柯西不等式与排序不等式及其应用经典例题透析

合集下载

高中数学第三讲柯西不等式与排序不等式一二维形式的柯西不等式讲义含解析新人教A选修4_5_

高中数学第三讲柯西不等式与排序不等式一二维形式的柯西不等式讲义含解析新人教A选修4_5_

一二维形式的柯西不等式1.二维形式的柯西不等式(1)定理1:若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时,等号成立.(2)二维形式的柯西不等式的推论:(a+b)(c+d)≥(ac+bd)2(a,b,c,d为非负实数);a2+b2·c2+d2≥|ac+bd|(a,b,c,d∈R);a2+b2·c2+d2≥|ac|+|bd|(a,b,c,d∈R).2.柯西不等式的向量形式定理2:设α,β是两个向量,则|α·β|≤|α|·|β|,当且仅当β是零向量,或存在实数k,使α=kβ时,等号成立.[注意] 柯西不等式的向量形式中α·β≤|α||β|,取等号“=”的条件是β=0或存在实数k,使α=kβ.3.二维形式的三角不等式(1)定理3:x21+y21+x22+y22≥(x1-x2)2+(y1-y2)2(x1,y1,x2,y2∈R).当且仅当三点P1,P2与O共线,并且P1,P2点在原点O异侧时,等号成立.(2)推论:对于任意的x1,x2,x3,y1,y2,y3∈R,有(x1-x3)2+(y1-y3)2+(x2-x3)2+(y2-y3)2≥(x1-x2)2+(y1-y2)2.事实上,在平面直角坐标系中,设点P1,P2,P3的坐标分别为(x1,y1),(x2,y2),(x3,y3),根据△P1P2P3的边长关系有|P1P3|+|P2P3|≥|P1P2|,当且仅当三点P1,P2,P3共线,并且点P1,P2在P3点的异侧时,等号成立.[例1] 已知θ为锐角,a ,b ∈R +,求证:a2cos2θ+b2sin2θ≥(a +b )2.[思路点拨] 可结合柯西不等式,将左侧构造成乘积形式,利用“1=sin 2θ+cos 2θ”,然后用柯西不等式证明.[证明] ∵a2cos2θ+b2sin2θ=⎝⎛⎭⎪⎫a2cos2θ+b2sin2θ(cos 2θ+sin 2θ)≥⎝⎛⎭⎪⎫a cos θ·cos θ+b sin θ·sin θ2=(a +b )2,∴(a +b )2≤a2cos2θ+b2sin2θ.利用柯西不等式证明不等式的关键在于利用已知条件和所证不等式,把已知条件利用添项、拆项、分解、组合、配方、变量代换等,将条件构造成柯西不等式的基本形式,从而利用柯西不等式证明,但应注意等号成立的条件.1.已知a 1,a 2,b 1,b 2为正实数.求证:(a 1b 1+a 2b 2)⎝ ⎛⎭⎪⎫a1b1+a2b2≥(a 1+a 2)2.证明:∵(a 1b 1+a 2b 2)⎝⎛⎭⎪⎫a1b1+a2b2=[(a1b1)2+(a2b2)2]⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫a1b12+⎝ ⎛⎭⎪⎫a2b22 ≥⎝⎛⎭⎪⎫a1b1·a1b1+a2b2·a2b22=(a 1+a 2)2. ∴原不等式成立. 2.设a ,b ,c 为正数,求证:a2+b2+b2+c2+a2+c2≥ 2(a +b +c ). 证明:由柯西不等式,得 a2+b2·12+12≥a +b , 即2·a2+b2≥a +b . 同理:2·b2+c2≥b +c , 2·a2+c2≥a +c , 将上面三个同向不等式相加得:2()a2+b2+ b2+c2+ a2+c2≥2(a +b +c ) ∴ a2+b2+ b2+c2+a2+c2≥ 2(a +b +c ). 3.设a ,b ∈R +,且a +b =2.求证:a22-a +b22-b ≥2.证明:根据柯西不等式,有[(2-a )+(2-b )]⎝ ⎛⎭⎪⎫a22-a +b22-b=[(2-a)2+(2-b)2]⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫a 2-a 2+⎝ ⎛⎭⎪⎫b 2-b 2≥⎝⎛⎭⎪⎫2-a ·a2-a +2-b ·b 2-b 2=(a +b )2=4.∴a22-a +b22-b ≥4(2-a)+(2-b)=2. ∴原不等式成立.[例2] 求函数y =3sin α+4cos α的最大值.[思路点拨] 函数的解析式是两部分的和,若能化为ac +bd 的形式就能用柯西不等式求其最大值.[解] 由柯西不等式得(3sin α+4cos α)2≤(32+42)(sin 2α+cos 2α)=25, ∴3sin α+4cos α≤5.当且仅当sin α3=cos α4>0即sin α=35,cos α=45时取等号,即函数的最大值为5.利用柯西不等式求最值的注意点(1)变形凑成柯西不等式的结构特征,是利用柯西不等式求解的先决条件;(2)有些最值问题从表面上看不能利用柯西不等式,但只要适当添加上常数项或和为常数的各项,就可以利用柯西不等式来解,这也是运用柯西不等式解题的技巧;(3)有些最值问题的解决需要反复利用柯西不等式才能达到目的,但在运用过程中,每运用一次前后等号成立的条件必须一致,不能自相矛盾,否则就会出现错误.多次反复运用柯西不等式的方法也是常用技巧之一.4.已知2x 2+y 2=1,求2x +y 的最大值.解:∵2x +y =2×2x +1×y ≤(2)2+12×(2x)2+y2=3×2x2+y2=3,当且仅当x =y =33时取等号. ∴2x +y 的最大值为 3.5.求函数y =x2-2x +3+x2-6x +14的最小值. 解:y =(x -1)2+2+(3-x)2+5,y 2=(x -1)2+2+(3-x )2+5+2×[(x -1)2+2][(3-x)2+5]≥(x -1)2+2+(3-x )2+5+2×[(x -1)(3-x )+10]=[(x -1)+(3-x )]2+(7+210)=11+210.当且仅当x -13-x =25,即x =32+52+5时等号成立.此时y min =11+210=10+1.1.已知a ,b ∈R +且a +b =1,则P =(ax +by )2与Q =ax 2+by 2的大小关系是( ) A .P ≤Q B .P <Q C .P ≥QD .P >Q解析:选A 设m =(a x ,b y ),n =(a ,b), 则|ax +by |=|m·n |≤|m ||n |=(ax)2+(by)2·(a)2+(b)2=ax2+by2·a +b = ax2+by2, ∴(ax +by )2≤ax 2+by 2,即P ≤Q .2.若a ,b ∈R ,且a 2+b 2=10,则a -b 的取值范围是( ) A .[-25,2 5 ] B .[-210,210 ]C .[-10,10 ]D .(-5,5)解析:选A (a 2+b 2)[12+(-1)2]≥(a -b )2, ∵a 2+b 2=10, ∴(a -b )2≤20. ∴-25≤a -b ≤2 5.3.已知x +y =1,那么2x 2+3y 2的最小值是( ) A.56 B.65 C.2536D.3625解析:选B (2x 2+3y 2)[(3)2+(2)2]≥(6x +6y )2=[6(x +y )]2=6, 当且仅当x =35,y =25时取等号,即2x 2+3y 2≥65.故2x 2+3y 2的最小值为65.4.函数y =x -5+26-x 的最大值是( ) A. 3 B. 5 C .3D .5解析:选B 根据柯西不等式,知y =1×x -5+2×6-x ≤12+22×(x -5)2+(6-x)2=5,当且仅当x =265时取等号.5.设xy >0,则⎝⎛⎭⎪⎫x2+4y2⎝ ⎛⎭⎪⎫y2+1x2的最小值为________.解析:原式=⎣⎢⎡⎦⎥⎤x2+⎝ ⎛⎭⎪⎫2y 2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1x 2+y2≥x ·1x +2y ·y 2=9,当且仅当xy =2时取等号. 答案:96.设a =(-2,1,2),|b |=6,则a ·b 的最小值为________,此时b =________. 解析:根据柯西不等式的向量形式,有|a ·b |≤|a |·|b |, ∴|a ·b |≤(-2)2+12+22×6=18, 当且仅当存在实数k , 使a =kb 时,等号成立. ∴-18≤a ·b ≤18, ∴a ·b 的最小值为-18, 此时b =-2a =(4,-2,-4). 答案:-18 (4,-2,-4)7.设实数x ,y 满足3x 2+2y 2≤6,则P =2x +y 的最大值为________. 解析:由柯西不等式得(2x +y )2≤[(3x )2+(2y )2]·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫232+⎝ ⎛⎭⎪⎫122=(3x 2+2y 2)·⎝ ⎛⎭⎪⎫43+12≤6×116=11,当且仅当x =411,y =311时取等号,故P =2x +y 的最大值为11. 答案:118.已知x ,y ∈R +,且x +y =2.求证:1x +1y ≥2.证明:1x +1y =12(x +y )⎝ ⎛⎭⎪⎫1x +1y =12[ (x)2+(y)2]⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1x 2+⎝ ⎛⎭⎪⎫1y 2 ≥12⎝ ⎛⎭⎪⎫x · 1x +y ·1y 2=2,当且仅当⎩⎪⎨⎪⎧xy=y x ,x +y =2时等号成立,此时x =1,y =1.所以1x +1y≥2.9.若x 2+4y 2=5,求x +y 的最大值及此时x ,y 的值. 解:由柯西不等式得[x 2+(2y )2]⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122≥(x +y )2,即(x +y )2≤5×54=254,x +y ≤52.当且仅当x 1=2y12,即x =4y 时取等号.由⎩⎪⎨⎪⎧x2+4y2=5,x =4y ,得⎩⎪⎨⎪⎧x =2,y =12或⎩⎪⎨⎪⎧x =-2,y =-12(舍去).∴x +y 的最大值为52,此时x =2,y =12.10.求函数f (x )=3cos x +4 1+sin2x 的最大值,并求出相应的x 的值. 解:设m =(3,4),n =(cos x ,1+sin2x), 则f (x )=3cos x +4 1+sin2x =|m ·n |≤|m |·|n |=cos2x +1+sin2x ·32+42 =52,当且仅当m ∥n 时,上式取“=”.此时,3 1+sin2x-4cos x=0.解得sin x=75,cos x=325.故当sin x=75,cos x=325时.f(x)=3cos x+4 1+sin2x取最大值5 2.。

高中数学第2章柯西不等式与排序不等式及其应用章末复习课讲义新人教B版选修4_5

高中数学第2章柯西不等式与排序不等式及其应用章末复习课讲义新人教B版选修4_5

第2章 柯西不等式与排序不等式及其应用[自我校对]①向量 ②代数可证明一些简单不等式.【例1】 已知a ,b ,c 是实数,且a +b +c =1,求证:13a +1+13b +1+13c +1≤4 3. [精彩点拨] 设m =(13a +1,13b +1,13c +1),n =(1,1,1),利用柯西不等式的向量形式证明,或把式子左边补上系数1,直接利用柯西不等式求解.[规范解答] 法一:因为a ,b ,c 是实数,且a +b +c =1,令m =(13a +1,13b +1,13c +1),n =(1,1,1).则|m ·n |2=(13a +1+13b +1+13c +1)2, |m |2·|n |2=3[(13a +1)+(13b +1)+(13c +1)] =3[13(a +b +c )+3]=48. ∵|m ·n |2≤|m |2·|n |2,∴(13a +1)+13b +1+13c +1)2≤48, ∴13a +1+13b +1+13c +1≤4 3.法二:由柯西不等式得(13a +1+13b +1+13c +1)2≤(12+12+12)[(13a +1)+(13b +1)+(13c +1)]=3[13(a +b +c )+3]=48,∴13a +1+13b +1+13c +1≤4 3.1.设正数a ,b ,c 满足abc =a +b +c ,求证:ab +4bc +9ac ≥36,并给出等号成立的条件.[证明] 由abc =a +b +c ,得1ab +1bc +1ca=1.由柯西不等式,得(ab +4bc +9ac )⎝⎛⎭⎪⎫1ab +1bc +1ca ≥(1+2+3)2,所以ab +4bc +9ac ≥36,当且仅当a =2,b =3,c =1时,等号成立.应从所要证的式子的结构观察分析,再给出适当的数组.【例2】 已知a ,b ,c 为正数,求证:a +b +c ≤a 2+b 22c +b 2+c 22a +c 2+a 22b.[精彩点拨] 不妨设a ≥b ≥c >0,则a 2≥b 2≥c 2,1c ≥1b ≥1a,根据不等式的特点,利用排序不等式证明.[规范解答] 由于不等式关于a ,b ,c 对称, 可设a ≥b ≥c >0.于是a 2≥b 2≥c 2,1c ≥1b ≥1a.由排序不等式,得反序和≤乱序和,即a 2·1a +b 2·1b +c 2·1c ≤a 2·1b +b 2·1c +c 2·1a,及a 2·1a +b 2·1b +c 2·1c ≤a 2·1c +b 2·1a +c 2·1b.以上两个同向不等式相加再除以2,即得原不等式.2.在△ABC 中,h a ,h b ,h c 为边长a ,b ,c 的高, 求证:a sin A +b sin B +c sin C ≥h a +h b +h c . [证明] 不妨设a >b >c ,则对应的角A >B >C ,A ,B ,C ∈(0,π),∴sin A >sin B >sin C . 由排序原理得a sin A +b sin B +c sin C ≥a sin B +b sin C +c sin A .在△ABC 中,a sin B =h c ,b sin C =h a ,c sin A =h b , ∴a sin A +b sin B +c sin C ≥h a +h b +h c .们通过不等式求最值提供了新的有力工具,但一定要注意取等号的条件能否满足.【例3】 已知实数x ,y ,z 满足x 2+4y 2+9z 2=a (a >0),且x +y +z 的最大值是7,求a 的值.[精彩点拨] 由x 2+4y 2+9z 2=x 2+(2y )2+(3z )2,x +y +z =x +12·2y +13·3z ,联想到柯西不等式求解.[规范解答] 由柯西不等式: [x 2+(2y )2+(3z )2]⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫132≥⎝ ⎛⎭⎪⎫x +12×2y +13×3z 2.因为x 2+4y 2+9z 2=a (a >0),所以4936a ≥(x +y +z )2,即-7a 6≤x +y +z ≤7a 6.因为x +y +z 的最大值是7, 所以7a 6=7,得a =36.当x =367,y =97,z =47时,x +y +z 取最大值,所以a =36.3.求实数x ,y 的值,使得(y -1)2+(x +y -3)2+(2x +y -6)2达到最小值. [解] 由柯西不等式,得(12+22+12)×[(y -1)2+(3-x -y )2+(2x +y -6)2] ≥[1×(y -1)+2×(3-x -y )+1×(2x +y -6)]2=1, 即(y -1)2+(x +y -3)2+(2x +y -6)2≥16,当且仅当y -11=3-x -y 2=2x +y -61,即x =52,y =56时,上式取等号.故x =52,y =56时,(y -1)2+(x +y -3)2+(2x +y -6)2达到最小值.【例4】 已知正实数x 1,x 2,…,x n 满足x 1+x 2+…+x n =P ,P 为定值,求F =x 21x 2+x 22x 3+…+x 2n -1x n +x 2n x 1的最小值. [精彩点拨] 不妨设0<x 1≤x 2≤…≤x n ,利用排序不等式求解. [规范解答] 不妨设0<x 1≤x 2≤…≤x n , 则1x 1≥1x 2≥…≥1x n>0,且0<x 21≤x 22≤…≤x 2n .∵1x 2,1x 3,…,1x n ,1x 1为序列⎩⎨⎧⎭⎬⎫1x i (i =1,2,3,…,n )的一个排列,根据排序不等式,得F=x21x2+x22x3+…+x2n-1x n+x2nx1≥x21·1x1+x22·1x2+…+x2n·1x n=x1+x2+…+x n=P(定值),当且仅当x1=x2=…=x n时等号成立,∴F=x21x2+x22x3+…+x2n-1x n+x2nx1的最小值为P.4.设x1,x2,…,x n取不同的正整数,则m=x112+x222+…+x nn2的最小值是( ) A.1B.2C.1+12+13+…+1nD.1+122+132+…+1n2[解析]设a1,a2,…,a n是x1,x2,…,x n的一个排列,且满足a1<a2<…<a n,故a1≥1,a2≥2,…,a n≥n.又因为1>122>132>…>1n2,所以x11+x222+x332+…+x nn2≥a1+a222+a332+…+a nn2≥1×1+2×122+3×132+…+n×1n2=1+12+13+…+1n.[答案] C在利用平均值不等式求函数最值时.一定要满足下列三个条件:(1)各项均为正数.(2)“和”或“积”为定值.(3)等号一定能取到,这三个条件缺一不可.2.解决实际问题由于受算术平均与几何平均定理求最值的约束条件的限制,在求最值时常常需要对解析式进行合理的变形.对于一些分式结构的函数,当分子中变量的次数不小于分母中变量的次数时,通常采用分离变量(或常数)的方法,拼凑出和的形式,若积为定值则可用平均值不等式求解.【例5】某种商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入16(x 2-600)万元作为技改费用,投入50万元作为固定宣传费用,投入15x 万元作为浮动宣传费用.试问:当该商品明年的销售量a 至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.[精彩点拨] (1)设每件定价为t 元,表示总收入,根据题意列不等式求解.(2)利用销售收入≥原收入+总投入,列出不等式,由题意x >25,此时不等式求解.[规范解答] (1)设每件定价为t 元, 依题意,有⎝⎛⎭⎪⎫8-t -25t ×0.2t ≥25×8, 整理得t 2-65t +1 000≤0, 解得25≤t ≤40.∴要使销售的总收入不低于原收入,每件定价最多为40元. (2)依题意,x >25时,不等式ax ≥25×8+50+16(x 2-600)+15x 有解,等价于x >25时,a ≥150x +16x +15有解.∵150x +16x ≥2150x ×16x =10(当且仅当x =30时,等号成立),∴a ≥10.2. 当该商品明年的销售量a 至少达到10.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.5.若a >b >0,则a 2+1b (a -b )的最小值为( )A .2B .3C .4D .5 [解析] 依题意得a -b >0,所以a 2+1b (a -b )≥a 2+1⎣⎢⎡⎦⎥⎤b +(a -b )22=a 2+4a2≥2a 2·4a2=4,当且仅当⎩⎪⎨⎪⎧b =a -b >0,a 2=4a 2,即a =2,b =22时取等号,因此a 2+1b (a -b )的最小值是4,选C.[答案] C思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题.本章常把要证明的不等式通过换元或配凑等整体应用,把命题转化为柯西不等式或排序不等式的形式加以解决.【例6】 已知a ,b ,c 为正数,求证:a b +c +b c +a +ca +b ≥32.[精彩点拨] 将不等式的左边进行变形,再利用柯西不等式证明. [规范解答] 左端变形ab +c+1+bc +a+1+ca +b+1=(a +b +c )⎝⎛⎭⎪⎫1b +c +1c +a +1a +b ,∴只需证此式≥92即可.∵ab +c +bc +a +ca +b+3=⎝⎛⎭⎪⎫a b +c +1+⎝ ⎛⎭⎪⎫b a +c +1+⎝ ⎛⎭⎪⎫c a +b +1=(a +b +c )⎝⎛⎭⎪⎫1b +c +1c +a +1a +b=12[(b +c )+(c +a )+(a +b )]⎝ ⎛⎭⎪⎫1b +c +1c +a +1a +b≥12(1+1+1)2=92, ∴ab +c +ba +c+ca +b ≥92-3=32.6.已知a ,b ,c 为正数,求证:2(a 3+b 3+c 3)≥a 2(b +c )+b 2(a +c )+c 2(a +b ). [证明] 不妨设0≤a ≤b ≤c ,则a 2≤b 2≤c 2, 由排序不等式,得a 2a +b 2b +c 2c ≥a 2b +b 2c +c 2a ,a 2a +b 2b +c 2c ≥a 2c +b 2a +c 2b .以上两式相加,得2(a 3+b 3+c 3)≥a 2(b +c )+b 2(a +c )+c 2(a +b ).1.若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于( )A .6B .7C .8D .9[解析] 不妨设a >b ,由题意得⎩⎪⎨⎪⎧a +b =p >0,ab =q >0,∴a >0,b >0,则a ,-2,b 成等比数列,a ,b ,-2成等差数列,∴⎩⎪⎨⎪⎧ab =(-2)2,a -2=2b ,∴⎩⎪⎨⎪⎧a =4,b =1,∴p =5,q =4,∴p +q =9.[答案] D2.设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma +nb =5,则 m 2+n 2的最小值为________. [解析] 根据柯西不等式(ma +nb )2≤(a 2+b 2)(m 2+n 2),得25≤5(m 2+n 2),m 2+n 2≥5,m 2+n 2的最小值为 5.[答案]53.已知x >0,y >0,证明:(1+x +y 2)·(1+x 2+y )≥9xy .[证明] 因为x >0,y >0,所以1+x +y 2≥33xy 2>0,1+x 2+y ≥33x 2y >0, 故(1+x +y 2)(1+x 2+y )≥33xy 2·33x 2y =9xy . 4.若a >0,b >0,且1a +1b=ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由.[解] (1)由ab =1a +1b≥2ab,得ab ≥2,且当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,且当a =b =2时等号成立. 所以a 3+b 3的最小值为4 2.(2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6.5.已知a >0,b >0,c >0,函数f (x )=|x +a |+|x -b |+c 的最小值为4. (1)求a +b +c 的值; (2)求14a 2+19b 2+c 2的最小值.[解] (1)因为f (x )=|x +a |+|x -b |+c ≥|(x +a )-(x -b )|+c =|a +b |+c , 当且仅当-a ≤x ≤b 时,等号成立. 又a >0,b >0,所以|a +b |=a +b , 所以f (x )的最小值为a +b +c .又已知f (x )的最小值为4,所以a +b +c =4. (2)由(1)知a +b +c =4,由柯西不等式,得⎝ ⎛⎭⎪⎫14a 2+19b 2+c 2(4+9+1)≥⎝ ⎛⎭⎪⎫a 2×2+b 3×3+c ×12=(a +b +c )2=16, 即14a 2+19b 2+c 2≥87. 当且仅当12a 2=13b 3=c 1,即a =87,b =187,c =27时等号成立,故14a 2+19b 2+c 2的最小值是87.。

高中数学第三讲柯西不等式与排序不等式二一般形式的柯西不等式讲义含解析新人教A版选修4_5

高中数学第三讲柯西不等式与排序不等式二一般形式的柯西不等式讲义含解析新人教A版选修4_5

二 一般形式的柯西不等式与推广,其特点可类比二维形式的柯西不等式来总结,左边是平方和的积,右边是积的和的平方.在使用时,关键是构造出符合柯西不等式的结构形式.[例1] 设x 1,x 2,…,x n 都是正数,求证:x 1+x 2+…+x n ≥x 1+x 2+…+x n.[思路点拨] 根据一般柯西不等式的特点,构造两组数的积的形式,利用柯西不等式证明.[证明] ∵(x 1+x 2+…+x n )⎝ ⎛⎭⎪⎫1x 1+1x 2+…+1x n=[(x 1)2+(x 2)2+…+(x n )2]·⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1x 12+⎝ ⎛⎭⎪⎫1x 22+…+⎝ ⎛⎭⎪⎫1x n 2≥ ⎝⎛⎭⎪⎫x 1·1x 1+x 2·1x 2+…+x n ·1x n 2=n 2,∴1x 1+1x 2+…+1x n ≥n 2x 1+x 2+…+x n.柯西不等式的结构特征可以记为:(a 1+a 2+…+a n )·(b 1+b 2+…+b n )≥(a 1b 1+a 2b 2+…+a n b n )2.其中a i ,b i ∈R +(i =1,2,…,n ),在使用柯西不等式时要善于从整体上把握柯西不等式的结构特征,正确地配凑出公式两侧的数是解决问题的关键.1.设a ,b ,c 为正数,且不全相等. 求证:2a +b +2b +c +2c +a >9a +b +c. 证明:构造两组数a +b ,b +c ,c +a ;1a +b,1b +c,1c +a,则由柯西不等式得(a +b +b +c +c +a )⎝⎛⎭⎪⎫1a +b +1b +c +1c +a ≥(1+1+1)2,①即2(a +b +c )⎝⎛⎭⎪⎫1a +b +1b +c +1c +a ≥9,于是2a +b +2b +c +2c +a ≥9a +b +c. 由柯西不等式知,①中有等号成立⇔a +b1a +b=b +c1b +c=c +a1c +a⇔a +b =b +c =c +a ⇔a =b =c .因为a ,b ,c 不全相等,故①中等号不成立, 于是2a +b +2b +c +2c +a >9a +b +c.[例2] (1)+求 1x + 4y + 9z的最小值;(2)设2x +3y +5z =29,求函数μ=2x +1+3y +4+5z +6的最大值. [思路点拨] (1)利用1x +4y +9z=⎝ ⎛⎭⎪⎫1x +4y +98(x +y +z ). (2)利用(2x +1+3y +4+5z +6)2= (1×2x +1+1×3y +4+1×5z +6)2. [解] (1)∵x +y +z =1, ∴1x +4y +9z =⎝ ⎛⎭⎪⎫1x +4y +9z (x +y +z );≥⎝⎛⎭⎪⎫1x·x +2y·y +3z·z 2=(1+2+3)2=36. 当且仅当x =y 2=z3,即x =16,y =13,z =12时取等号.所以1x +4y +9z的最小值为36.(2)根据柯西不等式,有(2x +1×1+3y +4×1+5z +6×1)2≤[(2x +1)+(3y +4)+(5z +6)]·(1+1+1) =3×(2x +3y +5z +11) =3×40=120.故2x +1+3y +4+5z +6≤230, 当且仅当2x +1=3y +4=5z +6, 即x =376,y =289,z =2215时等号成立.此时μmax=230.利用柯西不等式求最值时,关键是对原目标函数进行配凑,以保证出现常数结果.同时,要注意等号成立的条件.2.已知x ,y ,z ∈R ,且x -2y +2z =5,则(x +5)2+(y -1)2+(z +3)2的最小值是( ) A .20 B .25 C .36D .47解析:选C ∵[(x +5)2+(y -1)2+(z +3)2][12+(-2)2+22]≥[(x +5)+(-2)(y -1)+2(z +3)]2=324,当且仅当x +51=y -1-2=z +32,即x =-3,y =-3,z =1时取等号.故(x +5)2+(y -1)2+(z +3)2的最小值是36.3.若2x +3y +4z =11,则x 2+y 2+z 2的最小值为________. 解析:∵2x +3y +4z =11,∴由柯西不等式,得 (x 2+y 2+z 2)(4+9+16)≥(2x +3y +4z )2, 故x 2+y 2+z 2≥12129,当且仅当x 2=y 3=z 4,即x =2229,y =3329,z =4429时取等号.答案:121294.把一根长为12 m 的细绳截成三段,各围成三个正方形.问:怎样截法,才能使围成的三个正方形面积之和S 最小,并求此最小值.解:设三段绳子的长分别为x ,y ,z ,则x +y +z =12,三个正方形的边长分别为x 4,y4,z4均为正数,三个正方形面积之和:S =⎝ ⎛⎭⎪⎫x 42+⎝ ⎛⎭⎪⎫y 42+⎝ ⎛⎭⎪⎫z 42=116(x 2+y 2+z 2). ∵(12+12+12)(x 2+y 2+z 2)≥(x +y +z )2=122, 即x 2+y 2+z 2≥48.从而S ≥116×48=3. 当且仅当x 1=y 1=z1时取等号,又x +y +z =12, ∴x =y =z =4时,S min =3.故把绳子三等分时,围成的三个正方形面积之和最小,最小面积为3 m 2.1.已知a 2+b 2+c 2+d 2=5,则ab +bc +cd +ad 的最小值为( ) A .5 B .-5 C .25D .-25解析:选B (ab +bc +cd +ad )2≤(a 2+b 2+c 2+d 2)·(b 2+c 2+d 2+a 2)=25,当且仅当a =b =c =d =±52时,等号成立. ∴ab +bc +cd +bd 的最小值为-5.2.已知a 21+a 22+…+a 2n =1,x 21+x 22+…+x 2n =1,则a 1x 1+a 2x 2+…+a n x n 的最大值是( ) A .1 B .2 C .3D .4解析:选A (a 1x 1+a 2x 2+…+a n x n )2≤(a 21+a 22+…+a 2n )·(x 21+x 22+…+x 2n )=1×1=1,当且仅当x 1a 1=x 2a 2=…=x n a n=1时取等号.∴a 1x 1+a 2x 2+…+a n x n 的最大值是1.3.已知x ,y ,z ∈R +,且1x +2y +3z =1,则x +y 2+z3的最小值是( )A .5B .6C .8D .9解析:选 D x +y 2+z 3=1x +2y +3z ·⎝ ⎛⎭⎪⎫x +y 2+z 3≥1x·x +2y·y2+3z·z 32=9,当且仅当1x =2y =3z =13时等号成立.4.设a ,b ,c ,x ,y ,z 是正数,且a 2+b 2+c 2=10,x 2+y 2+z 2=40,ax +by +cz =20,则a +b +cx +y +z=( )A.14B.13C.12D.34解析:选C 由柯西不等式得,(a 2+b 2+c 2)(x 2+y 2+z 2)≥(ax +by +cz )2=400,当且仅当a x =b y =c z =12时取等号,因此有a +b +c x +y +z =12.5.已知2x +3y +z =8,则x 2+y 2+z 2取得最小值时,x ,y ,z 形成的点(x ,y ,z )=________. 解析:由柯西不等式(22+32+12)(x 2+y 2+z 2)≥(2x +3y +z )2,即x 2+y 2+z 2≥327. 当且仅当x 2=y3=z 时等号成立.又2x +3y +z =8, 解得x =87,y =127,z =47,故所求点为⎝ ⎛⎭⎪⎫87,127,47. 答案:⎝ ⎛⎭⎪⎫87,127,47 6.设a ,b ,c 为正数,则(a +b +c )⎝ ⎛⎭⎪⎫4a +9b+36c 的最小值是________.解析:(a +b +c )⎝ ⎛⎭⎪⎫4a +9b+36c=[(a )2+(b )2+(c )2]⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2a 2+⎝ ⎛⎭⎪⎫3b 2+⎝ ⎛⎭⎪⎫6c 2 ≥⎝⎛⎭⎪⎫a ·2a +b ·3b +c ·6c 2=(2+3+6)2=121.当且仅当a 2=b 3=c6=k (k 为正实数)时,等号成立.答案:1217.已知实数x ,y ,z 满足3x +2y +z =1,则x 2+2y 2+3z 2的最小值为________. 解析:由柯西不等式,得[x 2+(2y )2+(3z )2]·⎣⎢⎡⎦⎥⎤32+(2)2+⎝ ⎛⎭⎪⎫132≥(3x +2y +z )2=1,所以x 2+2y 2+3z 2≥334,当且仅当x 3=2y 2=3z 13,即x =934,y =334,z =134时,等号成立,所以x 2+2y 2+3z 2的最小值为334.答案:3348.在△ABC 中,设其各边长为a ,b ,c ,外接圆半径为R ,求证:(a 2+b 2+c 2)⎝⎛⎭⎪⎫1sin 2A +1sin 2B +1sin 2C ≥36R 2.证明:∵a sin A =b sin B =csin C =2R ,∴(a 2+b 2+c 2)⎝ ⎛⎭⎪⎫1sin 2A +1sin 2B +1sin 2C≥⎝⎛⎭⎪⎫a sin A +b sin B +c sin C 2=36R 2.9.在直线5x +3y =2上求一点,使(x +2y -1)2+(3x -y +3)2取得最小值. 解:由柯西不等式得(22+12)[(x +2y -1)2+(3x -y +3)2]≥[2(x +2y -1)+(3x -y +3)]2=(5x +3y +1)2=9.∴(x +2y -1)2+(3x -y +3)2≥95.当且仅当x +2y -1=2(3x -y +3) 即5x -4y +7=0时取等号.解方程组⎩⎪⎨⎪⎧5x +3y =2,5x -4y =-7,得⎩⎪⎨⎪⎧x =-1335,y =97.故所求点的坐标为⎝ ⎛⎭⎪⎫-1335,97.10.已知函数f (x )=m -|x -2|,m ∈R ,且f (x +2)≥0的解集为[-1,1]. (1)求m 的值;(2)若a ,b ,c 为正实数,且1a +12b +13c =m ,求证:a +2b +3c ≥9.解:(1)因为f (x +2)=m -|x |, 所以f (x +2)≥0等价于|x |≤m .由|x |≤m 有解,得m ≥0,且其解集为{x |-m ≤x ≤m }, 又f (x +2)≥0的解集为[-1,1],故m =1. (2)证明:由(1)知1a +12b +13c=1,所以a +2b +3c =(a +2b +3c )⎝ ⎛⎭⎪⎫1a +12b +13c ≥⎝⎛⎭⎪⎫a ·1a +2b ·12b +3c ·13c 2=9.。

柯西不等式 排序不等式及

柯西不等式 排序不等式及
6
所以 330 x 2 y 330 .
6
6
解析:

2x 1 2
3y 4 3
2x2 3y2
,即解得 x
5
y
330 22 2 330 33
时,
Amax
330 , 6
解得
x
330 22
时,Amin
y
2
330 33
330 . 6
解析: 2 x y z 2 ( 2x 1 3y 1 z)2
2.若2x 3y 1,则4x2 9y2的最小值为

且最小值点为
.
解析: 由柯西不等式,所以
4x2 9 y2 12 12 2x 3y2 1,
所以4x2 9 y2 1 .当且仅当2x 1 3y 1, 2
即2x
3
y时取等号.由22xx
3y 3y
,得 1
x
y
1 4, 1 6
4.已知x,y,z R,且x 2y 2z 5, 求x2 y2 z2的最小值.
解析: 根据柯西不等式有,x2 Nhomakorabea2 z2
12
2 2
22
x
2 y
2 z 2

当且仅当 x y z , 1 2 2
即x 5,y 10,z 10时等号成立.
9
9
9
因为x 2 y 2z 5,
求A x 2 y的最值;
2设x y z 1,
求A 2x2 3y2 z2的最小值.
解析: 1 x 2 y2 ( 2x 1 3y 2 )2
2
3
2x2 3y2 (1 4) 2x2 3y2 11.
23
6
因为2x2 3y2 5,所以 x 2 y 2 55,

选修4-5第2节 柯西不等式和排序不等式

选修4-5第2节 柯西不等式和排序不等式

1 a1 a2 a2 a3 a1 a3 =m3+a +a +a +a +a +a 2 3 3 1 2 1 1 9 ≥m(3+2+2+2)=m, m 当且仅当 a1=a2=a3= 时,等号成立. 3
证法 2:由已知条件和柯西不等式有:
1 1 1 1 1 1 1 + + =m(a1+a2+a3)a +a +a a1 a2 a3 1 2 3
Hale Waihona Puke B.a1a2+b1b2 D. 1
2
因 为 0<a1<a2 , 0<b1<b2 , 由 排 序 不 等 式 可 知 a1b1+a2b2最大.
2+9y2的最小值为 4.若2x+3y=11 ,则 4 x 1 ( , ) 小值点为 4 6 .
1 2
,且最
由柯西不等式, 所以(4x2+9y2)(12+12)≥(2x+3y)2=1, 1 2 2 所以4x +9y ≥ 2 . 当且仅当2x· 1=3y· 1,即2x=3y时取等号. 1 2x=3y x= 4 由 2x+3y=1 ,得 y= 1 , 6 所以4x2+9y2的最小值为
【答案】
10
【点评】 本题是柯西不等式的简单应用. 柯西不等 式与基本不等式在形式上有相似也有不同, 在应用时应根 据式子的特点, 选择恰当的解题途径. 正确地应用柯西不 等式, 特别要注意平方运算, 关键在于正确使用柯西不等 式构造常数,即最值,并要注意等号成立的条件.下面设 计一变式训练.
变式题
1 1 1 1 2 9 = , ≥m a1· + a2· + a3· a1 a2 a3 m m 当且仅当 a1=a2=a3= 时,等号成立. 3

排序、均值、柯西不等式及其应用(不等式 (拓展5)

排序、均值、柯西不等式及其应用(不等式 (拓展5)

排序、均值、柯西不等式及其应用(不等式 (拓展5)排序不等式、均值不等式、柯西不等式是不等式证明的基本工具,三者各有所长,这里我们先简单回顾一下三个不等式,然后结合具体题目谈谈它们在不等式证明中的应用。

①排序不等式:(i)对于两个有序数组1212,n n a a a b b b ≤≤≤≤≤≤ 及则112211221211n ni j i j in bn n n n a b a b a b a b a b a b a b a b a b -+++≥+++≥+++ (同序)(乱序)(反序) 其中12,,,n i i i 与12,,,n j j j 是1,2, n 的任意两个排列,当且仅当12n a a a === 或12n b b b === 时式中等号成立.(ii) 设120n a a a <≤≤≤ ,12,n b b b <≤≤≤ 0而12,,,n i i i 是1,2,,n 的一个排列,则 112121121212i i i nn n n bb b b b b bbb nn n a a a a a a a a a -≤≤当且仅当12n a a a === 或12n b b b === 时式中等号成立.(iii)设有n 组非负数,每组n 个数,它们满足:120k k kn a a a ≤≤≤≤ (1,2,,)k m = ,那么,从每一组中各取出一个数作积,再从剩下的每一组中各取一个作积,直到n 次取完为止,然后将这些“积”相加,则所得的诸和中,以112111222212m m n n mn I a a a a a a a a a =+++ 为最大.(iv)设120,n a a a <≤≤≤ 12,n b b b <≤≤≤ 0则≤≤当且仅当12n a a a === ,且12n b b b === 时取等号.②平均值不等式:设12,,n a a a 是n 个正实数,则有12n a a a n+++≥ 当且仅当12n a a a === 时取等号.幂平均值不等式:设0αβ<≤,n N +∈,12,,,n a a a R +∈,则121211n n a a a a a a n n αααβββαβ⎛⎫⎛⎫++++++≤ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭当且仅当12n a a a === 时取等号. 加权幂平均值不等式 设12,,,n p p p R +∈,0αβ<≤,n N +∈,12,,,n a a a R +∈,则12121112121212n nn n n n p a p a p a p a p a p a p p p p p p αααβββαβ⎛⎫⎛⎫++++++≤ ⎪ ⎪ ⎪ ⎪++++++⎝⎭⎝⎭当且仅当12n a a a === 时取等号.③柯西不等式:222222211221212)()()n n n n a b a b a b a a a b b b +++≤++++++ (当且仅当(1,2,,)i i a kb i n == 时取等号. 推论1设12,,,n a a a R +∈,则21212111()()n na a a n a a a ++++++≥ . 推论2设12,,,n a a a R +∈,则12222212nn a a a a a a n n ++++++⎛⎫≤⎪⎝⎭. 1、设a 、b 、c 为正数,求4936()()a b c a b c++++的最小值。

最经典上海-高三一轮数学(理)复习第76讲柯西不等式、排序不等式及应用

最经典上海-高三一轮数学(理)复习第76讲柯西不等式、排序不等式及应用

【拓展演练 3】 在△ABC 中,角 A,B,C 所对边分别为 a,b,c.求证: π3≤aAa++bbB++ccC<π2.
证明:不妨设 a≤b≤c,于是 A≤B≤C,由排序不等式: a·A+b·B+c·C≥aA+bB+cC; a·A+b·B+c·C≥bA+cB+aC; a·A+b·B+c·C≥cA+aB+bC. 三式相加得:3(aA+bB+cC)≥(a+b+c)(A+B+C) =π(a+b+c), 得aAa++bbB++ccC≥π3.
即aa212+aa232+…+aa2n-n 1+aa2n1≥a1+a2+…+an=5, 故所求最小值为 5.
二 利用柯西不等式证明不等式
【例 2】(2012·福建省泉州市 3 月质量检查)已知函数 f(x) =|x-2|+|x-4|的最小值为 m,实数 a,b,c,n,p,q 满足 a2+b2+c2=n2+p2+q2=m.
2.(2013·湖北卷)设 x,y,z∈R,且满足:x2+y2+z2=1,
x+2y+3z= 14,则 x+y+z=
.
解析:根据柯西不等式有
(x2+y2+z2)(12+22+32)≥(x+2y+3z)2,
当1x=2y=3z时“=”成立. 不妨令 x=k,y=2k,z=3k,则由 x2+y2+z2=1,
≥ [x-x-1]2+[y-y-1]2= 2, 当且仅当 x=1-x,y=1-y, 即 x=12,y=12时,等号成立. 故 f(x)的最小值为 2.
4.已知 a>0,b>0,c>0,且 a+b+c=1,则1a+1b+1c的
最小值是
.





(a

b+
1 c)( a

1 b

讲柯西不等式与排序不等式二维形式的柯西不等式

讲柯西不等式与排序不等式二维形式的柯西不等式

讲柯西不等式与排序不等式二维形式的柯西不等式汇报人:2023-12-02目录•引言•柯西不等式•排序不等式•二维形式的柯西不等式•案例分析•结论与展望CONTENTSCHAPTER01引言柯西不等式是数学中的一个基本不等式,它提供了一个在特定条件下,实数的平方和与乘积之间的关系。

排序不等式是另一个重要的不等式,它描述了当一组实数被排序后,它们的和与积之间的关系。

二维形式的柯西不等式结合了柯西不等式和排序不等式的思想,进一步探讨了向量模长的平方和与它们之间的角度余弦乘积之间的关系。

背景介绍数学模型与定义柯西不等式01对于任意实数a,b,c,d,有(ac+bd)^2 ≤ (a^2+b^2)(c^2+d^2)。

当且仅当ad=bc时,等号成立。

排序不等式02对于一组实数x1,x2,...,xn,若它们按升序排列,即x1≤x2≤...≤xn,则有∑xi^2 ≤ (x1+x2+...+xn)^2 / n,等号在所有数都相等时成立。

二维形式的柯西不等式03对于两个非零向量A=(x1,y1),B=(x2,y2),有|A|^2*|B|^2 ≥ (A·B)^2,等号在A和B共线时成立。

其中|A|表示向量A的模长,A·B表示两个向量的点积。

CHAPTER02柯西不等式•利用数学归纳法证明:通过数学归纳法,证明对于任何一组实数a_1, a_2, ..., a_n和b_1, b_2, ..., b n,都有∑{i=1}^{n}a_ib i≤∑{i=1}^{n}a i^2/∑{i=1}^{n}b_i^2利用排序不等式,可以证明一些优化问题的最优解,如线性规划、二次规划等排序不等式可以用于证明大数定理和强大数定理等概率论中的重要结论在概率论中的应用在最优化中的应用与其他数学知识的联系二维形式的排序不等式即为柯西不等式,两者是等价的与范德蒙公式的关系范德蒙公式是排序不等式的推广,适用于更广泛的情况CHAPTER03排序不等式对于任意实数 $x_1, x_2, \ldots, x_n$ 和 $y_1, y_2, \ldots, y_n$,有$\sum_{i=1}^{n}x_i^2 \cdot\sum_{i=1}^{n}y_i^2 \geq\left(\sum_{i=1}^{n}x_iy_i\right)^2$。

高中数学第三讲柯西不等式与排序不等式三排序不等式讲义含解析新人教A版选修

高中数学第三讲柯西不等式与排序不等式三排序不等式讲义含解析新人教A版选修

三 排序不等式1.顺序和、乱序和、反序和设a 1≤a 2≤…≤a n ,b 1≤b 2≤…≤b n 为两组实数,c 1,c 2,…,c n 为b 1,b 2,…,b n 的任一排列,称a 1b 1+a 2b 2+…+a n b n 为这两个实数组的顺序积之和(简称顺序和),称a 1b n +a 2b n -1+…+a n b 1为这两个实数组的反序积之和(简称反序和).称a 1c 1+a 2c 2+…+a n c n 为这两个实数组的乱序积之和(简称乱序和).2.排序不等式(排序原理)定理:(排序原理,又称为排序不等式) 设a 1≤a 2≤…≤a n ,b 1≤b 2≤…≤b n 为两组实数,c 1,c 2,…,c n 为b 1,b 2,…,b n 的任一排列,则有a 1b n +a 2b n -1+…+a n b 1≤a 1c 1+a 2c 2+…+a n c n ≤a 1b 1+a 2b 2+…+a n b n ,等号成立(反序和等于顺序和)⇔a 1=a 2=…=a n 或b 1=b 2=…=b n .排序原理可简记作:反序和≤乱序和≤顺序和.[点睛] 排序不等式也可以理解为两实数序列同向单调时,所得两两乘积之和最大;反向单调(一增一减)时,所得两两乘积之和最小.[例a 5b 3c 3+b 5c 3a 3+c 5a 3b 3≥1a +1b +1c. [思路点拨] 分析题目中已明确a ≥b ≥c ,所以解答本题时可直接构造两个数组,再用排序不等式证明即可.[证明] ∵a ≥b >0,于是1a ≤1b,又c >0,从而1bc ≥1ca,同理1ca ≥1ab ,从而1bc ≥1ca ≥1ab.又由于顺序和不小于乱序和,故可得a 5b 3c 3+b 5c 3a 3+c 5a 3b 3≥b 5b 3c 3+c 5c 3a 3+a 5a 3b 3=b 2c 3+c 2a 3+a 2b 3⎝⎛⎭⎪⎫∵a 2≥b 2≥c 2,1c 3≥1b 3≥1a 3≥c 2c 3+a 2a 3+b 2b 3=1c +1a +1b =1a +1b +1c. ∴原不等式成立.利用排序不等式证明不等式的技巧在于仔细观察、分析所要证明的式子的结构,从而正确地构造出不等式中所需要的带有大小顺序的两个数组.1.已知0<α<β<γ<π2,求证:sin αcos β+sin βcos γ+sin γ·cos α>12(sin2α+sin 2β+sin 2γ).证明:∵0<α<β<γ<π2,且y =sin x 在⎝ ⎛⎭⎪⎫0,π2为增函数,y =cos x 在⎝ ⎛⎭⎪⎫0,π2为减函数,∴0<sin α<sin β<sin γ,cos α>cos β>cos γ>0. ∴sin αcos β+sin βcos γ+sin γcos α >sin αcos α+sin βcos β+sin γcos γ =12(sin 2α+sin 2β+sin 2γ). 2.设x ≥1,求证:1+x +x 2+…+x 2n≥(2n +1)x n. 证明:∵x ≥1,∴1≤x ≤x 2≤…≤x n. 由排序原理得12+x 2+x 4+…+x 2n≥1·x n +x ·xn -1+…+xn -1·x +x n·1即1+x 2+x 4+…+x 2n≥(n +1)x n.①又因为x ,x 2,…,x n,1为1,x ,x 2,…,x n的一个排列, 由排序原理得1·x +x ·x 2+…+x n -1·x n +x n·1≥1·x n +x ·xn -1+…+xn -1·x +x n·1,即x +x 3+…+x2n -1+x n≥(n +1)x n.②将①②相加得1+x +x 2+…+x 2n≥(2n +1)x n.a 12bc +b 12ca +c 12ab≥a 10+b 10+c 10. [思路点拨] 本题考查排序不等式的应用,解答本题需要搞清:题目中没有给出a ,b ,c 三个数的大小顺序,且a ,b ,c 在不等式中的“地位”是对等的,故可以设a ≥b ≥c ,再利用排序不等式加以证明.[证明] 由对称性,不妨设 a ≥b ≥c ,于是a 12≥b 12≥c 12,1bc ≥1ca ≥1ab,故由排序不等式:顺序和≥乱序和,得a 12bc +b 12ca +c 12ab ≥a 12ab +b 12bc +c 12ca =a 11b +b 11c +c 11a.① 又因为a 11≥b 11≥c 11,1a ≤1b ≤1c.再次由排序不等式:反序和≤乱序和,得a 11a +b 11b +c 11c ≤a 11b +b 11c +c 11a.② 所以由①②得a 12bc +b 12ca +c 12ab≥a 10+b 10+c 10.在排序不等式的条件中需要限定各数值的大小关系,对于没有给出大小关系的情况,要根据各字母在不等式中地位的对称性,限定一种大小关系.3.设a ,b ,c 都是正数,求证:bc a +ca b +abc≥a +b +c .证明:由题意不妨设a ≥b ≥c >0,由不等式的单调性,知ab ≥ac ≥bc ,1c ≥1b ≥1a .由排序不等式,知ab ×1c +ac ×1b+bc ×1a≥ab ×1b +ac ×1a +bc ×1c=a +c +b ,即bc a +ca b +abc≥a +b +c .4.设a 1,a 2,a 3为正数,求证:a 1a 2a 3+a 2a 3a 1+a 3a 1a 2≥a 1+a 2+a 3. 证明:不妨设 a 1≥a 2≥a 3>0,于是 1a 1≤1a 2≤1a 3,a 2a 3≤a 3a 1≤a 1a 2,由排序不等式:顺序和≥乱序和得a 1a 2a 3+a 3a 1a 2+a 2a 3a 1≥1a 2·a 2a 3+1a 3·a 3a 1+1a 1·a 1a 2 =a 3+a 1+a 2. 即a 1a 2a 3+a 2a 3a 1+a 3a 1a 2≥a 1+a 2+a 3.1.有两组数:1,2,3与10,15,20,它们的顺序和、反序和分别是( ) A .100,85 B .100,80 C .95,80D .95,85解析:选B 由顺序和与反序和的定义可知顺序和为100,反序和为80. 2.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是( ) A .a 1b 1+a 2b 2 B .a 1a 2+b 1b 2C .a 1b 2+a 2b 1 D.12解析:选A 因为0<a 1<a 2,0<b 1<b 2,所以由排序不等式可知a 1b 1+a 2b 2最大. 3.锐角三角形中,设P =a +b +c2,Q =a cos C +b cos B +c cos A ,则P ,Q 的大小关系为( )A .P ≥QB .P =QC .P ≤QD .不能确定 解析:选C 不妨设A ≥B ≥C ,则a ≥b ≥c ,cos A ≤cos B ≤cos C ,则由排序不等式有Q =a cos C +b cos B +c cos A ≥a cos B +b cos C +c cos A=R (2sin A cos B +2sin B cos C +2sin C cos A ) =R [sin(A +B )+sin(B +C )+sin(A +C )] =R (sin C +sin A +sin B )=P =a +b +c2.4.儿子过生日要老爸买价格不同的礼品1件、2件及3件,现在选择商店中单价为13元、20元和10元的礼品,至少要花( )A .76元B .20元C .84元D .96元解析:选A 设a 1=1(件),a 2=2(件),a 3=3(件),b 1=10(元),b 2=13(元),b 3=20(元),则由排序原理反序和最小知至少要花a 1b 3+a 2b 2+a 3b 1=1×20+2×13+3×10=76(元).5.已知两组数1,2,3和4,5,6,若c 1,c 2,c 3是4,5,6的一个排列,则1c 1+2c 2+3c 3的最大值是________,最小值是________.解析:由反序和≤乱序和≤顺序和知,顺序和最大,反序和最小,故最大值为32,最小值为28.答案:32 286.设正实数a 1,a 2,…,a n 的任一排列为 a 1′,a 2′,…,a n ′,则a 1a 1′+a 2a 2′+…+a na n ′的最小值为________.解析:不妨设0<a 1≤a 2≤a 3…≤a n , 则1a 1≥1a 2≥…≥1a n.其反序和为a 1a 1+a 2a 2+…+a n a n=n , 则由乱序和不小于反序和知a 1a 1′+a 2a 2′+…+a n a n ′≥a 1a 1+a 2a 2+…+a na n=n , ∴a 1a 1′+a 2a 2′+…+a na n ′的最小值为n . 答案:n7.设a 1,a 2,a 3,a 4是1,2,3,4的一个排序,则a 1+2a 2+3a 3+4a 4的取值范围是________. 解析:a 1+2a 2+3a 3+4a 4的最大值为12+22+32+42=30,最小值为1×4+2×3+3×2+4×1=20,∴a 1+2a 2+3a 3+4a 4的取值范围是[20,30]. 答案:[20,30]8.设a ,b ,c 是正实数,用排序不等式证明a a b b c c≥(abc )a +b +c3.证明:由所证不等式的对称性,不妨设a ≥b ≥c >0, 则lg a ≥lg b ≥lg c ,据排序不等式有:a lg a +b lg b +c lg c ≥b lg a +c lg b +a lg c , a lg a +b lg b +c lg c ≥c lg a +a lg b +b lg c ,以上两式相加,再两边同加a lg a +b lg b +c lg c ,整理得 3(a lg a +b lg b +c lg c )≥(a +b +c )(lg a +lg b +lg c ), 即lg(a a b b c c)≥a +b +c3·lg(abc ), 故a a b b c c≥(abc )a +b +c3.9.某学校举行投篮比赛,按规则每个班级派三人参赛,第一人投m 分钟,第二人投n分钟,第三人投p 分钟,某班级三名运动员A ,B ,C 每分钟能投进的次数分别为a ,b ,c ,已知m >n >p ,a >b >c ,如何派三人上场能取得最佳成绩?解:∵m >n >p ,a >b >c , 且由排序不等式知顺序和为最大值, ∴最大值为ma +nb +pc ,此时分数最高, ∴三人上场顺序是A 第一,B 第二,C 第三. 10.已知0<a ≤b ≤c ,求证:c 2a +b +b 2a +c +a 2b +c ≥a 2a +b +b 2b +c +c 2c +a.证明:因为0<a ≤b ≤c ,所以0<a +b ≤c +a ≤b +c , 所以1a +b ≥1c +a ≥1b +c>0, 又0<a 2≤b 2≤c 2, 所以c 2a +b +b 2a +c +a 2b +c是顺序和,a 2a +b +b 2b +c +c 2c +a是乱序和,由排序不等式可知顺序和大于等于乱序和, 即不等式c 2a +b +b 2a +c +a 2b +c ≥a 2a +b +b 2b +c +c 2c +a成立.。

柯西不等式例题及解法

柯西不等式例题及解法

柯西不等式(Cauchy-Schwarz Inequality)是一个在数学中非常常用的不等式,其表述为:对于所有的非负实数序列{a_i} 和{b_i},都有
(∑a_i^2) * (∑b_i^2) ≥ (∑a_i * b_i)^2
等号成立当且仅当a_i和b_i之间存在一个常数比例关系,即a_i/b_i = a_j/b_j 对所有的i, j都成立。

现在,让我们来看一个柯西不等式的例题及其解法。

例题:
设a, b, c, d均为实数,证明:
(a^2 + b^2)(c^2 + d^2) ≥ (a c + bd)^2
解法:
1.应用柯西不等式:
根据柯西不等式,我们有
(a^2 + b^2)(c^2 + d^2) ≥ (ac + bd)^2
这里,我们取序列{a, b} 和{c, d},然后应用柯西不等式。

2. 验证等号成立的条件:
等号在柯西不等式中成立当且仅当存在一个常数k,使得a/c = b/d = k。

对于我们的例子,这意味着
a = kc, \quad
b = kd
将这两个等式代入原不等式,我们可以验证等号确实成立。

3. 结论:
因此,我们证明了对于任何实数a, b, c, d,都有
(a^2 + b^2)(c^2 + d^2) ≥ (ac + bd)^2
等号成立当且仅当a和c,b和d之间存在一个常数比例关系。

这个例题展示了柯西不等式在实数序列中的应用,以及如何验证等号成立的条件。

柯西不等式在许多数学领域都有广泛的应用,包括线性代数、概率论和统计学等。

高二 数学 选修 不等式 第十讲 柯西不等式与排序不等式

高二 数学 选修 不等式 第十讲 柯西不等式与排序不等式
柯西不等式与排序不等式
知识要点
知 识 要 点
知 识 要 点
典题剖析

1.已知
a1
, a2
,…,
an
都是实数,求证
1 n
(a1
a2
...
an
)2
a12
a22
... Βιβλιοθήκη an2.【解析】
根据柯西不等式有 ( x2 y2 z2 )(12 22 32 ) ( x 2 y 3z)2 1,
所以 x2 y2 z2 1 ,当且仅当 x y z ,
14
1 23
【分析】由 x 2 y 3z 1 以及 x2 y2 z2 的形式,联系柯西不等式,可以通过构造
(12 22 32 ) 作为一个因式而解决问题.
即 x 1 , y 1 , z 3 时, x2 y2 z2 取最小值 1 .
...
an n2
b1
b2 22
b3 32
由..此. 可nbn2以联1想1到 2用排212序不3等31式2 证..明. 的n 思n12路.1
1 2
1 3
...
1 n

排序不等式也是基本而重要的不等式,它的思想简单明了,便于记忆和使用,许多重要不等式可以借 助排序不等式得到证明.
技巧传播
陷阱规避
• 陷阱:利用排序不等式解题时,不能正确
陷阱一 找出有序实数组.
• 克服方法:认真审题,勤加练习.
陷阱二
【易错典例】已知 a,b,c∈R+,且 a+b+c=1, 求 3a+1+ 3b+1+ 3c+1的最大值.
【正解】 ∵(12+12+12)[( 3a+1)2+( 3b+1)2+( 3c+1)2]
14

2021届高考数学选做题冲刺(文理通用)专题05 柯西不等式与排序不等式

2021届高考数学选做题冲刺(文理通用)专题05 柯西不等式与排序不等式

选修4-5 不等式选讲专题05 柯西不等式与排序不等式【知识网络】【考情分析】 考纲要求 1.了解柯西不等式的几种不同形式。

理解它们的几何意义;(1)证明:柯西不等式向量形式:; (2)证明:;(3)证明: (通常称作平面三角不等式)2.了解用参数配方法讨论柯西不等式的一般情况:3.了解用向量递归方法讨论排序不等式;αβαβ≥·()()()a b c d ac bd 22222++≥+()()()()()()x x y y x x y y x x y y 122122232232132132-+-+-+-≥-+-a b a b i i n i i n i i i n 212112===∑∑∑≥⎛⎝ ⎫⎭⎪·柯西不等式与排序不等式柯西不等式二维形式的柯西不等式排序不等式 三维形式的柯西不等式 顺序和、乱序和、反序和的概念排序原理【知识详单】1.二维形式的柯西不等式(1)定义:若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时,等号成立.(2)二维形式的柯西不等式的一些变式变式1: a2+b2·c2+d2≥|ac+bd|(当且仅当ad=bc时,等号成立)变式2:(a+b)(c+d)≥(ac+bd)2.(a,b,c,d∈R+,当且仅当ad=bc时,等号成立)变式3: a2+b2·c2+d2≥|ac|+|bd|(当且仅当|ad|=|bc|时,等号成立)2.柯西不等式的向量形式设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k,使α=kβ时,等号成立.【例1】设平面上两个向量为α=(a1,a2),β=(b1,b2),证明|α||β|≥|α·β|.【证明】∈cos〈α,β〉=α·β|α||β|=a1b1+a2b2a21+a22b21+b22∈cos2〈α,β〉=2112222221212()()()a b a ba ab b+++≤1,即(a21+a22)(b21+b22)≥(a1b1+a2b2)2,a21+a22·b21+b22≥|a1b1+a2b2|.∈|α||β|≥|α·β|,等号成立的充要条件为α=λβ (λ≠0).3.二维形式的三角不等式(1)设x 1,y 1,x 2,y 2∈R ,那么x 21+y 21+x 22+y 22(2)设平面上三点坐标为A (a 1,a 2)、B (b 1,b 2)、C (c 1,c 2)|AB |+|BC |≥|AC |.(3)设α,β,γ为平面向量,则|α-β|+|β-γ|≥|α-γ|,等号成立的充要条件为α-β=λ(β-γ)(λ>0).【例2】已知3x 2+2y 2=6,求证:2x +y ≤11. 【思维导图】观察结构→凑成柯西不等式的结构→利用公式得出结论【证明】由于2x +y =23(3x )+12(2y ). 由柯西不等式(a 1b 1+a 2b 2)2≤(a 21+a 22)(b 21+b 22)得(2x +y )2≤⎣⎡⎦⎤⎝⎛⎭⎫232+⎝⎛⎭⎫122(3x 2+2y 2)≤⎝⎛⎭⎫43+12×6=116×6=11, ∈|2x +y |≤11,∈2x +y ≤11.【规律总结】二维形式的柯西不等式可以理解为四个数对应的一种不等关系,对谁与谁组合是有顺序的,不是任意的搭配,因此要仔细体会,加强记忆.例如,(a 2+b 2)·(d 2+c 2)≥(ac +bd )2是错误的,而应有(a 2+b 2)(d 2+c 2)≥(ad +bc )2.4.三维形式的柯西不等式设a 1,a 2,a 3,b 1,b 2,b 3∈R ,则(a 21+a 22+a 23)·(b 21+b 22+b 23)≥(a 1b 1+a 2b 2+a 3b 3)2.当且仅当b 1=b 2=b 3=0或存在一个数k ,使得a 1=kb 1,a 2=kb 2,a 3=kb 3时,等号成立.在空间向量中,三维的柯西不等式的代数形式.设α=(a 1,a 2,a 3),β=(b 1,b 2,b 3),则α·β=a 1b 1+a 2b 2+a 3b 3代入向量式得:(a 21+a 22+a 23)(b 21+b 22+b 23)≥(a 1b 1+a 2b 2+a 3b 3)2.当且仅当α·β共线时,即β=0,或存在一个数k ,使得a i =kb i (i =1,2,3)时,等号成立.【例3】设,,x y z R ∈,且满足:2221x y z ++=,23x y z ++=,则x y z ++= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经典例题透析
类型一:利用柯西不等式求最值
1.求函数的最大值.
思路点拨:利用不等式解决最值问题,通常设法在不等式一边得到一个常数,并寻找不等式取等号的条件.这个函数的解析式是两部分的和,若能化为ac+bd的形式就能利用柯西不等式求其最大值.也可以利用导数求解。

解析:
法一:∵且,
∴函数的定义域为,且,
当且仅当时,等号成立,
即时函数取最大值,最大值为
法二:∵且,
∴函数的定义域为
由,

即,解得
∴时函数取最大值,最大值为.
总结升华:当函数解析式中含有根号时常利用柯西不等式求解.不等式中的等号能否取得是求最值问题的关键.
举一反三:
【变式1】(2011辽宁,24)已知函数f(x)=|x-2|-|x-5|。

(I)证明:-3≤f(x)≤3;
(II)求不等式f(x)≥x2-8x+15的解集。

【答案】
(Ⅰ)
当时,.
所以.…………5分
(Ⅱ)由(Ⅰ)可知,
当时,的解集为空集;
当时,的解集为;
当时,的解集为.
综上,不等式的解集为.……10分
【变式2】已知,,求的最值.
【答案】
法一:
由柯西不等式
于是的最大值为,最小值为.
法二:
由柯西不等式
于是的最大值为,最小值为.
【变式3】设2x+3y+5z=29,求函数的最大值.【答案】
根据柯西不等式

故。

当且仅当2x+1=3y+4=5z+6,即时等号成立,
此时,
评注:根据所求最值的目标函数的形式对已知条件进行配凑.
类型二:利用柯西不等式证明不等式
利用柯西不等式证明某些不等式显得特别方便,而利用柯西不等式的技巧也有很多。

如常数的巧拆、结构的巧变、巧设数组等。

(1)巧拆常数:
2.设、、为正数且各不相等,求证:
思路点拨:∵、、均为正,∴为证结论正确只需证:
而,又,故可利用柯西不等式证明之。

证明:
又、、各不相等,故等号不能成立
∴。

(2)重新安排某些项的次序:
3.、为非负数,+=1,,求证:
思路点拨:不等号左边为两个二项式积,,直接利用柯西不等式,得不到结论,但当把第二个小括号的两项前后调换一下位置,就能证明结论了。

证明:∵+=1


(3)改变结构:
4、若>>,求证:
思路点拨:初见并不能使用柯西不等式,改造结构后便可使用柯西不等式了。

,,∴,∴所证结论改为证。

证明:

(4)添项:
5.,求证:
思路点拨:左端变形
,∴只需证此式即可。

证明:
举一反三:
【变式1】设a,b,c为正数,求证:.【答案】
由柯西不等式:
,即。

同理,.
将上面三个同向不等式相加得

于是.
【变式2】设a,b,c为正数,求证:。

【答案】
由柯西不等式
于是

【变式3】已知正数满足证明。

【答案】
利用柯西不等式
又因为
在此不等式两边同乘以2,再加上得:
故。

类型三:柯西不等式在几何上的应用
6.△ABC的三边长为a、b、c,其外接圆半径为R,求证:
证明:由三角形中的正弦定理得,所以,
同理,
于是左边=
故。

【变式】ΔABC之三边长为4,5,6,P为三角形内部一点,P到三边的距离分別为x,y,z,求的最小值。

【答案】

4x+5y+6z=
由柯西不等式(4x+5y+6z)2≥(x2+y2+z2)(42+52+62)
≥(x2+y2+z2)×77x2+y2+z2≥。

类型四:排序不等式的简单应用
7.对,比较与的大小。

思路点拨:题目中没有给出a,b,c三个数的大小顺序,且a,b,c在不等式中的“地位”是对等的,不妨设,再利用排序不等式加以证明.
解析:∵,不妨设,则
由排序原理,乱序和≤顺序和,得:
举一反三:
【变式1】比较1010×1111×1212×1313与1013×1112×1211×1310的大小。

【答案】
因10 ≤11 ≤12 ≤13及lg10 ≤lg11 ≤lg12 ≤lg13,
由排序不等式得:
10lg10 + 11lg11 + 12lg12 + 13lg13 ≥13lg10 + 12lg11 + 11lg12 + 10lg13
lg(1010×1111×1212×1313) ≥lg(1013×1112×1211×1310)
即1010×1111×1212×1313≥1013×1112×1211×1310。

【变式2】已知,求证:
证明:
由对称性,不妨设,于是,,
故由排序不等式:顺序和≥乱序和,得:

又因为,.
再次由排序不等式:反序和≤乱序和,得:

由①②得.
8、设,求证:
证明:
不妨设,则,
由排序不等式有:

两式相加得:
又因为:,

两式相加得:
即:
举一反三:
【变式】,求证:
【答案】
证明:
不妨设则,
从而,

两式相加得:。

相关文档
最新文档