单缝衍射实验讲义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光的衍射实验
实
验
说
明
书
北京方式科技有限责任公司
光的衍射实验
衍射和干涉一样,也是波动的重要特征之一。波在传播过程中遇到障碍物时,能够绕过障碍物的边缘前进。这种偏离直线传播的现象称为波的衍射现象。波的衍射现象可以用惠更斯原理作定性说明,但不能解释光的衍射图样中光强的分布。菲涅耳发展了惠更斯原理,为衍射理论奠定了基础。菲涅耳假定:波在传播过程中,从同一波阵面上各点发出的子波,经传播而在空间相遇时,产生相干叠加。这个发展了的惠更斯原理称为惠更斯-菲涅耳原理
【实验目的】
1.研究单缝夫琅禾费衍射的光强分布;
2.观察双缝衍射和单缝衍射之间的异同,并测定其光强分布,加深对衍射理论的了解; 3.学习使用光电元件进行光强相对测量的方法。
【实验仪器】
缝元件、光学实验导轨、半导体激光器、激光功率指示计、白屏、大一维位移架、十二档光探头。
【实验原理】
(一)产生夫琅禾费衍射的各种光路
夫琅禾费衍射的定义是:当光源S 和接收屏∑都距离衍射屏D 无限远(或相当于无限远)时,在接收屏处由光源及衍射屏产生的衍射为夫琅禾费衍射。但是把S 和∑放在无限远,实验上是办不到的。在实验中常常借助于正透镜来实现,实际接收夫琅和费衍射的装置有下列四种。 1.焦面接收装置(以单缝衍射为例来说明,下同)
把点光源S 放在凸透镜L 1的前焦点上,在凸透镜L 2的后焦面上接收衍射场(图1)
2.远场接收装置
在满足远场条件下,狭缝前后也可以不用透镜,而获得夫琅禾费衍射图样。远场条件是:①光源
离狭缝很远,即λ
42
a R >>,其中R 为光源到狭缝的距离,a 为狭缝的宽度;②接收屏离狭缝足够远,
s
即λ42a Z >>,Z 为狭缝与接收屏的距离。(至于观察点P ,在λ
42
a Z >>的条件下,只要要求P 满足傍
轴条件。)图2为远场接收的光路,其中假定一束平行光垂直投射在衍射屏上。
如图1所示,从光源S 出发经透镜L 1形成的平行光束垂直照射到缝宽为a 的狭缝D 上,根据惠更斯-菲涅耳原理,狭缝上各点都可看成是发射子波的新
波源,子波在L 2的后焦面上叠加形成一组明暗相间的条纹,中央条纹最亮亦最宽。 (二)夫琅禾费衍射图样的规律 1.单缝的夫琅禾费衍射
实验中以半导体激光器作光源。由于激光束具有良好的方向性,平行度很高,因而可省去准直透镜L 1。并且,若使观察屏远离狭缝,缝的宽度远远小于缝到屏的距离(即满足远场条件),则透镜L 2也可省略。简化后的光路如图3所示。实验证明,当Z 约等于100cm ,a 约等于8⨯10-3cm 时,便可以得到比较满意的衍射花样。
图3中,设屏幕上P 0(P 0位于光轴上)处是中央亮条纹的中心,其光强为I 0,屏幕上与光轴成θ角(θ在光轴上方为正,下方为负)的P θ处的光强为I θ,则理论计算得出:
2
20
sin β
β
θI I = (1)
其中 λ
θ
πβsin a =
式中θ为衍射角,λ为单色光的波长,a 为狭缝宽度,由式(1)可以得到:
(1) 当0=β即(0=θ)时,0I I =θ,光强最大,称为中央主极大。在其他条件不变的情况下,
此光强最大值I 0与狭缝宽度a 的平方成正比。
(2) 当πβk =时(k =±1, ±2, ±3),0,sin ==θλθI k a ,出现暗条纹。在θ很小时,可以用θ代替sin θ。
因此,暗纹出现在a k λθ=
的方向上。显然,主极大两侧两暗纹之间的角距离a
λ
θ20=∆,为其他相邻暗纹之间角距离a
λ
θ=
∆的两倍。
(3) 除了中央主极强以外,两相邻暗纹之间都有一次极强出现在0)sin (2=β
β
βd d 位置上,要求β值为:±1.43π,±2.46π,±3.47π,…对应的sin θ值a
λ
43.1±,a
λ
46
.2±,a
λ
47
.3±…,各次极
强的强度依次为0.047 I 0,0.017 I 0,0.008 I 0,…
以上是单缝夫琅禾费衍射的理论结果,其光强分布曲线如图4所示。
2.双缝衍射
将图1中的单缝D 换成双缝,每条缝的宽度仍为a ,中间隔着宽度为b 的不透明部分,则两缝的间距为d=a+b,如图5所示。理论计算得出,屏幕上P θ处的光强分布为:
νβ
β
θ22
20
cos sin 4I I = (2)
其中λ
θ
πνλθπβsin ,sin d a ==
π
π
π
π
π
π
图4
式(2)表明,双缝衍射图样的光强分布由两个因子决定:其一是
2
2sin β
β
,即单缝夫琅禾费衍射
图样的光强分布;其二是4I 0cos 2v ,它表示光强同为I 0而相位差2v 的两束光所产生的干涉图样的光强分布。因此双缝夫琅禾费衍射图样是单缝衍射和双缝干涉这两个因素联合作用的结果。
由式(2)可以得出:(1) 只有这两个因子中有一个为零,则光强为零。就第一个因子2
2sin β
β
而
言,光强为零的条件是:
πλ
θ
πβk a ==
sin (3)
即λθk a =sin (k =±1, ±2, ±3…)
就第二个因子cos 2v 而言,光强为零的条件是:
πλθπν)2
1
(sin -±==
m d 即λθ)2
1
(sin -±=m d (m =1, 2, 3…) (4)
(2) 出现双缝干涉光强极大值的条件是:
πλ
θ
πνn d ==
sin 即λθn d =sin (n =0,±1, ±2, ±3…) (3) 当λθn d =sin 确定的干涉极大正好与由λθk a =sin 确定的衍射极小的位置重合时,那么第n 级
干涉极大将不会出现,这称为缺级。即当:
a
d k n = 时发生缺级。例如
3=a
d
,则缺少±3,±6,±9,…各级,其光强分布曲线如图8所示。 3.测量光强的元件-光电池
光电池是利用半导体的光电效应制成的元件,常用的光电池有硒光电池和硅光电池两种。如果把