数学归纳法及应用

合集下载

数学归纳法的原理和应用

数学归纳法的原理和应用

数学归纳法的原理和应用1. 数学归纳法的原理数学归纳法是一种证明数学命题的方法,它基于以下两个基本原理:1.1 基本原理1:归纳基础如果一个命题在某个特定条件下成立,且在下一个更大的条件下也能成立,那么我们可以断定这个命题对于所有满足条件的整数都成立。

1.2 基本原理2:归纳假设假设一个命题对于某个特定的整数 n 成立,那么我们可以推断这个命题对于n+1 也成立。

根据这两个基本原理,数学归纳法可以用于证明基于整数的定理。

2. 数学归纳法的应用数学归纳法在数学和计算机科学等领域有着广泛的应用。

下面将介绍数学归纳法在几个常见问题中的应用。

2.1 证明等差数列的求和公式考虑等差数列的求和公式 Sn = (a1 + an) * n / 2,其中 Sn 表示数列的前 n 项和,a1 为首项,an 为末项,n 为项数。

步骤:1.归纳基础:当 n = 1 时,公式 Sn = (a1 + an) * n / 2 成立,即公式对于数列中只有一个项的情况成立。

2.归纳假设:假设公式 Sn = (a1 + an) * n / 2 对于某个整数 k 成立,即Snk = (a1 + ank) * k / 2。

3.归纳步骤:通过归纳假设,我们可以推导出 Snk+1 = (a1 + ank+1) *(k+1) / 2。

首先,我们可以在 Snk 的基础上加上 ank+1,得到 Snk+1 = Snk +ank+1。

然后,我们可以整理得到 Snk+1 = (a1 + ank) * k / 2 + ank+1。

继续整理得到 Snk+1 = [(a1 + ank) * k + 2 * ank+1] / 2。

最后,我们可以将公式化简得到 Snk+1 = (a1 + ank+1) * (k+1) / 2。

因此,公式对于 n = k+1 也成立。

4.由归纳原理可知,公式对于所有正整数 n 成立。

2.2 证明数列的递推关系在数列中,递推关系指的是通过前面若干项来确定后面的项。

数学归纳法及应用列举

数学归纳法及应用列举

2k 1
(B)
k 1
(D) 2k 3 k 1
2.1 数学归纳法及其应用举例
(3)用数学归纳法证明: 2+4+6+……+2n=n2+n
例题讲解:
题1:用数学归纳法证明:
13 23 33 .... n3 1 n2 (n 1)2 4
例题讲解:
题2:用数学归纳法证明: 12 23 34 ..... n(n 1) 1 n(n 1)(n 2)
新授课
递推基础
数学归纳法证明一个与正整数有关命题的步骤是:
(1)证明当 n 取第一个值 n(0 如 n0 1或2等)时结论正确;
(2)假设时 n k(k N且k n0 ) 结论正确,证明
n k 1 时结论也正确.
递推依据
(3)由(1)(2)得最后下结论
练习:
用数学归纳法证明“不等式
1

1 2

1 3

...
..
1 2n
1ຫໍສະໝຸດ n(n*且n

1)
时,第一步应验证不等式(B)
(A)1
1 2

2
(B)1
1 2

1 3

2
(C)1 1 1 3 (D)1 1 1 1 3
23
234
; https:///xuxiaoming/ 徐小明新浪博客
圾扔下来,可是有一天,它改变了对垃圾的态度。它每天都把垃圾踩到自己的脚下,并从垃圾中找到残羹来维持自己的生命,而不是被垃圾所淹没。终于有一天它重新回到了地面上。 ? 训练要求: ? 1.这则材料应该给出的话题是: ? 3.你的作文题目是: ? 4.你的论点或主旨是: ? 5.请写 出能体现你的中心主旨的一句名言、歌词等或自编一句有哲理的话,不超过30字。 ? 6.请你联系所学过的课文,写出一二则相关课内论据。语言要简洁。 ? 7.请你联系并提炼你的现实生活,或亲身经历或耳闻目睹的社会现象,写出一二则生活论据。 ? 8.请你联系所读过的各类课外书报,提 炼整理出一二则论据。 ? 9.请为你的论点写出一段说理性文字。100字以内。 ? 10.你认为在立意上需要提醒大家注意的问题: ? 考前高考作文审题立意强化训练参考答案 ? 一、“坚持,便要在精神上压倒对方(困难或敌人)”,“振作精神便能顽强坚持”,这两种立意便有点不简单了; 而主要从弗雷泽的角度立意:“本是旗鼓相当,但一念之间的放弃意味着失败”,就或许有些与众不同;结合两个人的角度立意恐怕更少了吧?殊不知新意也便在此了:“胜利与失败原来是近邻,就在于坚持还是放弃”。然而不管怎样立意,总不能绕开“坚持”。 ? 二、本则材料中最后三句 话当是理解文意的关键,三次提到“大石头”,成了理解文意的关键。可以提出这样的问题:“你们工作,生活和学习中最重要的'大石头'是什麽呢?”思考之后就会得出这样一个结论:“大石头”就是生活,工作和学习中的最重要东西。 ? 可谈自己生活中最重要的'大石头'是自信心,有了 自信心,自己就有了进取的动力,就有了腾飞的马达;可谈“爱”是生活中最重要的“大石头”,有了爱,就有了温暖,有了关怀,有了理解,有了支撑,这个世界便充满了温馨;可谈学习是人生中最重要的“大石头”,进入知识经济时代,学习是生存的保障也是人类进一步发展的需要,更 是人的精神支柱…… ? 这个题目要“谈谈你的看法”,那就只有写成议。 ? 三、不要抱怨你的学校不好,不要抱怨你的专业不好,不要抱怨你住在破宿舍里,不要抱怨你的男人穷,你的女人丑,不要抱怨你没有一个好的爸爸,不要抱怨你的工作差,工资少,不要抱怨你空怀一身绝技没有人 赏识…… ? 现实有太多的不如意,就算生活给你的是垃圾,你同样能把垃圾踩在脚下,登上理想之巅。 ? 高考作文审题强化训练(二) ? (一)命题作文 1.请以“坚守信念”为题,写一篇不少于800字的文章。 要求:①立意自定。②除诗歌外,文体不限。③不得抄袭。 【写作指引】 这 是属于哲理类的写作命题。题目是一个四字短语,它包含了两个要素,即“坚守”和“信念”。但以“坚守”为主,写作的重心应当定位在如何“坚守”之上。而且必须明确要表现的是“坚守”,不是一般的“呵护”、“守护”,更不是“树立”、“拥有”等。既是“坚守”,肯定遭遇了一些 对“信念”的冲击波,可能还是比较严重的挫折和打击等。没有这些因素的烘衬,“坚守”之“坚”未能凸现出来。特别要注意的还有,不能绕开“坚守”而大谈“信念”,不然就导致重心移位了。依据考生自身的写作能力,无论是选择记叙类文体,运用具体事例来表现“坚守”之精彩,还 是选择议论类文体,通过分析、推理来论“坚守”之重要,均可写出佳作。 2.白雪覆盖,大地一片沉寂,忽而春风涌起,一片灰黑的土地转眼间绿意盎然,让人不能相信,那冬天里,这些种子曾怎样在黑暗的地下舞蹈过呢?平静的湖面如镜般明澈,也会一瞬即风生水起,巨浪滔天,这种力 量它如何孕育?世界上许多静止的事物从未停止过运动。 请以“静止就是舞蹈”为题,体裁不限,写一篇不少于800字的文章。 【写作指引】 (1)这个话题具有思辨色彩,以写议为佳。首先我们从“静止”可联想到生命的一个停顿、一种安静,人为什么要安静,想和尚面壁是为了什么,一 是反省,一是破禅。那么我们人生安静也是为了求得自己的更新,道德的进步;是为了在寂寞中苦心而求孤诣,为了学术的成果,为了事业的前进,多少人在喧嚣红尘中默然孤坐,而这样的安静其实是为了等待一个惊世的爆发,一个绝世的舞蹈。而“舞蹈”是生命更新的动力,是美的韵律的 呈现。再读材料联想,这世界运动是永恒的,万物静止是个假象,其实都在生生不息,如蛹化蝶,如沙砾变成珍珠,如种子在黑暗的地下怒涨的生命,这样就可联系科学家、思想家等人来论论题。还可联想到静止的文字与涌动的思想,多少哲人伟人已逝,而透过发黄的纸张,我们依稀可见他 们铮铮的铁骨,他们的谆谆善诱,他们的悲天悯人,他们的积极入世,他们的舍我其谁等。 (2)立意:“静止”可以理解为长期的积累、平凡努力、勤奋付出等,“舞蹈”可以理解为惊世爆发、一鸣惊人、成就人生、取得成功等。 3.《艺术人生》在盘点2004年文艺人物时使用了一个关键 词——“守望”。这是个令人心动的字眼:它是老师期待的眼神,是父母新添的白发,更是你孜孜以求的脚步。我们守望亲情,守望责任,守望未来……守望是信念,是坚守,是期盼。有些东西甚至需要用一辈子去守望。也许不是每一道江流都能入海,不是每一个守望都能圆满。但有了守望, 生活变得深刻,心灵变得充实。守望中,我们拒绝诱惑;守望中,我们执着追求;守望中,我们走向成熟…… 请以“在守望中……”为题,写一篇不少于800字的文章。 【写作指引】 守望有不同的对象、不同的意义、不同的过程。可以运用比喻的修辞使“守望”由抽象变为具体可感的形象, 用引用的方式来具体阐释“守望”的内涵,用排比的形式来为“守望”论,也可以综合运用比喻、引用、排比等修辞,展开论述。写成议要有对“守望”的形象化理解,可以在选择材料和论的时候,对材料采用形象化的叙述,可以设置一种情境,烘托出“守望”的价值和意义,以使文字获得 色彩、造型和构图等方面的效果。同时,要充分调动自己的思想感情,自我“激情”,使自己进入到事件中去,同所写的人一起喜、怒、哀、乐、忧、思,让语言充满感情。 4.请以“与……对话”为题写一篇文章,体裁不限,不少于800字。 【写作指引】 这虽是一篇命题作文,其实寻找思

归纳法在数学中的应用

归纳法在数学中的应用

归纳法在数学中的应用一、定义与概念1.归纳法:从特殊到一般的推理方法,通过具体实例得出一般性结论。

2.数学归纳法:一种特殊的归纳法,用于证明与自然数有关的数学命题。

二、数学归纳法的基本步骤1.验证基础情况:证明当n取最小自然数时,命题成立。

2.归纳假设:假设当n=k时,命题成立。

3.归纳步骤:证明当n=k+1时,命题也成立。

4.结论:由数学归纳法原理,得出结论:命题对所有自然数n成立。

三、数学归纳法的应用1.求解数列的通项公式:利用数学归纳法证明数列的通项公式。

2.证明函数的性质:利用数学归纳法证明与自然数有关的函数性质。

3.求解几何问题:利用数学归纳法证明几何命题。

4.解决递推关系问题:利用数学归纳法求解递推关系式的解。

四、数学归纳法的注意事项1.确保基础情况和归纳假设的合理性。

2.归纳步骤的证明要严格,避免出现漏洞。

3.注意数学归纳法只适用于与自然数有关的命题。

五、常见错误与误区1.基础情况未验证或验证不充分。

2.归纳假设错误,导致整个证明过程失效。

3.归纳步骤证明不严谨,无法推出结论。

4.将数学归纳法应用于非自然数的情况。

六、归纳法在数学教学中的应用1.引导学生通过具体实例发现数学规律。

2.培养学生从特殊到一般的思考方式。

3.帮助学生掌握数学证明的方法和技巧。

4.提高学生解决数学问题的能力。

归纳法是数学中一种重要的推理方法,尤其在证明与自然数有关的数学命题时具有广泛应用。

通过掌握数学归纳法的基本步骤和注意事项,学生可以更好地理解和运用归纳法,提高解决数学问题的能力。

同时,教师在教学过程中应注重引导学生运用归纳法,培养学生的逻辑思维和数学素养。

习题及方法:1.习题:证明对于任意自然数n,下列等式成立:1^3 + 2^3 + 3^3 + …+ n^3 = (1 + 2 + 3 + … + n)^2。

答案:使用数学归纳法证明。

解题思路:首先验证基础情况,即n=1时等式成立。

然后假设当n=k时等式成立,即1^3 + 2^3 + 3^3 + … + k^3 = (1 + 2 + 3 + … + k)^2。

数学归纳法及应用列举

数学归纳法及应用列举
证明交点的个数f(n)等于 n(n 1)
2
已知数列{an}的通项公式
an
4 (2n 1)2
数列{bn}的通项满足
bn (1 a1)(1 a2 )...(1 an )
用数学归纳法证明:
bn
2n 1
1 2n
2.1 数学归纳法及其应用举例
练习:
课后练习:1,2,3 课堂小结 ①归纳法; ②数学归纳法; ③数学归纳法证题程序化步骤 ; 作业: P67 习题2.1 1,2
新授课
递推基础
数学归纳法证明一个与正整数有关命题的步骤是: (1)证明当 n 取第一个值 n(0 如 n0 1或2等)时结论正确;
(2)假设时 n k(k N且k n0 ) 结论正确,证明
n k 1 时结论也正确.
递推依据
(3)由(1)(2)得最后下结论
练习:
用数学归纳法证明“不等式
1
(3)用数学归纳法证明: 2+4+6+……+2n=n2+n
例题讲解:
题1:用数学归纳法证明:
13 23 33 .... n3 1 n2 (n 1)2 4
例题讲解:
题2:用数学归纳法证明: 122334.....n(n1) 1n(n1)(n2)
3
练习: 用数学归纳法证明以下等式: (1)12 22 32 .... n2 n(n 1)(2n 1)
2.1 数学归纳法及其应用举例
2.1 数学归纳法及其应用举例
先证明当n 取第一个值 n(0 如 n0 1 )时
命题成立,然后假
设当 n k(k N , k n0 )时命题成立,
再证明当 n k 1 时命题
也成立,那么就证明这个命题成立, 这种证明方法叫做数学归纳法.

数学归纳法及应用列举

数学归纳法及应用列举

大底圣贤发愤之所为作也。”所有这些,都是典型的事例。 再综观当代文坛,哪个成功的作家没有被逼过?他被报社、出版社的人逼,也被他自己逼。读者逼主编;主编逼作家;作家逼自己,逼得想睡也不能睡,不想写也得写。问题是,多少惊人的作品就这样诞生了。 从某种
意义上说,逼学生的老师,何尝没有逼自己?“教学相长”不也是“教学相逼”吗? 常言道:“用进废退。”当外部有压力逼你“用”的时候,你的学识、才干等将会有很大的长进。因此,你应该虔诚地感谢外力对你的“逼”。 作文题三十八 阅读下面的材料,根据要求作文。
23
n
题3:用数学归纳法证明:x2n-y2n能被 x+y整除(对于多项式A,B,如果
A=BC,C也是多项式,那么A能被B整 除)
题4:平面内有n(n≧2)条直线,其中 任何两条不平行,任何三条不过同一点,
证明交点的个数f(n)等于 n(n 1)
2
已知数列{an}的通项公式
an

4 (2n 1)2
泪”只是你作文的导入或由头,如果单纯地写“杨振宁流泪”,那么就难以切题。 ? ?作文题三十三 阅读下面的材料,根据要求作文。 登山的人,有的目不旁视,奋力攀登,他执著于到达峰顶的瞬间风光;有的则流连沿途风景,且走且赏,山顶不过是他歇脚的地方。不只登山,
生活也是这样:两种心态,两种行为,两种价值观。你怎么看待这个问题呢? 请以“进取心与平常心”为话题,联系现实生活,写一篇文章。自定立意,自拟标题,自选文体,不少于800字。 [写作提示]情感、态度、价值观,是新课标提出的课程理念之一。要关注生活、关注
高下相倾,音声相和,前后相随学说讲的就是这个道理。 “结合社会生活实际”是作文的关键。如果就寓言谈寓言,就庄子谈庄子,就匠石谈匠石,那么就“答非所问”了。 作文题三十 ? 阅读下面的材料,根据要求作文。

数学归纳法及其在证明中的应用

数学归纳法及其在证明中的应用

数学归纳法及其在证明中的应用数学归纳法是一种基于自然数的证明方法,广泛应用于各个数学领域。

它的核心思想是通过证明基准情况和使用归纳假设,来证明所有自然数都满足所要证明的性质或命题。

本文将介绍数学归纳法的基本原理,并探讨其在证明中的应用。

一、数学归纳法的基本原理数学归纳法的基本原理可以简述如下:首先,我们需要确定一个基准情况,即证明命题对于某个特定的自然数成立。

接下来,我们假设命题对于某个自然数 n 成立,即假设命题在 n 这个情况下成立,这被称为归纳假设。

最后,我们通过证明命题在 n+1 这个情况下也成立,从而推导出命题对于所有自然数都成立。

二、数学归纳法的应用数学归纳法在证明中的应用非常广泛。

以下将介绍几个常见的应用案例:1. 证明数学等式与不等式数学归纳法常用于证明数学等式与不等式。

例如,我们要证明对于任意正整数n,都有 1 + 2 + 3 + ... + n = n(n+1)/2。

首先,我们验证基准情况,当 n = 1 时,等式左边为 1,右边为 1*2/2 = 1,两边相等。

接下来,我们假设等式对于 n 成立,即假设 1 + 2 + 3 + ... + n = n(n+1)/2 成立。

然后,我们证明等式对于 n+1 也成立,即证明 1 + 2 + 3 + ... + n + (n+1) = (n+1)(n+2)/2。

通过归纳假设,我们将左边的等式视为n(n+1)/2 + (n+1),化简得到 (n^2 + 3n + 2)/2,而右边的等式也可以化简为(n+1)(n+2)/2,两边相等。

因此,根据数学归纳法,我们可以得出结论:对于任意正整数 n,都有 1 + 2 + 3 + ... + n = n(n+1)/2。

2. 证明命题的递归定义数学归纳法还常用于证明命题的递归定义。

递归定义是一种通过引用自身来定义某个对象的方法。

例如,我们要证明指数的乘法规则:对于任意自然数 a 和 b,以及非负整数 n,都有 a^n * a^m = a^(n+m)。

数学归纳法的原理与应用

数学归纳法的原理与应用

数学归纳法的原理与应用数学归纳法是一种重要的证明方法,常用于证明整数集上的命题。

它的基本思想是,通过证明命题在第一个整数上成立,并假设命题在某个正整数k上成立,推导出它在下一个正整数k+1上也成立。

这样,通过无限次的迭代,我们可以推导出该命题在所有正整数上都成立。

在本文中,我将介绍数学归纳法的原理,并举例说明其应用。

一、数学归纳法的原理数学归纳法的原理可以分为两个步骤:基础步骤和归纳步骤。

1. 基础步骤基础步骤是证明命题在第一个整数上成立。

通常,这一步骤可以通过具体计算或逻辑推理来完成。

假设我们要证明一个关于正整数n的命题P(n),我们需要证明P(1)成立。

2. 归纳步骤归纳步骤是假设命题在某个正整数k上成立,然后通过这个假设推导出它在下一个正整数k+1上也成立。

具体地,我们需要证明当P(k)成立时,P(k+1)也成立。

这一步骤通常需要运用数学归纳法的假设和相应的数学性质来进行推导。

通过这两个步骤,我们可以得出结论:若基础步骤成立,并且归纳步骤成立,那么命题P(n)对任何正整数n都成立。

二、数学归纳法的应用数学归纳法在数学中有着广泛的应用。

下面,我将举两个例子来说明它的应用。

1. 证明等差数列的求和公式我们知道,等差数列中相邻两项之差是常数d。

现在,我们希望证明等差数列的前n项和公式:Sn = (n/2)(2a + (n-1)d)其中,Sn表示前n项的和,a表示第一项,d表示公差。

首先,我们需要通过数学归纳法的基础步骤证明当n=1时,公式成立。

可以发现,此时等式右边的表达式为a,恰好等于等差数列的第一项。

然后,我们假设当n=k时,公式也成立。

也就是假设Sn = (k/2)(2a + (k-1)d)成立。

接下来,我们通过归纳步骤证明当n=k+1时,公式也成立。

我们将Sn在等式两边加上等差数列的第k+1项an+1,得到Sn + an+1 =(k/2)(2a + (k-1)d) + an+1。

根据等差数列的性质,an+1 = a + kd。

数学归纳法及应用列举

数学归纳法及应用列举

1 2
1 3
.....
2n11n(n*且n1)
时,第一步应验证不等式(B)
(A)1
1 2
2
(B)1
11 23
2
(C)1 1 1 3 (D)1 1 1 1 3
23
234
用语,【瞠】chēnɡ〈书〉瞪着眼看:~目。 【病况】bìnɡkuànɡ名病情。【菜点】càidiǎn名菜肴和点心:风味~|宫廷~|西式~。②〈书〉婉 辞,泛指防御工事。 ~用文言成分比较多。 ②名指月亮:千里共~。①那个和这个;【簸箩】bò?没有规矩。②名“我”的谦称:其中道理, 上端连胃 ,【玻璃砖】bō?两腿交替上抬下踩,②扑上去抓:狮子~兔。②用布、手巾等摩擦使干净:~汗|~桌子|~玻璃◇~亮眼睛。处理:~家务|这件事由 你~。左右对称。捉拿绑匪。【层峦】cénɡluán名重重叠叠的山岭:~叠翠。 【惭颜】cányán〈书〉名羞愧的表情。 【荜路蓝缕】bìlùlánlǚ同
2.1 数学归纳法及其应用举例
2.1 数学归纳法及其应用举例
先证明当n 取第一个值 n(0 如 n0 1 )时
命题成立,然后假
设当 n k(k N , k n0 )时命题成立,
再证明当 n k 1 时命题
也成立,那么就证明这个命题成立, 这种证明方法叫做数学归纳法.
2.1 数学归纳法及证明一个与正整数有关命题的步骤是: (1)证明当 n 取第一个值 n(0 如 n0 1或2等)时结论正确;
(2)假设时 n k(k N且k n0 ) 结论正确,证明
n k 1 时结论也正确.
递推依据
(3)由(1)(2)得最后下结论
练习:
用数学归纳法证明“不等式
1
“筚路蓝缕”。【;橡胶止水带 遇水膨胀止水条 / 钢板止水带 软式透水管 橡胶止水带 ; 】cáiyì名才能和技艺:~超绝 。吃水草。一面加冷一面搅拌, 【薄地】bódì名不肥沃的田地。 【哺乳动物】bǔrǔdònɡwù最高等的脊椎动物, 形容凶恶残暴到了极点。【长 江后浪推前浪】ChánɡJiānɡhòulànɡtuīqiánlànɡ比喻人或事物不断发展更迭,②播映:~科教影片|电视台~比赛实况。马像游龙,④贴近; 花柔嫩,也说扯闲天儿。旧时用来比喻贫苦人家。有毛病的;事后补给假日。【博闻强记】bówénqiánɡjì博闻强识。 【称身】chèn ∥shēn形(衣服 )合身。 【长舌】chánɡshé名长舌头, 而以产品或加工劳务分期偿付进口设备、技术、专利等费用。【编创】biānchuànɡ动编写创作;③(Bì )名姓。 【超然物外】chāoránwùwài①超出于社会斗争之外。【撤差】chè∥chāi动旧时称撤销官职。③量拨?【菜霸】càibà名欺行霸市,由信息 、数据转换成的规定的电脉冲信号:邮政~。 形容长久安逸,一种打击乐器。逮:~鱼|~猎|~捉|追~|~到了凶手。②不推脱; 其他哺乳动物全是 胎生的。【不治之症】bùzhìzhīzhènɡ医治不好的病,也可以扣住,木材坚韧,)chǎo〈书〉炒熟的米粉或面粉。【谗言】 chányán名毁谤的话; 【笾】(籩)biān古代祭祀或宴会时盛果实、干肉等的竹器。焉得虎子】bùrùhǔxué, 【伯祖】bózǔ名父亲的伯父。低下:~陋|卑~。没有花瓣 ,【恻】(惻)cè悲伤:凄~|~然。】(韠)bì古代朝服的蔽膝。 【姹】(奼)chà〈书〉美丽。【菜畦】càiqí名有土埂围着的一块块排列整齐的 种蔬菜的田。【婢】bì婢女:奴~|奴颜~膝。大部分是在水中形成的,【缠】(纏)chán动①缠

数学归纳法及应用举例

数学归纳法及应用举例

数学归纳法及应用举例重点难点分析:(1)数学归纳法的第一步是验证命题递推的基础,第二步是论证命题递推的依据,两个步骤密切相关,缺一不可。

(2)归纳思想充分体现了辩证唯物主义的特殊与一般的思想,是数学的基本思想,数学归纳法体现了有限与无限的辩证关系与转化思想。

(3)归纳——猜想——证明是经常运用的数学方法,观察是解决问题的前提条件,需要进行合理的试验和归纳,提出合理的猜想,从而达到解决问题的目的。

(4)数学归纳法的应用通常与数学的其它方法联系在一起,如比较法,放缩法,配凑法,分析法和综合法等。

典型例题:例1.用数学归纳证明:=-n(n+1)(4n+3)。

证明:①当n=1时,左边,右边=-1(1+1)(4+3)=-14,等式成立。

②假设n=k时等式成立,即=-k(k+1)(4k+3)。

那么n=k+1时,+[(2k+1)(2k+2)2-(2k+2)(2k+3)2] =-k(k+1)(4k+3)-2(k+1)(4k2+12k+9-4k2-6k-2)=-(k+1)[4k2+3k+2(6k+7)]=-(k+1)(4k2+15k+14)=-(k+1)(k+2)(4k+7)=-(k+1)[(k+1)+1][4(k+1)+3],等式也成立。

由①②知,当n∈N′时等式成立,∴原命题成立。

例2.试证S n=n3+(n+1)3+(n+2)3能被9整除。

证明:①n=1时,S1=4×9,能9整除。

②假设,n=k时,S k能被9整除,则S k+1=(k+1)3+(k+2)3+(k+3)3=S k+(k+3)3-k3=S k+9(k3+3k+3)由归纳假设知S k+1能被9整除,也就是说n=k+1时命题也成立。

综上所述:命题成立。

点评:用数学归纳法证明整除问题时,关键是把n=k+1时的式子分成两部分,其中一部分应用归纳假设,另一部分经过变形处理,确定其能被某数(某式)整除。

例3.通过一点有n个平面,其中没有任何3个平面交于同一条直线,用数学归纳法证明这些平面把空间分成(n2-n+2)个部分。

数学归纳法及其在证明中的应用

数学归纳法及其在证明中的应用

数学归纳法及其在证明中的应用数学归纳法是一种常用的证明方法,在数学领域中具有广泛的应用。

它基于数学归纳原理,通过证明某一命题在基础情形下成立,并且在前一情形成立的前提下,推导出在后一情形下成立,从而证明该命题对于所有情形都成立。

本文将介绍数学归纳法的基本原理及其在证明中的应用。

一、数学归纳法的基本原理数学归纳法的基本原理可以简述为:若能证明命题在基础情形下成立,并且在前一情形成立的前提下,能推导出在后一情形下也成立,则该命题对于所有情形都成立。

具体而言,数学归纳法一般包含以下三个步骤:1. 基础情形的证明:首先证明当n取某个特定值时,命题成立。

这个特定值称为基础情形。

证明这一步骤通常是较为简单和直接的。

2. 归纳假设的建立:假设当n=k时命题成立,其中k是某个自然数。

这个假设被称为归纳假设,它是推导下一情形的前提。

3. 归纳步骤的证明:在归纳假设的前提下,证明当n=k+1时命题也成立。

这一步骤需要推导并证明命题成立的过程。

通过以上三个步骤,我们可以逐步推导出命题对于所有正整数都成立的结论。

二、数学归纳法的应用数学归纳法在证明数学命题中有着广泛的应用。

下面将介绍数学归纳法在代数、数论和组合数学等领域中的具体应用。

1. 代数中的应用在代数中,数学归纳法常用于证明与自然数相关的性质。

例如,我们可以利用数学归纳法证明自然数n的平方和公式:1² + 2² + 3² + ... + n² = (n(n+1)(2n+1))/6首先,我们证明当n=1时,公式成立。

然后,假设当n=k时公式成立,即1² + 2² + 3² + ... + k² = (k(k+1)(2k+1))/6。

接下来,我们需要证明当n=k+1时公式也成立。

利用归纳假设,我们可以得到:1² + 2² + 3² + ... + k² + (k+1)² = (k(k+1)(2k+1))/6 + (k+1)²通过化简和运算,我们可以证明等式成立,从而得出结论:对于所有自然数n,平方和公式都成立。

数学归纳法及应用

数学归纳法及应用

数学归纳法及应用数学归纳法是一种用于证明数学命题的常用方法,它基于数学归纳原理。

数学归纳法主要分为弱归纳法和强归纳法两种形式。

弱归纳法用于证明对于所有自然数n都成立的命题,而强归纳法可以用于证明对于所有整数n都成立的命题。

数学归纳法的基本思想是:首先证明当n取某个确定的值时命题成立,然后假设当n取某个确定的值k时命题也成立,即假设命题在n=k时成立。

然后利用这个假设证明当n=k+1时命题也成立,即证明命题在n=k+1时成立。

这样就完成了数学归纳法的证明过程。

数学归纳法常用于证明整数性质、集合性质、不等式、等式等各类数学命题。

下面分别以几个例子来说明数学归纳法的应用。

首先考虑一个经典的例子:证明对于任意自然数n,1+2+3+...+n = n(n+1)/2。

我们首先验证当n=1时等式成立:1 = 1*(1+1)/2,等式两边相等。

然后假设当n=k时等式成立,即1+2+3+...+k = k(k+1)/2。

我们来证明当n=k+1时等式也成立:1+2+3+...+k+(k+1) = (k+1)(k+2)/2。

根据假设,我们可以将等式左边的1+2+3+...+k替换为k(k+1)/2,得到k(k+1)/2+(k+1) = (k+1)(k+2)/2。

化简得(k^2+k+2k+2)/2 = (k+2)(k+1)/2,等式两边相等。

因此,根据数学归纳法可知对于任意自然数n,1+2+3+...+n = n(n+1)/2。

接下来考虑一个关于集合性质的例子:证明任意n个集合的交集非空。

我们首先验证当n=2时命题成立:假设A和B是任意两个集合,根据集合论的基本性质,如果A和B的交集为空集,则A和B的并集中的元素个数等于A和B的元素个数之和。

而对于任意两个非空集合,它们的并集中的元素个数大于它们的元素个数之和。

因此,如果A和B的交集为空集,则它们的并集中的元素个数等于A和B的元素个数之和,即A和B的并集非空。

因此,当n=2时命题成立。

数学归纳法及其应用举例

数学归纳法及其应用举例
证明:
(1)当n=1时,左边=12=1,右边=1 23 1 6
等式成立。
(2)假设当n=k时,等式成立,就是
12 22 32 k 2 k(k 1)(2k 1) 6
那么
12 22 32 k 2 (k 1) 2 k (k 1)(2k 1) (k 1)2
6 k (k 1)(2k 1) 6(k 1) 2
1 4 2 7 310 k(3k 1)
+(k 1)3(k 1) 1
(k 1)[(k 1) 1]2
4)此时,左边增加的项是
(k 1)3(k 1) 1
5)从左到右如何变形?
证明: (1)当n=1时,左边=1×4=4,右边=1×22=4,等式成立。 (2)假设当n=k时,等式成立,就是
1 4 2 7 310 k (3k 1)
k (k 1)2 , 那么 1 4 2 7 310 k (3k 1)
+(k 1)3(k 1) 1 k (k 1)2 (k 1)3(k 1) 1
(k 1)[k (k 1) 3(k 1) 1]
(k 1)(k 2 4k 4)
(k 1)[(k 1) 1]2
对于任何n N,an (n2 - 5n 5)2 =1
不完全归纳法与完全归纳法
不完全归纳法是根据事物的部分(而不 是全部)特例得出一般结论的推理方法。
完全归纳法是一种在研究了事物的所有 (有限种)特殊情况后得出一般结论的 推理方法,又叫做枚举法。
例题2 用数学归纳法证明
12 22 32 n2 n(n 1)(2n 1) 6
那么,2 4 6 2k 2(k 1)
=k2+k+1+2(k+1)
=(k+1)2+(k+1)+1

数学归纳法及其应用

数学归纳法及其应用

数学归纳法及其应用陕西省汉中市405学校 侯有岐 723312(一)知识归纳数学归纳法是证明与正整数n 有关的数学命题的一种重要方法,其证题程序是: ①验证n 取第一个值n 0时结论正确;②假设),(0n n N k k n ≥∈=*时结论正确,证明当1+=k n 时结论也正确.如果①、②两个步骤都完成了,则可断定结论对0n n ≥的一切正整数都正确. 概括: 递推基础不可少,归纳假设要用到,结论写明莫忘掉.(二)学习要点1.用数学归纳法证题要注意下面几点:①证题的两个步骤缺一不可,要认真完成第一步的验证过程;②成败的关键取决于第二步对1+=k n 的证明:1)突破对“归纳假设”的运用;2)用好命题的条件;3)正确选择与命题有关的知识及变换技巧.2.中学教材内,用数学归纳法证明的问题的主要题型有“等式问题”、“整除问题”、“不等式问题”等,要积累这几种题型的证题经验.3.必须注意,数学归纳法不是对所有“与正整数n 有关的命题”都有效.(三)应用举例等式问题是比较基本的问题,1+=k n 的证明的技巧一般都不高,而且在高考中出现得不多.整除问题在高考难度范围内并不多见,如果问题是与正整数n 有关的整除问题,在教材的范围内一般只有用数学归纳法解决,且在1+=k n 的证明过程中应首先考虑拼凑出“归纳假设”,然后再想办法证明剩余部分. 用数学归纳法证明几何问题是教材中一种题型,但由于这种题型的证明主要是文字推理为主,在评分上不好把握,因此考试中很难见到这种题型.基于上述理由,这几类问题在此就不一一举例了. 而用数学归纳法证明不等式是高考中出现频率较高的一种题型,尤其是近几年高考加强了数列推理能力的考查,更应引起同学们足够的重视.用数学归纳法证明,要完成两个步骤,这两个步骤是缺一不可,而重点在第二步(同时也是难点之所在),即:假设()()k g k f <)成立,证明()()11+<+k g k f 成立,这需要我们灵活地运用各种方法技巧,过去讲过的证明不等式的方法在此都可以使用,如比较法、放缩法、分析法等,有时还要考证与原不等式等价的命题.下面举例说明数学归纳法在不等式证明中的应用.例1、求证:()*,2,65312111N n n n n n ∈≥>+++++ . 分析:(1)因为本题与正整数n 有关,因此考虑用数学归纳法证明;(2) 由k n =成立,推导1+=k n 也成立时,要弄清左边式子增减了几项以及增减了哪些项,这就需要清楚式子的结构特点.证明:1)当2=n 时,左边6561514131>+++=,显然不等式成立. 2)假设当()*,2N k k k n ∈≥=时命题成立,即65312111>+++++k k k . 则当1+=k n 时, ()()()13123113131211111+++++++++++++k k k k k k)11331231131(312111+-+++++++++++=k k k k k k k )11331331331(65)11331231131(65+-++++++>+-++++++>k k k k k k k k 65)113313(65=+-+⨯+=k k ,故当1n k =+时,不等式也成立. 综上由1),2)可知,原不等式对一切*2,n n N ≥∈均成立.点评:本题的关键在由k n =到1+=k n 时的推证过程,首先要注意分析清楚命题的结构特征,即由k n =到1+=k n 时不等式左端项数的增减情况;再利用假设来推证,针对问题的特点,巧妙合理地利用“放缩技巧”,即11333331331331331231131+=+=+++++>+++++k k k k k k k k ,使问题获得简捷的证明.例2.已知1)1(32132<+++++=n nn n n a ,求证:1<n a 分析: n a 的表达式是一个分式,在第二步的证明中,归纳假设1)1(32132<+++++=kkk k k a 不易直接使用,可使用它的变形形式k k k k )1(32132+<++++ .证明:1)当1=n 时,1211<=a 成立. 2)假设当k n =时,结论成立,有1)1(32132<+++++=kkk k k a 成立, 则当1+=k n 时,1111321)2()1()1()2()1(321+++++++++<+++++++=k k k k k k k k k k k k k a 1)21()2()1()2()2()1(1<++=++=+++=+k k k k k k k k k k k k 故当1n k =+时,不等式也成立.综上1)和2)知,对任意*∈N n 都有1<n a 成立.点评:在证明恒等式或不等式时,有时需要将条件变形或考证与原等式或不等式等价的变形形式.本例的证明,也可该证n n n n )1(32132+<++++ .从以上两例我们不难看出,用数学归纳法证明不等式,宜先比较k n =与1+=k n 这两个不等式间的差异,然后再利用比较、分析、综合、放缩等技巧及不等式的传递性来完成由k n =成立推出1+=k n 不等式成立的证明.(四)变式练习用数学归纳法证明下述不等式;(1)).2,(10931312111≥∈>+++++++*n N n n n n n 且 证明: 1) 当n =2时,左边1096054605761514131=>=+++=, ∴当n =2时,不等式正确;2) 假设当)2(≥=k k n 不等式正确,即109312111>+++++k k k , ∴当1+=k n 时,左边331231131313121+++++++++++=k k k k k k >+-+++++++++++++=11331231131)31312111(k k k k k k k k 109)331231()331131(109332231131109>+-+++-++=+-++++k k k k k k k , ∴当1+=k n 时不等式也正确; 根据1)、2)知对*∈N n ,且2≥n ,不等式都正确.(2))(2)1()1(32212)1(2+∈+<+++⋅+⋅<+N n n n n n n . 证明: 记)1(3221+++⋅+⋅=n n a n ,1) 当1=n 时,2)11(22,2211221211+=<=⨯=>=⋅=a a 而, ∴当1=n 时,不等式2)11(22121+<<⨯a 正确; 2) 假设k n =时不等式正确,即2)1(2)1(2+<<+k a k k k , 当1+=k n 时, ∵,)2)(1(2)1()2)(1()2)(1(2)1(2++++<+++<++++k k k k k a k k k k k 而)1(2)1()1(2)1()2)(1(2)1(2+++=+++>++++k k k k k k k k k k 2)2)(1()12)(1(++=++=k k k k , 而2)2(2442)2()1(2)1()2)(1(2)1(2222+=++=+++++<++++k k k k k k k k k ,2)2(2)2)(1(21+<<++∴+k a k k k ,即1+=k n 时不等式正确; 根据1)、2)知对*∈N n ,不等式正确.。

数学归纳法及应用列举

数学归纳法及应用列举
冷苍白的手上。 (3)阅读第③~?段,指出这部分文字运用的描写手法,并分析其表达效果。 (4)“虽然,米勒斯先生一生都没发过大财,可在镇上人们的眼里,他是艾达荷州最富有的人。”为什么米勒斯先生是“最富有的人”?请联系全文谈谈你的理解。 【考点】9E:小说阅读综 合. 【分析】本文可分为三个部分:第一部分(1~2),写米勒斯摆菜摊,引来很多孩子来观看物品;第二部分(3~19),写米勒斯用善意的谎言,既给了几个穷苦孩子新鲜的蔬菜,又维护了他们的自尊;第三部分( 20~21),写米勒斯先生的葬礼很隆重,当年他帮助的三个孩子也来与他 告别,并表达对米勒斯先生最真诚的谢意.文章为我们塑造了一位有爱心,帮助别人却不露半点痕迹的好人米勒斯先生. 【解答】(1)本题考查情节内容的概括.解答此题在整体感知小说内容的基础上,理清情节思路,用简洁的语句概括出主要情节即可.从小说内容来看,本文围绕着“红 色玻璃球”,主要写了米勒斯帮助家庭贫困的小男孩,以及小男孩长大后报恩两个情节. (2)本题考查人物心理的分析.解答此题要根据前后文内容,以及人物之间的关系来分析.①从下文可知,米勒斯先生并不是真的想要什么玻璃球,他只是想以此为借口来帮助买不起蔬菜的小男孩,这 是一般人都很难做到的,更何况是在“钱和食品非常匮乏”的时候,而米勒斯太太看到丈夫这么做,还面带微笑,可以判断,她此时的心里是高兴的、自豪的,为自己的丈夫善良有爱心而高兴自豪.②从下文“他们告诉米勒斯太太,当年他们是多么感激米勒斯先生,感谢他当年换给他们的蔬 菜”,可以看出三个男孩是来表达谢意的,是来报恩的.米勒斯太太之所以“满含热泪”,一是因为丈夫的过世,二是为丈夫当年的那份苦心被人理解,有了回报而激动. (3)本题考查描写方法及作用的分析.解答此题关键要掌握描写的种类及其作用效果:人物描写包括语言、动作、心理、 肖像、神态、侧面描写等.然后根据具体的语句做出判断,并结合所处文段加以理解,分析出描写的效果.文章③~?段,主要运用的是语言描写,记述了米勒斯先生与小男孩之间的对话,具体生动地再现了米勒斯先生的善良,以及对小男孩态度的真诚. (4)本题考查文章主旨的理解与分 析.从小说的主体内容可以知道,米勒斯先生用善意的谎言来暗地里帮助那些穷苦的孩子,他虽然失去的是金钱,但从结尾来看,孩子们一直收藏着当看的玻璃球,一直铭记着米勒斯先生的恩情,他的善良、助人为乐的精神永远感动着人们,记在人们的心间.文章就是以此来表现:真诚的帮 助会让人终身受益,并得到真诚的回报这一主旨. 代谢: (1)米勒斯用喜爱不同颜色的玻璃球为借口,帮助家庭贫困的小男孩;三个曾经受过米勒斯帮助的已长大成人的男孩,在米勒斯的葬礼上表达真诚的谢意. (2)①看到米勒斯用善意的谎言来帮助穷苦人,心里感到高兴与自豪,对丈 夫行为的肯定; ②看到当看米勒斯暗中帮助的三个小男孩来参加葬礼,并珍藏着当年的红色玻璃球,明白他们懂得米勒斯先生的苦心,为丈夫的一片苦心被人理解,有了回报而无比的激动. (3)语言描写,具体展示了米勒斯与小男孩之间的对话,表现出米勒斯先生的善良,对小男孩的热情 与真诚. (4)米勒斯先生用善意的谎言来暗中帮助穷困的孩子,他虽然在金钱上有损失,但他的乐于助人的精神,助人还懂理维护别人自尊的行为,永远记在人们的心间,让人们无比的敬佩,所以说他在精神上是“富有的”. (2017山东莱芜)阅读下面文字,完成14-21题 (一)有它的地 方叫故乡 舒 翼 ①单位的院子里种了不少花,有玉兰、海棠、碧桃、榆叶梅……每当春天到来,花开之时,树下、花边总少不了赏花者。人们常说,最美人间四月天。想来,春天里那些盛大的花事,无疑是最美的四月天里最绚丽的一道风景。 ②不过,于我而言,眼前的此般花景再美,却不 及记忆里的“那一朵”亲切。因为,有它的地方,叫故乡。 ③说起来,这种花对于很多人来说并不陌生。它们广泛地种植于祖国大地上,每到春天,花开之处,仿佛一片金黄色的海洋。那满世界的金黄,浓得化不开的金黄,让人震撼,难以忘记。天南海北的人们,不远千里赶赴一处处花海, 只为陶醉于那一望无际的灿烂的金黄。这种花,就是油菜花。 ④我对油菜花再熟悉不过了。我的故乡坐落在苏中平原上,属于里下河水乡,水网密集,油菜花随处可见,田间、路边、河坡上……经常能看见这种极其普通的花儿。小时候,每天放学后,爸爸骑着自行车接我回家,路边的一侧是 一条小河,河坡上开满了油菜花。爸爸每次骑到这里时,就会停下来,沿着河坡往下走,采上一朵油菜花,然后递给我。回到家中,我们将采来的这朵油菜花插在装了水的瓶子里,屋子立刻就靓丽了不少。记忆里,童年的每个春天,眼前都少不了油菜花的灿烂盛开,家中都少不了油菜花的美 丽装扮。 ⑤一直以来,我总认为油菜花是一种很特别的花。因为在我心中,大概没有一种花比油菜花更具有故乡的意味了。这不仅是因为我出生并成长的地方盛产油菜花,油菜花承载着我对于苏中水乡和童年的美好记忆,更是因为油菜花的特殊气质,与“故乡”这个字眼最为贴切,让人不由 自主地想到故乡景,故乡事,乃至故乡人。 ⑥即便你从来没有亲眼见过油菜花,亲身置身过油菜花海中,光从那些代谢里,你也可以发现,油菜花的遍野之处,从来不是一方阳台、一处庭院、一所公园,而是连绵起伏的大山脚下,阡陌交错的田埂之上,河网密布的水乡岸边,白墙黛瓦的房前 屋后……这些,不正是我们最常见的家园的模样,不正是最典型的乡土中国的图景吗? ⑦这也难怪,油菜花本来就是长在乡间田头的。油菜花说到底并不是观赏性的花,而只是有着很强实用价值的农作物油菜的花。那些大面积种植的油菜,不仅可以用来食用,长出的菜籽更是极好的榨油原料。 清代乾隆皇帝就有诗赞油菜花:“黄萼裳裳绿叶稠,千村欣卜榨新油。爱他生计资民用,不是闲花野草流。”所以,油菜花在本质上便是属于故乡、属于乡土的。 ⑧如果说有些花天生只可欣赏的话,那么油菜花则天生就是和日常生活联系在一起的,它沾满了生活的烟火气。当有些花正在得到 人们的精心栽培、呵护之时,与油菜花的命运相关的,却永远是田间地头的播种、收获,是水乡垛田间的摇橹穿梭,是房上屋顶的缕缕炊烟,是世世代代的繁衍生息…… ⑨油菜花又像极了故乡的那些人。普通、平凡、质朴,但明亮、健康、泼辣、热烈,长成了一片明媚与灿烂。里下河水乡的 那片油菜花,总会让我想到,从这里走出的著名作家汪曾祺的小说《受戒》里那个活泼直率的小英子,还有发生在这片土地上的“柳堡的故事”里那淳朴可爱的二妹子。这些故乡的他(她)们身上,有着原生态的美,自然的美,乡土中国的美。可惜的是,当我们身处其中的时候,常常会因为 太熟悉、太常见,以至于熟视无睹,往往只有在身处异乡之后,再回望他们时,才会越发感觉到这种美好。 ⑩如果每一种花都有“花语”,我想,油菜花的花语就是——故乡。记得某一年去往某地,在一个镇子上采访,不经意间,经过一家屋后,眼前突然出现了一大片油菜花。置身花中,花 入心田,一刹那,花站成了我,我跪成了花,天地间只剩一片灿烂的金黄。那一刻,我真的以为,自己是身在故乡。 (2017年04月20日《人民日报》 有删改) 14、文章第①段有何作用?(2分) 15、结合全文,概括油菜花的特点。(4分) 16、赏析文中划线句子。(4分) ①当有些花正在 得到人们的精心栽培、呵护之时,与油菜花的命运相关的,却永远是田间地头的播种、收获,是水乡垛田间的摇橹穿梭,是房上屋顶的缕缕炊烟,是世世代代的繁衍生息…… ②置身花中,花入心田,一刹那,花站成了我,我跪成了花,天地间只剩一片灿烂的金黄。 17、请结合全文谈谈,作 者为什么说“有它的地方,叫故乡”。(4分) (二)泠泠风雨声 胡竹峰 平日偶得闲情,我会看看碑帖里笔墨的旧影心迹,古琴素手纸窗瓦屋灯火青荧天与地合,意与神会,情通自然。意与神兮如痴如醉,情通自然兮惠风和畅。 春雨绵绵,阴寒不散,夜里悠悠忽忽读了些旧人诗词。元人柳

数学归纳法及应用列举

数学归纳法及应用列举

1

1 2

1 3

...
..
1 2n
1

n(n

*且n

1)
时,第一步应验证不等式(B)
(A)1
1 2

2


2
(C)1 1 1 3 (D)1 1 1 1 3
23
234
(2)
利用数学归纳法证明
(n 1)(n 2).....(n n) 2n 13...... (2n 1)
新授课
递推基础
数学归纳法证明一个与正整数有关命题的步骤是:
(1)证明当 n 取第一个值 n(0 如 n0 1或2等)时结论正确;
(2)假设时 n k(k N且k n0 ) 结论正确,证明
n k 1 时结论也正确.
递推依据
(3)由(1)(2)得最后下结论
练习:
用数学归纳法证明“不等式
说是我们男神老板买下你那栋房子,目前正在重新装修.”周子叶一脸是非,“陆陆,你不打算搬回去吗?你跟他交情辣么好,一定优先租给你.”事关安身之所,婷玉也很关心,“是呀,陆陆,你这么找不是办法,不如考虑一下?”“我跟少华不一样,他hold得住那些人,我不行.”陆羽摇摇 头,“再说,以后有旅行团进村不一定吵成什么样呢.不了,我打算回城郊买栋房子算了.”金梧国际附近有二手小别墅出售,售价两百万左右の也有.她向樊大姐打听过,以自己の经济条件可以挑好一些の,要么月供,要么借钱付全款.这是最后一步.那里好歹离城区近一些,监控集中在金梧国际, 治安还行.以后她想吃什么可以叫外卖,也可以回城里吃,以后学车考个牌,二手车贼便宜.快递还给她送到家门口,特方便.至于办居住,这就要找林师兄帮忙了.等她安定下来,再慢慢考虑别の事情.云非雪见状不再多提,微笑道:“我有同学在宁海,今天中午想来一个直播,大家一起吧?我知道

数学归纳法的原理及应用

数学归纳法的原理及应用

数学归纳法的原理及应用数学归纳法是一种证明命题的方法,它基于以下的原理:若一个命题在满足某个条件的基础情况下成立,并且该命题在任意一个满足该条件的情况下成立,则该命题对所有满足该条件的情况都成立。

数学归纳法由弱归纳法和强归纳法两种形式,其中强归纳法比弱归纳法更为广泛应用。

数学归纳法的步骤如下:1. 基础情况:首先证明命题对某个特殊情况成立,通常是最简单的情况。

2. 归纳假设:假设该命题对所有满足条件的情况成立,即假设命题对第n个情况成立。

3. 归纳步骤:证明基于归纳假设,命题对第n+1个情况也成立。

4. 结论:根据数学归纳法原理,命题对所有满足条件的情况都成立。

数学归纳法的应用非常广泛,以下是几个常见的例子:1. 证明等式:数学归纳法常常被用来证明等式成立。

首先证明等式对某个特殊值成立,再通过归纳步骤证明等式对n+1情况成立,从而推论该等式对所有满足条件的情况都成立。

2. 证明不等式:类似地,数学归纳法也可以用于证明不等式成立。

首先证明不等式对某个特殊值成立,再通过归纳步骤证明不等式对n+1情况成立,从而推论该不等式对所有满足条件的情况都成立。

3. 证明数列性质:数学归纳法可以用于证明数列的各种性质,如递推关系、收敛性等。

通过基础情况的证明和归纳步骤的推导,可以得出数列性质的结论。

4. 证明命题的正确性:数学归纳法可以用于证明某个命题在所有满足条件的情况下都成立。

通过基础情况的证明和归纳步骤的推导,可以最终得出命题的正确性。

数学归纳法作为一种证明方法,具有以下优点:1. 逻辑严谨:数学归纳法的证明过程非常严谨,每一步都有严格的逻辑推导,能够确保证明的正确性。

2. 可推广性强:数学归纳法的证明结果经常能够推广到更一般的情况下。

通过证明基础情况和归纳步骤,可以得出对所有满足条件的情况都成立的结论。

3. 应用广泛:数学归纳法可以用于证明各种数学问题,如等式、不等式、数列等,具有广泛的应用领域。

需要注意的是,数学归纳法并不适用于所有情况。

(201907)数学归纳法及应用列举

(201907)数学归纳法及应用列举

(A)1
1 2

2
(B)1
1 2

1 3

2
(C)1 1 1 3 (D)1 1 1 1 3
2.1 数学归纳法及其应用举例
2.1 数学归纳法及其应用举例
先证明当n 取第一个值 n(0 如 n0 1 )时
命题成立,然后假
设当 n k(k N , k n0 )时命题成立,
再证明当 n k 1 时命题
也成立,那么就证明这个命题成立, 这种证明方法叫做数学归纳法.
2.1 数学归纳法及其应用举例
因曰:“天宝中政事 享年六十三岁 《唐会要》卷六十四《史馆下》记载 累官尚书郎 知制诰 但也深得陈希烈的佐佑唱和之力 封太原郡公 以其精于吏干 [42] 公勿忧也 其中有十八名学士在做他的国事顾问 独揽朝政 [37] ”刘熙:“褚河南书为唐之广大教化主 追赠他为开府仪同三 司 并州大都督 前人睹之 由是知名 郓州须昌(今东平东宿城镇西北) 白敏中命人将其追回 字用晦 将他们分为六等定罪 ”敦礼进曰:“昔周公诛管蔡 只有岑羲恪守正道 皆不可立 《旧唐书·白敏中传》:敏中少孤 唐文宗将陈夷行召到长安 起义宁尽贞观末 俶以上旨释之 9.诏许何 力观省其母 15. 权势仅在武承嗣之下 崔元礼 [18] 三年 四年渐不如前 时武三思用事 丙辰 历河东 郑滑 邠宁三府节度掌书记 召署中书侍郎 [18] 父母▪ 既承丧乱之后 中书侍郎颜师古免职后 陈叔谟 遂良谓无忌等曰:“上意欲废中宫 20.敬德擐甲持矛 卒 以兵多积谷为上策 京 兆长安(今西安市)人 不久便立李世民为皇太子 加太子太师 字 陈叔俭 此后 后改任兵部侍郎 但其在书法上的名望不减 刘备托诸葛 咸通元年(860年) 年六十一 李绩崔敦礼灭之 便趁机提出派大臣前去镇抚 鞠躬尽瘁 入宫 唐玄

数学归纳法及应用列举

数学归纳法及应用列举
6
(2)1 4 27 310 ... n(3n 1) n(n 1)2
用数学归纳法证明:
1 1 1 ... 1 2 n (n N *)
23
n
13 23 33 .... n3 1 n2 (n 1)2 4
例题讲解:
题2:用数学归纳法证明: 12 23 34 ..... n(n 1) 1 n(n 1)(n 2)
3
练习: 用数学归纳法证明以下等式: (1)12 22 32 .... n2 n(n 1)(2n 1)
2.1 数学归纳法及其应用举例
2.1 数学归纳法及其应用举例
先证明当n 取第一个值 n(0 如 n0 1 )时
命题成立,然后假
设当 n k(k N , k n0 )时命题成立,
再证明当 n k 1 时命题
也成立,那么就证明这个命题成立, 这种证明方法叫做数学归纳法.
2.1 数学归纳法及其应用举例
新授课
递推基础
数学归纳法证明一个与正整数有关命题的步骤是:
(1)证明当 n 取第一个值 n(0 如 n0 1或2等)时结论正确;
(2)假设时 n k(k N且k n0 ) 结论正确,证明
n k 1 时结论也正确.
递推依据
(3)由(1)(2)得最后下结论
练习:
用数学归纳法证明“不等式
(n N *)时从n=k变成n=k+1时,左边应增添
的因式是(A) (A) 2k+1 (C) (2k 1)(2k 2)
k 1
2k 1
(B)
k 1
(D) 2k 3 k 1
2.1 数学归纳法及其应用举例
(3)用数学归纳法证明: 2+4+6+……+2n=n2+n
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档