,1)上f(x)是减函数,求满足条件f(1-a)+f(1-a2)<0的a取值范围. ( )A.(0,1) B.(-2,1) C.[0,1] D.[-2,1]7、已知函数f(x)是定义在区间[-2,2]上的偶函数,当x∈[0,2]时,f(x) 是减函数,如果不等式f(1-m)<f(m)成立,求实数m的取值范围.( ) A.1[1,)2- B.[1,2] C.[-1,0] D.(11,2-) 8、已知函数⎩⎨⎧<-≥+=0,40,4)(22x x x x x x x f 若2(2)(),f a f a ->则实数a 的取值范围是 ( ) A (,1)(2,)-∞-⋃+∞ B (1,2)- C (2,1)- D (,2)(1,)-∞-⋃+∞9、已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有实根 之和为________10、已知偶函数y =f(x)在区间[0,4]上是单调增函数,则f(-3)与f(π)的大小关系是__________11、若定义在R 上的函数f(x)满足:对任意x 1、x 2∈R 有f(x 1+x 2)=f(x 1)+f(x 2)+1,则下列 说法一定正确的序号是__________.①f(x)为奇函数 ;②f(x)为偶函数 ;③f(x)+1为奇函数 ;④f(x)+1为偶函数12、若(1)()()x x a f x x++=是奇函数,则a =___13、已知f(x)是奇函数,定义域为{x|x ∈R 且x ≠0},又f(x)在(0,+∞)上是增函数,且f(-1)=0,则满足f(x)>0的x 取值范围是________.14、已知)(x f y =是偶函数,当0>x 时,2)1()(-=x x f ;若当⎥⎦⎤⎢⎣⎡--∈21,2x 时,m x f n ≤≤)(恒成立,则n m -的最小值为15、 设函数y =f (x )(x ∈R 且x ≠0)对任意非零实数x 1、x 2满足f (x 1·x 2)=f (x 1)+f (x 2),求证f (x )是偶函数.16、设函数f(x)=21xb ax ++是定义在(-1,1)上的奇函数,且f(21)=52,(1)确定函数f(x)的解析式;(2)用定义证明f(x)在(-1,1)上是增函数;(3)解不等式f ( t -1)+ f (t) < 0。

专题:函数的奇偶性与单调性题型汇总

专题:函数的奇偶性与单调性题型汇总

专题:函数的奇偶性与单调性题型汇总题型1:证明函数的奇偶性与单调性 班级 姓名例1、 证明函数y =在定义域上是奇函数.例2、 证明函数31y x =--在定义域上是减函数.题型2:函数奇偶性的判断例3、 判断函数y =奇偶性.题型3:研究函数的单调性并确定函数的单调区间例4、 研究函数1x y x =+的单调性并确定它的单调区间.题型4:函数的奇偶性的简单应用例5、已知53()8f x x ax bx =++-,且f(-2)=10,则f(2)= .例6、已知()y f x =是定义在R 上的奇函数,当0x >时,2()21f x x x =-+,求()f x 在R 上的表达式.例7、已知2()3f x ax bx a b =+++是偶函数,且其定义域为[1,2]a a -则a= b= .例8、函数1()1a f x x x a=+-+是奇函数,求实数a .题型5:二次函数单调性的应用例9、已知函数2()(1)28f x x a x a =+-+-在(,3]-∞上是减函数,求a 的取值范围.例10、已知函数2()(31)1f x ax a x =--+在[1,2]-上是增函数,求a 的取值范围.题型6:复合函数的单调区间的确定例11、函数()f x =————————————————————————.例12、函数227()2x x f x x ++=-的递减区间是————————————————————————.例13、已知2()28f x x x =-++,求函数2(2)f x -的单调区间.题型7:函数的奇偶性与单调性的综合应用1、 求值2、 例14、若函数()f x 是定义在R 上的偶函数,求满足2(3)(2)f x f x -=的所有x 的值.例15、若函数()f x 在R 上的奇函数,(1)2,(3)()f f x f x =+=-,求(2003)f 的值.2、解不等式例16、若函数()f x 是定义在(-1,1)上的偶函数,且在(-1,0)]上是减函数,解不等 式2(2)(4)0f x f x ---<.例17、函数()f x 是定义在(0,)∞上的增函数,且满足()()(),(2)1f a b f a f b f ⋅=+=,解不等式:()(2)3f x f x -->.例18、若函数()f x 是定义在(0,)+∞上的减函数,且()()()xf f x f y y=-,若(3)1f =,解不等式:1()()28f x f x -≥-.3、其他综合题例19、已知函数(1)y f x =-是偶函数,且(0,)x ∈+∞时有1()f x x =,求当(,2)x ∈-∞-时()y f x =的解析式.例20、函数()f x 的定义域是R ,对任意的实数x ,y 都有()()()f x f y f x y +=+,当0x >,()0f x >,判断函数的奇偶性与单调性.例21、若奇函数()f x 是定义在(0,)+∞上的增函数,且满足(4)f -=0,(1)画出一个满足条件的()f x 的图象;(2)解不等式()0x f x ⋅<.例22、设函数()f x ax =,其中0a >,求a 的取值范围,使函数()f x 在区间[0,)+∞上是单调递减函数.。

高考数学复习----《抽象函数的单调性、奇偶性、周期性、对称性》典型例题讲解

高考数学复习----《抽象函数的单调性、奇偶性、周期性、对称性》典型例题讲解

高考数学复习----《抽象函数的单调性、奇偶性、周期性、对称性》典型例题讲解【典型例题】例1、(2023·广东·高三统考学业考试)已知函数()f x 对任意,R x y ∈,都有()()()f x y f x f y +=+成立.有以下结论:①()00f =;②()f x 是R 上的偶函数;③若()22f =,则()11f =;④当0x >时,恒有()0f x <,则函数()f x 在R 上单调递增.则上述所有正确结论的编号是________【答案】①③【解析】对于①令0x y ==,则()()()0000f f f +=+,解得()00f =,①正确;对于②令y x =−,则()()()00f f x f x =+−=,∴()()f x f x −=−,∴()f x 是R 上的奇函数,②错误;对于③令1x y ==,则()()()()211212f f f f =+==,∴()11f =,③正确;对于④设12x x >,则120x x −>,∴()()()12120f x x f x f x −=+−<,则()()()122f x f x f x <−−=,∴()f x 在R 上单调递减,④错误.故答案为:①③.例2、(2022·山东聊城·二模)已知()f x 为R 上的奇函数,()22f =,若对1x ∀,()20,x ∈+∞,当12x x >时,都有()()()1212210f x f x x x x x ⎡⎤−−<⎢⎥⎣⎦,则不等式()()114x f x ++>的解集为( ) A .()3,1−B .()()3,11,1−−−C .()(),11,1−∞−− D .()(),31,−∞−⋃+∞ 【答案】B【解析】由()()121221()[]0f x f x x x x x −−<,得()()11221212()[]0x f x x f x x x x x −−<, 因为121200x x x x −>>,,所以()()11220x f x x f x −<,即()()1122x f x x f x <,设()()g x xf x =,则()g x 在()0,∞+上单调递减,而()()()()()1114222g x x f x f g +=++>==,则012x <+<,解得:11x −<<;因为()f x 为R 上的奇函数,所以()()()()g x xf x xf x g x −=−−==,则()g x 为R 上的偶函数,故()g x 在(,0)−∞上单调递增,()()()()11142g x x f x g +=++>=−,则210x −<+<,解得:31x −<<−;综上,原不等式的解集为(),111)3(,−−−.故选:B .例4、(2022·全国·模拟预测(理))已知定义在R 上的奇函数()f x 的图像关于直线1x =对称,且()y f x =在[]0,1上单调递增,若()3a f =−,12b f ⎛⎫=− ⎪⎝⎭,()2c f =,则a ,b ,c 的大小关系为( )A .c b a <<B .b a c <<C .b c a <<D .c a b <<【答案】C【解析】 由函数()f x 的图像关于直线1x =对称可得()()31f f =−,结合奇函数的性质可知 ()3a f =−()()()311f f f =−=−−=,()()200c f f ===.由奇函数的性质结合()y f x =在[]0,1上单调递增可得()y f x =在[]1,1−上单调递增, 所以()()1012f f f ⎛⎫−<< ⎪⎝⎭, 所以b c a <<.故选:C例5、(2022·黑龙江大庆·三模(理))已知定义域为R 的偶函数满足()()2f x f x −=,当01x ≤≤时,()1e 1x f x −=−,则方程()11f x x =−在区间[]3,5−上所有解的和为( ) A .8B .7C .6D .5【答案】A【解析】 解:因为函数()f x 满足()()2f x f x −=,所以函数()f x 的图像关于直线1x =对称, 又函数()f x 为偶函数,所以()()()2−==−f x f x f x ,所以函数()f x 是周期为2的函数, 又1()1g x x =−的图像也关于直线1x =对称, 作出函数()f x 与()g x 在区间[]3,5−上的图像,如图所示:由图可知,函数()f x 与()g x 的图像在区间[]3,5−上有8个交点,且关于直线1x =对称, 所以方程。

函数的单调性和奇偶性-典型例题

函数的单调性和奇偶性-典型例题

函数的单调性和奇偶性例1(1)画出函数y=-x2+2|x|+3的图像,并指出函数的单调区间.解:函数图像如下图所示,当x≥0时,y=-x2+2x+3=-(x-1)2+4;当x<0时,y=-x2-2x+3=-(x+1)2+4.在(-∞,-1]和[0,1]上,函数是增函数:在[-1,0]和[1,+∞)上,函数是减函数.评析函数单调性是对某个区间而言的,对于单独一个点没有增减变化,所以对于区间端点只要函数有意义,都可以带上.(2)已知函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,求实数a的取值范围.分析要充分运用函数的单调性是以对称轴为界线这一特征.解:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a-1)2+2,此二次函数的对称轴是x=1-a.因为在区间(-∞,1-a]上f(x)是单调递减的,若使f(x)在(-∞,4]上单调递减,对称轴x=1-a必须在x=4的右侧或与其重合,即1-a≥4,a≤-3.评析这是涉及逆向思维的问题,即已知函数的单调性,求字母参数范围,要注意利用数形结合.例2判断下列函数的奇偶性:(1)f(x)=-(2)f(x)=(x-1).解:(1)f(x)的定义域为R.因为f(-x)=|-x+1|-|-x-1|=|x-1|-|x+1|=-f(x).所以f(x)为奇函数.(2)f(x)的定义域为{x|-1≤x<1},不关于原点对称.所以f(x)既不是奇函数,也不是偶函数.评析用定义判断函数的奇偶性的步骤与方法如下:(1)求函数的定义域,并考查定义域是否关于原点对称.(2)计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f(-x)=-f(x)之一是否成立.f(-x)与-f(x)的关系并不明确时,可考查f(-x)±f(x)=0是否成立,从而判断函数的奇偶性.例3已知函数f(x)=.(1)判断f(x)的奇偶性.(2)确定f(x)在(-∞,0)上是增函数还是减函数?在区间(0,+∞)上呢?证明你的结论.解:因为f(x)的定义域为R,又f(-x)===f(x),所以f(x)为偶函数.(2)f(x)在(-∞,0)上是增函数,由于f(x)为偶函数,所以f(x)在(0,+∞)上为减函数.其证明:取x1<x2<0,f(x1)-f(x2)=- ==.因为x1<x2<0,所以x2-x1>0,x1+x2<0,x21+1>0,x22+1>0,得f(x1)-f(x2)<0,即f(x1)<f(x2).所以f(x)在(-∞,0)上为增函数.评析奇函数在(a,b)上的单调性与在(-b,-a)上的单调性相同,偶函数在(a,b)与(-b,-a)的单调性相反.例4已知y=f(x)是奇函数,它在(0,+∞)上是增函数,且f(x)<0,试问F(x)=在(-∞,0)上是增函数还是减函数?证明你的结论.分析根据函数的增减性的定义,可以任取x1<x2<0,进而判定F(x1)-F(x2)=-=的正负.为此,需分别判定f(x1)、f(x2)与f(x2)的正负,而这可以从已条件中推出.解:任取x1、x2∈(-∞,0)且x1<x2,则有-x1>-x2>0.∵y=f(x)在(0,+∞)上是增函数,且f(x)<0,∴f(-x2)<f(-x1)<0.①又∵f(x)是奇函数,∴f(-x2)=-f(x2),f(-x1)=-f(x1)②由①、②得f(x2)>f(x1)>0.于是F(x1)-F(x2)=>0,即F(x1)>F(x2),所以F(x)=在(-∞,0)上是减函数.评析本题最容易发生的错误,是受已知条件的影响,一开始就在(0,+∞)内任取x1<x2,展开证明.这样就不能保证-x1,-x2,在(-∞,0)内的任意性而导致错误.避免错误的方法是:要明确证明的目标,有针对性地展开证明活动.例5讨论函数f(x)=(a≠0)在区间(-1,1)内的单调性.分析根据函数的单调性定义求解.解:设-1<x1<x2<1,则f(x1)-f(x2)=-=∵x1,x2∈(-1,1),且x1<x2,∴x1-x2<0,1+x1x2>0,(1-x21)(1-x22)>0于是,当a>0时,f(x1)<f(x2);当a<0时,f(x1)>f(x2).故当a>0时,函数在(-1,1)上是增函数;当a<0时,函数在(-1,1)上为减函数.评析根据定义讨论(或证明)函数的单调性的一般步骤是:(1)设x1、x2是给定区间内任意两个值,且x1<x2;(2)作差f(x1)-f(x2),并将此差式变形;(3)判断f(x1)-f(x2)的正负,从而确定函数的单调性.例6求证:f(x)=x+ (k>0)在区间(0,k]上单调递减.解:设0<x1<x2≤k,则f(x1)-f(x2)=x1+ -x2-=∵0<x1<x2≤k,∴x1-x2<0,0<x1x2<k2,∴f(x1)-f(x2)>0∴f(x1)>f(x2),∴f(x)=x+ 中(0,k]上是减函数.评析函数f(x)在给定区间上的单调性反映了函数f(x)在区间上函数值的变化趋势,是函数在区间上的整体性质.因此,若要证明f(x)在[a,b]上是增函数(减函数),就必须证明对于区间[a,b]上任意两点x1,x2,当x1<x2时,都有不等式f(x1)<f(x2)(f(x1)>f(x2))类似可以证明:函数f(x)=x+ (k>0)在区间[k,+∞]上是增函数.例7判断函数f(x)=的奇偶性.分析确定函数的定义域后可脱去绝对值符号.解:由得函数的定义域为[-1,1].这时,|x-2|=2-x.∴f(x)=,∴f(-x)===f(x).且注意到f(x)不恒为零,从而可知,f(x)=是偶函数,不是奇函数.评析由于函数解析式中的绝对值使得所给函数不像具有奇偶性,若不作深入思考,便会作出其非奇非偶的判断.但隐含条件(定义域)被揭示之后,函数的奇偶性就非常明显了.这样看来,解题中先确定函数的定义域不仅可以避免错误,而且有时还可以避开讨论,简化解题过程.。

(完整版)函数的单调性和奇偶性练习题

(完整版)函数的单调性和奇偶性练习题

—函数的单调性和奇偶性一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( ) A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根 6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x ) ( ) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式|f (x +1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1]∪[2,+∞)8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤-3 B .a ≥-3 C .a ≤5 D .a ≥3 11.已知f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( ) A .f (a )+f (b )≤-f (a )+f (b )] B .f (a )+f (b )≤f (-a )+f (-b ) C .f (a )+f (b )≥-f (a )+f (b )] D .f (a )+f (b )≥f (-a )+f (-b )12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,则 ( ) A .f (-1)<f (3) B .f (0)>f (3) C .f (-1)=f (-3) D .f (2)<f (3) 二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) (1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论.19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在(0,+∞)上为单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.已知函数f (x )=xax x ++22,x ∈[1,+∞](1)当a =21时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36), 又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x xx18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈[-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数. 20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2)∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212aa-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的体现.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1,∴x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)在区间[1,+∞)上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。

抽象函数单调性及奇偶性练习及答案

抽象函数单调性及奇偶性练习及答案

1、已知的定义域为R,且对任意实数x,y满足,求证:是偶函数。

2、已知f(x)是定义在(-∞,+∞)上的不恒为零的函数,且对定义域内的任意x,y,f(x)都满足f(xy)=yf(x)+xf(y).(1)求f(1),f(-1)的值;(2)判断f(x)的奇偶性,并说明理由.3、函数f(x)对任意x、y∈R,总有f(x)+f(y)=f(x+y),且当x>0时, <0, f(3)=-2.(1)判断并证明f(x)在区间(-∞,+∞)上的单调性;(2)求f(x)在[-3,3]上的最大值和最小值.4、已知函数f(x)在(-1,1)上有定义,f()=-1,当且仅当0<x<1时f(x)<0,且对任意x、y∈(-1,1)都有f(x)+f(y)=f(),试证明(1)f(x)为奇函数;(2)f(x)在(-1,1)上单调递减5、已知是定义在R上的不恒为零的函数,且对于任意的都满足: .(1)求的值;(2)判断的奇偶性,并证明你的结论;6、定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a、b∈R,有f(a+b)=f(a)f(b),(1)求证:f(0)=1;(2)求证:对任意的x∈R,恒有f(x)>0;(3)证明:f(x)是R上的增函数;(4)若f(x)·f(2x-x2)>1,求x的取值范围。

7、已知函数的定义域为R,对任意实数都有,且,当时, >0.(1)求;(2) 判断函数的单调性,并证明.8、函数的定义域为R,并满足以下条件:①对任意,有>0;②对任意,有;③.(1)求的值;(2)求证: 在R上是单调减函数;9、已知函数的定义域为R,对任意实数都有,且当时,.(1)证明:;(2)证明: 在R上单调递减;10、函数对于x>0有意义,且满足条件减函数。

(1)证明:;(2)若成立,求x的取值范围。

11、定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a、b∈R,有f(a+b)=f(a)f(b),(3)求证:f(0)=1;(4)求证:对任意的x∈R,恒有f(x)>0;(3)证明:f(x)是R上的增函数;(4)若f(x)·f(2x-x2)>1,求x的取值范围。

函数单调性奇偶性经典例题

函数单调性奇偶性经典例题

[例1]已知函数f (x )在(-1,1)上有定义,f (21)=-1,当且仅当0<x <1时f (x )<0,且对任意x 、y ∈(-1,1)都有f (x )+f (y )=f (xyyx ++1),试证明: (1)f (x )为奇函数;(2)f (x )在(-1,1)上单调递减.知识依托:奇偶性及单调性定义及判定、赋值法及转化思想.技巧与方法:对于(1),获得f (0)的值进而取x =-y 是解题关键;对于(2),判定21121x x x x --的范围是焦点.证明:(1)由f (x )+f (y )=f (xy yx ++1),令x =y =0,得f (0)=0,令y =-x ,得f (x )+f (-x )=f (21xx x --)=f (0)=0.∴f (x )=-f (-x ).∴f (x )为奇函数.(2)先证f (x )在(0,1)上单调递减.令0<x 1<x 2<1,则f (x 2)-f (x 1)=f (x 2)-f (-x 1)=f (21121x x x x --)∵0<x 1<x 2<1,∴x 2-x 1>0,1-x 1x 2>0,∴12121x x x x -->0,又(x 2-x 1)-(1-x 2x 1)=(x 2-1)(x 1+1)<0 ∴x 2-x 1<1-x 2x 1, ∴0<12121x x x x --<1,由题意知f (21121x x x x --)<0,即f (x 2)<f (x 1).∴f (x )在(0,1)上为减函数,又f (x )为奇函数且f (0)=0. ∴f (x )在(-1,1)上为减函数.3.函数f (x )在R 上为增函数,则y =f (|x +1|)的一个单调递减区间是_________.解析:令t =|x +1|,则t 在(-∞,-1]上递减,又y =f (x )在R 上单调递增,∴y =f (|x +1|)在(-∞,-1]上递减. 答案:(-∞,-1]4.若函数f (x )=ax 3+bx 2+cx +d 满足f (0)=f (x 1)=f (x 2)=0 (0<x 1<x 2), 且在[x 2,+∞)上单调递增,则b 的取值范围是_________.解析:∵f (0)=f (x 1)=f (x 2)=0,∴f (0)=d =0.f (x )=ax (x -x 1)(x -x 2)=ax 3-a (x 1+x 2)x 2+ax 1x 2x , ∴b =-a (x 1+x 2),又f (x )在[x 2,+∞)单调递增,故a >0.又知0<x 1<x ,得x 1+x 2>0, ∴b =-a (x 1+x 2)<0. 答案:(-∞,0)三、解答题 5.已知函数f (x )=a x +12+-x x (a >1). (1)证明:函数f (x )在(-1,+∞)上为增函数. (2)用反证法证明方程f (x )=0没有负数根.证明:(1)设-1<x 1<x 2<+∞,则x 2-x 1>0, 12x x a ->1且1x a >0, ∴)1(12112-=--x x x x x a a a a >0,又x 1+1>0,x 2+1>0 ∴)1)(1()(3)1)(1()1)(2()1)(2(121221122121121122++-=+++--+-=+--+-x x x x x x x x x x x x x x >0, 于是f (x 2)-f (x 1)=12x x a a -+12121122+--+-x x x x >0 ∴f (x )在(-1,+∞)上为递增函数.(2)证法一:设存在x 0<0(x 0≠-1)满足f (x 0)=0,则12000+--=x x a x 且由0<0x a <1得0<-1200+-x x <1,即21<x 0<2与x 0<0矛盾,故f (x )=0没有负数根.证法二:设存在x 0<0(x 0≠-1)使f (x 0)=0,若-1<x 0<0,则1200+-x x <-2,0x a <1,∴f (x 0)<-1与f (x 0)=0矛盾,若x 0<-1,则1200+-x x >0, 0x a >0,∴f (x 0)>0与f (x 0)=0矛盾,故方程f (x )=0没有负数根. 6.求证函数f (x )=223)1(-x x 在区间(1,+∞)上是减函数.证明:∵x ≠0,∴f (x )=22422322)11(1)1(1)1(1x x x x x x x -=-=-, 设1<x 1<x 2<+∞,则01111,11121222122>->-<<x x x x .2211222222112222)11(1)11(1.0)11()11(x x x x x x x x -<-∴>->-∴∴f (x 1)>f (x 2), 故函数f (x )在(1,+∞)上是减函数.8.已知函数f (x )的定义域为R ,且对m 、n ∈R ,恒有f (m +n )=f (m )+f (n )-1,且f (-21)=0,当x >-21时,f (x )>0. (1)求证:f (x )是单调递增函数; 证明:设x 1<x 2,则x 2-x 1-21>-21,由题意f (x 2-x 1-21)>0, ∵f (x 2)-f (x 1)=f [(x 2-x 1)+x 1]-f (x 1)=f (x 2-x 1)+f (x 1)-1-f (x 1)=f (x 2-x 1)-1=f (x 2-x 1)+f (-21)-1=f [(x 2-x 1)-21]>0, ∴f (x )是单调递增函数.[例1]已知奇函数f (x )是定义在(-3,3)上的减函数,且满足不等式f (x -3)+f (x 2-3)<0,设不等式解集为A ,B =A ∪{x |1≤x ≤5},求函数g (x )=-3x 2+3x -4(x ∈B )的最大值.知识依托:主要依据函数的性质去解决问题.错解分析:题目不等式中的“f ”号如何去掉是难点,在求二次函数在给定区间上的最值问题时,学生容易漏掉定义域.技巧与方法:借助奇偶性脱去“f ”号,转化为x 不等式,利用数形结合进行集合运算和求最值. 解:由⎩⎨⎧<<-<<⎩⎨⎧<-<-<-<-66603333332x x x x 得且x ≠0,故0<x <6, 又∵f (x )是奇函数,∴f (x -3)<-f (x 2-3)=f (3-x 2),又f (x )在(-3,3)上是减函数, ∴x -3>3-x 2,即x 2+x -6>0,解得x >2或x <-3,综上得2<x <6,即A ={x |2<x <6}, ∴B =A ∪{x |1≤x ≤5}={x |1≤x <6},又g (x )=-3x 2+3x -4=-3(x -21)2-413知:g (x )在B 上为减函数,∴g (x )max =g (1)=-4.一、选择题1.设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (7.5)等于( ) A.0.5B.-0.5C.1.5D.-1.5解析:f (7.5)=f (5.5+2)=-f (5.5)=-f (3.5+2)=f (3.5)=f (1.5+2)=-f (1.5)=-f (-0.5+2)= f (-0.5)=-f (0.5)=-0.5. 答案:B2.已知定义域为(-1,1)的奇函数y =f (x )又是减函数,且f (a -3)+f (9-a 2)<0, 则a 的取值范围是( ) A.(22,3) B.(3,10) C.(22,4)D.(-2,3)解析:∵f (x )是定义在(-1,1)上的奇函数又是减函数,且f (a -3)+f (9-a 2)<0.∴f (a -3)<f (a 2-9).∴⎪⎩⎪⎨⎧->-<-<-<-<-9319113122a a a a ∴a ∈(22,3). 答案:A 二、填空题3.若f (x )为奇函数,且在(0,+∞)内是增函数,又f (-3)=0,则xf (x )<0的解集为_________.解析:由题意可知:xf (x )<0⎩⎨⎧<>⎩⎨⎧><⇔0)(00)(0x f x x f x 或 ⎩⎨⎧<>⎩⎨⎧-><⇔⎩⎨⎧<>⎩⎨⎧-><⇔3030 )3()(0 )3()(0x x x x f x f x f x f x 或或 ∴x ∈(-3,0)∪(0,3) 答案:(-3,0)∪(0,3)4.如果函数f (x )在R 上为奇函数,在(-1,0)上是增函数,且f (x +2)=-f (x ),试比较f (31),f (32),f (1)的大小关系_________. 解析:∵f (x )为R 上的奇函数 ∴f (31)=-f (-31),f (32)=-f (-32),f (1)=-f (-1),又f (x )在(-1,0)上是增函数且-31> -32>-1. ∴f (-31)>f (-32)>f (-1),∴f (31)<f (32)<f (1).答案:f (31)<f (32)<f (1)三、解答题5.已知f (x )是偶函数而且在(0,+∞)上是减函数,判断f (x )在(-∞,0)上的增减性并加以证明. 解:函数f (x )在(-∞,0)上是增函数,设x 1<x 2<0,因为f (x )是偶函数,所以f (-x 1)=f (x 1),f (-x 2)=f (x 2),由假设可知-x 1>-x 2>0,又已知f (x ) 在(0,+∞)上是减函数,于是有f (-x 1)<f (-x 2),即f (x 1)<f (x 2),由此可知,函数f (x )在(-∞,0)上是增函数.6.已知函数y =f (x )=c bx ax ++12 (a ,b ,c ∈R ,a >0,b >0)是奇函数,当x >0时,f (x )有最小值2,其中b ∈N 且f (1)<25.(1)试求函数f (x )的解析式;(2)问函数f (x )图象上是否存在关于点(1,0)对称的两点,若存在,求出点的坐标;若不存在,说明理由.解:(1)∵f (x )是奇函数,∴f (-x )=-f (x ),即c bx c bx cbx ax c bx ax -=+⇒+-+-=++1122 ∴c=0,∵a >0,b >0,x >0,∴f (x )=bx x b a bx ax 112+=+≥22b a ,当且仅当x =a 1时等号成立,于是22ba =2,∴a =b 2,由f (1)<25得ba 1+<25即b b 12+<25,∴2b 2-5b +2<0,解得21<b <2,又b ∈N ,∴b =1,∴a =1,∴f (x )=x +x 1.(2)设存在一点(x 0,y 0)在y =f (x )的图象上,并且关于(1,0)的对称点(2-x 0,-y 0)也在y =f (x )图象上,则⎪⎪⎩⎪⎪⎨⎧-=-+-=+0020002021)2(1yxx y x x 消去y 0得x 02-2x 0-1=0,x 0=1±2.∴y =f (x )图象上存在两点(1+2,22),(1-2,-22)关于(1,0)对称.3.函数单调性与奇偶性的综合运用例6.甲、乙两地相距Skm ,汽车从甲地匀速行驶到乙地,速度不得超过c km /h ,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(km /h)的平方成正比,比例系数为b ;固定部分为a 元.(1)把全程运输成本y(元)表示为速度v(km /h)的函数,并指出这个函数的定义域; (2)为了使全程运输成本最小,汽车应以多大速度行驶.分析:(1)难度不大,抓住关系式:全程运输成本=单位时间运输成本×全程运输时间,而全程运输时间=(全程距离)÷(平均速度)就可以解决.故所求函数及其定义域为但由于题设条件限制汽车行驶速度不超过ckm /h ,所以(2)的解决需要论函数的增减性来解决.由于v1v2>0,v2-v1>0,并且又S>0,所以即则当v=c时,y取最小值.说明:此题是1997年全国高考试题.由于限制汽车行驶速度不得超过c,因而求最值的方法也就不完全是常用的方法,再加上字母的抽象性,使难度有所增大.。

函数的单调性及奇偶性(含答案)

函数的单调性及奇偶性(含答案)

函数的单调性及奇偶性(含答案)函数的单调性及奇偶性1.已知函数$f(x)=x^2+2x+1$,则$f(x)$在$(-\infty,+\infty)$上是上的增函数,若$x>0$,则下列不一定正确的是()答案:D解题思路:$f(x)$在$(-\infty,+\infty)$上单调递增,所以选项D不一定正确。

2.已知定义在$(-\infty,+\infty)$上的函数$f(x)$满足:对任意不同的$x_1$,$x_2$,都有$f\left(\frac{x_1+x_2}{2}\right)\leq\frac{f(x_1)+f(x_2)}{2}$。

若$f(x)=ax^2+bx+c$,则实数$a$的取值范围是()答案:C解题思路:根据题目中的条件可知$f(x)$是下凸函数,即$a>0$,$b^2-4ac<0$,所以$a$的取值范围是$(0,+\infty)$,选项C正确。

3.已知定义在$(-\infty,+\infty)$上的函数$f(x)$满足:对任意不同的$x_1$,$x_2$,都有$f\left(\frac{x_1+x_2}{2}\right)\leq\frac{f(x_1)+f(x_2)}{2}$。

若$f(x)$在$(0,+\infty)$上单调递增,则实数$a$的取值范围是()答案:B解题思路:根据题目中的条件可知$f(x)$是下凸函数,且在$(0,+\infty)$上单调递增,所以$a>0$,$b^2-4ac<0$,且$b\geq0$,所以$a\leq\frac{1}{4}$,选项B正确。

4.函数$f(x)=\frac{1}{x+1}+\frac{1}{x+2}$的单调递减区间是()答案:A解题思路:求出$f'(x)$,令其小于0,解得$x\in(-\infty,-2)\cup(-1,-\frac{3}{2})$,即$f(x)$在$(-\infty,-2)\cup(-1,-\frac{3}{2})$上单调递减,选项A正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的单调性和奇偶性
例1(1)画出函数y=-x2+2|x|+3的图像,并指出函数的单调区间.
解:函数图像如下图所示,当x≥0时,y=-x2+2x+3=-(x-1)2+4;当x<0时,y=-x2-2x+3=-(x+1)2+4.在(-∞,-1]和[0,1]上,函数是增函数:在[-1,0]和[1,+∞)上,函数是减函数.
评析函数单调性是对某个区间而言的,对于单独一个点没有增减变化,所以对于区间端点只要函数有意义,都可以带上.
(2)已知函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,求实数a的取值范围.
分析要充分运用函数的单调性是以对称轴为界线这一特征.
解:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a-1)2+2,此二次函数的对称轴是x =1-a.因为在区间(-∞,1-a]上f(x)是单调递减的,若使f(x)在(-∞,4]上单调递减,对称轴x=1-a必须在x=4的右侧或与其重合,即1-a≥4,a≤-3.
评析这是涉及逆向思维的问题,即已知函数的单调性,求字母参数范围,要注意利用数形结合.
例2判断下列函数的奇偶性:
(1)f(x)=-
(2)f(x)=(x-1).
解:(1)f(x)的定义域为R.因为
f(-x)=|-x+1|-|-x-1|
=|x-1|-|x+1|=-f(x).
所以f(x)为奇函数.
(2)f(x)的定义域为{x|-1≤x<1},不关于原点对称.所以f(x)既不是奇函数,也不是偶函数.
评析用定义判断函数的奇偶性的步骤与方法如下:
(1)求函数的定义域,并考查定义域是否关于原点对称.
(2)计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f(-x)=-f(x)之一是否成立.f(-x)与-f(x)的关系并不明确时,可考查f(-x)±f(x)=0是否成立,从而判断函数的奇偶性.
例3已知函数f(x)=.
(1)判断f(x)的奇偶性.
(2)确定f(x)在(-∞,0)上是增函数还是减函数?在区间(0,+∞)上呢?证明你的结论.
解:因为f(x)的定义域为R,又
f(-x)===f(x),
所以f(x)为偶函数.
(2)f(x)在(-∞,0)上是增函数,由于f(x)为偶函数,所以f(x)在(0,+∞)上为减函数.
其证明:取x1<x2<0,
f(x1)-f(x2)=- ==.
因为x1<x2<0,所以
x2-x1>0,x1+x2<0,
x21+1>0,x22+1>0,
得f(x1)-f(x2)<0,即f(x1)<f(x2).
所以f(x)在(-∞,0)上为增函数.
评析奇函数在(a,b)上的单调性与在(-b,-a)上的单调性相同,偶函数在(a,b)与(-b,-a)的单调性相反.
例4已知y=f(x)是奇函数,它在(0,+∞)上是增函数,且f(x)<0,试问F(x)=在(-∞,0)上是增函数还是减函数?证明你的结论.
分析根据函数的增减性的定义,可以任取x 1<x2<0,进而判定F(x1)-F(x2)=
- =的正负.为此,需分别判定f(x1)、f(x2)与f(x2)的正负,而这可以从已条件中推出.
解:任取x1、x2∈(-∞,0)且x1<x2,则有-x1>-x2>0.
∵y=f(x)在(0,+∞)上是增函数,且f(x)<0,
∴f(-x2)<f(-x1)<0.①
又∵f(x)是奇函数,
∴f(-x2)=-f(x2),f(-x1)=-f(x1)②
由①、②得f(x2)>f(x1)>0.于是
F(x1)-F(x2)=>0,即F(x1)>F(x2),
所以F(x)=在(-∞,0)上是减函数.
评析本题最容易发生的错误,是受已知条件的影响,一开始就在(0,+∞)内任取x1<x2,展开证明.这样就不能保证-x1,-x2,在(-∞,0)内的任意性而导致错误.避免错误的方法是:要明确证明的目标,有针对性地展开证明活动.
例5讨论函数f(x)=(a≠0)在区间(-1,1)内的单调性.
分析根据函数的单调性定义求解.
解:设-1<x1<x2<1,则
f(x1)-f(x2)=-

∵x1,x2∈(-1,1),且x1<x2,
∴x1-x2<0,1+x1x2>0,
(1-x21)(1-x22)>0
于是,当a>0时,f(x1)<f(x2);当a<0时,f(x1)>f(x2).
故当a>0时,函数在(-1,1)上是增函数;当a<0时,函数在(-1,1)上为减函数.评析根据定义讨论(或证明)函数的单调性的一般步骤是:
(1)设x1、x2是给定区间内任意两个值,且x1<x2;
(2)作差f(x1)-f(x2),并将此差式变形;
(3)判断f(x1)-f(x2)的正负,从而确定函数的单调性.
例6求证:f(x)=x+ (k>0)在区间(0,k]上单调递减.
解:设0<x1<x2≤k,则
f(x1)-f(x2)=x1+ -x2-

∵0<x1<x2≤k,
∴x1-x2<0,0<x1x2<k2,
∴f(x1)-f(x2)>0
∴f(x1)>f(x2),
∴f(x)=x+ 中(0,k]上是减函数.
评析函数f(x)在给定区间上的单调性反映了函数f(x)在区间上函数值的变化趋势,是函数在区间上的整体性质.因此,若要证明f(x)在[a,b]上是增函数(减函数),就必须证明对于区间[a,b]上任意两点x1,x2,当x1<x2时,都有不等式f(x1)<f(x2)(f(x1)>f(x2))
类似可以证明:
函数f(x)=x+ (k>0)在区间[k,+∞]上是增函数.
例7判断函数f(x)=的奇偶性.
分析确定函数的定义域后可脱去绝对值符号.
解:由得函数的定义域为[-1,1].这时,|x-2|=2-x.
∴f(x)=,
∴f(-x)===f(x).
且注意到f(x)不恒为零,从而可知,f(x)=是偶函数,不是奇函数.评析由于函数解析式中的绝对值使得所给函数不像具有奇偶性,若不作深入思考,便会作出其非奇非偶的判断.但隐含条件(定义域)被揭示之后,函数的奇偶性就非常明显了.这样看来,解题中先确定函数的定义域不仅可以避免错误,而且有时还可以避开讨论,简化解题过程.。

相关文档
最新文档