相桥式全控整流电路的设计

合集下载

单相桥式全控整流电路课程设计

单相桥式全控整流电路课程设计

目录一设计目的 1二设计任务 1三设计内容与要求 1四设计资料及有关规定五设计成果要求5.2课程设计方案的选择5.2.1整流电路5.3主电路的设计5.3.1系统总设计框图5.3.4晶闸管基本参数5.3.4.1 动态特性5.3.4.2晶闸管的主要参数说明5.3.4.3晶闸管的选型5.3.5变压器的选取5.3.6 性能指标分析5.4触发电路和保护电路的设计5.4.1触发电路5.4.2保护电路的设计5.4.2.1 主电路的过电压保护电路设计5.4.2.2主电路的过电流保护电路设计5.4.2.3电流上升率、电压上升率的抑制保护5.6设计总结单相全控晶闸管整流电路课程设计一 设计目的(1)培养综合应用所学知识,并设计出具有电压可调功能的直流电源系统的能力;(2)较全面地巩固和应用本课程中所学的基本理论和基本方法,并初步掌整流电路设计的基本方法。

(3)培养独立思考、独立收集资料、独立设计的能力;(4)培养分析、总结及撰写技术报告的能力。

二 设计任务(1)进行设计方案的比较,并选定设计方案;(2)课程设计的主要内容是主电路的确定,主电路的分析说明主电路元器件的计算和选型,以及控制电路的设计;(3)完成主电路的原理分析,各主要元器件的选择;(4)完成驱动电路的设计,保护电路的设计;三 设计内容与要求负载为电阻电感性负载:L=700mH,R=500欧姆技术要求:电网供电电压为单相220V,50赫兹,输出电压为100V, 输出功率为1000W设计技术要求:(1)电源电压:交流100V/50Hz(2)输出功率:500W;(3)移相范围:0~90度。

四 设计资料及有关规定使用的元器件要求为:负载为220V、305A的直流电机,采用三相整流电路,交流测由三相电源供电, 续流二极管,电感,电容,二极管,金属模电阻,三极管,触发电路KJ004,平波电抗器,运算放大器,功率电阻,220V和380V变压器。

五、设计成果要求5.1 课程设计要求1、单相桥式相控整流的设计要求为:负载为感性负载,L=700mH,R=500欧姆.2、技术要求:1)、电源电压:交流100V/50Hz2)、输出功率:100W3)、移相范围0º~90º5.2课程设计方案的选择5.2.1整流电路单相相控整流电路可分为单相半波、单相全波和单相桥式相控流电路,它们所连接的负载性质不同就会有不同的特点。

单相桥式全控整流电路实验报告

单相桥式全控整流电路实验报告

竭诚为您提供优质文档/双击可除单相桥式全控整流电路实验报告篇一:实验五单相桥式全控整流电路实验实验五单相桥式全控整流电路实验一.实验目的1.了解单相桥式全控整流电路的工作原理。

2.研究单相桥式全控整流电路在电阻负载、电阻—电感性负载及反电势负载时的工作。

3.熟悉mcL—05锯齿波触发电路的工作。

二.实验线路及原理参见图4-7。

三.实验内容1.单相桥式全控整流电路供电给电阻负载。

2.单相桥式全控整流电路供电给电阻—电感性负载。

3.单相桥式全控整流电路供电给反电势负载。

四.实验设备及仪器1.mcL系列教学实验台主控制屏。

2.mcL—18组件(适合mcL—Ⅱ)或mcL—31组件(适合mcL—Ⅲ)。

3.mcL—33组件或mcL—53组件(适合mcL—Ⅱ、Ⅲ、Ⅴ)4.mcL—05组件或mcL—05A组件5.meL—03三相可调电阻器或自配滑线变阻器。

6.meL—02三相芯式变压器。

7.双踪示波器8.万用表五.注意事项1.本实验中触发可控硅的脉冲来自mcL-05挂箱,故mcL-33(或mcL-53,以下同)的内部脉冲需断x1插座相连的扁平带需拆除,以免造成误触发。

2.电阻Rp的调节需注意。

若电阻过小,会出现电流过大造成过流保护动作(熔断丝烧断,或仪表告警);若电阻过大,则可能流过可控硅的电流小于其维持电流,造成可控硅时断时续。

3.电感的值可根据需要选择,需防止过大的电感造成可控硅不能导通。

4.mcL-05面板的锯齿波触发脉冲需导线连到mcL-33面板,应注意连线不可接错,否则易造成损坏可控硅。

同时,需要注意同步电压的相位,若出现可控硅移相范围太小(正常范围约30°~180°),可尝试改变同步电压极性。

5.逆变(:单相桥式全控整流电路实验报告)变压器采用meL-02三相芯式变压器,原边为220V,中压绕组为110V,低压绕组不用。

6.示波器的两根地线由于同外壳相连,必须注意需接等电位,否则易造成短路事故。

单相桥式全控整流电路设计

单相桥式全控整流电路设计

单相桥式全控整流电路设计单相桥式全控整流电路是一种常用的电路,其具有可靠性高、效率高以及适用范围广等特点。

本文将对单相桥式全控整流电路进行详细的介绍和设计。

一、单相桥式全控整流电路的介绍单相桥式全控整流电路是一种采用可控硅器件实现直流电源的电路,常用于电子装置、自动控制和功率器件中。

其主要由四个可控硅管组成,将交流电源整流为直流电源。

在单相桥式全控整流电路中,可控硅管会根据触发脉冲的信号来控制其导通和截止,从而控制输出电压和电流的大小。

需要注意的是,触发脉冲的相位、脉宽和大小都会影响输出的电压和电流,因此需要根据具体应用场合来进行合理的设计。

二、单相桥式全控整流电路的设计1. 电源选型单相桥式全控整流电路需要有一个稳定的电源来提供交流电源,因此需要选择合适的电源。

一般来说,选择稳压电源、变压器、整流电路和滤波电路等电子元件构成的电源比较合适。

2. 器件选型在单相桥式全控整流电路中,需要选择适用的器件,如可控硅管、反向恢复二极管。

可以根据具体的应用场合来选择合适的器件。

3. 负载匹配在单相桥式全控整流电路中,需要考虑电路与负载的匹配问题,以确保输出电压和电流的稳定性。

通常可以采用变压器或电容等元件进行匹配。

4. 触发电路设计单相桥式全控整流电路中的可控硅管需要通过触发电路来控制其导通和截止,因此需要设计合适的触发电路。

触发电路的设计需要考虑触发脉冲的相位、脉宽和大小等因素,以确保输出电压和电流的精度和稳定性。

5. 整流电路设计在单相桥式全控整流电路中,需要设计合适的整流电路来将交流电源整流为直流电源。

整流电路的设计需要考虑输出电压和电流的大小和稳定性。

三、总结单相桥式全控整流电路是一种常用的电路,其利用可控硅管来实现直流电源的输出。

需要注意的是,设计单相桥式全控整流电路需要考虑多个因素,如电源选型、器件选型、负载匹配、触发电路设计和整流电路设计等。

只有在考虑全面的情况下,才能保证单相桥式全控整流电路的稳定性和精度。

单相桥式全控整流电路设计纯电阻负载.doc

单相桥式全控整流电路设计纯电阻负载.doc

单相桥式全控整流电路的设计 一、1. 设计方案及原理1.1 原理方框图1.2 主电路的设计电阻负载主电路主电路原理图如下:Rid1.3主电路原理说明1.3.1电阻负载主电路原理(1)在u2正半波的(0~α)区间,晶闸管VT1、VT4承受正向电压,但无触发脉冲,晶闸管VT2、VT3承受反向电压。

因此在0~α区间,4个晶闸管都不导通。

假如4个晶闸管的漏电阻相等,则Ut1.4= Ut2.3=1/2u2。

(2)在u2正半波的(α~π)区间,在ωt=α时刻,触发晶闸管VT1、VT4使其导通。

(3)在u2负半波的(π~π+α)区间,在π~π+α区间,晶闸管VT2、VT3承受正向电压,因无触发脉冲而处于关断状态,晶闸管VT1、VT4承受反向电压也不导通。

(4)在u2负半波的(π+α~2π)区间,在ωt=π+α时刻,触发晶闸管VT2、VT3使其元件导通,负载电流沿b→VT3→R→VT2→α→T的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(ud=-u2)和电流,且波形相位相同。

1.4整流电路参数的计算电阻负载的参数计算如下:(1)整流输出电压的平均值可按下式计算U d=0.45U2(1+cos错误!未找到引用源。

)(1-1)当α=0时,U取得最大值,即d U= 0.9 2U,取2U=100V则U d =90V,dα=180o 时,d U =0。

α角的移相范围为180o 。

(2) 负载电流平均值为I d =U d /R=0.45U 2(1+cos 错误!未找到引用源。

)/R(1-2)(3)负载电流有效值,即变压器二次侧绕组电流的有效值为 I2=U2/R )sin 21(παπαπ-+ (1-3) (4)流过晶闸管电流有效值为 IVT= I2/2 (1-4)二、元器件的选择晶闸管的选取晶闸管的主要参数如下:①额定电压U TN通常取DRM U 和RRM U 中较小的,再取靠近标准的电压等级作为晶闸管型的额定电压。

三相桥式全控整流电路

三相桥式全控整流电路

小结:
❖ 7. 为确保电源合闸或电流断续情况正常工作, 触发脉冲应采用双脉冲或宽度不小于60度旳 宽脉冲。
❖ 8. 在负载电流连续时,每个SCR导通120度; 三相桥式全控电路旳整流电压在一种周期内 脉动六次,对于工频电源,脉动频率为 6×50HZ=300Hz,比三相半波时大一倍。
小结:
❖ 9. 整流后旳输出电压为两相电压相减后旳波 形,即线电压。
❖ 此时,因为输出电压Ud波形连续, 负载电流波形也连续
❖ 在一种周期内每个晶闸管导通 120o,输出电压波形与电感性负 载时相同。
电阻性负载控制角α>60度
❖ 以控制角等于90度为例, 线电压过零时,负载电 压电流为0, SCR 关断, 电流波形断续
T+a,T-b导经过程
T+a,T-c导经过程
❖ 三相桥式电路中变压器绕组中,一周期既有正向电 流,又有反向电流,提升了变压器旳利用率,防止 直流磁化
❖ 因为三相桥式整流电路是两组三相半波整流电路旳 串联,所以输出电压是三相半波旳两倍。
一.电感性负载电感性负载
❖ 设电感足够大, ❖ 负载电流连续。 ❖ 1.控制角α=0 ❖ 相当于六个二极管整流
可控整流电路
三相桥式全控整流电路
第三节 三相桥式全控整流电路
❖ 一.电路构成: ❖ 共阴极三相半波+共阳极三相半波。
第三节 三相桥式全控整流电路
❖ 一.电路构成: (输出串联构成)
三相桥式全控整流电路
❖ 共阴极组电路和共阳极组电路串联,并接到变压器 次极绕组上
❖ 两组电路负载对称,控制角相同,则输出电流平均 值相等,零线中流过电流为零
❖ ◆输出电压旳脉动较小(6脉波/周期); ❖ ◆变压器利用率高,无直流磁化问题; ❖ ◆最常用(大容量负载供电,电力拖动系统)

三相桥式全控整流电路设计

三相桥式全控整流电路设计

1 主电路的设计与原理说明1.1 主电路图图1-1中阴极连接在一起的3个晶闸管(VT1、VT3、 VT5)为共阴极组;阳极连接在一起的3个晶闸管(VT4、VT6、VT2)为共阳极组。

晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a 、b 、c 三相电源相接的3个晶闸管分别为VT1、VT3、VT5, 共阳极组中与a 、b 、c 三相电源相接的3个晶闸管分别为VT4、VT6、VT2。

从后面的分析可知,按此编号,晶闸管的导通顺序为 VT1-VT2-VT3-VT4-VT5-VT6。

此主电路要求带反电动势负载,此反电动势E=60V ,电阻R=10Ω,电感L 无穷大使负载电 流连续。

其原理如图1所示。

图1-1 三相桥式全控整理电路原理图1.2 主电路原理为说明此原理,假设将电路中的晶闸管换作二极管,这种情况就也就相当于晶闸管触发角α=0o 时的情况。

此时,对于共阴极组的三个晶闸管,阳极所接交流电压值最高的一个导通。

而对于共阳极组的三个晶闸管,则是阴极所接交流电压值最低(或者说负得最多)的一个导通。

这样,任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压。

α=0o 时,各晶闸管均在自然换相点处换相。

由图中变压器二绕组相电压与线电压波形的对应关系看出,各自然换相点既是相电压的交点,同时也是线电压的交点。

在分析d u 的波形时,既可从相电压波形分析,也可以从线电压波形分析。

从相电压波形看,以变压器二次侧的中点n 为参考点,共阴极组晶闸管导通时,整流输出电压 1d u 为相电压在正半周的包络线;共阳极组导通时,整流输出电压2d u 为相电压在负半周的包络线,总的整流输出电压d u =1d u -2d u 是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线。

从线电压波形看,由于共阴极组中处于通态的晶闸管对应的最大的相电压,而共阳极组中处于通态的晶闸管对应的是最小的相电压,输出整流电压 d u 为这两个相电压相减,是线电压中最大的一个,因此输出整流电压d u 波形为线电压在正半周的包络线。

三相桥式全控整流电路的设计

三相桥式全控整流电路的设计

课程设计任务书学生姓名:杨专业班级:自动化指导教师:工作单位:信息工程系题目:三相全控桥式整流电路的设计一.初始条件:1.直流电动机额定参数: PN=10KW, UN=220V, IN =50A,n=1000r/min,电枢电阻NRa=0.5Ω,电流过载倍数λ=1.5,电枢电感LD =7mH,励磁电压UL=220V 励磁电流IL=1.6A.2.进线交流电源:三相380V3.性能指标:直流输出电压0-220V,最大输出电流75A,保证电流连续的最小电流为5A。

使用三相可控整流电路,电动机负载,工作于电动状态。

二.要求完成的主要任务:1. 三相全控桥式主电路设计(包括整流变压器参数计算,整流元件定额的选择,平波电抗器电感量的计算等),讨论晶闸管电路对电网及系统功率因数的影响。

2.触发电路设计。

触发电路选型(可使用集成触发器)。

3.晶闸管的过电压保护与过电流保护电路设计。

4.提供系统电路图纸不少于一张。

三.时间安排:指导老师签字:年月日1引言整流电路尤其是三相桥式可控整流电路是电力电子技术中最为重要也是应用得最为广泛的电路, 不仅用于一般工业, 也广泛应用于交通运输、电力系统、通信系统、能源系统及其他领域. 因此对三相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有很强的现实意义, 这不仅是电力电子电路理论学习的重要一环, 而且对工程实践的实际应用具有预测和指导作用. 因此调试三相桥式可控整流电路的相关参数并对不同性质负载的工作情况进行对比分析与研究具有一定的现实意义。

2设计的步骤⑴根据给出的技术要求,确定总体设计方案⑵选择具体的元件,进行硬件系统的设计⑶进行相应的电路设计,完成相应的功能⑷进行调试与修改⑸撰写课程设计说明书3设计方案选择及论证3.1三相桥式全控整流电路(如图3-1)应用最为广泛,共阴极组——阴极连接在一起的3个晶闸管(VT1,VT3,VT5)共阳极组——阳极连接在一起的3个晶闸管(VT4,VT6,VT2)编号:1、3、5,4、6、2阻感负载时的工作情况a≤60°时,u d波形连续,工作情况与带电阻负载时十分相似,各晶闸管的通断情况、输出整流电压u d波形、晶闸管承受的电压波形等都一样区别在于:由于负载不同,同样的整流输出电压加到负载上,得到的负载电流i d波形不同。

三相桥式全控整流电路课程设计报告

三相桥式全控整流电路课程设计报告

三相桥式全控整流电路课程设计报告目录一、课程概述 (2)1. 课程背景与目的 (2)2. 课程设计任务及要求 (4)二、三相桥式全控整流电路基本原理 (4)1. 三相桥式整流电路结构 (6)1.1 电路组成及工作原理 (7)1.2 电路特点分析 (8)2. 三相桥式全控整流电路工作原理 (9)2.1 触发脉冲的控制 (10)2.2 整流过程的分析 (12)三、电路设计 (14)1. 电路主要参数计算 (15)1.1 输入参数设定 (17)1.2 输出参数计算 (18)1.3 散热设计考虑 (19)2. 电路元器件选择与配置 (20)2.1 整流器件的选择依据 (22)2.2 滤波电容的选择方法 (23)2.3 其他元器件的选择及布局设计 (24)四、仿真分析与实验验证 (26)1. 仿真分析 (27)1.1 仿真模型建立 (28)1.2 仿真结果分析 (29)2. 实验验证过程介绍及结果分析 (30)一、课程概述本课程设计旨在帮助学生深入理解和掌握三相桥式全控整流电路的基本原理、结构特点和工作过程,培养学生分析问题和解决问题的能力。

通过对三相桥式全控整流电路的设计与实现,使学生在理论知识与实际操作相结合的基础上,提高自己的专业素养和实践能力。

课程背景介绍:简要介绍三相桥式全控整流电路的发展历程、应用领域及其在现代电力系统中的重要性。

课程目标设定:明确本课程设计的目标,包括理论知识的学习和实际应用能力的培养。

课程内容安排:详细阐述本课程设计的主要内容,包括三相桥式全控整流电路的基本原理、结构特点、工作原理及参数计算等。

课程实验与测试:通过实验和测试,验证所学理论知识的正确性,培养学生的实际操作能力和团队协作精神。

课程总结与反思:对本课程设计的过程进行总结,分析存在的问题和不足,并提出改进措施,为今后的学习和工作打下坚实的基础。

1. 课程背景与目的随着现代电力电子技术的飞速发展,整流电路在各个领域的应用越来越广泛。

三相桥式全控整流电路原理及电路图,三相桥式全控整流电路原理及电路图

三相桥式全控整流电路原理及电路图,三相桥式全控整流电路原理及电路图

三相桥式全控整流电路原理及电路图,三相桥式全控整流电路原理及电路图三相整流电路的作用:在电路中,当功率进一步增加或由于其他原因要求多相整流时,三相整流电路就被提了出来。

图所示就是三相半波整流电路原理图。

在这个电路中,三相中的每一相都单独形成了半波整流电路,其整流出的三个电压半波在时间上依次相差120度叠加,整流输出波形不过0点,并且在一个周期中有三个宽度为120度的整流半波。

因此它的滤波电容器的容量可以比单相半波整流和单相全波整流时的电容量都小。

三相整流电路的工作原理:先看时间段1:此时间段A相电位最高,B相电位最低,因此跨接在A相B相间的二极管D1、D4导电。

电流从A相流出,经D1,负载电阻,D4,回到B相,见图14-1-3中红色箭头指示的路径。

此段时间内其他四个二极管均承受反向电压而截止,因D4导通,B相电压最低,且加到D2、D6的阳极,故D2、D6截止;,因D1导通,A相电压最高,且加到D3、D5的阴极,故D3、D5截止。

其余各段情况如下:时间段2:此时间段A相电位最高,C相电位最低,因此跨接在A相C相间的二极管D1、D6导电。

时间段3:此时间段B相电位最高,C相电位最低,因此跨接在A相C相间的二极管D3、D6导电。

时间段4:此时间段B相电位最高,A相电位最低,因此跨接在B相A相间的二极管D3、D2导电。

时间段5:此时间段C相电位最高,A相电位最低,因此跨接在C相A相间的二极管D5、D2导电。

三相桥式电阻负载整流电路的输出电压波形见图时间段6:此时间段C相电位最高,B相电位最低,因此跨接在C相B相间的二极管D5、D5导电。

时间段7:此时间段又变成A相电位最高,B相电位最低,因此跨接在A相B相间的二极管D1、D4导电。

电路状态不断重复三相半波可控整流电路工作原理:1.电阻性负载三相半波可控整流电路接电阻性负载的接线图如图3所示。

整流变压器原边绕组一般接成三角形,使三次谐波电流能够流通,以保证变压器电势不发生畸变,从而减小谐波。

三相桥式全控整流电路课程设计

三相桥式全控整流电路课程设计

三相桥式全控整流电路摘要:本文主要介绍三相桥式全控整流电路的主电路和触发电路的原理及控制电路图,由工频三相电压380V经升压变压器后由SCR(可控硅)再整流为直流供负载用。

但是由于工艺要求大功率,大电流,高电压,因此控制比较复杂,特别是触发电路部分必须一一对应,否则输出的电压波动大甚至还有可能短路造成设备损坏。

本电路图主要由芯片C8051-F020微控制器来控制并在不同的时刻发出不同的脉冲信号去控制6个SCR。

在负载端取出整流电压,负载电流到C8051-F020模拟口,然后由MCU处理后发出信号控制SCR的导通角的大小。

在本课题设计开发过程中,我们使用KEIL-C开发软件,C8051开发系统及PROTEL-99,并最终实现电路改造设计,并达到预期的效果。

关键词:电力电子,三相、整流引言电子技术的应用已深入到工农业经济建设,交通运输,空间技术,国防现代化,医疗,环保,和亿万人们日常生活的各个领域,进入21世纪后电力电子技术的应用更加广泛,因此对电力电子技术的研究更为重要。

近几年越来越多电力电子应用在国民工业中,一些技术先进的国家,经过电力电子技术处理的电能已得到总电能的一半以上。

1 课程设计目的合理运用所学知识,进行电力电子电路和系统设计的能力,理解和掌握常用的电力电子电路及系统的主电路、控制电路和保护电路的设计方法,掌握元器件的选择计算方法。

2 设计任务与要求2.1设计任务设计一个三相可控整流电路使其输入电压:三相交流380伏 .50赫兹. 输出功率:2KW2.2 设计要求使其输入电压:三相交流380伏 .50赫兹.输,出功率:2KW负载为阻感性负载3 设计内容3.1主电路的设计3.1.1电路的设计原理晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a、b、c三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。

三相桥式全控整流电路设计

三相桥式全控整流电路设计

1 主电路的设计与原理说明1。

1 主电路图图1—1中阴极连接在一起的3个晶闸管(VT1、VT3、 VT5)为共阴极组;阳极连接在一起的3个晶闸管(VT4、VT6、VT2)为共阳极组.晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a 、b 、c 三相电源相接的3个晶闸管分别为VT1、VT3、VT5, 共阳极组中与a 、b 、c 三相电源相接的3个晶闸管分别为VT4、VT6、VT2。

从后面的分析可知,按此编号,晶闸管的导通顺序为 VT1-VT2-VT3-VT4-VT5-VT6。

此主电路要求带反电动势负载,此反电动势E=60V,电阻R=10Ω,电感L 无穷大使负载电 流连续。

其原理如图1所示。

图1-1 三相桥式全控整理电路原理图1。

2 主电路原理为说明此原理,假设将电路中的晶闸管换作二极管,这种情况就也就相当于晶闸管触发角α=0o 时的情况。

此时,对于共阴极组的三个晶闸管,阳极所接交流电压值最高的一个导通.而对于共阳极组的三个晶闸管,则是阴极所接交流电压值最低(或者说负得最多)的一个导通.这样,任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压。

α=0o 时,各晶闸管均在自然换相点处换相。

由图中变压器二绕组相电压与线电压波形的对应关系看出,各自然换相点既是相电压的交点,同时也是线电压的交点。

在分析d u 的波形时,既可从相电压波形分析,也可以从线电压波形分析。

从相电压波形看,以变压器二次侧的中点n 为参考点,共阴极组晶闸管导通时,整流输出电压 1d u 为相电压在正半周的包络线;共阳极组导通时,整流输出电压2d u 为相电压在负半周的包络线,总的整流输出电压d u =1d u -2d u 是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线。

从线电压波形看,由于共阴极组中处于通态的晶闸管对应的最大的相电压,而共阳极组中处于通态的晶闸管对应的是最小的相电压,输出整流电压 d u 为这两个相电压相减,是线电压中最大的一个,因此输出整流电压d u 波形为线电压在正半周的包络线.由于负载端所接的电感值无限大,会对变化的电流有抵抗作用,从而使得负载电流几乎为一条直线。

三相桥式全控晶闸管整流电路设计

三相桥式全控晶闸管整流电路设计

《电力电子技术》三相桥式全控晶闸管整流电路目录一设计要求 (1)1.1概述 (1)1.2设计要求 (1)二小组成员任务分工........................................................................ 错误!未定义书签。

三三相全控桥式主电路原理分析 (2)3.1总体结构 (2)3.2主电路的分析与设计 (2)3.1.1整流变压器的设计原理 (2)3.1.2变压器参数计算与选择 (3)3.3触发电路的分析与设计 (4)3.3.1触发电路的选择 (4)3.3.2 TC787芯片介绍 (4)3.4电路原理图 (6)3.5主电路工作原理 (7)3.6晶闸管保护电路的分析与设计 (7)3.6.1晶闸管简介 (7)3.6.2保护电路 (7)3.6.3晶闸管对电网的影响 (8)3.6.4晶闸管过流保护电路设计 (8)四仿真模型搭建及参数设置 (10)4.1主电路的建模及参数设置 (10)4.2控制电路的建模与仿真 (11)五仿真调试 (14)六设计心得........................................................................................ 错误!未定义书签。

一设计要求1.1概述首先我们要设计出整体的电路分别包括主电路,触发电路以及晶闸管保护电路。

主电路运用的是整流电路。

整流电路是电力电子电路中经常用的一种电路,它将交流电转变为直流电。

这里要求设计的主电路为三相全控桥式晶闸管整流电路。

整流电路将交流电网中的交流电转变成直流电,但为了保护晶闸管正常工作,需要围绕晶闸管设计触发电路、过电压和过电流保护电路。

因此我们可以设计出整体的程序框图之后按照框图进行接下来的电路设计。

三相全控桥式晶闸管整流电路需要使用交流、直流和触发信号,而且还存在电容和电感等非线性元件,如果采用传统的方法,分析和运算都非常繁琐。

论文单相桥式全控整流电路的设计

论文单相桥式全控整流电路的设计

论文单相桥式全控整流电路的设计一、引言单相桥式全控整流电路是一种常见的电力电子电路,可以实现单相交流电转换为相应电压的直流电。

它广泛应用于电力电子、工业控制等领域。

本文将介绍单相桥式全控整流电路的设计原理、电路结构以及参数计算等内容。

二、设计原理单相桥式全控整流电路的设计原理是通过调节晶闸管的导通角度,控制电流的流向和大小。

具体而言,当晶闸管导通角度为0 ~ 90度时,电压为正向,电流从上半周期的A、B两点流入负载;当晶闸管导通角度为90 ~ 180度时,电压为反向,电流从负载的A、B两点流出。

为了实现完整的控制过程,通常需要将晶闸管控制芯片与计算机等控制设备相连接,以实现对晶闸管导通角度的精确调节。

三、电路结构单相桥式全控整流电路的电路结构如下图所示:+-------+| |AC | | DC---->| +------>------+| | |+-------+ |R1|+可见,该电路由四个二极管和四个晶闸管组成。

其中,一组晶闸管和一组二极管称为一路,整个电路共有两路。

在电路的左侧,接入交流电源,右侧接入负载,电阻R1则用于控制输出电压大小。

当晶闸管的导通角度增加,输出电压也会相应地增加,控制晶闸管导通角度的信号即为控制电路输入,可以通过控制芯片等设备精确地调整。

四、参数计算为了使单相桥式全控整流电路正常工作,需要对其参数进行一定的计算和设置。

以下是一些重要的参数计算方法。

1. 电源电压电源电压应根据实际情况确定。

通常情况下,交流电源电压是固定的,可以参照输入功率和负载设计。

2. 负载电阻负载电阻应考虑负载自身的电性质以及电路的输出特性等因素。

根据式子 U = IR,可得负载电阻为 R = U / I,其中 U 为电路的输出电压,I 为输出电流。

3. 二极管的额定电压二极管的额定电压一般为输入电压的1.4倍,例如输入电压为220V,则二极管额定电压为308V。

4. 晶闸管的额定电流晶闸管的额定电流应根据负载电流确定。

单相桥式全控整流电路实验报告

单相桥式全控整流电路实验报告

单相桥式全控整流电路实验报告一、实验目的1、熟悉单相桥式全控整流电路的工作原理。

2、掌握单相桥式全控整流电路在不同负载情况下的输出特性。

3、学会使用示波器等仪器观测电路中的电压、电流波形。

二、实验原理单相桥式全控整流电路由四个晶闸管组成,其电路图如下图所示:插入电路图在电源电压的正半周,晶闸管 VT1 和 VT4 承受正向电压,在触发脉冲的作用下导通,电流从电源的正端经 VT1、负载、VT4 流回电源的负端,负载上得到正电压;在电源电压的负半周,晶闸管 VT2 和VT3 承受正向电压,在触发脉冲的作用下导通,电流从电源的正端经VT2、负载、VT3 流回电源的负端,负载上得到负电压。

通过控制触发角α的大小,可以改变输出直流电压的平均值。

三、实验设备1、电力电子实验台2、示波器3、万用表4、电阻负载、电感负载四、实验内容及步骤(一)电阻负载实验1、按电路图连接好实验线路,将触发角α调至 0°。

2、合上电源,用示波器观测负载两端的电压波形和晶闸管两端的电压波形,记录输出直流电压 Ud 和交流输入电压 U2 的数值。

3、逐渐增大触发角α,分别测量α=30°、60°、90°、120°、150°时的 Ud 和 U2,并记录相应的电压波形。

(二)电感负载实验1、按电路图连接好实验线路,将触发角α调至 0°。

2、合上电源,用示波器观测负载两端的电压波形和晶闸管两端的电压波形,记录输出直流电压 Ud 和交流输入电压 U2 的数值。

3、逐渐增大触发角α,分别测量α=30°、60°、90°、120°、150°时的 Ud 和 U2,并记录相应的电压波形。

(三)反电动势负载实验1、按电路图连接好实验线路,将触发角α调至 0°。

2、合上电源,用示波器观测负载两端的电压波形和晶闸管两端的电压波形,记录输出直流电压 Ud 和交流输入电压 U2 的数值。

单相桥式全控整流电路设计

单相桥式全控整流电路设计

单相桥式全控整流电路设计首先,我们需要明确单相桥式全控整流电路的基本原理。

单相桥式全控整流电路主要由四个可控硅和一个储能电感组成。

可控硅是一种半导体器件,可以控制导通角度,从而实现对输出电流的调节。

储能电感则可以平滑输出电流,减小谐波噪声。

接下来,我们将介绍单相桥式全控整流电路的设计步骤:1.确定输出电压和电流要求:首先,需要确定所需的输出电压和电流。

这取决于具体的应用场景和负载要求。

2.计算储能电感参数:根据所需的输出电流和电压,可以计算出储能电感的参数。

储能电感需要能够平滑输出电流,并具有足够的电感值来减小谐波噪声。

3.选择可控硅参数:根据所需的输出电流和电压,选择合适的可控硅参数。

可控硅的主要参数包括最大耐压、最大电流和导通角度等。

4.设计触发电路:触发电路可以根据输入信号来控制可控硅的导通角度。

常见的触发电路有正弦升波触发电路和微处理器触发电路等。

在选择触发电路时,需要考虑其适用于具体的应用场景和控制要求。

5.选择滤波电路:为了进一步减小谐波噪声和提高输出电压质量,可以选择合适的滤波电路。

滤波电路可以根据具体需求,选择低通滤波器、电解电容器等。

6.完成电路连接:根据设计要求,将可控硅、储能电感、触发电路和滤波电路连接在一起。

确保连接正确、稳定可靠。

7.进行测试和调试:根据设计要求,对整个电路进行测试和调试。

通过实际测量,调整触发角度和控制信号,以实现所需的输出电流和电压。

最后,值得注意的是,在进行单相桥式全控整流电路设计时,需要遵循安全操作规范,并严格遵守相关的电气安全要求。

单相桥式全控整流电路的设计与仿真

单相桥式全控整流电路的设计与仿真

单相桥式全控整流电路的设计与仿真
1.设计原理
2.设计步骤
(1)电路分析:根据电路图,进行电路分析,确定电路参数和特性。

包括输入电压、输出电流、整流角等。

(2)电路选择:根据设计需要选择合适的元件,如SCR、电容、电
阻等。

同时注意元件的电压和电流容量要满足使用要求。

(3)电路参数计算:根据电路工作条件和设计需求,计算电路各个
元件的参数,如SCR的导通角、电阻和电容的取值等。

(4)控制电路设计:根据实际需要设计控制电路,通过触发脉冲控
制SCR的导通和关断。

(5)电路布局与连接:按照设计要求进行电路布局与连接,注意元
件之间的电气隔离和散热问题。

(6)仿真实验:使用电子仿真软件进行电路的仿真实验,验证电路
的性能和特性。

3.仿真实验
(1)在仿真软件中打开电路设计界面,绘制单相桥式全控整流电路
的电路图。

(2)设置电路参数,包括输入电压、输出电流、电阻、电容等。

(3)设计控制电路,设置触发脉冲的宽度和频率。

(4)运行仿真,观察电路的电压、电流波形和效果。

(5)根据仿真结果,优化电路设计,调整参数,使电路性能达到设计要求。

(6)分析仿真结果,评估电路的性能和特性。

4.总结与展望
单相桥式全控整流电路是一种重要的电力电子变流器,其设计和仿真对于电气工程师具有重要的实际意义。

本文介绍了单相桥式全控整流电路的设计原理和步骤,以及使用仿真软件进行电路仿真实验的方法。

随着电力电子技术的不断发展,相信单相桥式全控整流电路将在实际应用中起到更大的作用。

三相桥式全控整流电路毕业设计论文

三相桥式全控整流电路毕业设计论文

三相桥式全控整流电路毕业设计论文1系统概述1.1总体方案设计1.2系统工作原理2系统电路设计2.1三相桥式全控整流电路2.2系统触发电路2.3控制及偏移电源2.4给定电源3主电路器件参数计算3.1整流变压器参数计算3.2晶闸管的额定电压及额定电流3.3平波电抗器的电感计算21系统概述整流电路是电力电子电路中最早出现的一种,它将交流电变为直流电,应用十分广泛,电路形式多种多样,各具特色。

可从各种角度对整流电路进行分类,主要分类方法有:按组成的器件可分为不可控、半控、全控三种。

由电力二极管等不可控器件构成的整流电路叫做不可控整流电路,由晶闸管等半控器件构成的整流电路称为半控型整流电路,由门极可关断晶闸管(GTO)、电力晶体管(GTR)、电力场效应晶体管(PowerMOSFET)以及绝缘栅双极晶体管(IGBT)等全控型器件构成等的整流电路称为全控整流电路。

按电路结构可分为桥式电路和零式电路。

按交流输入相数分为单相电路和多相电路。

按变压器二次侧电流的方向是单向或双向,又分为单拍电路和双拍电路。

本系统属于三相桥式全控整流电路,而三相可控整流电路一般有三相半波可控整流电路、三相桥式全控整流电路。

三相半波可控整流电路只需要三个晶闸管,若带阻感负载,则只在正半周开通。

三相半波可控整流电路的特点是简单,但输出脉动大,变压器二次测电流中含直流分量,造成变压器铁心直流磁化。

为使变压器铁心不饱和,需增大铁心截面积,增大了设备的。

因此,实际中一般不采用半波整流,而采用全波整流。

三相可控整流电路中应用较多的是三相桥式全控整流电路,共六个晶闸管组成三对桥臂。

由于在交流电源的正负半周都有整流输出电流流过负载,故该电路为全波整流。

在u2一个周期内,整流电压波形脉动6次,脉动次数多于半波整流电路,该电路属于双脉波整流电路。

变压器二次绕组中,正负两个半周电流方向相反且波形对称,平均值为零,即直流分量为零,不存在变压器直流磁化问题,变压器绕组的利用率也高。

毕业设计论文:单相桥式全控整流电路

毕业设计论文:单相桥式全控整流电路
3)完成主电路的原理分析,各主要元器件的选择;
4)完成驱动电路的设计,保护电路的设计;
工作量要求:(1)要求具体电路方案的选择必须有论证说明,要说明其有哪些特点。
主电路具体电路元器件的选择应有计算和说明。课程设计从确定方案到整个系
统的设计,必须在检索、阅读及分析研究大量的相关文献的基础上,经过分析、
4.1.1
晶闸管触发主要有移相触发、过零触发和脉冲列调制触发等。触发电路对其产生的触发脉冲要求:
①触发信号可为直流、交流或脉冲电压。
②触发信号应有足够的功率(触发电压和触发电流)。
由闸管的门极伏安特性曲线可知,同一型号的晶闸管的门极伏安特性的分散性很大,所以规定晶闸管元件的门极阻值在某高阻和低阻之间,才可能算是合格的产品。晶闸管器件出厂时,所标注的门极触发电流Igt、门极触发电压U是指该型号的所有合格器件都能被触发导通的最小门极电流、电压值,所以在接近坐标原点处以触发脉冲应一定的宽度且脉冲前沿应尽可能陡。由于晶闸管的触发是有一个过程的,也就是晶闸管的导通需要一定的时间。只有当晶闸管的阳极电流即主回路电流上升到晶闸管的掣住电流以上时,晶闸管才能导通,所以触发信号应有足够的宽度才能保证被触发的晶闸管可靠的导通,对于电感性负载,脉冲的宽度要宽些,一般为0.5~1MS,相当于50HZ、18度电度角。为了可靠地、快速地触发大功率晶闸管,常常在 触发脉冲的前沿叠加上一个触发脉冲。
提炼,设计出所要求的电路(或装置)。课程设计过程中,并给出这些问题的解法。
(2)在老师的指导下,独立完成所设计的系统电路,控制电路等详细设计
(包括计算和器件选型)。
(3)课程设计的主要内容是主电路的确定,主电路的分析说明,主电路元
器件的计算和选型,以及控制电路的设计
(4)课程设计用纸和格式统一
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力电子技术课程设计报告不可逆直流电力拖动系统中三相桥式全控整流电路的设计姓名陈营学号0317年级03班专业电气工程及其自动化系(院)汽车学院指导教师齐延兴2011年12月24日一、引言整流电路尤其是三相桥式可控整流电路是电力电子技术中最为重要也是应用得最为广泛的电路, 不仅用于一般工业, 也广泛应用于交通运输、电力系统、通信系统、能源系统及其他领域. 因此对三相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有很强的现实意义, 这不仅是电力电子电路理论学习的重要一环, 而且对工程实践的实际应用具有预测和指导作用. 因此调试三相桥式可控整流电路的相关参数并对不同性质负载的工作情况进行对比分析与研究具有一定的现实意义。

二、设计任务课程设计目的1、培养文献检索的能力,特别是如何利用Internet检索需要的文献资料。

2、培养综合分析问题、发现问题和解决问题的能力。

3、通过对不可逆直流电力拖动系统中三相桥式全控整流电路的设计,掌握三相桥式全控整流电路的工作原理,综合运用所学知识,三相桥式全控整流电路和系统设计的能力4、培养运用知识的能力和工程设计的能力。

5、提高课程设计报告撰写水平。

课程设计指标内容及要求三相桥式全控整流电路设计要求:(1)电网:380V,50HZ;(2)直流电机额定功率17KW,额定电压220V,额定电流90A,额定转速1500r/min.(3)变压器漏感:设计的步骤⑴根据给出的技术要求,确定总体设计方案⑵选择具体的元件,进行硬件系统的设计⑶进行相应的电路设计,完成相应的功能⑷进行调试与修改⑸撰写课程设计说明书三、设计方案选择及论证三相半波可控整流电路特点:阻感负载,L值很大,i d波形基本平直:a≤30°时:整流电压波形与电阻负载时相同;a>30°时(如a=60°时的波形如图2-16所示)u2过零时,VT1不关断,直到VT2的脉冲到来,才换流,由VT2导通向负载供电,同时向VT1施加反压使其关断——u d波形中出现负的部分阻感负载时的移相范围为90°。

数量关系:Ud/U2与a成余弦关系,如图中的曲线2所示。

如果负载中的电感量不是很大,则当a>30°后,u d中负的部分减少,Ud略为增加,U d/U2与a的关系将介于曲线1和2之间。

变压器二次电流即晶闸管电流的有效值为晶闸管的额定电流为晶闸管最大正反向电压峰值均为变压器二次线电压峰值图2-16中i d波形有一定的脉动,但为简化分析及定量计算,可将i d近似为一条水平线。

三相半波的主要缺点在于其变压器二次电流中含有直流分量,为此其应用较少。

三相桥式全控整流电路应用最为广泛,共阴极组——阴极连接在一起的3个晶闸管(VT1,VT3,VT5)共阳极组——阳极连接在一起的3个晶闸管(VT4,VT6,VT2)编号:1、3、5,4、6、2阻感负载时的工作情况图三相半波可控整流电路,阻感负载时的电路及a =60°时的波形(3-1)(3-2)(3-3)a≤60°时,ud波形连续,工作情况与带电阻负载时十分相似,各晶闸管的通断情况、输出整流电压u d波形、晶闸管承受的电压波形等都一样区别在于:由于负载不同,同样的整流输出电压加到负载上,得到的负载电流i d波形不同。

阻感负载时,由于电感的作用,使得负载电流波形变得平直,当电感足够大的时候,负载电流的波形可近似为一条水平线。

a>60°时阻感负载时的工作情况与电阻负载时不同,电阻负载时u d波形不会出现负的部分,而阻感负载时,由于电感L的作用,u d波形会出现负的部分带阻感负载时,三相桥式全控整流电路的a角移相范围为90°。

定量分析当整流输出电压连续时(即带阻感负载时,或带电阻负载a≤60°时)的平均值为:带电阻负载且a >60°时,整流电压平均值为:输出电流平均值为I d=U d /R当整流变压器为图2-17中所示采用星形接法,带阻感负载时,变压器二次侧电流波形如图2-23中所示,为正负半周各宽120°、前沿相差180°的矩形波,其有效值为:图三相桥式整流电路带阻感负载,a =30°时的波形晶闸管电压、电流等的定量分析与三相半波时一致。

三相桥式全控整流电路接反电势阻感负载时,在负载电感足够大足以使负载电流连续的情况下,电路工作情况与电感性负载时相似,电路中各处电压、电流波形均相同,仅在计算I d时有所不同,接反电势阻感负载时的I d为:式中R和E分别为负载中的电阻值和反电动势的值。

不考虑电动机的电枢电感时,只有晶闸管导通相的变压器二次侧电压瞬时值大于反电动势时才有电流输出,此时负载电流断续,对整流电路和电动机的工作都不利,要尽量避免。

故在电枢回路串联一平波电抗器,以保证整流电流在较大范围内连续,如图。

图三相半波带电动机负载且加平波电抗器时的电压电流波形电动机稳态时,虽然U d波形脉动较大,但由于电动机有较大的机械惯量,故其转速和反电动势都基本无脉动。

此时整流电压的平均值由电动机的反电动势及电路中负载平均电流I d所引起的各种电压降所平衡。

整流电压的交流分量则全部降落在电抗器上。

由I d引起的压降有下列四部分:变压器的电阻压降,其中为变压器的等效电阻,它包括变压器二次绕组本身的电阻以及一次绕组电阻折算到二次侧的等效电阻;晶闸管本身的管压降,它基本上是一恒值;电枢电阻压降;以及由重叠角引起的电压降。

此时,整流电路直流电压的平衡方程为(a、电流连续时电动机的机械特性在电机学中,已知直流电动机的反电动势为(3-4)式中,Ce为由电动机结构图三相半波电流连续时以电流表示的电动机机械特性决定的电动势常数;φ为电动机磁场每对磁极下的磁通量,单位为(Wb);n为电动机的转速,单位为(r/min)。

其机械特性与由直流发电机供电时的机械特性是相似的,是一组平行的直线,其斜率由于内阻不一定相同而稍有差异。

调节角,即可调节电动机的转速。

同理,可列出三相桥式全控整流电路电动机负载时的机械特性方程为b、电流断续时电动机的机械特性由于整流电压是一个脉动的直流电压,当电动机的负载减小时,平波电抗器中的电感储能减小,致使电流不再连续,此时电动机的机械特性也就呈现出非线性。

电流连续时的理想空载反电动势如图2-39所示。

实际上当I d减小至某一定值I dmin 以后,电流变为断续,这个是不存在的,真正的理想空载点远大于此值。

电流断续时电动机机械特性的特点:电动机的理想空载转速抬高机械特性变软,即负载电流变化很小也可引起很大的转速变化。

随着a 的增加,进入断续区的电流值加大。

由于a愈大,变压器加给晶闸管阳极上的负电压时间愈长,电流要维持导通,必须要求平波电抗器储存较大的磁能,而电抗器的L 为一定值的情况下,要有较大的电流I d才行电流断续时电动机机械特性可由下面三个式子准确地得出:式中,L为回路总电感。

一般只要主电路电感足够大,可以只考虑电流连续段,完全按线性处理。

当低速轻载时,断续作用显著,可改用另一段较陡的特性来近似处理,其等效电阻比实际的电阻R要大一个数量级。

整流电路为三相半波时,在最小负载电流为I d min时,为保证电流连续所需的主回路电感量为(mH))对于三相桥式全控整流电路带电动机负载的系统,有(mH))L中包括整流变压器的漏电感、电枢电感和平波电抗器的电感。

前者数值都较小,有时可忽略。

I dmin一般取电动机额定电流的5%~10%。

因为三相桥式全控整流电压的脉动频率比三相半波的高一倍,因而所需平波电抗器的电感量也可相应减小约一半,这也是三相桥式整流电路的一大优点。

本次设计采用的是三相桥式全控整流电路的方法,开关选用晶闸管。

四、总体电路设计根据三相桥式全控整流电路设计任务要求设计主电路、控制电路、驱动及保护电路,设计出桥式全控整流电路的结构框图如图1所示。

图三相桥式全控整流电路结构框图五、各功能模块电路设计控制电路设计相控电路指晶闸管可控整流电路,通过控制触发角a的大小即控制触发脉冲起始相位来控制输出电压大小。

为保证相控电路的正常工作,很重要的一点是应保证按触发角a的大小在正确的时刻向电路中的晶闸管施加有效的触发脉冲。

对于相控电路这样使用晶闸管的场合,也习惯称为触发控制,相应的电路习惯称为触发电路。

大、中功率的变流器对触发电路的精度要求较高,对输出的触发功率要求较大,故广泛应用的是晶体管触发电路,其中以同步信号为锯齿波的触发电路应用最多。

(1)同步信号为锯齿波的触发电路如图为同步信号为锯齿波的触发电路,其输出可为双窄脉冲(适用于有两个晶闸管同时导通的电路),也可为单窄脉冲。

电路结包括三个基本环节:脉冲的形成与放大、锯齿波的形成和脉冲移相、同步环节。

此外,还有强触发和双窄脉冲形成环节。

a、脉冲形成环节V 4、V5——脉冲形成 V7、V8——脉冲放大控制电压u co加在V4基极上。

u co=0时,V4截止。

V5饱和导通。

V7、V8处于截止状态,无脉冲输出。

电容C3充电,充满后电容两端电压接近2E1(30V)时,V4导通,A点电位由+E1(+15V) 下图同步信号为锯齿波的降到左右,V5基极电位下降约-2E1(-30V), V5立即截止。

V5集电极电压由-E1(-15V) 上升为+,V7、V8导通,输出触发脉冲。

电容C3放电和反向充电,使V5基极电位上升,直到ub5>-E1(-15V),V5又重新导通。

使V7、V8截止,输出脉冲终止。

脉冲前沿由V4导通时刻确定,脉冲宽度与反向充电回路时间常数R11C3有关。

电路的触发脉冲由脉冲变压器TP二次侧输出,其一次绕组接在V8集电极电路中。

b、锯齿波的形成和脉冲移相环节锯齿波电压形成的方案较多,如采用自举式电路、恒流源电路等。

锯齿波电路由V1、V2、V3和C2等元件组成,V1、VS、RP2和R3为一恒流源电路。

锯齿波是由开关V2管来控制的。

V2截止时,恒流源电流I1c对电容C2充电,调节RP2,即改变C2的恒定充电电流I1c,可见RP2是用来调节锯齿波斜率的。

V2导通时,因R4很小故C2迅速放电,u b3电位迅速降到零伏附近。

V2周期性地通断,u b3便形成一锯齿波,同样u e3也是一个锯齿波。

射极跟随器V3的作用是减小控制回路电流对锯齿波电压u b3的影响。

V4基极电位由锯齿波电压、控制电压u co、直流偏移电压u p三者作用的叠加所定。

如果uco=0,u p为负值时,b4点的波形由u h+u p确定。

当uco 为正值时,b4点的波形由u h+u p + u co确定。

M点是V4由截止到导通的转折点,也就是脉冲的前沿。

加u p的目的是为了确定控制电压u co=0时脉冲的初始相位。

相关文档
最新文档