(完整word版)2015年山东省高考数学试卷(理科)答案与解析
2015年高考山东理科数学试题及答案解析
2015年普通高等学校招生全国统一考试(山东卷)数学(理科)第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2015年山东,理1】已知集合2{|430}x x x -+<,{|24}B x x =<<,则A B =( )(A )()1,3 (B )()1,4 (C )()2,3 (D )()2,4 【答案】C【解析】2{|430}{|13}A x x x x x =-+<=<<,(2,3)A B =,故选C .(2)【2015年山东,理2】若复数z 满足i 1iz=-,其中i 是虚数单位,则z =( ) (A)1i - (B )1i + (C )1i -- (D)1i -+ 【答案】A【解析】2(1i)i i i 1i z =-=-+=+,1i z =-,故选A .(3)【2015年山东,理3】要得到函数sin(4)3y x π=-的图象,只需将函数sin 4y x =的图像( )(A)向左平移12π个单位(B )向右平移12π个单位(C )向左平移3π个单位(D)向右平移3π个单位 【答案】B【解析】sin 4()12y x π=-,只需将函数sin 4y x =的图像向右平移12π个单位,故选B .(4)【2015年山东,理4】已知菱形ABCD 的边长为a ,60ABC ∠=,则BD CD ⋅=( )(A )232a - (B )234a - (C)234a (D )232a【答案】D【解析】由菱形ABCD 的边长为a ,60ABC ∠=可知18060120BAD ∠=-=,2223()()cos1202BD CD AD AB AB AB AD AB a a a a ⋅=-⋅-=-⋅+=-⋅+=,故选D .(5)【2015年山东,理5】不等式|1||5|2x x ---<的解集是( )(A )(,4)-∞ (B)(,1)-∞ (C )(1,4) (D )(1,5)【答案】A【解析】当1x <时,1(5)42x x ---=-<成立;当15x ≤<时,1(5)262x x x ---=-<,解得4x <,则14x ≤<;当5x ≥时,1(5)42x x ---=<不成立.综上4x <,故选A . (6)【2015年山东,理6】已知,x y 满足约束条件020x y x y y -≥⎧⎪+≤⎨⎪≥⎩若z ax y =+的最大值为4,则a =( )(A)3 (B)2 (C )—2 (D )-3 【答案】B 【解析】由z ax y =+得y ax z =-+,借助图形可知:当1a -≥,即1a ≤-时在0x y ==时有最大值0,不符合题意;当01a ≤-<,即10a -<≤时在1x y ==时有最大值14,3a a +==,不满足10a -<≤;当10a -<-≤,即01a <≤时在1x y ==时有最大值14,3a a +==,不满足01a <≤;当1a -<-,即1a >时在2,0x y ==时有最大值24,2a a ==,满足1a >,故选B . (7)【2015年山东,理7】在梯形ABCD 中,2ABC π∠=,//AD BC ,222BC AD AB ===.将梯形ABCD绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A )23π (B)43π (C)53π (D )2π 【答案】C【解析】2215121133V πππ=⋅⋅-⋅⋅=,故选C .(8)【2015年山东,理8】已知某批零件的长度误差(单位:毫米)服从正态分布2(0,3)N ,从中随机取一件,其长度误差落在区间()3,6内的概率为( )(附:若随机变量ξ服从正态分布2(,)N μσ,则()68.26%P μσξμσ-<<+=,(22)95.44%P μσξμσ-<<+=)(A)4.56% (B )13.59% (C )27.18% (D)31.74% 【答案】D【解析】1(36)(95.44%68.26%)13.59%2P ξ<<=-=,故选D .(9)【2015年山东,理9】一条光线从点(2,3)--射出,经y 轴反射与圆22(3)(2)1x y ++-=相切,则反射光线所在的直线的斜率为( )(A )53-或35- (B )32-或23- (C )54-或45- (D )43-或34-【答案】D【解析】(2,3)--关于y 轴对称点的坐标为(2,3)-,设反射光线所在直线为3(2),y k x +=-即230kx y k ---=,则22|3223|1,|55|11k k d k k k ----==+=++,解得43k =-或34-,故选D . (10)【2015年山东,理10】设函数31,1,()2,1.x x x f x x -<⎧=⎨≥⎩则满足()(())2f a f f a =的取值范围是( )(A )2[,1]3 (B)[0,1] (C )2[,)3+∞ (D )[1,)+∞【答案】C【解析】由()(())2f a f f a =可知()1f a ≥,则121a a ≥⎧⎨≥⎩或1311a a <⎧⎨-≥⎩,解得23a ≥,故选C .第II 卷(共100分)二、填空题:本大题共5小题,每小题5分(11)【2015年山东,理11】观察下列各式:010113301225550123377774;4;4;4;C C C C C C C C C C =+=++=+++=照此规律,当*n ∈N 时,012121212121n n n n n C C C C -----++++= .【答案】14n -【解析】0121012121212121212121211(2222)2n n n n n n n n n n C C C C C C C C ----------++++=++++ 021122223121212121212121210121212112121212121211[()()()()]211()2422n n n n nn n n n n n n n n n n n n n n n n n n C C C C C C C C C C C C C C ----------------------=++++++++=+++++++=⋅= (12)【2015年山东,理12】若“[0,],tan 4x x m π∀∈≤"是真命题,则实数m 的最小值为 .【答案】1【解析】“[0,],tan 4x x m π∀∈≤”是真命题,则tan 14m π≥=,于是实数m 的最小值为1.(13)【2015年山东,理13】执行右边的程序框图,输出的T 的值为 .【答案】116【解析】11200111111236T xdx x dx =++=++=⎰⎰.(14)【2015年山东,理14】已知函数()x f x a b =+(0,1)a a >≠的定义域和值域都是[1,0]-,则a b += .【答案】32-【解析】当1a >时1010a b a b -⎧+=-⎨+=⎩,无解;当01a <<时1001a b a b -⎧+=⎨+=-⎩,解得12,2b a =-=,则13222a b +=-=-.(15)【2015年山东,理15】平面直角坐标系xOy 中,双曲线22122:1(0,0)x y C a b a b-=>>的渐近线与抛物线22:2(0)C x py p =>交于点,,O A B ,若OAB ∆的垂心为2C 的焦点,则1C 的离心率为 . 【答案】32【解析】22122:1(0,0)x y C a b a b -=>>的渐近线为by x a =±,则22222222(,),(,)pb pb pb pb A B a a a a-22:2(0)C x py p =>的焦点(0,)2pF ,则22222AFpb pa a k pb b a-==,即2254b a =,2222294c a b a a +==,32c e a ==. 三、解答题:本大题共6题,共75分.(16)【2015年山东,理16】(本小题满分12分)设2()sin cos cos ()4f x x x x π=-+.(Ⅰ)求()f x 的单调区间;(Ⅱ)在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,若()0,12Af a ==,求ABC ∆面积.解:(Ⅰ)由111111()sin 2[1cos(2)]sin 2sin 2sin 22222222f x x x x x x π=-++=-+=-,由222,22k x k k Z ππππ-≤≤+∈得,44k x k k Z ππππ-≤≤+∈,则()f x 的递增区间为[,],44k k k Z ππππ-+∈;由3222,22k x k k Z ππππ+≤≤+∈得3,44k x k k Z ππππ+≤≤+∈,则()f x 的递增区间为3[,],44k k k Z ππππ++∈.(Ⅱ)在锐角ABC ∆中,11()sin 0,sin 222A f A A =-==,6A π=,而1a =,由余弦定理可得2212cos 23(23)6b c bc bc bc bc π=+-≥-=-,当且仅当b c =时等号成立,即12323bc ≤=+-,11123sin sin 22644ABC S bc A bc bc π∆+===≤故ABC ∆面积的最大值为234+. (17)【2015年山东,理17】(本小题满分12分)如图,在三棱台DEF ABC -中,2,,AB DE G H =分别为,AC BC 的中点. (Ⅰ)求证://BD 平面FGH ;(Ⅱ)若CF ⊥平面ABC ,,,45AB BC CF DE BAC ⊥=∠=,求平面FGH 与平面ACFD 所成角(锐角)的大小.解:(Ⅰ)证明:连接DG ,DC ,设DC 与GF 交于点T ,在三棱台DEF ABC -中,2AB DE =,则2AC DF =, 而G 是AC 的中点,DF AC ,则//DF GC ,所以四边形DGCF 是平行四边形,T 是DC 的中点,DG FC . 又在BDC ∆,是BC 的中点,则TH DB ,又BD ⊄平面FGH ,TH ⊂平面FGH ,故//BD 平面FGH .(Ⅱ)由CF ⊥平面ABC ,可得DG ⊥平面ABC 而,AB BC ⊥,45BAC ∠=,则GB AC ⊥,于是,,GB GA GC 两两垂直,以点G 为坐标原点,,,GA GB GC 所在的直线,分别为,,x y z 轴建立空间直角坐标系,设2AB =,则1,22,2DE CF AC AG ====,22(0,2,0),(2,0,0),(2,0,1),(,,0)22B C F H ---, 则平面ACFD 的一个法向量为1(0,1,0)n =,设平面FGH 的法向量为 2222(,,)n x y z =,则2200n GH n GF ⎧⋅=⎪⎨⋅=⎪⎩,即22222202220x y x z ⎧-=⎪⎨⎪-+=⎩, 取21x =,则221,2y z ==,2(1,1,2)n =,1211cos ,2112n n <>==++,故平面FGH 与平面ACFD 所成角(锐角)的大小为60.(18)【2015年山东,理18】(本小题满分12分)设数列{}n a 的前n 项和为n S ,已知233nn S =+.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足3log n n n a b a =,求数列{}n b 的前n 项和n T .解:(Ⅰ)由233n n S =+可得111(33)32a S ==+=,11111(33)(33)3(2)22n n n n n n a S S n ---=-=+-+=≥,而11133a -=≠,则13,13,1n n n a n -=⎧=⎨>⎩.(Ⅱ)由3log n n n a b a =及13,13,1n n n a n -=⎧=⎨>⎩,可得3111log 3113n n n n n a b n a n -⎧=⎪⎪==⎨-⎪>⎪⎩ 2311123133333n n n T --=+++++,2234111123213333333n n n n n T ---=++++++,22312231211111111111111()3333333333333331121213113213319392233182313n n n n n n n n n nn n T n n n ----=+-++++-=-+++++----+=+-=+--=-⋅⋅- 113211243n n n T -+=-⋅ (19)【2015年山东,理19】(本小题满分12分)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取一个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得—1分;若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X 的分布列和数学期望EX .解:(Ⅰ)125,135,145,235,245,345;(Ⅱ)X 的所有取值为-1,0,1.32112844443339992111(0),(1),(1)31442C C C C C P X P X P X C C C ⋅+====-=====0(1)13144221EX =⨯+⨯-+⨯=.(20)【2015年山东,理20】(本小题满分13分)平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b +=>>的离,左、右焦点分别是12,F F ,以1F 为圆心,以3为半径的圆与以2F 为圆心,以1为半径的圆相交,交点在椭圆C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222:144x y E a b+=,P 为椭圆C 上的任意一点,过点P 的直线y kx m =+交椭圆E 于,AB 两点,射线PO 交椭圆E 于点Q .(i )求||||OQ OP 的值;(ii)求ABQ ∆面积最大值.解:(Ⅰ)由椭圆2222:1(0)x y Ca b a b+=>>可知c e a ==,而222a b c =+则2,a b c ==, 左、右焦点分别是12(,0),,0)FF ,圆1F :22()9,x y +=圆2F :22()1,x y +=由两圆相交可得24<<,即12<,交点在椭圆C 上,则224134b b +=⋅,整理得424510b b -+=,解得21b =,214b =(舍去), 故21b =,24a =,椭圆C 的方程为2214x y +=.(Ⅱ)(i )椭圆E 的方程为221164x y +=,设点00(,)P x y ,满足220014x y +=,射线000:(0)y PO y x xx x =<, 代入221164x y +=可得点00(2,2)Q x y --,于是||2||OQ OP ==. (ii )点00(2,2)Q x y --到直线AB 距离等于原点O 到直线AB 距离的3倍:d ==221164y kx mx y =+⎧⎪⎨+=⎪⎩,得224()16x kx m ++=,整理得222(14)84160k x kmx m +++-=.2222226416(41)(4)16(164)0k m k m k m ∆=-+-=+->,||AB = 211||||32214m S AB d k ∆==⋅⋅⋅=+ 22221646122(41)m k m k ++-≤⋅=+,当且仅当22||82m m k ==+等号成立.而直线y kx m =+与椭圆22:14x C y +=有交点P ,则2244y kx m x y =+⎧⎨+=⎩有解, 即222224()4,(14)8440x kx m k x kmx m ++=+++-=有解,其判别式22222216416(14)(1)16(14)0k m k m k m ∆=-+-=+-≥,即2214k m +≥, 则上述2282m k =+不成立,等号不成立,设(0,1]t =,则S ∆==(0,1]为增函数,于是当2214k m +=时max S ∆==ABQ ∆面积最大值为12.(21)【2015年山东,理21】(本题满分14分)设函数2()ln(1)()f x x a x x =++-,其中a R ∈.(Ⅰ)讨论函数()f x 极值点的个数,并说明理由; (Ⅱ)若0x ∀>,()0f x ≥成立,求a 的取值范围. 解:(Ⅰ)2()ln(1)()f x x a x x =++-,定义域为(1,)-+∞,21(21)(1)121()(21)111a x x ax ax af x a x x x x -++++-'=+-==+++,设2()21g x ax ax a =++-, 当0a =时,1()1,()01g x f x x '==>+,函数()f x 在(1,)-+∞为增函数,无极值点.当0a >时,228(1)98a a a a a ∆=--=-,若809a <≤时0∆≤,()0,()0g x f x '≥≥,函数()f x 在(1,)-+∞为增函数,无极值点.若89a >时0∆>,设()0g x =的两个不相等的实数根12,x x ,且12x x <,且1212x x +=-,而(1)10g -=>,则12114x x -<<-<,所以当1(1,),()0,()0,()x x g x f x f x '∈->>单调递增;当12(,),()0,()0,()x x x g x f x f x '∈<<单调递减;当2(,),()0,()0,()x x g x f x f x '∈+∞>>单调递增. 因此此时函数()f x 有两个极值点;当0a <时0∆>,但(1)10g -=>,121x x <-<,所以当2(1,),()0,()0,()x x g x f x f x '∈->>单调递増;当2(,),()0,()0,()x x g x f x f x '∈+∞<<单调递减,所以函数只有一个极值点.综上可知当809a ≤≤时()f x 的无极值点;当0a <时()f x 有一个极值点;当89a >时,()f x 的有两个极值点.(Ⅱ)由(Ⅰ)可知当809a ≤≤时()f x 在(0,)+∞单调递增,而(0)0f =,则当(0,)x ∈+∞时,()0f x >,符合题意; 当819a <≤时,2(0)0,0g x ≥≤,()f x 在(0,)+∞单调递增,而(0)0f =, 则当(0,)x ∈+∞时,()0f x >,符合题意;当1a >时,2(0)0,0g x <>,所以函数()f x 在2(0,)x 单调递减,而(0)0f =,则当2(0,)x x ∈时,()0f x <,不符合题意;当0a <时,设()ln(1)h x x x =-+,当(0,)x ∈+∞时1()1011x h x x x'=-=>++, ()h x 在(0,)+∞单调递增,因此当(0,)x ∈+∞时()(0)0,ln(1)0h x h x >=+<,于是22()()(1)f x x a x x ax a x <+-=+-,当11x a>-时2(1)0ax a x +-<,此时()0f x <,不符合题意.综上所述,a 的取值范围是01a ≤≤.另解:(Ⅰ)2()ln(1)()f x x a x x =++-,定义域为(1,)-+∞21(21)(1)121()(21)111a x x ax ax af x a x x x x -++++-'=+-==+++, 当0a =时,1()01f x x '=>+,函数()f x 在(1,)-+∞为增函数,无极值点.设222()21,(1)1,8(1)98g x ax ax a g a a a a a =++--=∆=--=-,当0a ≠时,根据二次函数的图像和性质可知()0g x =的根的个数就是函数()f x 极值点的个数.若(98)0a a ∆=-≤,即809a <≤时,()0g x ≥,()0f x '≥函数在(1,)-+∞为增函数,无极值点.若(98)0a a ∆=->,即89a >或0a <,而当0a <时(1)0g -≥此时方程()0g x =在(1,)-+∞只有一个实数根,此时函数()f x 只有一个极值点;当89a >时方程()0g x =在(1,)-+∞都有两个不相等的实数根,此时函数()f x 有两个极值点;综上可知当809a ≤≤时()f x 的极值点个数为0;当0a <时()f x 的极值点个数为1;当89a >时,()f x 的极值点个数为2.(Ⅱ)设函数2()ln(1)()f x x a x x =++-,0x ∀>,都有()0f x ≥成立,即2ln(1)()0x a x x ++-≥当1x =时,ln 20≥恒成立;当1x >时,20x x ->,2ln(1)0x a x x++≥-;当01x <<时,20x x -<,2ln(1)0x a x x++≤-;由0x ∀>均有ln(1)x x +<成立.故当1x >时,,2ln(1)11x x x x +<--(0,)∈+∞,则只需0a ≥; 当01x <<时,2ln(1)1(,1)1x x x x +>∈-∞---,则需10a -+≤,即1a ≤.综上可知对于0x ∀>,都有()0f x ≥成立,只需01a ≤≤即可,故所求a 的取值范围是01a ≤≤. 另解:(Ⅱ)设函数2()ln(1)()f x x a x x =++-,(0)0f =,要使0x ∀>,都有()0f x ≥成立,只需函数函数()f x 在(0,)+∞上单调递增即可,于是只需0x ∀>,1()(21)01f x a x x '=+-≥+成立,当12x >时1(1)(21)a x x ≥-+-,令210x t -=>,2()(,0)(3)g t t t =-∈-∞+, 则0a ≥;当12x =时12()023f '=>;当102x <<,1(1)(21)a x x ≤-+-,令21(1,0)x t -=∈-,2()(3)g t t t =-+关于(1,0)t ∈-单调递增,则2()(1)11(13)g t g >-=-=--+,则1a ≤,于是01a ≤≤. 又当1a >时,2(0)0,0g x <>,所以函数()f x 在2(0,)x 单调递减,而(0)0f =, 则当2(0,)x x ∈时,()0f x <,不符合题意;当0a <时,设()ln(1)h x x x =-+,当(0,)x ∈+∞时1()1011x h x x x'=-=>++, ()h x 在(0,)+∞单调递增,因此当(0,)x ∈+∞时()(0)0,ln(1)0h x h x >=+<,于是22()()(1)f x x a x x ax a x <+-=+-,当11x a>-时2(1)0ax a x +-<,此时()0f x <,不符合题意.综上所述,a 的取值范围是01a ≤≤.【评析】求解此类问题往往从三个角度求解:一是直接求解,通过对参数a的讨论来研究函数的单调性,进一步确定参数的取值范围;二是分离参数法,求相应函数的最值或取值范围以达到解决问题的目的;三是凭借函数单调性确定参数的取值范围,然后对参数取值范围以外的部分进行分析验证其不符合题意,即可确定所求.。
2015年山东高考理科数学真题试卷及答案
绝密★启用前2015年普通高等学校招生全国统一考试(山东卷)理科数学如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分)一、 选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的 (1) 已知集合A={X|X ²-4X+3<0},B={X|2<X<4},则A B=(A )(1,3) (B )(1,4) (C )(2,3) (D )(2,4) (2)若复数Z 满足1Zi i=-,其中i 为虚数单位,则Z= (A )1-i (B )1+i (C )-1-i (D )-1+i(3)要得到函数y=sin (4x-3π)的图像,只需要将函数y=sin4x 的图像()(A )向左平移12π个单位 (B )向右平移12π个单位 (C )向左平移3π个单位 (D )向右平移3π个单位(4)已知菱形ABCD 的边长为a ,∠ABC=60o,则BD CD =(A )- (B )- (C ) (D )(5)不等式|x-1|-|x-5|<2的解集是 (A )(-,4) (B )(-,1) (C )(1,4) (D )(1,5) (6)已知x,y 满足约束条件,若z=ax+y 的最大值为4,则a= (A )3 (B )2 (C )-2 (D )-3 (7)在梯形ABCD 中,∠ABC=,AD//BC ,BC=2AD=2AB=2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为(A ) (B ) (C )(D )2(8)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为 (附:若随机变量ξ服从正态分布N (μ,σ²),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.)(A )4.56% (B )13.59% (C )27.18% (D )31.74% (9)一条光线从点(-2,-3)射出,经y 轴反射后与圆否相切,则反射光线所在直线的斜率为() (A )或(B 或 (C )或(D )或(10)设函数f(x)=,则满足f(f(a))=的a 的取值范围是()(A )[,1](B )[0,1] (C )[(D )[1, +第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。
2015年山东卷(理科数学)含答案
2015年普通高等学校招生全国统一考试理科数学(山东卷)本试卷分第I卷和第口卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将将本试卷和答题卡一并交回。
注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
答案写在试卷上无效。
3.第口卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤^ 参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B).第I卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)已知集合A=(X|X2-4X+3<0} , B={X|2<X<4},贝U A fl B=【C】(A)(1 , 3) (B) (1 , 4) (C) (2, 3) (D) (2, 4)(2)若复数Z满足—i ,其中i为虚数单位,则Z=【A绝密★启用前(A) 1-i (B)1+i (C)-1-i (D)-1+i(3)要得到函数y=sin (4x ----- )的图像,只需要将函数3y=sin4x的图像【C】(A)向左平移——个单位12 (B)向右平移——个单位12已知菱形ABCD 的边长为a, Z ABC=60,则33: n 33 n (A)- -a(B)- -a (。
一亲 (D) -a2447(5)不等式|x-1|-|x-5|<2 的解集是 【A 】 (A) (-E , 4)(B) (-S , 1)(C) (1, 4)(D) (1, 5)rX - V > 0v + y < 2(6) 已知x,y 满足约束条件 ,若z=ax+y 的最大值为4,贝U a=【B 】(A) 3(B) 2(C) -2(D) -3、, ___________ 一 . n一 一 ..... ... 一 … ~ ,,,一(7) 在梯形 ABCD 中,/ ABC==, AD//BC , BC=2AD=2AB=2.将梯形 ABCD 绕 AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为【C 】2TC4TCS TC(A (B):©;(D)次(8)已知某批零件的长度误差(单位:毫米)服从正态分布N (0, 32),从中随机取一件,其长度误差落在区间(3,6)内的概率为 【B 】 (附:若随机变量E 服从正态分布N U, b2),则PQ - b <E 林+ b) =68.26% , P -2b <E 耻 +2b) =95.44%.)(A) 4.56%(B) 13.59%(C) 27.18%(D) 31.74%(9) 一条光线从点(-2, -3)射出,经y 轴反射后与圆(K -- (y- 2)1= 1相切,贝U 反射光线所在直线的斜率为【D 】(A ) — — - (B)—「或一 Z (C) -j 或-N (D)--或—j(10)设函数f(x)=「M m L ,则满足f(f(a))=2筑奶的a 的取值范围是 【C 】(C) 向左平移 —个单位 3 (D) 向右平移一个单位3【D 】(A) &1] (B) [0,1](C) [;.+ac) (D) [1, +8)第口卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。
2015年高考真题:理科数学(山东卷)试卷(含答案)
2015年普通高等学校招生全国统一考试(山东卷)数学(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中只有一项是符合题目要求的. (1) 已知集合A=2{|430},{|24}x x x B x x -+<=<<,则A B =(A)(1,3) (B)(1,4) (C)(2,3) (D)(2,4)解析:2{|430}{|13},(2,3)A x x x x x A B =-+<=<<= ,答案选(C)(2) 若复数z 满足1zi i=-,其中i 是虚数单位,则z = (A)1i - (B) 1i + (C) 1i -- (D) 1i -+解析:2(1)1,1z i i i i i z i =-=-+=+=-,答案选(A) (3)要得到函数sin(4)3y x π=-的图象,只需将函数sin 4y x =的图像(A)向左平移12π个单位 (B) 向右平移12π个单位(C)向左平移3π个单位 (D) 向右平移3π个单位解析:sin 4()12y x π=-,只需将函数sin 4y x =的图像向右平移12π个单位答案选(B)(4)已知菱形ABCD 的边长为a ,60ABC ∠=,则BD CD ⋅=(A)232a - (B) 234a - (C)234a (D) 232a 解析:由菱形ABCD 的边长为a ,60ABC ∠=可知18060120BAD ∠=-=,2223()()cos1202BD CD AD AB AB AB AD AB a a a a ⋅=-⋅-=-⋅+=-⋅+= ,答案选(D)(5)不等式|1||5|2x x ---<的解集是(A)(,4)-∞ (B) (,1)-∞ (C) (1,4) (D) (1,5)解析:当1x <时,1(5)42x x ---=-<成立;当15x ≤<时,1(5)262x x x ---=-<,解得4x <,则14x ≤<;当5x ≥时,1(5)42x x ---=<不成立.综上4x <,答案选(A)(6)已知,x y 满足约束条件0,2,0.x y x y y -≥⎧⎪+≤⎨⎪≥⎩若z ax y =+的最大值为4,则a =(A)3 (B) 2 (C) 2- (D) 3-解析:由z a x y =+得y ax z =-+,借助图形可知:当1a -≥,即1a ≤-时在0x y ==时有最大值0,不符合题意;当01a ≤-<,即10a -<≤时在1x y ==时有最大值14,3a a +==,不满足10a -<≤;当10a -<-≤,即01a <≤时在1x y ==时有最大值14,3a a +==,不满足01a <≤;当1a -<-,即1a >时在2,0x y ==时有最大值24,2a a ==,满足1a >;答案选(B) 7.在梯形ABCD 中,2ABC π∠=,//AD BC ,222BC AD AB ===.将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为(A)23π (B) 43π (C) 53π (D) 2π 解析:2215121133V πππ=⋅⋅-⋅⋅=,答案选(C)8.已知某批零件的长度误差(单位:毫米)服从正态分布2(0,3)N ,从中随机取一件,其长度误差落在区间(3,6)内的概率为(附:若随机变量ξ服从正态分布2(,)N μσ,则()68.26%P μσξμσ-<<+=,(22)95.44%P μσξμσ-<<+=.)(A)4.56% (B) 13.59% (C) 27.18% (D) 31.74%解析:1(36)(95.44%68.26%)13.59%2P ξ<<=-=,答案选(B) (9)一条光线从点(2,3)--射出,经y 轴反射与圆22(3)(2)1x y ++-=相切,则反射光线所在的直线的斜率为(A)53-或35- (B) 32-或32- (C) 54-或45- (D) 43-或34- 解析:(2,3)--关于y 轴对称点的坐标为(2,3)-,设反射光线所在直线为3(2),y k x +=-即230kx y k ---=,则1,|55|d k ==+=解得43k =-或34-,答案选(D)(10)设函数31,1,()2, 1.xx x f x x -<⎧=⎨≥⎩则满足()(())2f a f f a =的取值范围是 (A)2[,1]3(B) [0,1] (C) 2[,)3+∞ (D) [1,)+∞解析:由()(())2f a f f a =可知()1f a ≥,则121aa ≥⎧⎨≥⎩或1311a a <⎧⎨-≥⎩,解得23a ≥,答案选(C)二、填空题:本大题共5小题,每小题5分,共25分. (11)观察下列各式:0010113301225550123377774;4;4;4;C C C C C C C C C C =+=++=+++=照此规律,当*n ∈N 时,012121212121n n n n n C C C C -----++++= .解析:14n -.具体证明过程可以是:0121012121212121212121211(2222)2n n n n n n n n n n C C C C C C C C ----------++++=++++ 021122223121212121212121210121212112121212121211[()()()()]211()2422n n n n n n n n n n n n n n n n n n n n n n n n C C C C C C C C C C C C C C ----------------------=++++++++=+++++++=⋅= (12)若“[0,],tan 4x x m π∀∈≤”是真命题,则实数m 的最小值为 . 解析:“[0,],t a n 4xx mπ∀∈≤”是真命题,则tan14m π≥=,于是实数m 的最小值为1.(13)执行右边的程序框图,输出的T解析:11200111123T xdx x dx =++=++=⎰⎰(14)已知函数()xf x a b =+(0,a a >≠和值域都是[1,0]-,则a b += .解析:当1a >时101a b a b -⎧+=-⎨+=⎩,无解;当01a <<时1001a b a b -⎧+=⎨+=-⎩,解得2,b =-则13222a b +=-=-. (15)平面直角坐标系xOy 中,双曲线22122:1(0,0)x y C a b a b-=>>的渐近线与抛物线22:2(0)C x py p =>交于点,,O A B ,若OAB ∆的垂心为2C 的焦点,则1C 的离心率为 . 解析:22122:1(0,0)x y C a b a b -=>>的渐近线为by x a =±,则22222222(,),(,)pb pb pb pb A B a a a a-22:2(0)C x py p =>的焦点(0,)2p F ,则22222AF pb pa a k pb b a-==,即2222222593,,.442b c a b c e a a a a +===== 三、解答题:本大题共6小题,共75分.(16)(本小题满分12分)设2()sin cos cos ()4f x x x x π=-+(Ⅰ)求()f x 的单调区间;(Ⅱ)在锐角ABC ∆中,角,,A B C 的对边分别为,,.a b c 若()0,1,2Af a ==求ABC ∆面积的最大值. 解:(Ⅰ)由111111()sin 2[1cos(2)]sin 2sin 2sin 22222222f x x x x x x π=-++=-+=- 由222,22k x k k Z ππππ-≤≤+∈得,44k x k k Z ππππ-≤≤+∈,则()f x 的递增区间为[,],44k k k Z ππππ-+∈;由3222,22k x k k Z ππππ+≤≤+∈得3,44k x k k Z ππππ+≤≤+∈,则()f x 的递增区间为3[,],44k k k Z ππππ++∈. (Ⅱ)在锐角ABC ∆中,11()sin 0,sin 222A f A A =-==,6A π=,而1,a =由余弦定理可得2212cos2(26b c bc bc bc π=+-≥-=-,当且仅当b c =时等号成立,即2bc ≤=+1112sin sin 22644ABC S bc A bc bc π∆+===≤,故ABC ∆. (17)(本小题满分12分)如图,在三棱台DEF-2,,AB DE G H =分别为,AC BC 的中点.(Ⅰ)求证://BD 平面FGH ;(Ⅱ)若CF ⊥平面ABC ,,,AB BC CF DE ⊥=∠求平面FGH 与平面ACFD 所成角(锐角)的大小. 解:(Ⅰ)证明:连接DG ,DC ,设DC 与GF 交于点T. 在三棱台DEF ABC -中,2,AB DE =则2AC DF =而G 是AC 的中点,DF//AC ,则//DF GC ,所以四边形DGCF是平行四边形,T是DC的中点,DG//FC. 又在BDC∆,H是BC的中点,则TH//DB,又BD⊄平面FGH,TH⊂平面FGH,故//BD(Ⅱ)由CF⊥平面ABC,可得DG⊥平面ABC而则GB AC⊥,于是,,GB GA GC两两垂直,以点G为坐标原点,,,GA GB GC所在的直线分别为,,x y z轴建立空间直角坐标系,设2AB=,则1,DE CF AC AG====((B C F H则平面ACFD的一个法向量为1(0,1,0)n=,设平面FGH的法向量为2222(,,)n x y z=,则22n GHn GF⎧⋅=⎪⎨⋅=⎪⎩,即222222x yz-=⎪⎨⎪+=⎩,取21x=,则221,y z==2(1,1n=,121cos,2n n<>==,故平面FGH与平面ACFD所成角(锐角)的大小为60 .(18)(本小题满分12分)设数列{}na的前n项和为nS,已知23 3.nnS=+(Ⅰ)求数列{}na的通项公式;(Ⅱ)若数列{}nb满足3logn n na b a=,求数列{}nb的前n项和nT.解:(Ⅰ)由233nnS=+可得111(33)32a S==+=,11111(33)(33)3(2)22n n nn n na S S n---=-=+-+=≥而11133a-=≠,则13,1,3, 1.n nnan-=⎧=⎨>⎩(Ⅱ)由3logn n na b a=及13,1,3, 1.n nnan-=⎧=⎨>⎩可得311,1,log31, 1.3nnnnnabnan-⎧=⎪⎪==⎨-⎪>⎪⎩2311123133333n n n T --=+++++ . 2234111123213333333n n n n n T ---=++++++ 2231223121111111333333331111111()33333331121213133193922331313211823n n n n n n n nnn n T n n n n ---=+-++++--=-+++++----=+-=+--⋅-+=-⋅ 113211243n n n T -+=-⋅19(本小题满分12分)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取一个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X 的分布列和数学期望EX. 解:(Ⅰ)125,135,145,235,245,345; (Ⅱ)X 的所有取值为-1,0,1.32112844443339992111(0),(1),(1)31442C C C C C P X P X P X C C C ⋅+====-===== 甲得分X 的分布列为:0(1)13144221EX =⨯+⨯-+⨯=(20)(本小题满分13分)平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>的离12,F F ,以1F 为圆心,以3为半径的圆与以2F 为圆心,以1为半径的圆相交,交点在椭圆C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222:144x y E a b+=,P 为椭圆C 上的任意一点,过点P 的直线y kx m =+交椭圆E 于A,B 两点,射线PO 交椭圆E 于点Q. (ⅰ)求||||OQ OP 的值;(ⅱ)求ABQ ∆面积最大值. 解析:(Ⅰ)由椭圆2222:1(0)x y C a b a b +=>>的离心率为可知c e a ==,而222a b c =+则2,a b c ==,左、右焦点分别是12(,0),,0)F F ,圆1F:22()9,x y +=圆2F:22()1,x y +=由两圆相交可得24<<,即12<<,交点,在椭圆C 上,则224134b b =⋅, 整理得424510b b -+=,解得21,b =214b =(舍去) 故21,b =24,a =椭圆C 的方程为2214x y +=. (Ⅱ)(ⅰ)椭圆E 的方程为221164x y +=, 设点00(,)P x y ,满足220014x y +=,射线000:(0)y PO y x xx x =<, 代入221164x y +=可得点00(2,2)Q x y --,于是||2||OQ OP ==. (ⅱ)点00(2,2)Q x y --到直线AB 距离等于原点O 到直线AB 距离的3倍:d ==221164y kx mx y =+⎧⎪⎨+=⎪⎩,得224()16x kx m ++=,整理得222(14)84160k x kmx m +++-= 2222226416(41)(4)16(164)0k m k m k m ∆=-+-=+->||AB =2211||||||36221414m m S AB d k k∆==⋅⋅⋅=++ 22221646122(41)m k m k ++-≤⋅=+,当且仅当22||82m m k ==+等号成立. 而直线y kx m =+与椭圆C :2214x y +=有交点P ,则 2244y kx m x y =+⎧⎨+=⎩有解,即222224()4,(14)8440x kx m k x kmx m ++=+++-=有解, 其判别式22222216416(14)(1)16(14)0k m k m k m ∆=-+-=+-≥,即2214k m +≥,则上述2282m k =+不成立,等号不成立,设(0,1]t =,则2||614m S k ∆==+(0,1]为增函数,于是当2214k m +=时max S ∆==ABQ ∆面积最大值为12. (21)(本小题满分14分)设函数2()ln(1)()f x x a x x =++-,其中a R ∈. (Ⅰ)讨论函数()f x 极值点的个数,并说明理由; (Ⅱ)若0x ∀>,()0f x ≥成立,求a 的取值范围. 解:(Ⅰ)2()ln(1)()f x x a x x =++-,定义域为(1,)-+∞21(21)(1)121()(21)111a x x ax ax a f x a x x x x -++++-'=+-==+++,设2()21g x ax ax a =++-, 当0a =时,1()1,()01g x f x x '==>+,函数()f x 在(1,)-+∞为增函数,无极值点. 当0a >时,228(1)98a a a a a ∆=--=-,若809a <≤时0∆≤,()0,()0g x f x '≥≥,函数()f x 在(1,)-+∞为增函数,无极值点. 若89a >时0∆>,设()0g x =的两个不相等的实数根12,x x ,且12x x <, 且1212x x +=-,而(1)10g -=>,则12114x x -<<-<,所以当1(1,),()0,()0,()x x g x f x f x '∈->>单调递增;当12(,),()0,()0,()x x x g x f x f x '∈<<单调递减; 当2(,),()0,()0,()x x g x f x f x '∈+∞>>单调递增. 因此此时函数()f x 有两个极值点;当0a <时0∆>,但(1)10g -=>,121x x <-<, 所以当2(1,),()0,()0,()x x g x f x f x '∈->>单调递増; 当2(,),()0,()0,()x x g x f x f x '∈+∞<<单调递减. 所以函数只有一个极值点。
2015年高考理科数学山东卷(含答案解析)
数学试卷 第1页(共21页)数学试卷 第2页(共21页)数学试卷 第3页(共21页)绝密★启用前2015年普通高等学校招生全国统一考试(山东卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟. 参考公式:如果事件A ,B 互斥,那么P (A +B )=P (A )+P (B )第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2430{|}A x x x =-+<,24{|}B x x =<<,则AB = ( )A .1,3()B .1,4()C .2,3()D .2,4()2.若复数z 满足z1i-=i ,其中i 为虚数单位,则z=( )A .1i -B .1i +C .1i --D .1i -+3.要得到函数πsin(4)3y x =-的图象,只需要将函数sin 4y x =的图象( )A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位4.已知菱形ABCD 的边长为a ,60ABC ∠=︒,则BD CD =( )A .232a -B .234a -C .234aD .232a5.不等式|||52|1x x ---<的解集是 ( )A .(,4)-∞B .(,1)-∞C .(1,4)D .(1,5)6.已知x ,y 满足约束条件0,2,0.x y x y y -⎧⎪+⎨⎪⎩≥≤≥若z ax y =+的最大值为4,则a =( )A .3B .2C .2-D .3-7.在梯形ABCD 中,π2ABC ∠=,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A .2π3B .4π3C .5π3D .2π8.已知某批零件的长度误差(单位:毫米)服从正态分布N (0,23),从中随机取一件,其长度误差落在区间(3,6)内的概率为 ( )(附:若随机变量ξ服从正态分布2(,)N μσ,则(P μσ-<ξ)68.26%μσ<+=,(2P μσ-<ξ2)95.44%μσ<+=)A .4.56%B .13.59%C .27.18%D .31.74%9.一条光线从点(2-,3-)射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为 ( )A .53-或35-B .32-或23-C .54-或45-D .43-或34-10.设函数31,1,()2, 1,x x x f x x -⎧=⎨⎩<≥则满足()(())2f a f f a =的a 取值范围是( )A .2[,1]3B .[0,1]C .2[,)3+∞D .[1,)+∞第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上.11.观察下列各式:001011330122555012337777C =4C +C =4C +C +C =4C +C +C +C =4;;;;……照此规律,当n ∈*N 时,012n-12n-12n-12n-12n-1C + C + C ++ C ⋯=_______. 12.若“∀x ∈[0,4π],tan x ≤m ”是真命题,则实数m 的最小值为_______. 13.执行如图所示的程序框图,输出的T 的值为_______.14.已知函数()(0,1)xf x a b a a =+>≠的定义域和值域都是[1,0]-,则a b +=_______.15.平面直角坐标系xOy 中,双曲线222211 0,0x C a b y a b>->=:()的渐近线与抛物线222C x py =:0p >()交于点O ,A ,B .若OAB △的垂心为2C 的焦点,则1C 的离心率为_______.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________?数学试卷 第4页(共21页)数学试卷 第5页(共21页)数学试卷 第6页(共21页)三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)设2π()sin cos cos ()4f x x x x =-+.(Ⅰ)求f x ()的单调区间; (Ⅱ)在锐角ABC △中,角A ,B ,C ,的对边分别为a ,b ,c .若2f A ()=0,a =1,求ABC △面积的最大值.17.(本小题满分12分)如图,在三棱台DEF ABC -中,AB =2DE ,G ,H 分别为AC ,BC 的中点. (Ⅰ)求证:BD ∥平面FGH ;(Ⅱ)若CF ⊥平面ABC ,AB ⊥BC ,CF =DE ,∠BAC =45︒,求平面FGH 与平面ACFD 所成的角(锐角)的大小.18.(本小题满分12分)设数列{}n a 的前n 项和为n S .已知233nn S =+.(Ⅰ)求{}n a 的通项公式;(Ⅱ)若数列{}n b 满足3log n n n a b a =,求{}n b 的前n 项和n T .19.(本小题满分12分)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得1-分;若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X 的分布列和数学期望EX . 20.(本小题满分13分)平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>,左、右焦点分别是1F ,2F ,以点1F 为圆心,以3为半径的圆与以点2F 为圆心,以1为半径的圆相交,且交点在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222144 x y E a b +=:,P 为椭圆C 上任意一点,过点P 的直线y kx m =+交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q .(i )求||||OQ OP 的值;(ii )求ABQ △面积的最大值.21.(本小题满分14分)设函数2()ln(1)()f x x a x x =++-,其中a ∈R .(Ⅰ)讨论函数()f x 极值点的个数,并说明理由; (Ⅱ)若0x ∀>,()0f x ≥成立,求a 的取值范围.数学试卷 第7页(共21页)数学试卷 第8页(共21页)数学试卷 第9页(共21页)2015年普通高等学校招生全国统一考试(山东卷)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】2{|4+3<0}{|13}A x x x x x =-=<<,()2,3A B =I ,答案选C .【提示】求出集合A ,然后求出两个集合的交集. 【考点】解一元二次不等式,集合间的运算. 2.【答案】A【解析】2(1i)i i +i 1+i z =-=-=,1i z =-,答案选A .【提示】直接利用复数的乘除运算法则化简求解即可. 【考点】复数代数形式的四则运算. 3.【答案】B【解析】πsin 412y x ⎛⎫=- ⎪⎝⎭,需将函数sin 4y x =的图象向右平移π12个单位,答案选B .【提示】直接利用三角函数的平移原则推出结果即可. 【考点】三角函数的图象及其变换. 4.【答案】D【解析】由菱形ABCD 的边长为a ,60ABC ∠=︒可知18060120BAD ∠=︒-︒=︒,2223()()+cos120+2BD CD AD AB AB AB AD AB a a a a =--=-=-︒=uu u r uu u r uuu r uu u r uu u r uu u r uuu r uu u r g g g g ,答案选D .【提示】根据2()()+BD CD AD AB AB AB AD AB =--=-uu u r uu u r uuu r uu u r uu u r uu u r uuu r uu u r g g g 代入可求.【考点】向量的运算. 5.【答案】A【解析】1x <时,1(5)42x x ---=-<成立 当15x ≤<时,1(5)262x x x ---=-<解得4x <;当5x ≥,1(5)42x x ---=<不成立,综上4x <,答案选A .【提示】运用零点分区间,求出零点为1,5,讨论①当1x <,②当15x ≤<,③当5x ≥,分别去掉绝对值,解不等式,最后求并集即可. 【考点】绝对值符号和分类讨论的思想. 6.【答案】B【解析】由+z ax y =得+y ax z =-,借助图形可知:当1a -≥,即1a ≤-时在0x y ==时有最大值0,不符合题意;当01a ≤-<,即10a -<≤时有最大值+14a =,3a =,不满足10a -<≤;当10a -≤-<,即01a <≤时在1x y ==时有最大值+14a =,3a =,不满足01a <≤;当1a -<-时,即1a >时在2x =,0y =时有最大值24a =,2a =,满足1a >,答案选B .第6题图【提示】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值.【考点】线性规划的问题. 7.【答案】C【解析】2215ππ12π1133V =-=gg g g ,答案选C . 【提示】画出几何体的直观图,利用已知条件,求解几何体的体积即可. 【考点】空间几何体体积的计算. 8.【答案】B【解析】0000001(36)(95.4468.26)13.592P ξ<<=-=,答案选B . 【提示】由题意(33)68.26%P ξ-<<=,(66)95.44%P ξ-<<=, 可得0000001(36)(95.4468.26)13.592P ξ<<=-=,即可得出结论. 【考点】正态分布.9.【答案】D【解析】(2,3)--关于y 轴的对称点的坐标(2,3)-,设反射光线所在的直线为+3(2)y k x =-,即230kx y k ---=,则1d ==,|5+5|k =解得43k =-或34-,答案选D .【提示】点(2,3)--关于y 轴的对称点为(2,3)-,可设反射光线所在直线的方程为:+3(2)y k x =-,利用直线与圆相切的性质即可得出.【考点】直线与圆的位置关系. 10.【答案】C【解析】由()(())2f a f f a =可知()1f a ≥,则121aa ≥⎧⎨≥⎩或1311a a <⎧⎨-≥⎩,解得23a ≥,答案选C . 【提示】讨论()1f a ≥时,以及1a <,1a ≥,由分段函数的解析式,解不等式即可得到所求范围.【考点】函数的定义域.第Ⅱ卷二、填空题 11.【答案】14n - 【解析】具体证明过程可以是:012101212121212121211C +C+C ++C (2C +2C2n n n n n n n n n n ----------= 021122223121212121212121211=(C +C )+(C +C )+(C +C )++(C +C )2n n n n nn n n n n n n n ------------⎡⎤⎣⎦01212121121212121212111=(C +C +C ++C +C ++C )2422n n n n n n n n n n n ----------==【提示】仔细观察已知条件,找出规律,即可得到结果.【考点】排列组合的运算. 12.【答案】1【解析】“0,4x π⎡⎤∀∈⎢⎥⎣⎦,tan x m ≤”是真命题,则πtan 14m ≥=,于是m 的最小值是1.【提示】求出正切函数的最大值,即可得到m 的范围. 【考点】三角函数的运算和命题真假.数学试卷 第10页(共21页)数学试卷 第11页(共21页) 数学试卷 第12页(共21页)13.【答案】116【解析】112011111++1++236T xdx x dx ===⎰⎰.【提示】模拟执行程序框图,依次写出每次循环得到的n ,T 的值,当3n =时不满足条件3n <,退出循环,输出T 的值为116.【考点】程序框图. 14.【答案】32-【解析】当1a >时,10+1+0a b a b -⎧=-⎪⎨=⎪⎩,无解;当01a <<时10+0+1a b a b -⎧=⎪⎨=-⎪⎩,解得2b =-,12a =,则13+222a b =-=-【提示】对a 进行分类讨论,分别题意和指数函数的单调性列出方程组 【考点】指数函数的定义域和值域的应用. 15.【答案】32【解析】1C :22221x y a b -=(0,0)a b >>的渐近线为b y x a =±则点2222,pb pb A a a ⎛⎫ ⎪⎝⎭,2222,pb pb B a a ⎛⎫- ⎪⎝⎭,22:2(0)C x py p =>的焦点0,2p F ⎛⎫ ⎪⎝⎭,则22222pb p a pb aa kb -==,即2254b a =,22222+94c a b a a ==,32c e a ==. 【提示】求出A 的坐标,可得22244AC b a k ab-=,利用OAB 的垂心为C 2的焦点,可得22414b a b ab a -⎛⎫⨯-=- ⎪⎝⎭,由此可求C 1的离心率. 【考点】双曲线的离心率. 三、解答题16.【答案】(Ⅰ)()f x 的增区间为πππ,π+44k k ⎡⎤-⎢⎥⎣⎦,k ∈Z()f x 的减区间为π3ππ+,π+44k k ⎡⎤⎢⎥⎣⎦,k ∈Z .【解析】(Ⅰ)由11π()sin 21+cos 2+222f x x x ⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦111sin 2+sin 2222x x =- 1sin 22x =-由ππ2π22π+22k x k -≤≤,k ∈Z ,得ππππ+44k x k -≤≤,k ∈Z ,则()f x 的增区间为πππ,π+44k k ⎡⎤-⎢⎥⎣⎦,k ∈Z ; 由π3π2π+22π+22k x k ≤≤,k ∈Z ,得π3ππ+π+44k x k ≤≤,k ∈Z ,则()f x 的减区间为π3ππ+,π+44k k ⎡⎤⎢⎥⎣⎦,k ∈Z . (Ⅱ)在锐角ABC △中,1sin 022A f A ⎛⎫=-= ⎪⎝⎭,1sin 2A =,π,6A =而1a =,由余弦定理可得22π12cos 2(26b c bc bc bc =+-≥=,当且仅当b c =时等号成立.即bc =11π1sin sin2644ABC S bc A bc bc ===≤△,故ABC △ 【提示】(Ⅰ)由三角函数恒等变换化简解析式可得1()sin 22f x x =-,由ππ2π22π+22k x k -≤≤,k ∈Z 可解得()f x 的单调递增区间,由π3π2π+22π+22k x k ≤≤,k ∈Z 可解得单调递减区间.(Ⅱ)由1s i n 022A f A ⎛⎫=-= ⎪⎝⎭,可得sinA ,cos A ,由余弦定理可得:bc ≤且当b c =时等号成立,从而可求1sin 2bc A ≤【考点】三角函数单调区间,三角形的面积公式. 17.【答案】(Ⅰ)见解析 (Ⅱ)60︒【解析】(Ⅰ)证明:如图1,连接DG ,DC ,设DC 与GF 交于点O .在三棱台DEF ABC -中,2AB DE =,则2AC DF =, 而G 是AC 的中点,DF AC ∥,则DF GC ∥, 所以四边形DGCF 是平行四边形,O 是DC 的中点,DG FC ∥.又在BDC △中,H 是BC 的中点,则OH DB ∥,又BD FGH ⊄平面,OH FGH ⊂平面, 故BD FGH ∥平面.第17题图1(Ⅱ)由,C F A B C ⊥平面可得DG ABC ⊥平面而AB BC ⊥,45BAC ∠=︒,则,GB AC ⊥ 于是GD ,GB ,GC 两两垂直,以点为G 坐标原点,GA,GB GD 所在的直线分别为,x ,y z 轴建立空间直角坐标系,如图2,2AB =,1DE CF ==,AC =,AG =B,(C ,(F ,22H ⎛⎫- ⎪ ⎪⎝⎭则平面ACFD 的一个法向量为1(0,1,0)n =u r , 设平面FGH 的法向量为2222(,,)n x y z =u u r则2200n GH n GF ⎧=⎪⎨=⎪⎩u ur uuu r g u u r uuu r g 即22220,22+0,yx z -=⎪⎨⎪=⎩取21x =,则21y =,2z =2n =u u r121cos ,2n n 〈〉==u r u u r ,故平面FGH 与平面ACFD 所成的角(锐角)的大小为60︒.数学试卷 第13页(共21页)数学试卷 第14页(共21页) 数学试卷 第15页(共21页)第17题图2【提示】(Ⅰ)根据2AB DE =便可得到2BC EF =,从而可以得出四边形EFHB 为平行四边形,从而得到BE HF ∥,便有BE FGH ∥平面,再证明DE FGH ∥平面,从而得到BDE FGH 平面∥平面,从而BD FGH ∥平面;(Ⅱ)连接HE ,根据条件能够说明HC ,HG ,HE 三直线两两垂直,从而分别以这三直线为x ,y ,z 轴,建立空间直角坐标系,然后求出一些点的坐标.连接BG ,可说明1n BG=u r uuu r为平面ACFD 的一条法向量,设平面FGH 的法向量为2222(,,)n x y z =u u r ,根据2200n GH n GF ⎧=⎪⎨=⎪⎩u u r uuu r g u u r uuu r g 即可求出法向量2n u u r ,设平面FGH 与平面ACFD 所成的角为θ,根据12cos cos ,n n θ=〈〉u r u u r即可求出平面FGH 与平面ACFD 所成的角的大小. 【考点】线面的位置关系,两平面所夹的角 18.【答案】(Ⅰ)13,1,3,1n n n a n -=⎧=⎨>⎩,n *∈N(Ⅱ)1132+11243n n n T -=-g ,n *∈N 【解析】(Ⅰ)由23+3nn S =得111(3+3)32a S === 11111(3+3)(3+3)3(2)22n n n n n n a S S n ---=-=-=≥,而11133a -=≠,则13,1,3, 1.n n n a n -=⎧=⎨>⎩n *∈N .(Ⅱ)由3log n n n a b a =及13,1,3, 1.n n n a n -=⎧=⎨>⎩可得311,1,log 31, 1.3n n nn n a b n a n -⎧=⎪⎪==⎨-⎪>⎪⎩.n *∈N 23111231+++++33333n n n T --=L ①223411112321++++++3333333n n n n n T ---=L ② 由①-②得,223121111111+++++33333333n n n n T --=--L223111111113333333n n n --⎛⎫=-+++++- ⎪⎝⎭L 113313212131+91392233n n n n n n ---=+-=---g 132+11823nn =-g 1132+11243n n n T -=-g ,n *∈N . 【提示】(Ⅰ)利用23+3n n S =,可求得13a =;当1n >时,1123+3n n S --=,两式相减1222n n n a S S -=-,可求得13n n a -=,从而可得{}n a 的通项公式;(Ⅱ)依题意,3log n n n a b a =,可得113b =,当1n >时,31113log 313n n n n b n ---==-g ,于是可求得1113T b ==;当1n >时,121121++++13+23++(1)3)3n n n T b b b n ---=⋯⨯⨯⋯-⨯=(,利用错位相减法可求得{}n b 的前n 项和n T .【考点】等比数列的通项公式,数列前n 项和的问题. 19.【答案】(Ⅰ)125,135,145,235,245,3450+(1)+1=3144221EX =⨯⨯-⨯【解析】(Ⅰ)125,135,145,235,245,345.(Ⅱ)由题意知,全部“三位递增数”的个数为3984C =,随机变量X 的取值为:0,1-,1,当0X =时,可以选择除去5以外的剩下8个数字中选择3个进行组合,即38C ; 当1X =-时,首先选择5,由于不能被10整除,因此不能选择数字2,4,6,8,可以从1,3,5,7中选择两个数字和5进行组合,即24C ;当1X =时,有两种组合方式,第一种方案:首先选5,然后从2,4,6,8中选择2个数字和5进行组合,即24C ;第二种方案:首先选5,然后从2,4,6,8中选择1个数字,再从1,3,7,9中选择1个数字,最后把3个数字进行组合,即1144C C . 则3839C 2(0)C 3P X ===,2439C 1(1)C 14P X =-==,1124443C C +C 11(1)C 42P X ===g ,0+(1)+1=3144221EX =⨯⨯-⨯.【提示】(Ⅰ)根据“三位递增数”的定义,即可写出所有个位数字是5的“三位递增数”;(Ⅱ)随机变量X 的取值为:0,1-,1分别求出对应的概率,即可求出分布列和期望. 【考点】排列与组合的有关问题.20.【答案】(Ⅰ)22+14x y =(Ⅱ)(ⅰ)2(ⅱ)【解析】(Ⅰ)由椭圆C :2222+1(0)x y a b a b =>>的离心率为,可知c e a ==,而222+a b c =,则2a b =,c =,左,右焦点分别是1(,)F 0,2,0)F ,圆1:F 22()+9x y =,圆2:F 22()+1x y =,有两圆相交可得24<<,即12<<,交点⎛,在椭圆C 上,则224134b b =g ,整理得4245+10b b -=,解得21b =,214b =(舍去). 故21b =,24a =,椭圆C 的方程22+14x y =.数学试卷 第16页(共21页)数学试卷 第17页(共21页)数学试卷 第18页(共21页)(Ⅱ)(ⅰ)椭圆E 的方程为22+1164x y =,设点P 00(,)x y 满足22+14x y =,射线PO :000(0)y y x xx x =<代入22+1164x y =可得点00(2,2),Q x y --于是||2||OQ OP ==.(ⅱ)点00(2,2),Q x y --到直线AB 距离等于圆点O 到直线AB 距离的3倍d == 22+,+1164y kx m x y =⎧⎪⎨=⎪⎩得22+4(+)16x kx m =整理得222(1+4)+8+4160k x kmx m -= 2222226416(4+1)(4)16(16+4)0k m k m k m ∆=--=->||AB =2222211||+16+4=||3612221+42(4+1)ABQ m m k m S AB d k k -=≤=g g g g △当且仅当||m =228+2m k =等号成立.而直线+y kx m =与椭圆C :222+14xy =有交点P ,则222++14y kx m x y =⎧⎪⎨=⎪⎩有解,即224|+|4x kx m +=,222(14)+8+440k x kmx m +-=有解, 其判别式22222216416(4+1)(1)16(4+1)0k m k m k m ∆=--=-≥,即221+4k m ≥,则上述228+2m k =不成立,等号不成立,设(]0,1t ,则ABQ S =△(]0,1为增函数, 于是当221+4k m =时max S ==△ 故ABQ △面积的最大值为【提示】(Ⅰ)运用椭圆的离心率公式和a ,b ,c 的关系,计算即可得到b ,进而得到椭圆C 的方程;(Ⅱ)求得椭圆E 的方程,(ⅰ)设P 00(,)x y ,||||OQ OP λ=,求得Q 的坐标,分别代入椭圆C ,E 的方程,化简整理,即可得到所求值;(ⅱ)将直线+y kx m =代入椭圆E 的方程,运用韦达定理,三角形的面积公式,将直线+y kx m =代入椭圆C 的方程,由判别式大于0,可得t 的范围,结合二次函数的最值,又ABQ △的面积为3S ,即可得到所求的最大值.【考点】椭圆的标准方程,圆交点连线所形成三角形的有关问题 21.【答案】(Ⅰ)见解析 (Ⅱ)01a ≤≤【解析】(1)2()ln(+1)+()f x x a x x =-,定义域为(1,+)-∞21(21)(+1)+12++1()+(21)+1+1+1a x x ax ax af x a x x x x --'=-==设2()2++1g x ax ax a =-当0a =时,()1g x =,1'()01f x x =>+函数()f x 在(1,+)-∞为增函数,无极值点. 当0a >时,228(1)98a a a a a ∆=--=-,若809a ≥>时,0∆≤,()0g x ≥,'()0f x ≥函数()f x 在(1,+)-∞为增函数,无极值点. 若89a >时,0∆>,设()0g x =的两个不相等的实数根12,x x ,且12,x x <且121+2x x =-,而(1)10g -=>,则12114x x -<<-<,所以当1(1,)x x ∈-,()0g x >,()0f x '>()f x 单调递增; 当12(,)x x x ∈,()0g x <,()0f x '<,()f x 单调递减; 当2(,+)x x ∈∞,()0g x >,()0f x '>,()f x 单调递增; 因此此时函数()f x 有两个极值点;若0a <时,0∆>,但(1)10g -=>,121x x <-<, 所以当1(1,)x x ∈-,()0g x >,()0f x '>,()f x 单调递增; 当2(,+)x x ∈∞,()0g x <,()0f x '<,()f x 单调递减; 所以函数()f x 只有一个极值点.综上所述:当809a ≥≥时()f x 无极值点;当0a <时()f x 只有一个极值点;当89a >时()f x 有两个极值点. (Ⅱ)由(Ⅰ)知,当809a ≥≥时,()f x 在(0,+)∞单调递增,而(0)0f =,则当(0,+)x ∈∞时,()0f x >,符合题意; 当819a ≥≥时,(0)0g ≥,20x ≤,()f x 在(0,+)∞单调递增,而(0)0f =,则当(0,+)x ∈∞时,()0f x >符合题意;当1a >时,(0)0g <,20x >所以函数()f x 在2(0,)x 单调递减,而(0)0f =,则当2(0,)x x ∈时,()0f x <,不符合题意;当0a <时,设()ln(1)h x x x =-+,当(0,+)x ∈∞时,1'()101+1+xh x x x=-=>,()h x 在(0,+)∞单调递增,因此当(0,+)x ∈∞时,()(0)h x h >=,ln(+1)0x <于是22()+()+(1)f x x a x x ax a x <-=-,当11x a>-时,2+(1)0ax a x -<此时()0f x <不符合题意.综上所述:a 的取值范围是01a ≤≤【提示】(Ⅰ)函数2()ln(+1)+()f x x a x x =-,其中a ∈R ,(1)x ∈-+∞,.212++1()+(21)+1+1ax ax a f x a x x x -'=-=.令2()2++1g x ax ax a =-.对a 与△分类讨论可得:(1)当0a =时,此时()0f x '>,即可得出函数的单调性与极值的情况. (2)当0a >时,(98)a a =-△.①当809a ≥>时,0≤△,②当89a >时,0>△,即可得出函数的单调性与极值的情况.(3)当0a <时,0>△.即可得出函数的单调性与极值的情况. (Ⅱ)由(Ⅰ)可知:(1)当809a ≥≥时,可得函数()f x 在(0,+)∞上单调性,即可判断出. (2)当819a ≥>1时,由(0)0g ≥,可得20x ≤,函数()f x 在(0,+)∞上单调性,即可判断出.(3)当1a <时,由(0)0g <,可得20x >,利用2(0,)x x ∈时函数()f x 单调性,即可判断出;(4)当0a <时,设()ln(+1)h x x x =-,(0,+)x ∈∞,研究其单调性,即可判断出【考点】函数的极值,函数恒成立求未知数的取值范围数学试卷第19页(共21页)数学试卷第20页(共21页)数学试卷第21页(共21页)。
2015年高考理科数学山东卷-答案
【解析】 ,需将函数 的图象向右平移 个单位,答案选B.
【提示】直接利用三角函数的平移原则推出结果即可.
【考点】三角函数的图象及其变换.
4.【答案】D
【解析】由菱形ABCD的边长为 , 可知 ,
,答案选D.
【提示】根据 代入可求.
【考点】向量的运算.
5.【答案】A
【解析】 时, 成立
当 时, 解得 ;
第6题图
【提示】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.
【考点】线性规划的问题.
7.【答案】C
【解析】 ,答案选C.
【提示】画出几何体的直观图,利用已知条件,求解几何体的体积即可.
【考点】空间几何体体积的计算.
8.【答案】B
【解析】 ,答案选B.
【提示】由题意 , ,
当 , 不成立,综上 ,答案选A.
【提示】运用零点分区间,求出零点为1,5,讨论①当 ,②当 ,③当 ,分别去掉绝对值,解不等式,最后求并集即可.
【考点】绝对值符号和分类讨论的思想.
6.【答案】B
【解析】由 得 ,借助图形可知:当 ,即 时在 时有最大值0,不符合题意;当 ,即 时有最大值 , ,不满足 ;当 ,即 时在 时有最大值 , ,不满足 ;当 时,即 时在 , 时有最大值 , ,满足 ,答案选B.
(Ⅱ)由 ,可得 , ,由余弦定理可得: ,且当 时等号成立,从而可求 ,从而得解.
【考点】三角函数单调区间,三角形的面积公式.
17.【答案】(Ⅰ)见解析
(Ⅱ)
【解析】(Ⅰ)证明:如图1,连接 , ,设 与 交于点 .
在三棱台 中, ,则 ,
而 是 的中点, ,则 ,
2015山东高考数学(理)试题及答案
2015年普通高等学校招生全国统一考试(山东卷)(1) 已知集合A={X|X ²-4X+3<0},B={X|2<X<4},则A B=C(A )(1,3) (B )(1,4) (C )(2,3) (D )(2,4) (2)若复数Z 满足1Zi i=-,其中i 为虚数单位,则Z=A (A )1-i (B )1+i (C )-1-i (D )-1+i(3)要得到函数y=sin (4x-3π)的图像,只需要将函数y=sin4x 的图像(C ) (A )向左平移12π个单位 (B )向右平移12π个单位(C )向左平移3π个单位 (D )向右平移3π个单位(4)已知菱形ABCD 的边长为a ,∠ABC=60o,则BD CD=D(A )- (B )- (C ) (D )(5)不等式|x-1|-|x-5|<2的解集是A(A )(-,4) (B )(-,1) (C )(1,4) (D )(1,5)(6)已知x,y 满足约束条件,若z=ax+y 的最大值为4,则a=B(A )3 (B )2 (C )-2 (D )-3(7)在梯形ABCD 中,∠ABC=,AD//BC ,BC=2AD=2AB=2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为C(A ) (B ) (C )(D )2(8)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为(附:若随机变量ξ服从正态分布N(μ,σ²),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%.)B(A)4.56% (B)13.59% (C)27.18% (D)31.74% (9)一条光线从点(-2,-3)射出,经y轴反射后与圆相切,则反射光线所在直线的斜率为(D)(A)或(B或(C)或(D)或(10)设函数f(x)=,则满足f(f(a))=的a的取值范围是(C (A)[,1](B)[0,1](C)[(D)[1, +第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。
2015年高考理科数学山东卷(含详细答案)
数学试卷 第1页(共42页)数学试卷 第2页(共42页)数学试卷 第3页(共42页)绝密★启用前2015年普通高等学校招生全国统一考试(山东卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟. 参考公式:如果事件A ,B 互斥,那么P (A +B )=P (A )+P (B )第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2430{|}A x x x =-+<,24{|}B x x =<<,则AB = ( )A .1,3()B .1,4()C .2,3()D .2,4()2.若复数z 满足z1i-=i ,其中i 为虚数单位,则z=( )A .1i -B .1i +C .1i --D .1i -+3.要得到函数πsin(4)3y x =-的图象,只需要将函数sin 4y x =的图象( )A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位4.已知菱形ABCD 的边长为a ,60ABC ∠=︒,则BD CD =( )A .232a -B .234a -C .234aD .232a5.不等式|||52|1x x ---<的解集是 ( )A .(,4)-∞B .(,1)-∞C .(1,4)D .(1,5)6.已知x ,y 满足约束条件0,2,0.x y x y y -⎧⎪+⎨⎪⎩≥≤≥若z ax y =+的最大值为4,则a =( )A .3B .2C .2-D .3-7.在梯形ABCD 中,π2ABC ∠=,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A .2π3B .4π3C .5π3D .2π8.已知某批零件的长度误差(单位:毫米)服从正态分布N (0,23),从中随机取一件,其长度误差落在区间(3,6)内的概率为 ( )(附:若随机变量ξ服从正态分布2(,)N μσ,则(P μσ-<ξ)68.26%μσ<+=,(2P μσ-<ξ2)95.44%μσ<+=)A .4.56%B .13.59%C .27.18%D .31.74%9.一条光线从点(2-,3-)射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34-10.设函数31,1,()2, 1,x x x f x x -⎧=⎨⎩<≥则满足()(())2f a f f a =的a 取值范围是( )A .2[,1]3B .[0,1]C .2[,)3+∞D .[1,)+∞第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上.11.观察下列各式:001011330122555012337777C =4C +C =4C +C +C =4C +C +C +C =4;;;;……照此规律,当n ∈*N 时,012n-12n-12n-12n-12n-1C + C + C ++ C ⋯=_______. 12.若“∀x ∈[0,4π],tan x ≤m ”是真命题,则实数m 的最小值为_______. 13.执行如图所示的程序框图,输出的T 的值为_______.14.已知函数()(0,1)x f x a b a a =+>≠的定义域和值域都是[1,0]-,则a b +=_______.15.平面直角坐标系xOy 中,双曲线222211 0,0x C a b y a b>->=:()的渐近线与抛物线222C x py =:0p >()交于点O ,A ,B .若OAB △的垂心为2C 的焦点,则1C 的离心率为_______.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________?数学试卷 第4页(共42页)数学试卷 第5页(共42页) 数学试卷 第6页(共42页)三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)设2π()sin cos cos ()4f x x x x =-+.(Ⅰ)求f x ()的单调区间;(Ⅱ)在锐角ABC △中,角A ,B ,C ,的对边分别为a ,b ,c .若2f A()=0,a =1,求ABC △面积的最大值.17.(本小题满分12分)如图,在三棱台DEF ABC -中,AB =2DE ,G ,H 分别为AC ,BC 的中点. (Ⅰ)求证:BD ∥平面FGH ;(Ⅱ)若CF ⊥平面ABC ,AB ⊥BC ,CF =DE ,∠BAC =45︒,求平面FGH 与平面ACFD 所成的角(锐角)的大小.18.(本小题满分12分)设数列{}n a 的前n 项和为n S .已知233n n S =+. (Ⅰ)求{}n a 的通项公式;(Ⅱ)若数列{}n b 满足3log n n n a b a =,求{}n b 的前n 项和n T .19.(本小题满分12分)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得1-分;若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X 的分布列和数学期望EX .20.(本小题满分13分)平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b +=>>,左、右焦点分别是1F ,2F ,以点1F 为圆心,以3为半径的圆与以点2F 为圆心,以1为半径的圆相交,且交点在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222144 x y E a b +=:,P 为椭圆C 上任意一点,过点P 的直线y kx m =+交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q .(i )求||||OQ OP 的值;(ii )求ABQ △面积的最大值.21.(本小题满分14分)设函数2()ln(1)()f x x a x x =++-,其中a ∈R . (Ⅰ)讨论函数()f x 极值点的个数,并说明理由; (Ⅱ)若0x ∀>,()0f x ≥成立,求a 的取值范围.3 / 14数学试卷 第10页(共42页) 数学试卷 第11页(共42页)数学试卷 第12页(共42页)最大值24a =,2a =,满足1a >,答案选B .5 / 141012121212121211++C (2C +2C +2C ++2C )2n n n n n n n -------=121)++(C +C n n --1212112121211++C +C ++C )242n n n n n n n n -------== 【提示】仔细观察已知条件,找出规律,即可得到结果.利用OAB的垂心为数学试卷第16页(共42页)数学试卷第17页(共42页)数学试卷第18页(共42页)∥平面.故BD FGH7 / 14数学试卷 第22页(共42页) 数学试卷 第23页(共42页)数学试卷 第24页(共42页)21+1+29 / 14数学试卷第28页(共42页)数学试卷第29页(共42页)数学试卷第30页(共42页)11 / 14数学试卷第34页(共42页)数学试卷第35页(共42页)数学试卷第36页(共42页)13 / 14数学试卷第40页(共42页)数学试卷第41页(共42页)数学试卷第42页(共42页)。
(完整word)2015年高考山东理科数学试题及答案解析,推荐文档
2015年普通高等学校招生全国统一考试(山东卷)数学(理科)第I 卷(共50 分)(7)【2015年山东,理 7】在梯形 ABCD 中,ABC - , AD//BC , BC 2AD 2AB 2 .将梯形 ABCD(9)【2015年山东,理9】一条光线从点(2, 3)射出,经y 轴反射与圆(x3)2 (y 2)2 1相切,则反射光线所在的直线的斜率为 ( )/八5亠 33亠 254 4亠 3(A )一或一(B ) -或(C )—或一(D )—或3 5234 53 4(10)【2015年山东,理 10】设函数 f(x)3x 1,x 2 ,x 1 !,则满足 1. f(f(a))2f(a)的取值范围是()、选择题:本大题共 【2015年山东,理(A ) 1,3 (1) 10小题,每小题5分,在(C ) 2,3((D )) 2,4(2) 【2015年山东,理 2】若复数z 满足 —i ,其中i 是虚数单位,则1 i(3) (4) (5) (6) (A) 1 i (B) 1 i (C ) 1 i (D)【2015年山东,理 3】要得到函数y(A )向左平移个单位(B )12【2015年山东,理 3 2(A) 尹【2015年山东,理 (A) ( ,4)【2015年山东,理 (A) 34】5】6】已知菱形 (B)Sin (4X3)的图象,只sin 4x 的图像 向右平移 个单位(C )向左平移一个单位(D )向右平移12 3ABCD 的边长为 a , ABC 60°,则????????( 3 2 a 4 个单位3(C ) 不等式|x 1| |x 5| (B ) ( ,1)已知x,y 满足约束条件 (B) 22的解集是3 2a 4)(1,4))3 2(D ) -a (C ) 02若z ax y 的最大值为 (C ) -2(D ) (1,5) 4,则(D) -3(A )—4(B )(C ) 5333(8)【2015年山东,理8】已知某批零件的长度误差(单位: 毫米) 服从正态分布(D) 2N(0,32),从中随机取一件, 服从正态分布N (2),则P()68.26%, P( 2 2 ) 95.44%)(A) 4.56% (B) 13.59% (C ) 27.18% (D) 31.74%绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) 其长度误差落在区间3,6内的概率为( )(附:若随机变量第II卷(共100 分) :■、填空题:本大题共5小题,每小题5分(11)【2015年山东,理11】观察下列各式:照此规律,当n N*时,C 20n 1c 2n 1c ;n43;(14) __________________________________________________________________________________________【2015年山东,理14】已知函数f(x) a x b (a 0,a 1)的定义域和值域都是[1,0],则a b _________________________2 2(15) 【2015年山东,理15】平面直角坐标系 xOy 中,双曲线 G :笃 爲1(a 0,b 0)的渐近线与抛物线a bC2:x 2py(p 0)交于点O,A,B ,若 OAB 的垂心为G 的焦点,贝U G 的离心率为 _______________ .三、解答题:本大题共 6题,共75分.(16)【2015年山东,理16】(本小题满分12分)设f (x) sin xcosx cos (x ).4(I)求f(x)的单调区间;A(n)在锐角ABC 中,角A,B,C 的对边分别为a,b,c ,若f( ) 0,a 1,求 ABC 面积.2(17) 【2015年山东,理17】(本小题满分12分)如图,在三棱台 DEF ABC 中,AB 2DE,G,H 分别为AC, BC 的中点.(I)求证:BD//平面FGH ;2 3 74 C•‘2 52 7 14 c CO4';1G1G1GO1O 3 O 50 7 L c c c c L(12) 【2015年山东,理 (13) 【2015年山东,理12】右 “ x [0, _],tan x413】执行右边的程序框图,m ”是真命题,则实数m 的最小值为 ________n 1C 2n 1(n)若CF 平面ABC, AB BC,CF DE, BAC 45o,求平面FGH 与平面ACFD所成角(锐角)的大小.(18) 【2015年山东,理18】(本小题满分12分)设数列{a.}的前n项和为S n,已知3n 3 .(I)求数列{a n}的通项公式;(H)若数列{b n}满足a n b n log3耳,求数列也}的前n项和「.(19) 【2015年山东,理19】(本小题满分12分)若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为三位递增数”(如137, 359, 567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取一个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数” 的三个数字之积不能被5 整除,参加者得0 分;若能被 5 整除,但不能被10 整除,得-1 分;若能被10 整除,得 1 分.(I)写出所有个位数字是5的三位递增数”;(H)若甲参加活动,求甲得分X的分布列和数学期望EX .2 2(20) 【2015年山东,理20】(本小题满分13分)平面直角坐标系xOy中,已知椭圆C:笃厶1(a b 0)的a b离心率为_!,左、右焦点分别是F I,F2,以F l为圆心,以3为半径的圆与以F2为圆心,以1为半径的圆相2交,交点在椭圆C 上.(I)求椭圆C的方程;2 2(n)设椭圆E:二笃1, P为椭圆C上的任意一点,过点P的直线y kx m交椭圆E于A,B两点,4 a2 4b2射线PO交椭圆E于点Q •⑴求|OQ-I的值;(ii)求ABQ面积最大值.|OP|(21)【2015年山东,理21】(本题满分14分)设函数f(x) ln(x 1) a(x2x),其中a R .(I)讨论函数f(x)极值点的个数,并说明理由;(H)若x 0,f(x) 0成立,求a的取值范围.2015年普通高等学校招生全国统一考试(山东卷)数学(理科)第I 卷(共50 分)【答案】Bx y 0(4)【2015年山东,理 4】已知菱形 ABC D 的边长为a ,ABC 60',则????•????()3 2 (A ) ^a (B ) 3 2 a 43 2 (C ) — a43 2(D)〒【答案】D【解析】由菱形ABCD 的边长为a ,AB C 60o 可知 BAD 18C f 60o 120o ,uu uiur uur BD CD (AD uuu uu iuu u A uiu r AD uur 2 AB a acos12C °2 a -a 2,故选D . 2 (5)【2015年山东,理 5】不等式|x 1| |x 5| 2的解集是( )(A ) ( ,4) (B )( ,1)(C ) (1,4)(D ) (1,5) 【答案】A【解析】当x 1时,1x (5 x)4 2成立; 当1 x5 时,x 1 (5x) 2x 62,解得 x 4,则【解析】y sin4(x —),只需将函数y sin4x 的图像向右平移一个单位,故选 B .12 121 x 4 ;当 x 5 时,x 1(x 5) 4 2不成立.综上x4,故选A .」、选择题:本大题共 (1)【2015年山东,, (A ) 1,3 【答案】C 【解析】A {x|x 2 4x (2)【2015年山东,(A ) 1 i 【答案】A 【解析】z (1 i)i(3)【2015年山东, (A )向左平移10小题,每小题5分,在4x 30} , B{x|2 x( (D)) 2,43 0} {x|1 x 3} , AI B (2,3),故选 C .2】 i 2 i理3】 若复数z 满足zi ,其中 1 ii 是虚数单位,则 (B) 1(C )1 i(D)要得到函数i ,故选A .Sin(4x3)的图象,只需将函数sin 4x 的图像个单位(B )向右平移—个单位(C )向左平移—个单位(D )向右平移1212—个单位3x y 2若z ax y 的最大值为4,则a y 0即0 a 1时在x y 1时有最大值a 1 4,a 3,不满足0 a 1 ;当a时有最大值2a 4,a2,满足a 1,故选B .(7)【2015 年山东,理 7】在梯形 ABCD 中, ABC - , AD//BC , BC 2AD 2AB 2 2绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(6)【2015年山东,理6】已知x,y 满足约束条件 (A ) 3 ( B ) 2【答案】B【解析】由z ax y 得y ax z ,借助图形可知:当(C ) -2(D) -3a 1,即 a1时在x y 0时有最大值0,不符合题y 1时有最大值a1 4,a 3,不满足 1 a 0;当 1 1,即a 1时在x 2,y 0将梯形ABCDa 1,即1 a 0时在x(12)【2015年山东,理12】若“ x [0,—],tanx m ”是真命题,贝U 实数m 的最小值为 _________4【答案】1【解析】“ x [0,-],ta nx m "是真命题,则 m tan 1,于是实数m 的最小值为1.2(A ) 3 (B) 43 (C )5【答案】C1 【解析】V 12 2 -12 1 5 ,故选 C .3 3(8)【2015年山东,理 8】已知某批零件的长度误差(单位: 毫米) 服从正态分布 其长度误差落在区间3,6内的概率为() (附: 若随机变量P()68.26%, P( 22 )95.44%)(A ) 4.56%(B ) 13.59%(C ) 27.18%(D) 21【解析】P(36) -(95.44% 68.26%) 13.59%,故选 D .(9)【2015年山东,理9】一条光线从点(2, 3)射出,经y 轴反射与圆(x 3)2 (y 2)2 1相切,则反射光线 所在的直线的斜率为( )(A )5十3一或 一 (B )2 54 (C )-或 4(D )-或-3 5234 53 4【答案】D【解析】( 2, 3)关于 y 轴对称点的坐标为 (2, 3), 设反射光线所在直线为 y 3 k(x 2),即 kx y 2k 3 0 ,则 d1 3k2 仝 3|1,|5k 5|k 2 1 , 解得k4或- 故选D ..k 2 13 4(10)【2015年山东, 理10】设函数f(x)3x x 1,x 1 1则满足 f(f(a)) 2心) 的取值范围是()2 ,x 1.(A ) [|,1] (B ) [0,1](C ) 12 ) ■3,)(D ) [1,) 【答案】C【解析】由f(f(a))2f(a)可知f (a) 1,则aa1或 a 1 ,解得a 2 故选C .2 13a 1 13第II 卷(共100 分):■、填空题:本大题共 5小题,每小题5分 (11)【2015年山东,理11】观察下列各式:2 3 7 4 0・ 5 52 7 4CC o4';1G1a1G o 1O 30 50 7 CCCC照此规律,当n N*时,C 2『 34 ;C 2n 1 C 2n 1—n 1L C 2n 1【解析】C 2n 1 C 2n 1 CL L1 02 (2C 2n 12[(C2n 1 Cj ;) (C2n 1 C 2n 2)C2n 1 丿1厂0 1 —2 亠n 1 (C 2n 1 C2n 1 C2n 1 LC2n 1 2(C 2n 1。
2015年山东省高考数学试卷(理科)
2015年山东省高考数学试卷(理科)一、选择题(本大题共10小题,每小题5分,共50分)1.(5分)已知集合A={x |x 2﹣4x +3<0},B={x |2<x <4},则A ∩B=( ) A .(1,3) B .(1,4) C .(2,3) D .(2,4) 2.(5分)若复数z 满足z1−i=i ,其中i 为虚数单位,则z=( )A .1﹣iB .1+iC .﹣1﹣iD .﹣1+i3.(5分)要得到函数y=sin (4x ﹣π3)的图象,只需要将函数y=sin4x 的图象( )个单位.A .向左平移π12B .向右平移π12C .向左平移π3D .向右平移π34.(5分)已知菱形ABCD 的边长为a ,∠ABC=60°,则BD →⋅CD →=( )A .﹣32a 2B .﹣34a 2C .34a 2D .32a 25.(5分)不等式|x ﹣1|﹣|x ﹣5|<2的解集是( ) A .(﹣∞,4) B .(﹣∞,1) C .(1,4) D .(1,5)6.(5分)已知x ,y 满足约束条件{x −y ≥0x +y ≤2y ≥0,若z=ax +y 的最大值为4,则a=( )A .3B .2C .﹣2D .﹣37.(5分)在梯形ABCD 中,∠ABC=π2,AD ∥BC ,BC=2AD=2AB=2,将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A .2π3B .4π3C .5π3D .2π8.(5分)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机抽取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ﹣σ<ξ<μ+σ)=68.26%,P (μ﹣2σ<ξ<μ+2σ)=95.44%)A .4.56%B .13.59%C .27.18%D .31.74%9.(5分)一条光线从点(﹣2,﹣3)射出,经y 轴反射后与圆(x +3)2+(y ﹣2)2=1相切,则反射光线所在直线的斜率为( )A .﹣53或﹣35B .﹣32或﹣23C .﹣54或﹣45D .﹣43或﹣3410.(5分)设函数f (x )={3x −1,x <12x ,x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是( )A .[23,1]B .[0,1]C .[23,+∞) D .[1,+∞)二、填空题(本大题共5小题,每小题5分,共25分) 11.(5分)观察下列各式: C 10=40; C 30+C 31=41; C 50+C 51+C 52=42; C 70+C71+C72+C73=43;…照此规律,当n ∈N *时, C2n−10+C2n−11+C2n−12+…+C2n−1n−1=.12.(5分)若“∀x ∈[0,π4],tanx ≤m”是真命题,则实数m 的最小值为 .13.(5分)执行如图所示的程序框图,输出的S 值为 .14.(5分)已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[﹣1,0],则a +b= .15.(5分)平面直角坐标系xOy 中,双曲线C 1:x 2a 2﹣y 2b2=1(a >0,b >0)的渐近线与抛物线C 2:x 2=2py(p >0)交于点O ,A ,B ,若△OAB 的垂心为C 2的焦点,则C 1的离心率为 .三、解答题16.(12分)设f (x )=sinxcosx ﹣cos 2(x +π4).(Ⅰ)求f(x)的单调区间;(Ⅱ)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f(A2)=0,a=1,求△ABC面积的最大值.17.(12分)如图,在三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC的中点.(Ⅰ)求证:BD∥平面FGH;(Ⅱ)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.18.(12分)设数列{a n}的前n项和为S n,已知2S n=3n+3.(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n},满足a n b n=log3a n,求{b n}的前n项和T n.19.(12分)若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分,若能被5整除,但不能被10整除,得﹣1分,若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X 的分布列和数学期望EX .20.(13分)平面直角坐标系xOy 中,已知椭圆C :x 2a +y 2b =1(a >b >0)的离心率为√32,左、右焦点分别是F 1,F 2,以F 1为圆心以3为半径的圆与以F 2为圆心以1为半径的圆相交,且交点在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆E :x 24a 2+y 24b2=1,P 为椭圆C 上任意一点,过点P 的直线y=kx +m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q . (i )求|OQ OP|的值;(ii )求△ABQ 面积的最大值.21.(14分)设函数f (x )=ln (x +1)+a (x 2﹣x ),其中a ∈R , (Ⅰ)讨论函数f (x )极值点的个数,并说明理由; (Ⅱ)若∀x >0,f (x )≥0成立,求a 的取值范围.2015年山东省高考数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分)1.(5分)已知集合A={x |x 2﹣4x +3<0},B={x |2<x <4},则A ∩B=( ) A .(1,3) B .(1,4) C .(2,3) D .(2,4)【解答】解:集合A={x |x 2﹣4x +3<0}={x |1<x <3},B={x |2<x <4}, 则A ∩B={x |2<x <3}=(2,3). 故选:C .2.(5分)若复数z 满足z1−i=i ,其中i 为虚数单位,则z=( )A .1﹣iB .1+iC .﹣1﹣iD .﹣1+i【解答】解:z1−i=i ,则z =i (1﹣i )=1+i ,可得z=1﹣i .故选:A .3.(5分)要得到函数y=sin (4x ﹣π3)的图象,只需要将函数y=sin4x 的图象( )个单位.A .向左平移π12B .向右平移π12C .向左平移π3D .向右平移π3【解答】解:因为函数y=sin (4x ﹣π3)=sin [4(x ﹣π12)],要得到函数y=sin (4x ﹣π3)的图象,只需将函数y=sin4x 的图象向右平移π12单位.故选:B .4.(5分)已知菱形ABCD 的边长为a ,∠ABC=60°,则BD →⋅CD →=( )A .﹣32a 2B .﹣34a 2C .34a 2D .32a 2【解答】解:∵菱形ABCD 的边长为a ,∠ABC=60°, ∴BA→2=a 2,BA →⋅BC →=a ×a ×cos60°=12a 2,则BD →⋅CD →=(BA →+BC →)•BA →=BA →2+BA →⋅BC →=3a 22故选:D5.(5分)不等式|x ﹣1|﹣|x ﹣5|<2的解集是( ) A .(﹣∞,4) B .(﹣∞,1) C .(1,4) D .(1,5)【解答】解:①当x <1,不等式即为﹣x +1+x ﹣5<2,即﹣4<2成立,故x <1; ②当1≤x ≤5,不等式即为x ﹣1+x ﹣5<2,得x <4,故1≤x <4; ③当x >5,x ﹣1﹣x +5<2,即4<2不成立,故x ∈∅. 综上知解集为(﹣∞,4). 故选A .6.(5分)已知x ,y 满足约束条件{x −y ≥0x +y ≤2y ≥0,若z=ax +y 的最大值为4,则a=( )A .3B .2C .﹣2D .﹣3【解答】解:作出不等式组对应的平面区域如图:(阴影部分). 则A (2,0),B (1,1),若z=ax +y 过A 时取得最大值为4,则2a=4,解得a=2, 此时,目标函数为z=2x +y , 即y=﹣2x +z ,平移直线y=﹣2x +z ,当直线经过A (2,0)时,截距最大,此时z 最大为4,满足条件, 若z=ax +y 过B 时取得最大值为4,则a +1=4,解得a=3, 此时,目标函数为z=3x +y , 即y=﹣3x +z ,平移直线y=﹣3x +z ,当直线经过A (2,0)时,截距最大,此时z 最大为6,不满足条件, 故a=2, 故选:B7.(5分)在梯形ABCD 中,∠ABC=π2,AD ∥BC ,BC=2AD=2AB=2,将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A .2π3B .4π3C .5π3D .2π【解答】解:由题意可知几何体的直观图如图:旋转体是底面半径为1,高为2的圆柱,挖去一个相同底面高为1的倒圆锥,几何体的体积为:12π⋅2−13×12π×1=5π3.故选:C .8.(5分)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机抽取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ﹣σ<ξ<μ+σ)=68.26%,P (μ﹣2σ<ξ<μ+2σ)=95.44%)A .4.56%B .13.59%C .27.18%D .31.74%【解答】解:由题意P (﹣3<ξ<3)=68.26%,P (﹣6<ξ<6)=95.44%,所以P (3<ξ<6)=12(95.44%﹣68.26%)=13.59%.故选:B .9.(5分)一条光线从点(﹣2,﹣3)射出,经y 轴反射后与圆(x +3)2+(y ﹣2)2=1相切,则反射光线所在直线的斜率为( )A .﹣53或﹣35B .﹣32或﹣23C .﹣54或﹣45D .﹣43或﹣34【解答】解:点A (﹣2,﹣3)关于y 轴的对称点为A′(2,﹣3),故可设反射光线所在直线的方程为:y +3=k (x ﹣2),化为kx ﹣y ﹣2k ﹣3=0. ∵反射光线与圆(x +3)2+(y ﹣2)2=1相切,∴圆心(﹣3,2)到直线的距离d=√2=1,化为24k 2+50k +24=0,∴k=−43或﹣34.故选:D .10.(5分)设函数f (x )={3x −1,x <12x ,x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是( )A .[23,1]B .[0,1]C .[23,+∞) D .[1,+∞)【解答】解:令f (a )=t , 则f (t )=2t ,当t <1时,3t ﹣1=2t ,由g (t )=3t ﹣1﹣2t 的导数为g′(t )=3﹣2t ln2, 在t <1时,g′(t )>0,g (t )在(﹣∞,1)递增, 即有g (t )<g (1)=0, 则方程3t ﹣1=2t 无解; 当t ≥1时,2t =2t 成立,由f (a )≥1,即3a ﹣1≥1,解得a ≥23,且a <1;或a ≥1,2a ≥1解得a ≥0,即为a ≥1.综上可得a 的范围是a ≥23.故选C .二、填空题(本大题共5小题,每小题5分,共25分) 11.(5分)观察下列各式: C 10=40; C 30+C 31=41; C 50+C 51+C 52=42; C 70+C71+C72+C73=43;…照此规律,当n ∈N *时, C2n−10+C2n−11+C2n−12+…+C 2n−1n−1=4n ﹣1 .【解答】解:因为C 10=40;C 30+C 31=41; C50+C51+C52=42;C 70+C 71+C 72+C 73=43;…照此规律,可以看出等式左侧最后一项,组合数的上标与等式右侧的幂指数相同, 可得:当n ∈N *时,C 2n−10+C2n−11+C2n−12+…+C2n−1n−1=4n ﹣1; 故答案为:4n ﹣1.12.(5分)若“∀x ∈[0,π4],tanx ≤m”是真命题,则实数m 的最小值为 1 .【解答】解:“∀x ∈[0,π4],tanx ≤m”是真命题,可得tanx ≤1,所以,m ≥1, 实数m 的最小值为:1. 故答案为:1.13.(5分)执行如图所示的程序框图,输出的S 值为 10 .【解答】解:由已知可得该程序的功能是计算并输出 S=﹣12+22﹣32+42的值 ∵S=﹣12+22﹣32+42=10 故答案为:1014.(5分)已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[﹣1,0],则a +b= −32 .【解答】解:当a >1时,函数f (x )=a x +b 在定义域上是增函数,所以{1+b =0a −1+b =−1, 解得b=﹣1,1a=0不符合题意舍去;当0<a <1时,函数f (x )=a x +b 在定义域上是减函数, 所以 {1+b =−1a −1+b =0,解得b=﹣2,a=12,综上a +b=−32,故答案为:−3215.(5分)平面直角坐标系xOy 中,双曲线C 1:x 2a 2﹣y 2b2=1(a >0,b >0)的渐近线与抛物线C 2:x 2=2py(p >0)交于点O ,A ,B ,若△OAB 的垂心为C 2的焦点,则C 1的离心率为 32.【解答】解:双曲线C 1:x 2a ﹣y 2b =1(a >0,b >0)的渐近线方程为y=±bax ,与抛物线C 2:x 2=2py 联立,可得x=0或x=±2pb a, 取A (2pb a ,2pb 2a 2),设垂心H (0,p 2),则k AH =2pb 2a 2−p22pb a=4b 2−a 24ab,∵△OAB 的垂心为C 2的焦点, ∴4b 2−a 24ab ×(﹣ba )=﹣1, ∴5a 2=4b 2, ∴5a 2=4(c 2﹣a 2)∴e=c a =32.故答案为:32.三、解答题16.(12分)设f (x )=sinxcosx ﹣cos 2(x +π4).(Ⅰ)求f (x )的单调区间;(Ⅱ)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f (A2)=0,a=1,求△ABC 面积的最大值.【解答】解:(Ⅰ)由题意可知,f (x )=12sin2x ﹣1+cos(2x+π2)2=12sin2x ﹣1−sin2x2=sin2x ﹣12由2k π−π2≤2x ≤2k π+π2,k ∈Z 可解得:k π−π4≤x ≤k π+π4,k ∈Z ; 由2k π+π2≤2x ≤2k π+3π2,k ∈Z 可解得:k π+π4≤x ≤k π+3π4,k ∈Z ;所以f (x )的单调递增区间是[k π−π4,k π+π4],(k ∈Z );单调递减区间是:[k π+π4,k π+3π4],(k∈Z );(Ⅱ)由f (A 2)=sinA ﹣12=0,可得sinA=12,由题意知A 为锐角,所以cosA=√32,由余弦定理a 2=b 2+c 2﹣2bccosA ,可得:1+√3bc=b 2+c 2≥2bc ,即bc ≤2+√3,且当b=c 时等号成立.因此S=12bcsinA ≤2+√34,所以△ABC 面积的最大值为2+√34.17.(12分)如图,在三棱台DEF ﹣ABC 中,AB=2DE ,G ,H 分别为AC ,BC 的中点. (Ⅰ)求证:BD ∥平面FGH ;(Ⅱ)若CF ⊥平面ABC ,AB ⊥BC ,CF=DE ,∠BAC=45°,求平面FGH 与平面ACFD 所成的角(锐角)的大小.【解答】解:(Ⅰ)证明:根据已知条件,DF ∥AC ,EF ∥BC ,DE ∥AB ; △DEF ∽△ABC ,又AB=2DE , ∴BC=2EF=2BH ,∴四边形EFHB 为平行四边形;∴BE ∥HF ,HF ⊂平面FGH ,BE ⊄平面FGH ; ∴BE ∥平面FGH ;同样,因为GH 为△ABC 中位线,∴GH ∥AB ; 又DE ∥AB ; ∴DE ∥GH ;∴DE ∥平面FGH ,DE ∩BE=E ;∴平面BDE ∥平面FGH ,BD ⊂平面BDE ; ∴BD ∥平面FGH ;(Ⅱ)连接HE ,则HE ∥CF ; ∵CF ⊥平面ABC ;∴HE ⊥平面ABC ,并且HG ⊥HC ;∴HC ,HG ,HE 三直线两两垂直,分别以这三直线为x ,y ,z 轴,建立如图所示空间直角坐标系,设HC=1,则:H (0,0,0),G (0,1,0),F (1,0,1),B (﹣1,0,0); 连接BG ,根据已知条件BA=BC ,G 为AC 中点; ∴BG ⊥AC ;又CF ⊥平面ABC ,BG ⊂平面ABC ; ∴BG ⊥CF ,AC ∩CF=C ; ∴BG ⊥平面ACFD ;∴向量BG →=(1,1,0)为平面ACFD 的法向量; 设平面FGH 的法向量为n →=(x ,y ,z),则:{n →⋅HF →=x +z =0n →⋅HG →=y =0,取z=1,则:n →=(−1,0,1);设平面FGH 和平面ACFD 所成的锐二面角为θ,则:cosθ=|cos <BG →,n →>|=√2⋅√2=12;∴平面FGH 与平面ACFD 所成的角为60°.18.(12分)设数列{a n }的前n 项和为S n ,已知2S n =3n +3. (Ⅰ)求{a n }的通项公式;(Ⅱ)若数列{b n },满足a n b n =log 3a n ,求{b n }的前n 项和T n . 【解答】解:(Ⅰ)因为2S n =3n +3,所以2a 1=31+3=6,故a 1=3, 当n >1时,2S n ﹣1=3n ﹣1+3,此时,2a n =2S n ﹣2S n ﹣1=3n ﹣3n ﹣1=2×3n ﹣1,即a n =3n ﹣1, 所以a n ={3,n =13n−1,n >1..(Ⅱ)因为a n b n =log 3a n ,所以b 1=13,当n >1时,b n =31﹣n •log 33n ﹣1=(n ﹣1)×31﹣n ,所以T 1=b 1=13;当n >1时,T n =b 1+b 2+…+b n =13+(1×3﹣1+2×3﹣2+…+(n ﹣1)×31﹣n ),所以3T n =1+(1×30+2×3﹣1+3×3﹣2+…+(n ﹣1)×32﹣n ),两式相减得:2T n =23+(30+3﹣1+3﹣2+…+32﹣n ﹣(n ﹣1)×31﹣n )=23+1−31−n 1−3−1﹣(n ﹣1)×31﹣n =136﹣6n+32×3n,所以T n =1312﹣6n+34×3n,经检验,n=1时也适合,综上可得T n =1312﹣6n+34×3n.19.(12分)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分,若能被5整除,但不能被10整除,得﹣1分,若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X 的分布列和数学期望EX .【解答】解:(Ⅰ)根据定义个位数字是5的“三位递增数”有:125,135,145,235,245,345; (Ⅱ)由题意知,全部“三位递增数”的个数为C 93=84, 随机变量X 的取值为:0,﹣1,1,当X=0时,可以选择除去5以外的剩下8个数字中选择3个进行组合,即C 83;当X=﹣1时,首先选择5,由于不能被10整除,因此不能选择数字2,4,6,8,可以从1,3,7,9中选择两个数字和5进行组合,即C 42;当X=1时,有两种组合方式,第一种方案:首先选5,然后从2,4,6,8中选择2个数字和5进行组合,即C 42;第二种方案:首先选5,然后从2,4,6,8中选择1个数字,再从1,3,7,9中选择1个数字,最后把3个数字进行组合,即C 41C 41.则P (X=0)=C 83C 93=23,P (X=﹣1)=C 42C 93=114,P (X=1)=C 41C 41+C 42C 93=1142, X 0 ﹣1 1P23 114 1142EX=0×23+(﹣1)×114+1×1142=421.20.(13分)平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,左、右焦点分别是F 1,F 2,以F 1为圆心以3为半径的圆与以F 2为圆心以1为半径的圆相交,且交点在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆E :x 24a 2+y 24b2=1,P 为椭圆C 上任意一点,过点P 的直线y=kx +m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q . (i )求|OQ OP|的值;(ii )求△ABQ 面积的最大值.【解答】解:(Ⅰ)由题意可知,PF 1+PF 2=2a=4,可得a=2,又c a =√32,a 2﹣c 2=b 2, 可得b=1,即有椭圆C 的方程为x 24+y 2=1;(Ⅱ)由(Ⅰ)知椭圆E 的方程为x 216+y 24=1,(i )设P (x 0,y 0),|OQOP|=λ,由题意可知,Q (﹣λx 0,﹣λy 0),由于x 024+y 02=1,又(−λx 0)216+(−λy 0)24=1,即λ24(x 024+y 02)=1,所以λ=2,即|OQOP|=2;(ii )设A (x 1,y 1),B (x 2,y 2),将直线y=kx +m 代入椭圆E 的方程,可得 (1+4k 2)x 2+8kmx +4m 2﹣16=0,由△>0,可得m 2<4+16k 2,①则有x1+x2=﹣8km1+4k2,x1x2=4m2−161+4k2,所以|x1﹣x2|=4√16k2+4−m21+4k2,由直线y=kx+m与y轴交于(0,m),则△AOB的面积为S=12|m|•|x1﹣x2|=12|m|•4√16k2+4−m21+4k2=2√(4−m21+4k2)⋅m21+4k2,设m21+4k=t,则S=2√t(4−t),将直线y=kx+m代入椭圆C的方程,可得(1+4k2)x2+8kmx+4m2﹣4=0,由△≥0可得m2≤1+4k2,②由①②可得0<t≤1,则S=2√−(t−2)2+4在(0,1]递增,即有t=1取得最大值,即有S≤2√3,即m2=1+4k2,取得最大值2√3,由(i)知,△ABQ的面积为3S,即△ABQ面积的最大值为6√3.21.(14分)设函数f(x)=ln(x+1)+a(x2﹣x),其中a∈R,(Ⅰ)讨论函数f(x)极值点的个数,并说明理由;(Ⅱ)若∀x>0,f(x)≥0成立,求a的取值范围.【解答】解:(I)函数f(x)=ln(x+1)+a(x2﹣x),其中a∈R,x∈(﹣1,+∞).f′(x)=1x+1+2ax−a=2ax2+ax−a+1x+1.令g(x)=2ax2+ax﹣a+1.(1)当a=0时,g(x)=1,此时f′(x)>0,函数f(x)在(﹣1,+∞)上单调递增,无极值点.(2)当a>0时,△=a2﹣8a(1﹣a)=a(9a﹣8).①当0<a≤89时,△≤0,g(x)≥0,f′(x)≥0,函数f(x)在(﹣1,+∞)上单调递增,无极值点.②当a>89时,△>0,设方程2ax2+ax﹣a+1=0的两个实数根分别为x1,x2,x1<x2.∵x1+x2=−1 2,∴x1<−14,x2>−14.由g(﹣1)>0,可得﹣1<x1<−1 4.∴当x∈(﹣1,x1)时,g(x)>0,f′(x)>0,函数f(x)单调递增;当x∈(x1,x2)时,g(x)<0,f′(x)<0,函数f(x)单调递减;当x∈(x2,+∞)时,g(x)>0,f′(x)>0,函数f(x)单调递增.因此函数f(x)有两个极值点.(3)当a<0时,△>0.由g(﹣1)=1>0,可得x1<﹣1<x2.∴当x∈(﹣1,x2)时,g(x)>0,f′(x)>0,函数f(x)单调递增;当x∈(x2,+∞)时,g(x)<0,f′(x)<0,函数f(x)单调递减.因此函数f(x)有一个极值点.综上所述:当a<0时,函数f(x)有一个极值点;当0≤a≤89时,函数f(x)无极值点;当a>89时,函数f(x)有两个极值点.(II)由(I)可知:(1)当0≤a≤89时,函数f(x)在(0,+∞)上单调递增.∵f(0)=0,∴x∈(0,+∞)时,f(x)>0,符合题意.(2)当89<a≤1时,由g(0)≥0,可得x2≤0,函数f(x)在(0,+∞)上单调递增.又f(0)=0,∴x∈(0,+∞)时,f(x)>0,符合题意.(3)当1<a时,由g(0)<0,可得x2>0,∴x∈(0,x2)时,函数f(x)单调递减.又f(0)=0,∴x∈(0,x2)时,f(x)<0,不符合题意,舍去;(4)当a<0时,设h(x)=x﹣ln(x+1),x∈(0,+∞),h′(x)=xx+1>0.∴h(x)在(0,+∞)上单调递增.因此x∈(0,+∞)时,h(x)>h(0)=0,即ln(x+1)<x,可得:f(x)<x+a(x2﹣x)=ax2+(1﹣a)x,当x>1−1a时,ax2+(1﹣a)x<0,此时f(x)<0,不合题意,舍去.综上所述,a的取值范围为[0,1].。
2015年普通高等学校招生全国统一考试理科数学(山东卷)(含答案全解析)
2015年普通高等学校招生全国统一考试山东理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015山东,理1)已知集合A={x|x2-4x+3<0},B={x|2<x<4},则A∩B=()A.(1,3)B.(1,4)C.(2,3)D.(2,4)答案:C解析:A={x|x2-4x+3<0}={x|1<x<3},B={x|2<x<4},结合数轴,知A∩B={x|2<x<3}.2.(2015山东,理2)若复数z满足z=i,其中i为虚数单位,则z=()A.1-iB.1+iC.-1-iD.-1+i答案:A解析:∵z1−i=i,∴z=i(1-i)=i-i2=1+i.∴z=1-i.3.(2015山东,理3)要得到函数y=sin4x−π的图象,只需将函数y=sin 4x的图象()A.向左平移π个单位B.向右平移π个单位C.向左平移π个单位D.向右平移π3个单位答案:B解析:∵y=sin4x−π3=sin4 x−π12,∴只需将函数y=sin 4x的图象向右平移π12个单位即可.4.(2015山东,理4)已知菱形ABCD的边长为a,∠ABC=60°,则BD·CD=()A.-32a2 B.-34a2 C.34a2 D.32a2答案:D解析:如图设BA=a,BC=b.则BD·CD=(BA+BC)·BA=(a+b)·a=a2+a·b=a2+a·a·cos 60°=a2+1a2=3a2.5.(2015山东,理5)不等式|x-1|-|x-5|<2的解集是()A.(-∞,4)B.(-∞,1)C.(1,4)D.(1,5)答案:A解析:当x≤1时,不等式可化为(1-x)-(5-x)<2,即-4<2,满足题意;当1<x<5时,不等式可化为(x-1)-(5-x)<2,即2x-6<2,解得1<x<4; 当x≥5时,不等式可化为(x-1)-(x-5)<2,即4<2,不成立.故原不等式的解集为(-∞,4).6.(2015山东,理6)已知x,y满足约束条件x−y≥0,x+y≤2,y≥0.若z=ax+y的最大值为4,则a=()A.3B.2C.-2D.-3答案:B解析:由约束条件画出可行域,如图阴影部分所示.线性目标函数z=ax+y,即y=-ax+z.设直线l0:ax+y=0.当-a≥1,即a≤-1时,l0过O(0,0)时,z取得最大值,z max=0+0=0,不合题意;当0≤-a<1,即-1<a≤0时,l0过B(1,1)时,z取得最大值,z max=a+1=4,∴a=3(舍去);当-1<-a<0时,即0<a<1时,l0过B(1,1)时,z取得最大值,z max=2a+1=4,∴a=3(舍去);当-a≤-1,即a≥1时,l0过A(2,0)时,z取得最大值,z max=2a+0=4,∴a=2.综上,a=2符合题意.7.(2015山东,理7)在梯形ABCD中,∠ABC=π2,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.2π3B.4π3C.5π3D.2π答案:C解析:由题意可得旋转体为一个圆柱挖掉一个圆锥.V圆柱=π×12×2=2π,V圆锥=13×π×12×1=π3.∴V几何体=V圆柱-V圆锥=2π-π=5π.8.(2015山东,理8)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%.)A.4.56%B.13.59%C.27.18%D.31.74%答案:B解析:由正态分布N(0,32)可知,ξ落在(3,6)内的概率为P(μ−2σ<ξ<μ+2σ)−P(μ−σ<ξ<μ+σ)=95.44%−68.26%2=13.59%.9.(2015山东,理9)一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为()A.-53或-35B.-32或-23C.-5或-4D.-4或-3答案:D解析:如图,作出点P(-2,-3)关于y轴的对称点P0(2,-3).由题意知反射光线与圆相切,其反向延长线过点P0.故设反射光线为y=k(x-2)-3,即kx-y-2k-3=0.∴圆心到直线的距离d=1+k=1,解得k=-4或k=-3.10.(2015山东,理10)设函数f (x )= 3x −1,x <1,2x ,x ≥1.则满足f (f (a ))=2f (a )的a 的取值范围是( )A. 23,1 B.[0,1]C. 2,+∞ D.[1,+∞)答案:C解析:当a=2时,f (2)=4,f (f (2))=f (4)=24,显然f (f (2))=2f (2),故排除A,B .当a=2时,f 2 =3×2-1=1,f f 2 =f (1)=21=2. 显然f f 2 =2f 23 .故排除D . 综上,选C .第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分. 11.(2015山东,理11)观察下列各式: C 10=40; C 30+C 31=41; C 50+C 51+C 52=42; C 70+C 71+C 72+C 73=43; ……照此规律,当n ∈N *时,C 2n−10+C 2n−11+C 2n−12+…+C 2n−1n−1= . 答案:4n-1解析:观察各式有如下规律:等号左侧第n 个式子有n 项,且上标分别为0,1,2,…,n-1,第n 行每项的下标均为2n-1.等号右侧指数规律为0,1,2,…,n-1.所以第n 个式子为C 2n−10+C 2n−11+C 2n−12+…+C 2n−1n−1=4n-1. 12.(2015山东,理12)若“∀x ∈ 0,π4,tan x ≤m ”是真命题,则实数m 的最小值为 . 答案:1解析:由题意知m ≥(tan x )max .∵x ∈ 0,π,∴tan x ∈[0,1], ∴m ≥1.故m 的最小值为1.13.(2015山东,理13)执行下边的程序框图,输出的T 的值为 .答案:11解析:初始n=1,T=1.又 10x n d x=1n +1x n+1|01=1n +1, ∵n=1<3,∴T=1+1=3,n=1+1=2; ∵n=2<3,∴T=32+12+1=116,n=2+1=3; ∵n=3,不满足“n<3”,执行“否”,∴输出T=11.14.(2015山东,理14)已知函数f (x )=a x +b (a>0,a ≠1)的定义域和值域都是[-1,0],则a+b= . 答案:-3解析:f (x )=a x +b 是单调函数,当a>1时,f (x )是增函数,∴ a −1+b =−1,a 0+b =0,无解.当0<a<1时,f (x )是减函数,∴ a −1+b =0,a 0+b =−1,∴ a =12,b =−2. 综上,a+b=1+(-2)=-3.15.(2015山东,理15)平面直角坐标系xOy 中,双曲线C 1:x 2a 2−y 2b2=1(a>0,b>0)的渐近线与抛物线C 2:x 2=2py (p>0)交于点O ,A ,B.若△OAB 的垂心为C 2的焦点,则C 1的离心率为 .答案:3解析:双曲线的渐近线为y=±ba x.由y =ba x ,x 2=2py ,得A 2bp a ,2b 2p a 2.由 y =−b a x ,x 2=2py ,得B −2bp a ,2b 2p a2 .∵F 0,p为△OAB 的垂心,∴k AF ·k OB =-1.即2b 2p a 2−p 22bpa−0· −b a =-1,解得b 2a2=54,∴c 2a 2=94,即可得e=32.三、解答题:本大题共6小题,共75分.16.(本小题满分12分)(2015山东,理16)设f (x )=sin x cos x-cos 2 x +π4. (1)求f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.若f A 2=0,a=1,求△ABC 面积的最大值.解:(1)由题意知f (x )=sin2x −1+cos 2x +π2 =sin2x −1−sin2x =sin 2x-1.由-π2+2k π≤2x ≤π2+2k π,k ∈Z ,可得-π4+k π≤x ≤π4+k π,k ∈Z ; 由π+2k π≤2x ≤3π+2k π,k ∈Z ,可得π+k π≤x ≤3π+k π,k ∈Z .所以f (x )的单调递增区间是 −π+kπ,π+kπ (k ∈Z );单调递减区间是 π+kπ,3π+kπ (k ∈Z ).(2)由f A 2 =sin A-12=0,得sin A=12,由题意知A 为锐角,所以cos A= 32.由余弦定理a 2=b 2+c 2-2bc cos A , 可得1+ 3bc=b 2+c 2≥2bc ,即bc ≤2+ 3,且当b=c 时等号成立. 因此12bc sin A ≤2+ 34. 所以△ABC 面积的最大值为2+ 3. 17.(本小题满分12分)(2015山东,理17)如图,在三棱台DEF-ABC 中,AB=2DE ,G ,H 分别为AC ,BC 的中点.(1)求证:BD ∥平面FGH ;(2)若CF ⊥平面ABC ,AB ⊥BC ,CF=DE ,∠BAC=45°,求平面FGH 与平面ACFD 所成的角(锐角)的大小.(1)证法一:连接DG,CD,设CD∩GF=O,连接OH.在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形.则O为CD的中点,又H为BC的中点,所以OH∥BD,又OH⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.证法二:在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形BHFE为平行四边形.可得BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH∩HF=H,所以平面FGH∥平面ABED.因为BD⊂平面ABED,所以BD∥平面FGH.(2)解法一:设AB=2,则CF=1.在三棱台DEF-ABC中,G为AC的中点,由DF=1AC=GC,可得四边形DGCF为平行四边形,因此DG∥FC.又FC⊥平面ABC,所以DG⊥平面ABC.在△ABC中,由AB⊥BC,∠BAC=45°,G是AC中点,所以AB=BC,GB⊥GC,因此GB,GC,GD两两垂直.以G为坐标原点,建立如图所示的空间直角坐标系G-xyz.所以G(0,0,0),B(2,0,0),C(0,2,0),D(0,0,1).可得H2,2,0,F(0,2,1),故GH=2,2,0,GF=(0,.设n=(x,y,z)是平面FGH的一个法向量,则由n·GH=0,n·GF=0,可得x+y=0,2y+z=0.可得平面FGH的一个法向量n=(1,-1,2).因为GB是平面ACFD的一个法向量,GB=(2,0,0),所以cos<GB,n>=GB·n|GB|·|n|=222=12.所以平面FGH与平面ACFD所成角(锐角)的大小为60°.解法二:作HM⊥AC于点M,作MN⊥GF于点N,连接NH.由FC⊥平面ABC,得HM⊥FC,又FC∩AC=C,所以HM⊥平面ACFD.因此GF⊥NH,所以∠MNH即为所求的角.在△BGC中,MH∥BG,MH=1BG=2,由△GNM ∽△GCF ,可得MN FC=GMGF,从而MN= 66.由HM ⊥平面ACFD ,MN ⊂平面ACFD ,得HM ⊥MN ,因此tan ∠MNH=HM = 3,所以∠MNH=60°.所以平面FGH 与平面ACFD 所成角(锐角)的大小为60°.18.(本小题满分12分)(2015山东,理18)设数列{a n }的前n 项和为S n .已知2S n =3n +3. (1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n . 解:(1)因为2S n =3n +3,所以2a 1=3+3,故a 1=3, 当n>1时,2S n-1=3n-1+3,此时2a n =2S n -2S n-1=3n -3n-1=2×3n-1,即a n =3n-1,所以a n = 3,n =1,3n−1,n >1.(2)因为a n b n =log 3a n ,所以b 1=13,当n>1时,b n =31-n log 33n-1=(n-1)·31-n . 所以T 1=b 1=1;当n>1时,T n =b 1+b 2+b 3+…+b n =13+(1×3-1+2×3-2+…+(n-1)×31-n ), 所以3T n =1+(1×30+2×3-1+…+(n-1)×32-n ),两式相减,得2T n =2+(30+3-1+3-2+…+32-n )-(n-1)×31-n =2+1−31−n 1−3−1-(n-1)×31-n =13−6n +3n, 所以T n =13−6n +3n.经检验,n=1时也适合. 综上可得T n =1312−6n +34×3n. 19.(本小题满分12分)(2015山东,理19)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.(1)写出所有个位数字是5的“三位递增数”;(2)若甲参加活动,求甲得分X 的分布列和数学期望EX.解:(1)个位数是5的“三位递增数”有125,135,145,235,245,345;(2)由题意知,全部“三位递增数”的个数为C 93=84,随机变量X 的取值为:0,-1,1,因此P (X=0)=C 83C 93=23,P (X=-1)=C 42C 93=114,P (X=1)=1-114−23=1142. 所以X 的分布列为则EX=0×23+(-1)×114+1×1142=421. 20.(本小题满分13分)(2015山东,理20)平面直角坐标系xOy 中,已知椭圆C :x 22+y 2b2=1(a>b>0)的离心率为3,左、右焦点分别是F 1,F 2.以F 1为圆心以3为半径的圆与以F 2为圆心以1为半径的圆相交,且交点在椭圆C 上. (1)求椭圆C 的方程; (2)设椭圆E :x 24a 2+y 24b2=1,P为椭圆C 上任意一点.过点P 的直线y=kx+m 交椭圆E 于A ,B 两点,射线PO 交椭圆E于点Q.①求|OQ ||OP |的值;②求△ABQ 面积的最大值. 解:(1)由题意知2a=4,则a=2.又c =3,a 2-c 2=b 2,可得b=1,所以椭圆C 的方程为x 2+y 2=1.(2)由(1)知椭圆E 的方程为x 2+y 2=1. ①设P (x 0,y 0),|OQ |=λ,由题意知Q (-λx 0,-λy 0).因为x 02+y 02=1,又(−λx 0)2+(−λy 0)2=1, 即λ24 x 024+y 02 =1,所以λ=2,即|OQ ||OP |=2. ②设A (x 1,y 1),B (x 2,y 2),将y=kx+m 代入椭圆E 的方程, 可得(1+4k 2)x 2+8kmx+4m 2-16=0, 由Δ>0,可得m 2<4+16k 2. ①则有x 1+x 2=-8km 1+4k2,x 1x 2=4m 2−161+4k2.所以|x 1-x 2|=4 16k 2+4−m 21+4k2.因为直线y=kx+m 与y 轴交点的坐标为(0,m ), 所以△OAB 的面积S=12|m||x 1-x 2|=2 16k 2+4−m 2|m |1+4k2=2 (16k 2+4−m 2)m 21+4k2=2 4−m 1+4k2m 1+4k2.设m 21+4k2=t.将y=kx+m 代入椭圆C 的方程,可得(1+4k 2)x 2+8kmx+4m 2-4=0, 由Δ≥0,可得m 2≤1+4k 2. ②由①②可知0<t ≤1,因此S=2 (4−t )t =22+4t . 故S ≤2 ,当且仅当t=1,即m 2=1+4k 2时取得最大值2 3. 由①知,△ABQ 面积为3S ,所以△ABQ 面积的最大值为6 3.21.(本小题满分14分)(2015山东,理21)设函数f (x )=ln(x+1)+a (x 2-x ),其中a ∈R . (1)讨论函数f (x )极值点的个数,并说明理由; (2)若∀x>0,f (x )≥0成立,求a 的取值范围. 解:(1)由题意知函数f (x )的定义域为(-1,+∞),f'(x )=1+a (2x-1)=2ax 2+ax−a +1. 令g (x )=2ax 2+ax-a+1,x ∈(-1,+∞).当a=0时,g (x )=1,此时f'(x )>0,函数f (x )在(-1,+∞)单调递增,无极值点; 当a>0时,Δ=a 2-8a (1-a )=a (9a-8).①当0<a ≤8时,Δ≤0,g (x )≥0,f'(x )≥0,函数f (x )在(-1,+∞)单调递增,无极值点;②当a>89时,Δ>0,设方程2ax 2+ax-a+1=0的两根为x 1,x 2(x 1<x 2), 因为x 1+x 2=-1,所以x 1<-1,x 2>-1. 由g (-1)=1>0,可得-1<x 1<-1.所以当x ∈(-1,x 1)时,g (x )>0,f'(x )>0,函数f (x )单调递增, 当x ∈(x 1,x 2)时,g (x )<0,f'(x )<0,函数f (x )单调递减, 当x ∈(x 2,+∞)时,g (x )>0,f'(x )>0,函数f (x )单调递增. 因此函数有两个极值点. 当a<0时,Δ>0,由g (-1)=1>0,可得x 1<-1.当x ∈(-1,x 2)时,g (x )>0,f'(x )>0,函数f (x )单调递增; 当x ∈(x 2,+∞)时,g (x )<0,f'(x )<0,函数f (x )单调递减; 所以函数有一个极值点.综上所述,当a<0时,函数f (x )有一个极值点; 当0≤a ≤8时,函数f (x )无极值点; 当a>89时,函数f (x )有两个极值点. (2)由(1)知,①当0≤a ≤8时,函数f (x )在(0,+∞)上单调递增, 因为f (0)=0,所以x ∈(0,+∞)时,f (x )>0,符合题意;②当8<a ≤1时,由g (0)≥0,得x 2≤0,所以函数f (x )在(0,+∞)上单调递增.又f (0)=0,所以x ∈(0,+∞)时,f (x )>0,符合题意; ③当a>1时,由g (0)<0,可得x 2>0. 所以x ∈(0,x 2)时,函数f (x )单调递减;因为f (0)=0,所以x ∈(0,x 2)时,f (x )<0,不合题意; ④当a<0时,设h (x )=x-ln(x+1). 因为x ∈(0,+∞)时,h'(x )=1-1=x>0, 所以h (x )在(0,+∞)上单调递增. 因此当x ∈(0,+∞)时,h (x )>h (0)=0, 即ln(x+1)<x.可得f (x )<x+a (x 2-x )=ax 2+(1-a )x , 当x>1-1a时,ax 2+(1-a )x<0, 此时f (x )<0,不合题意.综上所述,a 的取值范围是[0,1].。
2015年山东高考数学(理科)试题及答案
2015年普通高等学校招生全国统一考试(山东卷)理科数学第Ⅰ卷(共50分)一、 选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1) 已知集合A={X|X ²-4X+3<0},B={X|2<X<4},则A B=(A )(1,3) (B )(1,4) (C )(2,3) (D )(2,4)(2)若复数Z 满足1Z i i=-,其中i 为虚数为单位,则Z= (A )1-i (B )1+i (C )-1-i (D )-1+i(3)要得到函数y=sin (4x-3π)的图像,只需要将函数y=sin4x 的图像() (A )向左平移12π个单位 (B )向右平移12π个单位 (C )向左平移3π个单位 (D )向右平移3π个单位 (4)已知ABCD 的边长为a ,∠ABC=60o ,则·=(A )- (B )- (C ) (D )(5)不等式|X-1|-|X-5|<2的解集是(A )(-,4) (B )(-,1) (C )(1,4) (D )(1,5)(6)已知x,y 满足约束条件,若z=ax+y 的最大值为4,则a=(A )3 (B )2 (C )-2 (D )-3(7)在梯形ABCD 中,ABC=,AD//BC ,BC=2AD=2AB=2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为(A ) (B ) (C ) (D )2(8)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,3),从中随机取一件,其长度误差落在区间(3,6)内的概率为(附:若随机变量ξ服从正态分布N (μ,σ²)),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.)(A )4.56% (B )13.59% (C )27.18% (D )31.74%(9)一条光纤从点(-2,-3)射出,经y 轴反射后与圆相切,则反射光线所在直线的斜率为()(A )或(B 或(C )或(D )或(10)设函数f(x)=,则满足f(f(a))=的a 取值范围是()(A )[,1](B )[0,1](C )[(D )[1, +第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。
(95)2015年山东省高考数学试卷(理科)word版试卷及解析
2015年高考山东省理科数学真题一、选择题1.已知集合{}243|0A x x x =-+<,{}24|B x x =<<,则A B =( )A .(1,3)B .(1,4)C .(2,3)D .(2,4)2.若复数Z 满足1Zi i=-,其中i 为虚数为单位,则Z=( ) A .1-iB .1+iC .-1-iD .-1+i3.要得到函数sin(4)3y x π=-的图像,只需要将函数y=sin4x 的图像( )A .向左平移12π个单位 B .向右平移12π个单位 C .向左平移3π个单位 D .向右平移3π个单位 4.已知菱形ABCD 的边长为a ,60ABC ∠=︒,则BD CD ⋅=( ) A .232a -B .234a -C .234a D .232a 5.不等式|x-1|-|x-5|<2的解集是( ) A .(,4)-∞B .(,1)-∞C .(1,4)D .(1,5)6.已知x,y 满足约束条件020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,若z=ax+y 的最大值为4,则a=( )A .3B .2C .-2D .-37.在梯形ABCD 中,2ABC π∠=,AD//BC ,BC=2AD=2AB=2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A .23π B .43π C .53π D .2π8.已知某批零件的长度误差(单位:毫米)服从正态分布N (0,3),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量服从正态分布2(,)N μσ,则(P μσ-<)68.26%μσ<+=,(2P μσ-<2)95.44%μσ<+=。
) A .4.56% B .12.59% C .27.18% D .31.74%9.一条光线从点(-2,-3)射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23- C .54-或45- D .43-或34- 10.设函数31,1()2,1x x x f x x -<⎧=⎨≥⎩,则满足()(())2f a f f a =的a 取值范围是( )A .2[,1]3B .[0,1]C .2[,)3+∞D .[1,)+∞二、填空题11.观察下列各式:001011330122555012337777=4444C C C C C C C C C C +=++=+++=……照此规律,当当n ∈N 时,C 02n-1 + C 12n-1 + C 22n-1 +…+ C n-12n-1 = .12.若“∀x ∈[0,4π],tanx ≤m”是真命题,则实数m 的最小值为 . 13.执行下面的程序框图,输出的T 的值为 .14.已知函数()(0,1)xf x a b a a =+>≠ 的定义域和值域都是[]1,0- ,则a b +=________15.平面直角坐标系xOy 中,双曲线C :22221x y a b-=(a>0,b>0)的渐近线与抛物线C 2:x 2=2py(p>0)交于O ,若ABC∆的垂心为C 2的焦点,则C 1的离心率为___________. 16.设2()sin cos cos ()4f x x x x x π=-+。
2015年普通高等学校招生全国统一考试山东卷(理)及解析
山东卷(理)第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015高考山东卷,理1)已知集合A={x|x2-4x+3<0},B={x|2<x<4},则A∩B等于( C )(A)(1,3) (B)(1,4) (C)(2,3) (D)(2,4)解析:由A={x|x2-4x+3<0}={x|1<x<3},B={x|2<x<4},知A∩B={x|2<x<3}.2.(2015高考山东卷,理2)若复数z满足=i,其中i为虚数单位,则z等于( A )(A)1-i (B)1+i (C)-1-i (D)-1+i解析:=i(1-i)=1+i,则z=1-i.3.(2015高考山东卷,理3)要得到函数y=sin4x-的图象,只需将函数y=sin 4x的图象( B )(A)向左平移个单位(B)向右平移个单位(C)向左平移个单位(D)向右平移个单位解析:将函数y=sin 4x的图象向右平移个单位可得到函数y=sin4x-=sin4x-的图象.4.(2015高考山东卷,理4)已知菱形ABCD的边长为a,∠ABC=60°,则·等于( D )(A)-a2(B)-a2(C)a2(D)a2解析:·=(+)·=·+=a2+a2=a2.5.(2015高考山东卷,理5)不等式|x-1|-|x-5|<2的解集是( A )(A)(-∞,4) (B)(-∞,1) (C)(1,4) (D)(1,5)解析:①当x<1时,原不等式等价于1-x-(5-x)<2,即-4<2,所以x<1.②当1≤x≤5时,原不等式等价于x-1-(5-x)<2,即x<4,所以1≤x<4.③当x>5时,原不等式等价于x-1-(x-5)<2,即4<2,无解.综合①②③知x<4.6.(2015高考山东卷,理6)已知x,y满足约束条件若z=ax+y的最大值为4,则a等于( B )(A)3 (B)2 (C)-2 (D)-3解析:画出不等式组所表示的可行域如图中阴影部分所示,因为目标函数z=ax+y的最大值为4,即目标函数对应直线与可行域有公共点时,在y轴上的截距的最大值为4,作出过点D(0,4)的直线,由图可知,目标函数在点B(2,0)处取得最大值,故有a×2+0=4,解得a=2.故选B.7.(2015高考山东卷,理7)在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( C )(A)(B)(C)(D)2π解析:旋转一周形成的几何体是底面半径为1,高为2的圆柱挖去一个底面半径为1,高为1的圆锥,如图,故所求体积V=2π-=.8.(2015高考山东卷,理8)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( B )(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%.)(A)4.56% (B)13.59% (C)27.18% (D)31.74%解析:P(-3<ξ<3)=68.26%,P(-6<ξ<6)=95.44%,则P(3<ξ<6)=×(95.44%-68.26%)=13.59%.9.(2015高考山东卷,理9)一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为( D )(A)-或-(B)-或-(C)-或-(D)-或-解析:由题意可知反射光线所在直线过点(2,-3),设反射光线所在直线方程为y+3=k(x-2),即kx-y-2k-3=0.因为反射光线所在直线与圆相切,所以=1,解得k=-或k=-.10.(2015高考山东卷,理10)设函数f(x)=则满足f(f(a))=2f(a)的a的取值范围是( C )(A),1(B)[0,1](C),+∞(D)[1,+∞)解析:由f(f(a))=2f(a)得,f(a)≥1.当a<1时,有3a-1≥1,所以a≥,所以≤a<1.当a≥1时,有2a≥1.所以a≥0,所以a≥1.综上,a≥.故选C.第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.(2015高考山东卷,理11)观察下列各式:=40;+=41;++=42;+++=43;…照此规律,当n∈N*时,+++…+= .解析:由题知+++…+=4n-1.答案:4n-112.(2015高考山东卷,理12)若“∀x∈0,,tan x≤m”是真命题,则实数m的最小值为. 解析:因为0≤x≤,所以0≤tan x≤1,因为“∀x∈0,,tan x≤m”是真命题,所以m≥1.所以实数m的最小值为1.答案:113.(2015高考山东卷,理13)执行如图所示的程序框图,输出的T的值为.解析:第一次循环:T=1+xdx=1+=,n=2;第二次循环:T=+x2dx=+=,n=3,退出循环,故输出T的值为.答案:14.(2015高考山东卷,理14)已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[-1,0],则a+b= . 解析:①当a>1时,f(x)在[-1,0]上单调递增,则无解.②当0<a<1时,f(x)在[-1,0]上单调递减,则解得所以a+b=-.答案:-15.(2015高考山东卷,理15)平面直角坐标系xOy中,双曲线C1:-=1(a>0,b>0)的渐近线与抛物线C2:x2=2py(p>0)交于点O,A,B.若△OAB的垂心为C2的焦点,则C1的离心率为.解析:设点A在点B左侧,抛物线C2的焦点为F,则F0,.联立得和分别解得A-,,B,.因为F为△OAB的垂心,所以AF⊥OB,所以k AF·k OB=-1,即·=-1⇒4b2=5a2⇒4(c2-a2)=5a2⇒=,所以e==.答案:三、解答题:本大题共6小题,共75分.16.(本小题满分12分)(2015高考山东卷,理16)设f(x)=sin xcos x-cos2x+.(1)求f(x)的单调区间;(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c.若f=0,a=1,求△ABC的面积的最大值.解:(1)由题意知f(x)=-=-=sin 2x-.由-+2kπ≤2x≤+2kπ,k∈Z,可得-+kπ≤x≤+kπ,k∈Z;由+2kπ≤2x≤+2kπ,k∈Z,可得+kπ≤x≤+kπ,k∈Z.所以f(x)的单调递增区间是-+kπ,+kπ(k∈Z);单调递减区间是+kπ,+kπ(k∈Z).(2)由f=sin A-=0,得sin A=,由题意知A为锐角,所以cos A=.由余弦定理a2=b2+c2-2bccos A,可得1+bc=b2+c2≥2bc,即bc≤2+,且当b=c时等号成立.因此bcsin A≤.所以△ABC面积的最大值为.17.(本小题满分12分)(2015高考山东卷,理17)如图,在三棱台DEF ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.(1)证明:法一连接DG,CD,设CD∩GF=O,连接OH.在三棱台DEF ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形.则O为CD的中点,又H为BC的中点,所以OH∥BD,又OH⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.法二在三棱台DEF ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形BHFE为平行四边形,可得BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH∩HF=H,所以平面FGH∥平面ABED.因为BD⊂平面ABED,所以BD∥平面FGH.(2)解:法一设AB=2,则CF=1.在三棱台DEF ABC中,G为AC的中点,由DF=AC=GC,可得四边形DGCF为平行四边形,因此DG∥FC.又FC⊥平面ABC,所以DG⊥平面ABC.在△ABC中,由AB⊥BC,∠BAC=45°,G是AC中点,所以AB=BC,GB⊥GC,因此GB,GC,GD两两垂直.以G为坐标原点,建立如图所示的空间直角坐标系.所以G(0,0,0),B(,0,0),C(0,,0),D(0,0,1).可得H,,0,F(0,,1),故=,,0,=(0,,1).设n=(x,y,z)是平面FGH的法向量,则由可得可得平面FGH的一个法向量n=(1,-1,).因为是平面ACFD的一个法向量,=(,0,0),所以cos<,n>===.所以平面FGH与平面ACFD所成角(锐角)的大小为60°.法二作HM⊥AC于点M,作MN⊥GF于点N,连接NH.设AB=2,则CF=1.由FC⊥平面ABC,得HM⊥FC,又FC∩AC=C,所以HM⊥平面ACFD.因此GF⊥NH,所以∠MNH即为所求的角.在△BGC中,MH∥BG,MH=BG=,由△GNM∽△GCF,可得=,从而MN=.由HM⊥平面ACFD,MN⊂平面ACFD,得HM⊥MN,因此tan∠MNH==,所以∠MNH=60°.所以平面FGH与平面ACFD所成角(锐角)的大小为60°.18.(本小题满分12分)(2015高考山东卷,理18)设数列{a n}的前n项和为S n,已知2S n=3n+3.(1)求{a n}的通项公式;(2)若数列{b n}满足a n b n=log3 a n,求{b n}的前n项和T n.解:(1)因为2S n=3n+3,所以2a1=3+3,故a1=3,当n>1时,2S n-1=3n-1+3,此时2a n=2S n-2S n-1=3n-3n-1=2×3n-1,即a n=3n-1,所以a n=(2)因为a n b n=log3a n,所以b1=,当n>1时,b n=31-n log33n-1=(n-1)·31-n.所以T1=b1=;当n>1时,T n=b1+b2+b3+…+b n=+[1×3-1+2×3-2+…+(n-1)×31-n],所以3T n=1+[1×30+2×3-1+…+(n-1)×32-n],两式相减,得2T n=+(30+3-1+3-2+…+32-n)-(n-1)×31-n=+-(n-1)×31-n=-,所以T n=-.经检验,n=1时也适合.综上可得T n=-.19.(本小题满分12分)(2015高考山东卷,理19)若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.(1)写出所有个位数字是5的“三位递增数”;(2)若甲参加活动,求甲得分X的分布列和数学期望EX.解:(1)个位数字是5的“三位递增数”有125,135,145,235,245,345.(2)由题意知,全部“三位递增数”的个数为=84,随机变量X的取值为0,-1,1,因此P(X=0)==,P(X=-1)==,P(X=1)=1--=.所以X的分布列为则EX=0×+(-1)×+1×=.20.(本小题满分13分)(2015高考山东卷,理20)平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,左、右焦点分别是F1,F2.以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上.(1)求椭圆C的方程;(2)设椭圆E:+=1,P为椭圆C上任意一点.过点P的直线y=kx+m交椭圆E于A,B两点,射线PO交椭圆E于点Q.①求的值;②求△ABQ面积的最大值.解:(1)由题意知2a=4,则a=2.又=,a2-c2=b2,可得b=1,所以椭圆C的方程为+y2=1.(2)由(1)知椭圆E的方程为+=1.①设P(x0,y0),=λ,由题意知Q(-λx0,-λy0).因为+=1,又+=1,即+=1,所以λ=2,即=2.②设A(x1,y1),B(x2,y2).将y=kx+m代入椭圆E的方程,可得(1+4k2)x2+8kmx+4m2-16=0,由Δ>0,可得m2<4+16k2.(*)则有x1+x2=-,x1x2=.所以|x1-x2|=.因为直线y=kx+m与y轴交点的坐标为(0,m),所以△OAB的面积S=|m||x1-x2|===2.设=t.将y=kx+m代入椭圆C的方程,可得(1+4k2)x2+8kmx+4m2-4=0,由Δ≥0,可得m2≤1+4k2.(**)由(*)(**)可知0<t≤1,因此S=2=2.故S≤2,当且仅当t=1,即m2=1+4k2时取得最大值2.由①知,△ABQ的面积为3S,所以△ABQ面积的最大值为6.21.(本小题满分14分)(2015高考山东卷,理21)设函数f(x)=ln(x+1)+a(x2-x) ,其中a∈R.(1)讨论函数f(x)极值点的个数,并说明理由;(2)若∀x>0,f(x)≥0成立,求a的取值范围.解:(1)由题意知函数f(x)的定义域为(-1,+∞),f'(x)=+a(2x-1)=.令g(x)=2ax2+ax-a+1,x∈(-1,+∞).①当a=0时,g(x)=1,此时f'(x)>0,函数f(x)在(-1,+∞)上单调递增,无极值点;②当a>0时,Δ=a2-8a(1-a)=a(9a-8).(i)当0<a≤时,Δ≤0,g(x)≥0,f'(x)≥0,函数f(x)在(-1,+∞)单调递增,无极值点;(ii)当a>时,Δ>0,设方程2ax2+ax-a+1=0的两根为x1,x2(x1<x2),因为x1+x2=-,所以x1<-,x2>-.由g(-1)=1>0,可得-1<x1<-.所以当x∈(-1,x1)时,g(x)>0,f'(x)>0,函数f(x)单调递增;当x∈(x1,x2)时,g(x)<0,f'(x)<0,函数f(x)单调递减;当x∈(x2,+∞)时,g(x)>0,f'(x)>0,函数f(x)单调递增.因此函数有两个极值点.(iii)当a<0时,Δ>0,由g(-1)=1>0,可得x1<-1.当x∈(-1,x2)时,g(x)>0,f'(x)>0,函数f(x)单调递增;当x∈(x2,+∞)时,g(x)<0,f'(x)<0,函数f(x)单调递减.所以函数有一个极值点.综上所述,当a<0时,函数f(x)有一个极值点;当0≤a≤时,函数f(x)无极值点;当a>时,函数f(x)有两个极值点.(2)由(1)知,①当0≤a≤时,函数f(x)在(0,+∞)上单调递增,因为f(0)=0,所以x∈(0,+∞)时,f(x)>0,符合题意.②当<a≤1时,由g(0)≥0,得x2≤0,所以函数f(x)在(0,+∞)上单调递增.又f(0)=0,所以x∈(0,+∞)时,f(x)>0,符合题意.③当a>1时,由g(0)<0,可得x2>0.所以x∈(0,x2)时,函数f(x)单调递减.因为f(0)=0,所以x∈(0,x2)时,f(x)<0,不合题意.④当a<0时,设h(x)=x-ln(x+1).因为x∈(0,+∞)时,h'(x)=1-=>0,所以h(x)在(0,+∞)上单调递增.因此当x∈(0,+∞)时,h(x)>h(0)=0,即ln(x+1)<x.可得f(x)<x+a(x2-x)=ax2+(1-a)x,当x>1-时,ax2+(1-a)x<0,此时f(x)<0,不符合题意.综上所述,a的取值范围是[0,1].。
2015年山东省高考数学试卷(理科)
2015年山东省高考数学试卷(理科)一、选择题(本大题共10小题,每小题5分,共50分)1.(5分)(2015•山东)已知集合A={x|x2﹣4x+3<0},B={x|2<x<4},则A∩B=()A.(1,3)B.(1,4)C.(2,3)D.(2,4)2.(5分)(2015•山东)若复数z满足=i,其中i为虚数单位,则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i3.(5分)(2015•山东)要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象()A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位4.(5分)(2015•山东)已知菱形ABCD的边长为a,∠ABC=60°,则=()A.﹣a2B.﹣a2C.a2D.a25.(5分)(2015•山东)不等式|x﹣1|﹣|x﹣5|<2的解集是()A.(﹣∞,4)B.(﹣∞,1)C.(1,4)D.(1,5)6.(5分)(2015•山东)已知x,y满足约束条件,若z=ax+y的最大值为4,则a=()A.3 B.2 C.﹣2 D.﹣37.(5分)(2015•山东)在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2,将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A. B. C. D.2π8.(5分)(2015•山东)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机抽取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=68.26%,P(μ﹣2σ<ξ<μ+2σ)=95.44%)A.4.56% B.13.59% C.27.18% D.31.74%9.(5分)(2015•山东)一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y ﹣2)2=1相切,则反射光线所在直线的斜率为()A.﹣或﹣B.﹣或﹣C.﹣或﹣D.﹣或﹣10.(5分)(2015•山东)设函数f(x)=,则满足f(f(a))=2f(a)的a 的取值范围是()A.[,1]B.[0,1]C.[,+∞)D.[1,+∞)二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)(2015•山东)观察下列各式:C=40;C+C=41;C+C+C=42;C+C+C+C=43;…照此规律,当n∈N*时,C+C+C+…+C=.12.(5分)(2015•山东)若“∀x∈[0,],tanx≤m”是真命题,则实数m的最小值为.13.(5分)(2015•山东)执行如图程序框图,输出的T的值为.14.(5分)(2015•山东)已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[﹣1,0],则a+b=.15.(5分)(2015•山东)平面直角坐标系xOy中,双曲线C1:﹣=1(a>0,b>0)的渐近线与抛物线C2:x2=2py(p>0)交于点O,A,B,若△OAB的垂心为C2的焦点,则C1的离心率为.三、解答题16.(12分)(2015•山东)设f(x)=sinxcosx﹣cos2(x+).(Ⅰ)求f(x)的单调区间;(Ⅱ)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f()=0,a=1,求△ABC面积的最大值.17.(12分)(2015•山东)如图,在三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC的中点.(Ⅰ)求证:BD∥平面FGH;(Ⅱ)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.18.(12分)(2015•山东)设数列{a n}的前n项和为S n,已知2S n=3n+3.(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n},满足a n b n=log3a n,求{b n}的前n项和T n.19.(12分)(2015•山东)若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分,若能被5整除,但不能被10整除,得﹣1分,若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X的分布列和数学期望EX.20.(13分)(2015•山东)平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,左、右焦点分别是F1,F2,以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆E:+=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E 于A,B两点,射线PO交椭圆E于点Q.(i)求||的值;(ii)求△ABQ面积的最大值.21.(14分)(2015•山东)设函数f(x)=ln(x+1)+a(x2﹣x),其中a∈R,(Ⅰ)讨论函数f(x)极值点的个数,并说明理由;(Ⅱ)若∀x>0,f(x)≥0成立,求a的取值范围.2015年山东省高考数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分)1.(5分)(2015•山东)已知集合A={x|x2﹣4x+3<0},B={x|2<x<4},则A∩B=()A.(1,3)B.(1,4)C.(2,3)D.(2,4)【分析】求出集合A,然后求出两个集合的交集.【解答】解:集合A={x|x2﹣4x+3<0}={x|1<x<3},B={x|2<x<4},则A∩B={x|2<x<3}=(2,3).故选:C.【点评】本题考查集合的交集的求法,考查计算能力.2.(5分)(2015•山东)若复数z满足=i,其中i为虚数单位,则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i【分析】直接利用复数的乘除运算法则化简求解即可.【解答】解:=i,则=i(1﹣i)=1+i,可得z=1﹣i.故选:A.【点评】本题考查复数的基本运算,基本知识的考查.3.(5分)(2015•山东)要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象()A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位【分析】直接利用三角函数的平移原则推出结果即可.【解答】解:因为函数y=sin(4x﹣)=sin[4(x﹣)],要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象向右平移单位.故选:B.【点评】本题考查三角函数的图象的平移,值域平移变换中x的系数是易错点.4.(5分)(2015•山东)已知菱形ABCD的边长为a,∠ABC=60°,则=()A.﹣a2B.﹣a2C.a2D.a2【分析】由已知可求,,根据=()•=代入可求【解答】解:∵菱形ABCD的边长为a,∠ABC=60°,∴=a2,=a×a×cos60°=,则=()•==故选:D【点评】本题主要考查了平面向量数量积的定义的简单运算,属于基础试题5.(5分)(2015•山东)不等式|x﹣1|﹣|x﹣5|<2的解集是()A.(﹣∞,4)B.(﹣∞,1)C.(1,4)D.(1,5)【分析】运用零点分区间,求出零点为1,5,讨论①当x<1,②当1≤x≤5,③当x>5,分别去掉绝对值,解不等式,最后求并集即可.【解答】解:①当x<1,不等式即为﹣x+1+x﹣5<2,即﹣4<2成立,故x<1;②当1≤x≤5,不等式即为x﹣1+x﹣5<2,得x<4,故1≤x<4;③当x>5,x﹣1﹣x+5<2,即4<2不成立,故x∈∅.综上知解集为(﹣∞,4).故选A.【点评】本题考查绝对值不等式的解法,主要考查运用零点分区间的方法,考查运算能力,属于中档题.6.(5分)(2015•山东)已知x,y满足约束条件,若z=ax+y的最大值为4,则a=()A.3 B.2 C.﹣2 D.﹣3【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).则A(2,0),B(1,1),若z=ax+y过A时取得最大值为4,则2a=4,解得a=2,此时,目标函数为z=2x+y,即y=﹣2x+z,平移直线y=﹣2x+z,当直线经过A(2,0)时,截距最大,此时z最大为4,满足条件,若z=ax+y过B时取得最大值为4,则a+1=4,解得a=3,此时,目标函数为z=3x+y,即y=﹣3x+z,平移直线y=﹣3x+z,当直线经过A(2,0)时,截距最大,此时z最大为6,不满足条件,故a=2,故选:B【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法,确定目标函数的斜率关系是解决本题的关键.7.(5分)(2015•山东)在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2,将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A. B. C. D.2π【分析】画出几何体的直观图,利用已知条件,求解几何体的体积即可.【解答】解:由题意可知几何体的直观图如图:旋转体是底面半径为1,高为2的圆柱,挖去一个相同底面高为1的倒圆锥,几何体的体积为:=.故选:C.【点评】本题考查几何体的体积的求法,考查空间想象能力以及计算能力.画出几何体的直观图是解题的关键.8.(5分)(2015•山东)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机抽取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=68.26%,P(μ﹣2σ<ξ<μ+2σ)=95.44%)A.4.56% B.13.59% C.27.18% D.31.74%【分析】由题意P(﹣3<ξ<3)=68.26%,P(﹣6<ξ<6)=95.44%,可得P(3<ξ<6)=(95.44%﹣68.26%),即可得出结论.【解答】解:由题意P(﹣3<ξ<3)=68.26%,P(﹣6<ξ<6)=95.44%,所以P(3<ξ<6)=(95.44%﹣68.26%)=13.59%.故选:B.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查曲线的对称性,属于基础题.9.(5分)(2015•山东)一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y ﹣2)2=1相切,则反射光线所在直线的斜率为()A.﹣或﹣B.﹣或﹣C.﹣或﹣D.﹣或﹣【分析】点A(﹣2,﹣3)关于y轴的对称点为A′(2,﹣3),可设反射光线所在直线的方程为:y+3=k(x﹣2),利用直线与圆相切的性质即可得出.【解答】解:点A(﹣2,﹣3)关于y轴的对称点为A′(2,﹣3),故可设反射光线所在直线的方程为:y+3=k(x﹣2),化为kx﹣y﹣2k﹣3=0.∵反射光线与圆(x+3)2+(y﹣2)2=1相切,∴圆心(﹣3,2)到直线的距离d==1,化为24k2+50k+24=0,∴k=或﹣.故选:D.【点评】本题考查了反射光线的性质、直线与圆相切的性质、点到直线的距离公式、点斜式、对称点,考查了计算能力,属于中档题.10.(5分)(2015•山东)设函数f(x)=,则满足f(f(a))=2f(a)的a的取值范围是()A.[,1]B.[0,1]C.[,+∞)D.[1,+∞)【分析】令f(a)=t,则f(t)=2t,讨论t<1,运用导数判断单调性,进而得到方程无解,讨论t≥1时,以及a<1,a≥1,由分段函数的解析式,解不等式即可得到所求范围.【解答】解:令f(a)=t,则f(t)=2t,当t<1时,3t﹣1=2t,由g(t)=3t﹣1﹣2t的导数为g′(t)=3﹣2t ln2,在t<1时,g′(t)>0,g(t)在(﹣∞,1)递增,即有g(t)<g(1)=0,则方程3t﹣1=2t无解;当t≥1时,2t=2t成立,由f(a)≥1,即3a﹣1≥1,解得a≥,且a<1;或a≥1,2a≥1解得a≥0,即为a≥1.综上可得a的范围是a≥.故选C.【点评】本题考查分段函数的运用,主要考查函数的单调性的运用,运用分类讨论的思想方法是解题的关键.二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)(2015•山东)观察下列各式:C=40;C+C=41;C+C+C=42;C+C+C+C=43;…照此规律,当n∈N*时,C+C+C+…+C=4n﹣1.【分析】仔细观察已知条件,找出规律,即可得到结果.【解答】解:因为C=40;C+C=41;C+C+C=42;C+C+C+C=43;…照此规律,可以看出等式左侧最后一项,组合数的上标与等式右侧的幂指数相同,可得:当n∈N*时,C+C+C+…+C=4n﹣1;故答案为:4n﹣1.【点评】本题考查归纳推理的应用,找出规律是解题的关键.12.(5分)(2015•山东)若“∀x∈[0,],tanx≤m”是真命题,则实数m的最小值为1.【分析】求出正切函数的最大值,即可得到m的范围.【解答】解:“∀x∈[0,],tanx≤m”是真命题,可得tanx≤1,所以,m≥1,实数m的最小值为:1.故答案为:1.【点评】本题考查函数的最值的应用,命题的真假的应用,考查计算能力.13.(5分)(2015•山东)执行如图程序框图,输出的T的值为.【分析】模拟执行程序框图,依次写出每次循环得到的n,T的值,当n=3时不满足条件n <3,退出循环,输出T的值为.【解答】解:模拟执行程序框图,可得n=1,T=1满足条件n<3,T=1+xdx,n=2满足条件n<3,T=1+xdx+x2dx=1+=,n=3不满足条件n<3,退出循环,输出T的值为.故答案为:【点评】本题主要考查了循环结构的程序框图,考查了定积分的应用,属于基本知识的考查.14.(5分)(2015•山东)已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[﹣1,0],则a+b=.【分析】对a进行分类讨论,分别题意和指数函数的单调性列出方程组,解得答案.【解答】解:当a>1时,函数f(x)=a x+b在定义域上是增函数,所以,解得b=﹣1,=0不符合题意舍去;当0<a<1时,函数f(x)=a x+b在定义域上是减函数,所以,解得b=﹣2,a=,综上a+b=,故答案为:【点评】本题考查指数函数的单调性的应用,以及分类讨论思想,属于中档题.15.(5分)(2015•山东)平面直角坐标系xOy中,双曲线C1:﹣=1(a>0,b>0)的渐近线与抛物线C2:x2=2py(p>0)交于点O,A,B,若△OAB的垂心为C2的焦点,则C1的离心率为.【分析】求出A的坐标,可得=,利用△OAB的垂心为C 2的焦点,可得×(﹣)=﹣1,由此可求C1的离心率.【解答】解:双曲线C1:﹣=1(a>0,b>0)的渐近线方程为y=±x,与抛物线C2:x2=2py联立,可得x=0或x=±,取A(,),设垂心H(0,),则k AH==,∵△OAB的垂心为C2的焦点,∴×(﹣)=﹣1,∴5a2=4b2,∴5a2=4(c2﹣a2)∴e==.故答案为:.【点评】本题考查双曲线的性质,考查学生的计算能力,确定A的坐标是关键.三、解答题16.(12分)(2015•山东)设f(x)=sinxcosx﹣cos2(x+).(Ⅰ)求f(x)的单调区间;(Ⅱ)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f()=0,a=1,求△ABC 面积的最大值.【分析】(Ⅰ)由三角函数恒等变换化简解析式可得f(x)=sin2x﹣,由2k≤2x ≤2k,k∈Z可解得f(x)的单调递增区间,由2k≤2x≤2k,k∈Z 可解得单调递减区间.(Ⅱ)由f()=sinA﹣=0,可得sinA,cosA,由余弦定理可得:bc,且当b=c 时等号成立,从而可求bcsinA≤,从而得解.【解答】解:(Ⅰ)由题意可知,f(x)=sin2x﹣=sin2x﹣=sin2x﹣由2k≤2x≤2k,k∈Z可解得:k≤x≤k,k∈Z;由2k≤2x≤2k,k∈Z可解得:k≤x≤k,k∈Z;所以f(x)的单调递增区间是[k,k],(k∈Z);单调递减区间是:[k,k],(k∈Z);(Ⅱ)由f()=sinA﹣=0,可得sinA=,由题意知A为锐角,所以cosA=,由余弦定理a2=b2+c2﹣2bccosA,可得:1+bc=b2+c2≥2bc,即bc,且当b=c时等号成立.因此S=bcsinA≤,所以△ABC面积的最大值为.【点评】本题主要考查了正弦函数的图象和性质,余弦定理,基本不等式的应用,属于基本知识的考查.17.(12分)(2015•山东)如图,在三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC的中点.(Ⅰ)求证:BD∥平面FGH;(Ⅱ)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.【分析】(Ⅰ)根据AB=2DE便可得到BC=2EF,从而可以得出四边形EFHB为平行四边形,从而得到BE∥HF,便有BE∥平面FGH,再证明DE∥平面FGH,从而得到平面BDE∥平面FGH,从而BD∥平面FGH;(Ⅱ)连接HE,根据条件能够说明HC,HG,HE三直线两两垂直,从而分别以这三直线为x,y,z轴,建立空间直角坐标系,然后求出一些点的坐标.连接BG,可说明为平面ACFD的一条法向量,设平面FGH的法向量为,根据即可求出法向量,设平面FGH与平面ACFD所成的角为θ,根据cosθ=即可求出平面FGH与平面ACFD所成的角的大小.【解答】解:(Ⅰ)证明:根据已知条件,DF∥AC,EF∥BC,DE∥AB;△DEF∽△ABC,又AB=2DE,∴BC=2EF=2BH,∴四边形EFHB为平行四边形;∴BE∥HF,HF⊂平面FGH,BE⊄平面FGH;∴BE∥平面FGH;同样,因为GH为△ABC中位线,∴GH∥AB;又DE∥AB;∴DE∥GH;∴DE∥平面FGH,DE∩BE=E;∴平面BDE∥平面FGH,BD⊂平面BDE;∴BD∥平面FGH;(Ⅱ)连接HE,则HE∥CF;∵CF⊥平面ABC;∴HE⊥平面ABC,并且HG⊥HC;∴HC,HG,HE三直线两两垂直,分别以这三直线为x,y,z轴,建立如图所示空间直角坐标系,设HC=1,则:H(0,0,0),G(0,1,0),F(1,0,1),B(﹣1,0,0);连接BG,根据已知条件BA=BC,G为AC中点;∴BG⊥AC;又CF⊥平面ABC,BG⊂平面ABC;∴BG⊥CF,AC∩CF=C;∴BG⊥平面ACFD;∴向量为平面ACFD的法向量;设平面FGH的法向量为,则:,取z=1,则:;设平面FGH和平面ACFD所成的锐二面角为θ,则:cosθ=|cos|=;∴平面FGH与平面ACFD所成的角为60°.【点评】考查棱台的定义,平行四边形的定义,线面平行的判定定理,面面平行的判定定理及其性质,线面垂直的性质及线面垂直的判定定理,以及建立空间直角坐标系,利用空间向量求二面角的方法,平面法向量的概念及求法,向量垂直的充要条件,向量夹角余弦的坐标公式,平面和平面所成角的定义.18.(12分)(2015•山东)设数列{a n}的前n项和为S n,已知2S n=3n+3.(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n},满足a n b n=log3a n,求{b n}的前n项和T n.【分析】(Ⅰ)利用2S n=3n+3,可求得a1=3;当n>1时,2S n﹣1=3n﹣1+3,两式相减2a n=2S n ﹣2S n﹣1,可求得a n=3n﹣1,从而可得{a n}的通项公式;(Ⅱ)依题意,a n b n=log3a n,可得b1=,当n>1时,b n=31﹣n•log33n﹣1=(n﹣1)×31﹣n,于是可求得T1=b1=;当n>1时,T n=b1+b2+…+b n=+(1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n),利用错位相减法可求得{bn}的前n项和T n.【解答】解:(Ⅰ)因为2S n=3n+3,所以2a1=31+3=6,故a1=3,当n>1时,2S n﹣1=3n﹣1+3,此时,2a n=2S n﹣2S n﹣1=3n﹣3n﹣1=2×3n﹣1,即a n=3n﹣1,所以a n=.(Ⅱ)因为a n b n=log3a n,所以b1=,当n>1时,b n=31﹣n•log33n﹣1=(n﹣1)×31﹣n,所以T1=b1=;当n>1时,T n=b1+b2+…+b n=+(1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n),所以3T n=1+(1×30+2×3﹣1+3×3﹣2+…+(n﹣1)×32﹣n),两式相减得:2T n=+(30+3﹣1+3﹣2+…+32﹣n﹣(n﹣1)×31﹣n)=+﹣(n﹣1)×31﹣n=﹣,所以T n=﹣,经检验,n=1时也适合,综上可得T n=﹣.【点评】本题考查数列的求和,着重考查数列递推关系的应用,突出考查“错位相减法”求和,考查分析、运算能力,属于中档题.19.(12分)(2015•山东)若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分,若能被5整除,但不能被10整除,得﹣1分,若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X的分布列和数学期望EX.【分析】(Ⅰ)根据“三位递增数”的定义,即可写出所有个位数字是5的“三位递增数”;(Ⅱ)随机变量X的取值为:0,﹣1,1分别求出对应的概率,即可求出分布列和期望.【解答】解:(Ⅰ)根据定义个位数字是5的“三位递增数”有:125,135,145,235,245,345;(Ⅱ)由题意知,全部“三位递增数”的个数为,随机变量X的取值为:0,﹣1,1,当X=0时,可以选择除去5以外的剩下8个数字中选择3个进行组合,即;当X=﹣1时,首先选择5,由于不能被10整除,因此不能选择数字2,4,6,8,可以从1,3,7,9中选择两个数字和5进行组合,即;当X=1时,有两种组合方式,第一种方案:首先选5,然后从2,4,6,8中选择2个数字和5进行组合,即;第二种方案:首先选5,然后从2,4,6,8中选择1个数字,再从1,3,7,9中选择1个数字,最后把3个数字进行组合,即.则P(X=0)==,P(X=﹣1)==,P(X=1)==,X 0 ﹣1 1PEX=0×+(﹣1)×+1×=.【点评】本题主要考查离散型随机变量的分布列和期望的计算,求出对应的概率是解决本题的关键.20.(13分)(2015•山东)平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,左、右焦点分别是F1,F2,以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆E:+=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E 于A,B两点,射线PO交椭圆E于点Q.(i)求||的值;(ii)求△ABQ面积的最大值.【分析】(Ⅰ)运用椭圆的离心率公式和a,b,c的关系,计算即可得到b,进而得到椭圆C 的方程;(Ⅱ)求得椭圆E的方程,(i)设P(x0,y0),||=λ,求得Q的坐标,分别代入椭圆C,E的方程,化简整理,即可得到所求值;(ii)设A(x1,y1),B(x2,y2),将直线y=kx+m代入椭圆E的方程,运用韦达定理,三角形的面积公式,将直线y=kx+m代入椭圆C的方程,由判别式大于0,可得t的范围,结合二次函数的最值,又△ABQ的面积为3S,即可得到所求的最大值.【解答】解:(Ⅰ)由题意可知,PF1+PF2=2a=4,可得a=2,又=,a2﹣c2=b2,可得b=1,即有椭圆C的方程为+y2=1;(Ⅱ)由(Ⅰ)知椭圆E的方程为+=1,(i)设P(x0,y0),||=λ,由题意可知,Q(﹣λx0,﹣λy0),由于+y02=1,又+=1,即(+y02)=1,所以λ=2,即||=2;(ii)设A(x1,y1),B(x2,y2),将直线y=kx+m代入椭圆E的方程,可得(1+4k2)x2+8kmx+4m2﹣16=0,由△>0,可得m2<4+16k2,①则有x1+x2=﹣,x1x2=,所以|x1﹣x2|=,由直线y=kx+m与y轴交于(0,m),则△AOB的面积为S=|m|•|x1﹣x2|=|m|•=2,设=t,则S=2,将直线y=kx+m代入椭圆C的方程,可得(1+4k2)x2+8kmx+4m2﹣4=0,由△≥0可得m2≤1+4k2,②由①②可得0<t≤1,则S=2在(0,1]递增,即有t=1取得最大值,即有S,即m2=1+4k2,取得最大值2,由(i)知,△ABQ的面积为3S,即△ABQ面积的最大值为6.【点评】本题考查椭圆的方程和性质,主要考查直线方程和椭圆方程联立,运用韦达定理,同时考查三角形的面积公式和二次函数的最值,属于中档题.21.(14分)(2015•山东)设函数f(x)=ln(x+1)+a(x2﹣x),其中a∈R,(Ⅰ)讨论函数f(x)极值点的个数,并说明理由;(Ⅱ)若∀x>0,f(x)≥0成立,求a的取值范围.【分析】(I)函数f(x)=ln(x+1)+a(x2﹣x),其中a∈R,x∈(﹣1,+∞).=.令g(x)=2ax2+ax﹣a+1.对a与△分类讨论可得:(1)当a=0时,此时f′(x)>0,即可得出函数的单调性与极值的情况.(2)当a>0时,△=a(9a﹣8).①当时,△≤0,②当a时,△>0,即可得出函数的单调性与极值的情况.(3)当a<0时,△>0.即可得出函数的单调性与极值的情况.(II)由(I)可知:(1)当0≤a时,可得函数f(x)在(0,+∞)上单调性,即可判断出.(2)当<a≤1时,由g(0)≥0,可得x2≤0,函数f(x)在(0,+∞)上单调性,即可判断出.(3)当1<a时,由g(0)<0,可得x2>0,利用x∈(0,x2)时函数f(x)单调性,即可判断出;(4)当a<0时,设h(x)=x﹣ln(x+1),x∈(0,+∞),研究其单调性,即可判断出【解答】解:(I)函数f(x)=ln(x+1)+a(x2﹣x),其中a∈R,x∈(﹣1,+∞).=.令g(x)=2ax2+ax﹣a+1.(1)当a=0时,g(x)=1,此时f′(x)>0,函数f(x)在(﹣1,+∞)上单调递增,无极值点.(2)当a>0时,△=a2﹣8a(1﹣a)=a(9a﹣8).①当时,△≤0,g(x)≥0,f′(x)≥0,函数f(x)在(﹣1,+∞)上单调递增,无极值点.②当a时,△>0,设方程2ax2+ax﹣a+1=0的两个实数根分别为x1,x2,x1<x2.∵x1+x2=,∴,.由g(﹣1)>0,可得﹣1<x1.∴当x∈(﹣1,x1)时,g(x)>0,f′(x)>0,函数f(x)单调递增;当x∈(x1,x2)时,g(x)<0,f′(x)<0,函数f(x)单调递减;当x∈(x2,+∞)时,g(x)>0,f′(x)>0,函数f(x)单调递增.因此函数f(x)有两个极值点.(3)当a<0时,△>0.由g(﹣1)=1>0,可得x1<﹣1<x2.∴当x∈(﹣1,x2)时,g(x)>0,f′(x)>0,函数f(x)单调递增;当x∈(x2,+∞)时,g(x)<0,f′(x)<0,函数f(x)单调递减.因此函数f(x)有一个极值点.综上所述:当a<0时,函数f(x)有一个极值点;当0≤a时,函数f(x)无极值点;当a时,函数f(x)有两个极值点.(II)由(I)可知:(1)当0≤a时,函数f(x)在(0,+∞)上单调递增.∵f(0)=0,∴x∈(0,+∞)时,f(x)>0,符合题意.(2)当<a≤1时,由g(0)≥0,可得x2≤0,函数f(x)在(0,+∞)上单调递增.又f(0)=0,∴x∈(0,+∞)时,f(x)>0,符合题意.(3)当1<a时,由g(0)<0,可得x2>0,∴x∈(0,x2)时,函数f(x)单调递减.又f(0)=0,∴x∈(0,x2)时,f(x)<0,不符合题意,舍去;(4)当a<0时,设h(x)=x﹣ln(x+1),x∈(0,+∞),h′(x)=>0.∴h(x)在(0,+∞)上单调递增.因此x∈(0,+∞)时,h(x)>h(0)=0,即ln(x+1)<x,可得:f(x)<x+a(x2﹣x)=ax2+(1﹣a)x,当x>时,ax2+(1﹣a)x<0,此时f(x)<0,不合题意,舍去.综上所述,a的取值范围为[0,1].【点评】本题考查了导数的运算法则、利用导数研究函数的单调性极值,考查了分析问题与解决问题的能力,考查了分类讨论思想方法、推理能力与计算能力,属于难题.参与本试卷答题和审题的老师有:qiss;吕静;双曲线;maths;刘长柏;w3239003;翔宇老师;wkl197822;wfy814;沂蒙松(排名不分先后)菁优网2016年8月29日。
2015年山东省高考数学试卷(理科)及答案
2015年山东省高考数学试卷(理科)一、选择题(本大题共10小题,每小题5分,共50分)1.(5分)已知集合A={x|x2﹣4x+3<0},B={x|2<x<4},则A∩B=()A.(1,3) B.(1,4) C.(2,3) D.(2,4)2.(5分)若复数z满足=i,其中i为虚数单位,则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i3.(5分)要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象()A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位4.(5分)已知菱形ABCD的边长为a,∠ABC=60°,则=()A.﹣a2B.﹣a2C.a2 D.a25.(5分)不等式|x﹣1|﹣|x﹣5|<2的解集是()A.(﹣∞,4)B.(﹣∞,1)C.(1,4) D.(1,5)6.(5分)已知x,y满足约束条件,若z=ax+y的最大值为4,则a=()A.3 B.2 C.﹣2 D.﹣37.(5分)在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2,将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A. B. C. D.2π8.(5分)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机抽取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=68.26%,P(μ﹣2σ<ξ<μ+2σ)=95.44%)A.4.56% B.13.59% C.27.18% D.31.74%9.(5分)一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y﹣2)2=1相切,则反射光线所在直线的斜率为()A.﹣或﹣B.﹣或﹣C.﹣或﹣D.﹣或﹣10.(5分)设函数f(x)=,则满足f(f(a))=2f(a)的a的取值范围是()A.[,1]B.[0,1]C.[,+∞)D.[1,+∞)二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)观察下列各式:C=40;C+C=41;C+C+C=42;C+C+C+C=43;…照此规律,当n∈N*时,C+C+C+…+C=.12.(5分)若“∀x∈[0,],tanx≤m”是真命题,则实数m的最小值为.13.(5分)执行如图程序框图,输出的T的值为.14.(5分)已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[﹣1,0],则a+b=.15.(5分)平面直角坐标系xOy中,双曲线C1:﹣=1(a>0,b>0)的渐近线与抛物线C2:x2=2py(p>0)交于点O,A,B,若△OAB的垂心为C2的焦点,则C1的离心率为.三、解答题16.(12分)设f(x)=sinxcosx﹣cos2(x+).(Ⅰ)求f(x)的单调区间;(Ⅱ)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f()=0,a=1,求△ABC面积的最大值.17.(12分)如图,在三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC的中点.(Ⅰ)求证:BD∥平面FGH;(Ⅱ)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD 所成的角(锐角)的大小.18.(12分)设数列{a n}的前n项和为S n,已知2S n=3n+3.(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n},满足a n b n=log3a n,求{b n}的前n项和T n.19.(12分)若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分,若能被5整除,但不能被10整除,得﹣1分,若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X的分布列和数学期望EX.20.(13分)平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,左、右焦点分别是F1,F2,以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆E:+=1,P为椭圆C上任意一点,过点P的直线y=kx+m 交椭圆E于A,B两点,射线PO交椭圆E于点Q.(i)求||的值;(ii)求△ABQ面积的最大值.21.(14分)设函数f(x)=ln(x+1)+a(x2﹣x),其中a∈R,(Ⅰ)讨论函数f(x)极值点的个数,并说明理由;(Ⅱ)若∀x>0,f(x)≥0成立,求a的取值范围.2015年山东省高考数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分)1.(5分)(2015•山东)已知集合A={x|x2﹣4x+3<0},B={x|2<x<4},则A∩B=()A.(1,3) B.(1,4) C.(2,3) D.(2,4)【分析】求出集合A,然后求出两个集合的交集.【解答】解:集合A={x|x2﹣4x+3<0}={x|1<x<3},B={x|2<x<4},则A∩B={x|2<x<3}=(2,3).故选:C.2.(5分)(2015•山东)若复数z满足=i,其中i为虚数单位,则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i【分析】直接利用复数的乘除运算法则化简求解即可.【解答】解:=i,则=i(1﹣i)=1+i,可得z=1﹣i.故选:A.3.(5分)(2015•山东)要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x 的图象()A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位【分析】直接利用三角函数的平移原则推出结果即可.【解答】解:因为函数y=sin(4x﹣)=sin[4(x﹣)],要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象向右平移单位.故选:B.4.(5分)(2015•山东)已知菱形ABCD的边长为a,∠ABC=60°,则=()A.﹣a2B.﹣a2C.a2 D.a2【分析】由已知可求,,根据=()•=代入可求【解答】解:∵菱形ABCD的边长为a,∠ABC=60°,∴=a2,=a×a×cos60°=,则=()•==故选:D5.(5分)(2015•山东)不等式|x﹣1|﹣|x﹣5|<2的解集是()A.(﹣∞,4)B.(﹣∞,1)C.(1,4) D.(1,5)【分析】运用零点分区间,求出零点为1,5,讨论①当x<1,②当1≤x≤5,③当x>5,分别去掉绝对值,解不等式,最后求并集即可.【解答】解:①当x<1,不等式即为﹣x+1+x﹣5<2,即﹣4<2成立,故x<1;②当1≤x≤5,不等式即为x﹣1+x﹣5<2,得x<4,故1≤x<4;③当x>5,x﹣1﹣x+5<2,即4<2不成立,故x∈∅.综上知解集为(﹣∞,4).故选A.6.(5分)(2015•山东)已知x,y满足约束条件,若z=ax+y的最大值为4,则a=()A.3 B.2 C.﹣2 D.﹣3【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).则A(2,0),B(1,1),若z=ax+y过A时取得最大值为4,则2a=4,解得a=2,此时,目标函数为z=2x+y,即y=﹣2x+z,平移直线y=﹣2x+z,当直线经过A(2,0)时,截距最大,此时z最大为4,满足条件,若z=ax+y过B时取得最大值为4,则a+1=4,解得a=3,此时,目标函数为z=3x+y,即y=﹣3x+z,平移直线y=﹣3x+z,当直线经过A(2,0)时,截距最大,此时z最大为6,不满足条件,故a=2,故选:B7.(5分)(2015•山东)在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2,将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A. B. C. D.2π【分析】画出几何体的直观图,利用已知条件,求解几何体的体积即可.【解答】解:由题意可知几何体的直观图如图:旋转体是底面半径为1,高为2的圆柱,挖去一个相同底面高为1的倒圆锥,几何体的体积为:=.故选:C.8.(5分)(2015•山东)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机抽取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=68.26%,P(μ﹣2σ<ξ<μ+2σ)=95.44%)A.4.56% B.13.59% C.27.18% D.31.74%【分析】由题意P(﹣3<ξ<3)=68.26%,P(﹣6<ξ<6)=95.44%,可得P(3<ξ<6)=(95.44%﹣68.26%),即可得出结论.【解答】解:由题意P(﹣3<ξ<3)=68.26%,P(﹣6<ξ<6)=95.44%,所以P(3<ξ<6)=(95.44%﹣68.26%)=13.59%.故选:B.9.(5分)(2015•山东)一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y﹣2)2=1相切,则反射光线所在直线的斜率为()A.﹣或﹣B.﹣或﹣C.﹣或﹣D.﹣或﹣【分析】点A(﹣2,﹣3)关于y轴的对称点为A′(2,﹣3),可设反射光线所在直线的方程为:y+3=k(x﹣2),利用直线与圆相切的性质即可得出.【解答】解:点A(﹣2,﹣3)关于y轴的对称点为A′(2,﹣3),故可设反射光线所在直线的方程为:y+3=k(x﹣2),化为kx﹣y﹣2k﹣3=0.∵反射光线与圆(x+3)2+(y﹣2)2=1相切,∴圆心(﹣3,2)到直线的距离d==1,化为24k2+50k+24=0,∴k=或﹣.故选:D.10.(5分)(2015•山东)设函数f(x)=,则满足f(f(a))=2f (a)的a的取值范围是()A.[,1]B.[0,1]C.[,+∞)D.[1,+∞)【分析】令f(a)=t,则f(t)=2t,讨论t<1,运用导数判断单调性,进而得到方程无解,讨论t≥1时,以及a<1,a≥1,由分段函数的解析式,解不等式即可得到所求范围.【解答】解:令f(a)=t,则f(t)=2t,当t<1时,3t﹣1=2t,由g(t)=3t﹣1﹣2t的导数为g′(t)=3﹣2t ln2,在t<1时,g′(t)>0,g(t)在(﹣∞,1)递增,即有g(t)<g(1)=0,则方程3t﹣1=2t无解;当t≥1时,2t=2t成立,由f(a)≥1,即3a﹣1≥1,解得a≥,且a<1;或a≥1,2a≥1解得a≥0,即为a≥1.综上可得a的范围是a≥.故选C.二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)(2015•山东)观察下列各式:C=40;C+C=41;C+C+C=42;C+C+C+C=43;…照此规律,当n∈N*时,C+C+C+…+C=4n﹣1.【分析】仔细观察已知条件,找出规律,即可得到结果.【解答】解:因为C=40;C+C=41;C+C+C=42;C+C+C+C=43;…照此规律,可以看出等式左侧最后一项,组合数的上标与等式右侧的幂指数相同,可得:当n∈N*时,C+C+C+…+C=4n﹣1;故答案为:4n﹣1.12.(5分)(2015•山东)若“∀x∈[0,],tanx≤m”是真命题,则实数m的最小值为1.【分析】求出正切函数的最大值,即可得到m的范围.【解答】解:“∀x∈[0,],tanx≤m”是真命题,可得tanx≤1,所以,m≥1,实数m的最小值为:1.故答案为:1.13.(5分)(2015•山东)执行如图程序框图,输出的T的值为.【分析】模拟执行程序框图,依次写出每次循环得到的n,T的值,当n=3时不满足条件n<3,退出循环,输出T的值为.【解答】解:模拟执行程序框图,可得n=1,T=1满足条件n<3,T=1+xdx,n=2满足条件n<3,T=1+xdx+x2dx=1+=,n=3不满足条件n<3,退出循环,输出T的值为.故答案为:14.(5分)(2015•山东)已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[﹣1,0],则a+b=.【分析】对a进行分类讨论,分别题意和指数函数的单调性列出方程组,解得答案.【解答】解:当a>1时,函数f(x)=a x+b在定义域上是增函数,所以,解得b=﹣1,=0不符合题意舍去;当0<a<1时,函数f(x)=a x+b在定义域上是减函数,所以,解得b=﹣2,a=,综上a+b=,故答案为:15.(5分)(2015•山东)平面直角坐标系xOy中,双曲线C1:﹣=1(a>0,b>0)的渐近线与抛物线C2:x2=2py(p>0)交于点O,A,B,若△OAB的垂心为C2的焦点,则C1的离心率为.【分析】求出A的坐标,可得=,利用△OAB的垂心为C 2的焦点,可得×(﹣)=﹣1,由此可求C1的离心率.【解答】解:双曲线C1:﹣=1(a>0,b>0)的渐近线方程为y=±x,与抛物线C2:x2=2py联立,可得x=0或x=±,取A(,),设垂心H(0,),则k AH==,∵△OAB的垂心为C2的焦点,∴×(﹣)=﹣1,∴5a2=4b2,∴5a2=4(c2﹣a2)∴e==.故答案为:.三、解答题16.(12分)(2015•山东)设f(x)=sinxcosx﹣cos2(x+).(Ⅰ)求f(x)的单调区间;(Ⅱ)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f()=0,a=1,求△ABC面积的最大值.【分析】(Ⅰ)由三角函数恒等变换化简解析式可得f(x)=sin2x﹣,由2k≤2x≤2k,k∈Z可解得f(x)的单调递增区间,由2k≤2x≤2k,k∈Z可解得单调递减区间.(Ⅱ)由f()=sinA﹣=0,可得sinA,cosA,由余弦定理可得:bc,且当b=c时等号成立,从而可求bcsinA≤,从而得解.【解答】解:(Ⅰ)由题意可知,f(x)=sin2x﹣=sin2x﹣=sin2x﹣由2k≤2x≤2k,k∈Z可解得:k≤x≤k,k∈Z;由2k≤2x≤2k,k∈Z可解得:k≤x≤k,k∈Z;所以f(x)的单调递增区间是[k,k],(k∈Z);单调递减区间是:[k,k],(k∈Z);(Ⅱ)由f()=sinA﹣=0,可得sinA=,由题意知A为锐角,所以cosA=,由余弦定理a2=b2+c2﹣2bccosA,可得:1+bc=b2+c2≥2bc,即bc,且当b=c时等号成立.因此S=bcsinA≤,所以△ABC面积的最大值为.17.(12分)(2015•山东)如图,在三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC的中点.(Ⅰ)求证:BD∥平面FGH;(Ⅱ)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD 所成的角(锐角)的大小.【分析】(Ⅰ)根据AB=2DE便可得到BC=2EF,从而可以得出四边形EFHB为平行四边形,从而得到BE∥HF,便有BE∥平面FGH,再证明DE∥平面FGH,从而得到平面BDE∥平面FGH,从而BD∥平面FGH;(Ⅱ)连接HE,根据条件能够说明HC,HG,HE三直线两两垂直,从而分别以这三直线为x,y,z轴,建立空间直角坐标系,然后求出一些点的坐标.连接BG,可说明为平面ACFD的一条法向量,设平面FGH的法向量为,根据即可求出法向量,设平面FGH与平面ACFD所成的角为θ,根据cosθ=即可求出平面FGH与平面ACFD所成的角的大小.【解答】解:(Ⅰ)证明:根据已知条件,DF∥AC,EF∥BC,DE∥AB;△DEF∽△ABC,又AB=2DE,∴BC=2EF=2BH,∴四边形EFHB为平行四边形;∴BE∥HF,HF⊂平面FGH,BE⊄平面FGH;∴BE∥平面FGH;同样,因为GH为△ABC中位线,∴GH∥AB;又DE∥AB;∴DE∥GH;∴DE∥平面FGH,DE∩BE=E;∴平面BDE∥平面FGH,BD⊂平面BDE;∴BD∥平面FGH;(Ⅱ)连接HE,则HE∥CF;∵CF⊥平面ABC;∴HE⊥平面ABC,并且HG⊥HC;∴HC,HG,HE三直线两两垂直,分别以这三直线为x,y,z轴,建立如图所示空间直角坐标系,设HC=1,则:H(0,0,0),G(0,1,0),F(1,0,1),B(﹣1,0,0);连接BG,根据已知条件BA=BC,G为AC中点;∴BG⊥AC;又CF⊥平面ABC,BG⊂平面ABC;∴BG⊥CF,AC∩CF=C;∴BG⊥平面ACFD;∴向量为平面ACFD的法向量;设平面FGH的法向量为,则:,取z=1,则:;设平面FGH和平面ACFD所成的锐二面角为θ,则:cosθ=|cos|=;∴平面FGH与平面ACFD所成的角为60°.18.(12分)(2015•山东)设数列{a n}的前n项和为S n,已知2S n=3n+3.(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n},满足a n b n=log3a n,求{b n}的前n项和T n.【分析】(Ⅰ)利用2S n=3n+3,可求得a1=3;当n>1时,2S n﹣1=3n﹣1+3,两式相减2a n=2S n﹣2S n﹣1,可求得a n=3n﹣1,从而可得{a n}的通项公式;(Ⅱ)依题意,a n b n=log3a n,可得b1=,当n>1时,b n=31﹣n•log33n﹣1=(n﹣1)×31﹣n,于是可求得T1=b1=;当n>1时,T n=b1+b2+…+b n=+(1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n),利用错位相减法可求得{b n}的前n项和T n.【解答】解:(Ⅰ)因为2S n=3n+3,所以2a1=31+3=6,故a1=3,=3n﹣1+3,当n>1时,2S n﹣1此时,2a n=2S n﹣2S n﹣1=3n﹣3n﹣1=2×3n﹣1,即a n=3n﹣1,所以a n=.(Ⅱ)因为a n b n=log3a n,所以b1=,当n>1时,b n=31﹣n•log33n﹣1=(n﹣1)×31﹣n,所以T1=b1=;当n>1时,T n=b1+b2+…+b n=+(1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n),所以3T n=1+(1×30+2×3﹣1+3×3﹣2+…+(n﹣1)×32﹣n),两式相减得:2T n=+(30+3﹣1+3﹣2+…+32﹣n﹣(n﹣1)×31﹣n)=+﹣(n ﹣1)×31﹣n=﹣,所以T n=﹣,经检验,n=1时也适合,综上可得T n=﹣.19.(12分)(2015•山东)若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分,若能被5整除,但不能被10整除,得﹣1分,若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X的分布列和数学期望EX.【分析】(Ⅰ)根据“三位递增数”的定义,即可写出所有个位数字是5的“三位递增数”;(Ⅱ)随机变量X的取值为:0,﹣1,1分别求出对应的概率,即可求出分布列和期望.【解答】解:(Ⅰ)根据定义个位数字是5的“三位递增数”有:125,135,145,235,245,345;(Ⅱ)由题意知,全部“三位递增数”的个数为,随机变量X的取值为:0,﹣1,1,当X=0时,可以选择除去5以外的剩下8个数字中选择3个进行组合,即;当X=﹣1时,首先选择5,由于不能被10整除,因此不能选择数字2,4,6,8,可以从1,3,7,9中选择两个数字和5进行组合,即;当X=1时,有两种组合方式,第一种方案:首先选5,然后从2,4,6,8中选择2个数字和5进行组合,即;第二种方案:首先选5,然后从2,4,6,8中选择1个数字,再从1,3,7,9中选择1个数字,最后把3个数字进行组合,即.则P(X=0)==,P(X=﹣1)==,P(X=1)==,X0﹣11PEX=0×+(﹣1)×+1×=.20.(13分)(2015•山东)平面直角坐标系xOy中,已知椭圆C:+=1(a >b>0)的离心率为,左、右焦点分别是F1,F2,以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆E:+=1,P为椭圆C上任意一点,过点P的直线y=kx+m 交椭圆E于A,B两点,射线PO交椭圆E于点Q.(i)求||的值;(ii)求△ABQ面积的最大值.【分析】(Ⅰ)运用椭圆的离心率公式和a,b,c的关系,计算即可得到b,进而得到椭圆C的方程;(Ⅱ)求得椭圆E的方程,(i)设P(x0,y0),||=λ,求得Q的坐标,分别代入椭圆C,E的方程,化简整理,即可得到所求值;(ii)设A(x1,y1),B(x2,y2),将直线y=kx+m代入椭圆E的方程,运用韦达定理,三角形的面积公式,将直线y=kx+m代入椭圆C的方程,由判别式大于0,可得t的范围,结合二次函数的最值,又△ABQ的面积为3S,即可得到所求的最大值.【解答】解:(Ⅰ)由题意可知,PF1+PF2=2a=4,可得a=2,又=,a2﹣c2=b2,可得b=1,即有椭圆C的方程为+y2=1;(Ⅱ)由(Ⅰ)知椭圆E的方程为+=1,(i)设P(x0,y0),||=λ,由题意可知,Q(﹣λx0,﹣λy0),由于+y02=1,又+=1,即(+y02)=1,所以λ=2,即||=2;(ii)设A(x1,y1),B(x2,y2),将直线y=kx+m代入椭圆E的方程,可得(1+4k2)x2+8kmx+4m2﹣16=0,由△>0,可得m2<4+16k2,①则有x1+x2=﹣,x1x2=,所以|x1﹣x2|=,由直线y=kx+m与y轴交于(0,m),则△AOB的面积为S=|m|•|x1﹣x2|=|m|•=2,设=t,则S=2,将直线y=kx+m代入椭圆C的方程,可得(1+4k2)x2+8kmx+4m2﹣4=0,由△>0可得m2<1+4k2,②由①②可得0<t<1,则S=2在(0,1)递增,即有t=1取得最大值,即有S,即m2=1+4k2,取得最大值2,由(i)知,△ABQ的面积为3S,即△ABQ面积的最大值为6.21.(14分)(2015•山东)设函数f(x)=ln(x+1)+a(x2﹣x),其中a∈R,(Ⅰ)讨论函数f(x)极值点的个数,并说明理由;(Ⅱ)若∀x>0,f(x)≥0成立,求a的取值范围.【分析】(I)函数f(x)=ln(x+1)+a(x2﹣x),其中a∈R,x∈(﹣1,+∞).=.令g(x)=2ax2+ax﹣a+1.对a与△分类讨论可得:(1)当a=0时,此时f′(x)>0,即可得出函数的单调性与极值的情况.(2)当a>0时,△=a(9a﹣8).①当时,△≤0,②当a时,△>0,即可得出函数的单调性与极值的情况.(3)当a<0时,△>0.即可得出函数的单调性与极值的情况.(II)由(I)可知:(1)当0≤a时,可得函数f(x)在(0,+∞)上单调性,即可判断出.(2)当<a≤1时,由g(0)≥0,可得x2≤0,函数f(x)在(0,+∞)上单调性,即可判断出.(3)当1<a时,由g(0)<0,可得x2>0,利用x∈(0,x2)时函数f(x)单调性,即可判断出;(4)当a<0时,设h(x)=x﹣ln(x+1),x∈(0,+∞),研究其单调性,即可判断出【解答】解:(I)函数f(x)=ln(x+1)+a(x2﹣x),其中a∈R,x∈(﹣1,+∞).=.令g(x)=2ax2+ax﹣a+1.(1)当a=0时,g(x)=1,此时f′(x)>0,函数f(x)在(﹣1,+∞)上单调递增,无极值点.(2)当a>0时,△=a2﹣8a(1﹣a)=a(9a﹣8).①当时,△≤0,g(x)≥0,f′(x)≥0,函数f(x)在(﹣1,+∞)上单调递增,无极值点.②当a时,△>0,设方程2ax2+ax﹣a+1=0的两个实数根分别为x1,x2,x1<x2.∵x1+x2=,∴,.由g(﹣1)>0,可得﹣1<x1.∴当x∈(﹣1,x1)时,g(x)>0,f′(x)>0,函数f(x)单调递增;当x∈(x1,x2)时,g(x)<0,f′(x)<0,函数f(x)单调递减;当x∈(x2,+∞)时,g(x)>0,f′(x)>0,函数f(x)单调递增.因此函数f(x)有两个极值点.(3)当a<0时,△>0.由g(﹣1)=1>0,可得x1<﹣1<x2.∴当x∈(﹣1,x2)时,g(x)>0,f′(x)>0,函数f(x)单调递增;当x∈(x2,+∞)时,g(x)<0,f′(x)<0,函数f(x)单调递减.因此函数f(x)有一个极值点.综上所述:当a<0时,函数f(x)有一个极值点;当0≤a时,函数f(x)无极值点;当a时,函数f(x)有两个极值点.(II)由(I)可知:(1)当0≤a时,函数f(x)在(0,+∞)上单调递增.∵f(0)=0,∴x∈(0,+∞)时,f(x)>0,符合题意.(2)当<a≤1时,由g(0)≥0,可得x2≤0,函数f(x)在(0,+∞)上单调递增.又f(0)=0,∴x∈(0,+∞)时,f(x)>0,符合题意.(3)当1<a时,由g(0)<0,可得x2>0,∴x∈(0,x2)时,函数f(x)单调递减.又f(0)=0,∴x∈(0,x2)时,f(x)<0,不符合题意,舍去;(4)当a<0时,设h(x)=x﹣ln(x+1),x∈(0,+∞),h′(x)=>0.∴h(x)在(0,+∞)上单调递增.因此x∈(0,+∞)时,h(x)>h(0)=0,即ln(x+1)<x,可得:f(x)<x+a(x2﹣x)=ax2+(1﹣a)x,当x>时,ax2+(1﹣a)x<0,此时f(x)<0,不合题意,舍去.综上所述,a的取值范围为[0,1].。
2015高考数学真题山东理科解析
2015年普通高等学校招生全国统一考试(山东卷)理科数学试题解析1. 解析 由题意{}13A x x =<<,而{}24B x x =<<, 所以{}23AB x x =<<.故选C .2. 解析 因为i 1iz=-,所以()1i i =1+i z =-,所以1i z =-.故选A . 3. 解析 因为sin 4sin 4312y x x π⎡π⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以要得到sin 412y x ⎡π⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦的图像,只需将sin 4y x =的图像向右平移12π个单位.故选B . 4. 解析 解法一:如图所示,在菱形ABCD 中,60ABC ∠=,各边长均为a ,CD BA =,BD BA BC =+,所以()BD CD BA BC BA =+= 22BA BC BA BA +=+cos BC BA ABC ∠=2223cos 602a a a +=.故选D . 解法二:由题可求得3BD a =,BD 与CD 的夹角为30,所以BD CD =23cos302BD CD a =.故选D .5. 解析 令15y x x =---,则4,526,154,1x y x x x ⎧⎪=-<⎨⎪-<⎩……,所以原不等式同解于如下三个不等式组的解集的并集:①542x ⎧⎨<⎩?;②15262x x <⎧⎨-<⎩…;③142x <⎧⎨-<⎩,解①得:x ∈∅,解②得:14x <…;解③得:1x <.综上所述,原不等式的解集为{}4x x <.故选A .评注 本题也可数形结合,而快捷的方法则是取特殊值验证.6. 解析 作出不等式组020x y x y y -⎧⎪+⎨⎪⎩………所表示的平面区域,如图所示.依题意,z ax y =+的最大值必在()1,1A 或()2,0B 处取得.①当在()1,1A 处取得时,14a +=,则3a =,经检验,不合题意;②当在()2,0B 处取得时,204a +=,则2a =,经检验,符合题意.故选B .7. 解析 由题意,梯形ABCD 绕AD 所在直线旋转一周而形成的几何体是一个底面半径为1,高为2的圆柱挖去一个底面半径为1,高为1的圆锥所得的组合体,所以V V V =-=圆柱圆锥22112113π⨯⨯-π⨯⨯=5233πππ-=.故选C . 8. 解析 由题意,()()()13666332P P P ξξξ<<=-<<--<<=⎡⎤⎣⎦ ()195.4468.2613.592-=%%%.故选B . 9. 解析 由光的反射原理知,反射光线的反向延长线必过点()2,3-.设反射光线所在直线的斜率为k ,则反射光线所在直线的方程为()32y k x +=-,即230kx y k ---=.由题意,圆心()3,2-到此直线的距离等于圆的半径1,即1=,所以21225120k k ++=,解得43k =-或34k =-.故选D .10. 解析 因为()()()2f a f f a =,所以()1f a ?.①当1a <时,()311f a a =-…,解得213a <…;②当1a …时,()21a f a =…,解得1a ….综上所述,23a …. 故选C .11. 解析 观察各等式两侧的规律,由归纳推理的思想,不难发现:012121C C n n --++212121C C n n n ---++=14n -. 12. 解析 由题可得,在0,4π⎡⎤⎢⎥⎣⎦上,()max tan m x …,而tan x 在0,4π⎡⎤⎢⎥⎣⎦上的最大值为1,所以1m …,即m 的最小值为1.13. 解析 输入1n =,1T =,运行第1次:13n =<,1031d 2T x x =+=⎰,2n =;运行第2次:23n =<,120311d 26T x x =+=⎰,3n =;运行第3次:3n =,输出116T =,结束.14. 解析 分情况讨论:①当1a >时,()xf x a b =+在[]1,0-上递增.又()[]1,0f x ∈-,所以()()1100f f -=-⎧⎪⎨=⎪⎩,无解;②当01a <<时,()xf x a b =+在[]1,0-上递减.又()[]1,0f x ∈-,所以()()1001f f -=⎧⎪⎨=-⎪⎩,解得122a b ⎧=⎪⎨⎪=-⎩,所以32a b +=-.15. 解析 由题意,可设OA 所在直线方程为b y x a =,则OB 所在直线方程为by x a=-,联立22b y xa x py⎧=⎪⎨⎪=⎩,解得2222,pb pb A a a ⎛⎫ ⎪⎝⎭,而抛物线的焦点0,2p F ⎛⎫ ⎪⎝⎭为ABC △的垂心,所以1OB AFk k =-,所以2222120pb pb a pb a a-⎛⎫-=- ⎪⎝⎭-,所以2254b a =,所以222c e a ==22222914a b b a a +=+=,所以32e =. 16. 解析 (1)由题意知()1cos 2sin 2sin 21sin 222222x x x x f x π⎛⎫++ ⎪-⎝⎭=-=-=1sin 22x -.由22222k x k ππ-+π+π?,k ∈Z ,可得44k x k ππ-+π+π剟,k ∈Z ;由22222k x k π3π+π+π?,k ∈Z ,可得44k x k π3π+π+π剟,k ∈Z .所以()f x 的单调递增区间是,44k k ππ⎡⎤-+π+π⎢⎥⎣⎦()k ∈Z ;单调递减区间是44k k π3π⎡⎤+π,+π⎢⎥⎣⎦()k ∈Z .(2)由1sin 022A f A ⎛⎫=-=⎪⎝⎭,得1sin 2A =,由题意知A为锐角,所以cos A =2222cos a b c bc A =+-,可得2212b c bc =+…,即2bc …b c =时等号成立,因此12sin 24ABC S bc A =△…. 所以ABC △. 17. 解析 (1)证法一:连接DG ,CD ,设CD GF O =,连接OH .在三棱台DEF ABC -中,2AB DE =,G 为AC 的中点,可得//DF GC ,DF GC =,所以四边形DFCG 为平行四边形, 则O 为CD 的中点.又H 为BC 的中点, 所以//OH BD .又OH ⊂平面FGH ,BD ⊄平面FGH ,所以//BD 平面FGH .证法二:在三棱台DEF ABC -中, 由2BC EF =,H 为BC 的中点,可得//BH EF ,BH EF =,所以四边形BHFE 为平行四边形,可得//BE HF .在ABC △中,G 为AC 的中点,H 为BC 的中点,所以//GH AB . 又GHHF H =,所以平面//FGH 平面ABED .又因为BD ⊂平面ABED ,所以//BD 平面FGH .(2)解法一:设2AB =,则1CF =.连接GB ,GD .由(1)得四边形DGCF 为平行四边形,所以//DG FC .又因为FC ⊥平面ABC ,所以DG ⊥平面ABC ,所以DG GC ⊥,DG GB ⊥.在ABC △中,由AB BC ⊥,45BAC ∠=,G 是AC 中点,所以AB BC =,GB GC ⊥,因此GB ,GC ,GD 两两垂直.以G 为坐标原点,建立如图所示的空间直角坐标系G xyz -,所以()0,0,0G,)B,()C ,()0,0,1D,()F ,22H ⎛⎫⎪ ⎪⎝⎭,故222GH⎛⎫= ⎪ ⎪⎝⎭,()GF =.ADFHOGE C设(),,x y z =n 是平面FGH 的一个法向量,则有00GH GF ⎧=⎪⎨=⎪⎩n n,即0x y z +=⎧⎪+=,取1x =,解得平面FGH的一个法向量(1,=-n .因为GB 是平面ACFD 的一个法向量,()2,0,0GB =,所以21cos ,22GB GB GB ===n n n,所以平面FGH 与平面ACFD 所成(锐角)的大小为60.(解法一图) (解法二图) 解法二:作HM AC ⊥于点M ,作MN GF ⊥于点N ,连接NH . 由FC ⊥平面ABC ,得HM FC ⊥.又FCAC C =,所以HM ⊥平面ACFD ,所以HN GF ⊥.又因为MN GF ⊥,HM MN M =,所以GF ⊥平面MNH ,所以GF NH ⊥,所以MNH ∠即为所求的角.在BGC △中,因为MH GC ⊥,BG GC ⊥,所以//MH BG .又因为H 为BC 的中点,所以122MH BG ==,122GM GC ==.由GNM GCF△∽△,可得MN GM FC GF =,所以6MN =.由HM ⊥平面ACFD ,MN ⊂平面ACFD ,得HM MN ⊥,所以tan MHMNH MN∠==60MNH ∠=,所以平面FGH 与平面ACFD 所成(锐角)的大小为60.18. 解析(1)因为233n n S =+,所以1233a =+,故13a =.当1n >时,11233n n S --=+,此时1112223323n n n n n n a S S ---=-=-=⨯,即13n n a -=,所以13,13,1n n n a n -=⎧=⎨>⎩.AHN M DFG EACB(2)由题可得当1n =时,113b =;当1n >时,()11133log 313n n n n b n ---==-, 所以当1n =时,1113T b ==; 当1n >时,123n T b b b =+++13n b +=+()()121132313n n ---⨯+⨯++-⨯① 所以()()01231132313n n T n --=+⨯+⨯++-⨯②式①-式②:()()01221223333133nnn T n ----=+++++--⨯=11213313n---+--()113n n --⨯=1363623n n +-⨯,所以13631243n nn T +=-⨯.经检验,1n =时也适合. 综上可得13631243n n n T +=-⨯. 19. 解析 (1)个位数是5的“三位递增数”有125,135,145,235,245,345;(2)由题意,全部“三位递增数”的个数为39C 84=,随机变量X 的取值为:0,1-,1,因此()3839C 20C 3P X ===,()2439C 11C 14P X =-==,()11244439C C +C 111=C 42P X ==,所以X 的分布列为则()()0113144221E X =⨯+-⨯+⨯=. 20. 解析 (1)由题意知213a =+,所以2a =.又因为c e a ==,222a cb -=,所以1b =,所以椭圆C 的方程为2214x y +=. (2)由(1)知椭圆E 的方程为221164x y +=. ① 设()00,P x y ,OQOPλ=,则有()00,Q x y λλ--.由题可得220014x y +=,且()()22001164x y λλ--+=,即222144x y λ⎛⎫+= ⎪⎝⎭,所以2λ=,即2OQ OP =.② 设()11,A x y ,()22,B x y .将y kx m =+代入椭圆E 的方程,可得()2221484160k xkmx m +++-=,由0∆>,可得22416m k <+,则有122814kmx x k +=-+,212241614m x x k -=+,所以12x x -=. 因为直线y kx m =+与y 轴的交点坐标为()0,m ,所以AOB △的面积1212S m x x =-===. 将y kx m =+代入椭圆C 的方程,可得()222148440k x kmx m +++-=,由0∆…,可得 2214m k +….联立222241614m k m k ⎧<+⎪⎨+⎪⎩…,解得220114m k <+…,设2214m t k =+,即01t <…,因此S ==S …1t =,即2214mk =+时取得最大值由①知,ABQ △面积为3S,所以ABQ △面积的最大值为 21. 解析 (1)由题意知,函数()f x 的定义域为()1,-+∞,()()21212111ax ax a f x a x x x +-+'=+-=++.令()221g x ax ax a =+-+,()1,x ∈-+∞.① 当0a =时,()10g x =>,此时()0f x '>,函数()f x 在()1,-+∞上单调递增,无极值点;② 当0a >时,()()28198a a a a a ∆=--=-.(ⅰ)当809a <…时,0∆…,()0g x …,()0f x '…,函数()f x 在()1,-+∞上单调递增,无极值点; (ⅱ)当89a >时,0∆>,设方程2210ax ax a +-+=的两根为1x ,2x ()12x x <.又因为1212x x +=-,所以114x <-,214x >-.由()110g -=>,可得1114x -<<-.所以当()11,x x ∈-时,()0g x >,()0f x '>,函数()f x 单调递增;当()12,x x x ∈时,()0g x <,()0f x '<,函数()f x 单调递减;当()2,x x ∈+∞时,()0g x >,()0f x '>,函数()f x 单调递增.因此函数有两个极值点.③ 当0a <时,0∆>.由()110g -=>,可得11x <-. 当()21,x x ∈-时,()0g x >,()0f x '>,函数()f x 单调递增;当()2,x x ∈+∞时,()0g x <,()0f x '<,函数()f x 单调递减,所以函数()f x 有一个极值点.综上所述,当0a <时,函数()f x 有一个极值点; 当809a 剟时,函数()f x 无极值点; 当89a >时,函数()f x 有两个极值点. (2) 由(1)知,① 当809a剟时,函数()f x 在()0,+∞上单调递增. 因为()00f =,所以()0,x ∈+∞时,()0f x >,符合题意; ② 当819a <…时,由()00g …,得20x …,所以函数()f x 在()0,+∞上单调递增.又()00f =,所以()0,x ∈+∞时,()0f x >,符合题意;② 当1a >时,由()00g <,可得20x >,所以()20,x x ∈时,函数()f x 单调递减.因为()00f =,所以()20,x x ∈时,()0f x <,不合题意; ③ 当0a <时,设()()ln 1h x x x =-+.因为()0,x ∈+∞时,()11011x h x x x '=-=>++,所以()h x 在()0,+∞上单调递增. 因此,当()0,x ∈+∞时,()()00h x h >=,即()ln 1x x +<.可得()()()221f x x a x x ax a x <+-=+-,当11x a>-时,()210ax a x +-<,此时()0f x <,不合题意.综上所述,a 的取值范围是[]0,1.。
2015年山东省高考数学试卷(理科)答案与解析-副本
2015年山东省高考数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分)22.(5分)(2015•山东)若复数z满足=i,其中i为虚数单位,则z=()=i=i3.(5分)(2015•山东)要地到函数y=sin(4x﹣)地图象,只需将函数y=sin4x地图象向左平移向右平移单位向左平移向右平移单位﹣﹣地图象向右平移4.(5分)(2015•山东)已知菱形ABCD地边长为a,∠ABC=60°,则=()﹣a a2a2由已知可求,,根据==(==6.(5分)(2015•山东)已知x,y满足约束条件,若z=ax+y地最大值为4,则7.(5分)(2015•山东)在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2,将B几何体地体积为:.8.(5分)(2015•山东)已知某批零件地长度误差(单位:毫米)服从正态分布N(0,32),从中随机抽取一件,其长度误差落在区间(3,6)内地概率为()(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=68.26%,P(μ﹣2σ=((9.(5分)(2015•山东)一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y 2﹣或﹣或﹣或﹣或﹣=1或﹣.10.(5分)(2015•山东)设函数f(x)=,则满足f(f(a))=2f(a)地a [,[.二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)(2015•山东)观察下列各式:C=40;C+C=41;C+C+C=42;C+C+C+C=43;…照此规律,当n∈N*时,C+C+C+…+C=4n﹣1.=4+C=4+C+C+C+C+CC+C+C+C=412.(5分)(2015•山东)若“∀x∈[0,],tanx≤m”是真命题,则实数m地最小值为1.]13.(5分)(2015•山东)执行如图程序框图,输出地T地值为.地值为T=1+xdxT=1+xdx+x dx=1+,地值为故答案为:14.(5分)(2015•山东)已知函数f(x)=a x+b(a>0,a≠1)地定义域和值域都是[﹣1,0],则a+b=﹣.,解地=0解地a+b=15.(5分)(2015•山东)平面直角坐标系xOy中,双曲线C1:﹣=1(a>0,b>0)地渐近线与抛物线C2:x2=2py(p>0)交于点O,A,B,若△OAB地垂心为C2地焦点,则C1地离心率为.地坐标,可地,利用×):﹣±x±,,则=×(﹣=.故答案为:.三、解答题16.(12分)(2015•山东)设f(x)=sinxcosx﹣cos2(x+).(Ⅰ)求f(x)地单调区间;(Ⅱ)在锐角△ABC中,角A,B,C地对边分别为a,b,c,若f()=0,a=1,求△ABC 面积地最大值.,由,,(=0时等号成立,从而可求bcsinA﹣sin2x﹣≤2k≤,≤2k≤,[k,[k(=0,cosA=1+bcbcsinA面积地最大值为17.(12分)(2015•山东)如图,在三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC地中点.(Ⅰ)求证:BD∥平面FGH;(Ⅱ)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD所成地角(锐角)地大小.为平面即可求出法向量,设平面即可求出平面为平面,则:,则:|=18.(12分)(2015•山东)设数列{a n}地前n项和为S n,已知2S n=3n+3.(Ⅰ)求{a n}地通项公式;(Ⅱ)若数列{b n},满足a n b n=log3a n,求{b n}地前n项和T n.,当===,;=+﹣﹣﹣19.(12分)(2015•山东)若n是一个三位正整数,且n地个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有地“三位递增数”中随机抽取1个数,且只能抽取一次,地分规则如下:若抽取地“三位递增数”地三个数字之积不能被5整除,参加者地0分,若能被5整除,但不能被10整除,地﹣1分,若能被10整除,地1分.(Ⅰ)写出所有个位数字是5地“三位递增数”;(Ⅱ)若甲参加活动,求甲地分X地分布列和数学期望EX.地个数为,个进行组合,即;;;第二种方案:首先选==,=,×+××=20.(13分)(2015•山东)平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)地离心率为,左、右焦点分别是F1,F2,以F1为圆心以3为半径地圆与以F2为圆心以1为半径地圆相交,且交点在椭圆C上.(Ⅰ)求椭圆C地方程;(Ⅱ)设椭圆E:+=1,P为椭圆C上任意一点,过点P地直线y=kx+m交椭圆E 于A,B两点,射线PO交椭圆E于点Q.(i)求||地值;(ii)求△ABQ面积地最大值.|=地方程为+y地方程为+||=,由于,即(||m||m|,设S=2S=2在(,即,21.(14分)(2015•山东)设函数f(x)=ln(x+1)+a(x2﹣x),其中a∈R,(Ⅰ)讨论函数f(x)极值点地个数,并说明理由;(Ⅱ)若∀x>0,f(x)≥0成立,求a地取值范围..当aa时,可地函数)当时,a时,=11a时,函数a0a)当>>。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年山东省高考数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分)1.(5分)(2015•山东)已知集合A={x|x2﹣4x+3<0},B={x|2<x<4},则A∩B=()A.(1,3)B.(1,4)C.(2,3)D.(2,4)考点:交集及其运算.专题:集合.分析:求出集合A,然后求出两个集合的交集.解答:解:集合A={x|x2﹣4x+3<0}={x|1<x<3},B={x|2<x<4},则A∩B={x|2<x<3}=(2,3).故选:C.点评:本题考查集合的交集的求法,考查计算能力.2.(5分)(2015•山东)若复数z满足=i,其中i为虚数单位,则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:直接利用复数的乘除运算法则化简求解即可.解答:解:=i,则=i(1﹣i)=1+i,可得z=1﹣i.故选:A.点评:本题考查复数的基本运算,基本知识的考查.3.(5分)(2015•山东)要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象()A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:直接利用三角函数的平移原则推出结果即可.解答:解:因为函数y=sin(4x﹣)=sin[4(x﹣)],要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象向右平移单位.故选:B.点评:本题考查三角函数的图象的平移,值域平移变换中x的系数是易错点.4.(5分)(2015•山东)已知菱形ABCD的边长为a,∠ABC=60°,则=()A.﹣a2B.﹣a2C.a2D.a2考点:平面向量数量积的运算.专题:计算题;平面向量及应用.分析:由已知可求,,根据=()•=代入可求解答:解:∵菱形ABCD的边长为a,∠ABC=60°,∴=a2,=a×a×cos60°=,则=()•==故选:D点评:本题主要考查了平面向量数量积的定义的简单运算,属于基础试题5.(5分)(2015•山东)不等式|x﹣1|﹣|x﹣5|<2的解集是()A.(﹣∞,4)B.(﹣∞,1)C.(1,4)D.(1,5)考点:绝对值不等式的解法.专题:不等式的解法及应用.分析:运用零点分区间,求出零点为1,5,讨论①当x<1,②当1≤x≤5,③当x>5,分别去掉绝对值,解不等式,最后求并集即可.解答:解:①当x<1,不等式即为﹣x+1+x﹣5<2,即﹣4<2成立,故x<1;②当1≤x≤5,不等式即为x﹣1+x﹣5<2,得x<4,故1≤x<4;③当x>5,x﹣1﹣x+5<2,即4<2不成立,故x∈∅.综上知解集为(﹣∞,4).故选A.点评:本题考查绝对值不等式的解法,主要考查运用零点分区间的方法,考查运算能力,属于中档题.6.(5分)(2015•山东)已知x,y满足约束条件,若z=ax+y的最大值为4,则a=()A.3B.2C.﹣2 D.﹣3考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.解答:解:作出不等式组对应的平面区域如图:(阴影部分).则A(2,0),B(1,1),若z=ax+y过A时取得最大值为4,则2a=4,解得a=2,此时,目标函数为z=2x+y,即y=﹣2x+z,平移直线y=﹣2x+z,当直线经过A(2,0)时,截距最大,此时z最大为4,满足条件,若z=ax+y过B时取得最大值为4,则a+1=4,解得a=3,此时,目标函数为z=3x+y,即y=﹣3x+z,平移直线y=﹣3x+z,当直线经过A(2,0)时,截距最大,此时z最大为﹣6,不满足条件,故a=2,故选:B点评:本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法,确定目标函数的斜率关系是解决本题的关键.7.(5分)(2015•山东)在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2,将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.B.C.D.2π考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:画出几何体的直观图,利用已知条件,求解几何体的体积即可.解答:解:由题意可知几何体的直观图如图:旋转体是底面半径为1,高为2的圆锥,挖去一个相同底面高为1的倒圆锥,几何体的体积为:=.故选:C.点评:本题考查几何体的体积的求法,考查空间想象能力以及计算能力.画出几何体的直观图是解题的关键.8.(5分)(2015•山东)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机抽取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=68.26%,P(μ﹣2σ<ξ<μ+2σ)=95.44%)A.4.56% B.13.59% C.27.18% D.31.74%考点:正态分布曲线的特点及曲线所表示的意义.专题:计算题;概率与统计.分析:由题意P(﹣3<ξ<3)=68.26%,P(﹣6<ξ<6)=95.44%,可得P(3<ξ<6)=(95.44%﹣68.26%),即可得出结论.解答:解:由题意P(﹣3<ξ<3)=68.26%,P(﹣6<ξ<6)=95.44%,所以P(3<ξ<6)=(95.44%﹣68.26%)=13.59%.故选:B.点评:本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查曲线的对称性,属于基础题.9.(5分)(2015•山东)一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y ﹣2)2=1相切,则反射光线所在直线的斜率为()A.﹣或﹣B.﹣或﹣C.﹣或﹣D.﹣或﹣考点:圆的切线方程;直线的斜率.专题:计算题;直线与圆.分析:点A(﹣2,﹣3)关于y轴的对称点为A′(2,﹣3),可设反射光线所在直线的方程为:y+3=k(x﹣2),利用直线与圆相切的性质即可得出.解答:解:点A(﹣2,﹣3)关于y轴的对称点为A′(2,﹣3),故可设反射光线所在直线的方程为:y+3=k(x﹣2),化为kx﹣y﹣2k﹣3=0.∵反射光线与圆(x+3)2+(y﹣2)2=1相切,∴圆心(﹣3,2)到直线的距离d==1,化为24k2+50k+24=0,∴k=或﹣.故选:D.点评:本题考查了反射光线的性质、直线与圆相切的性质、点到直线的距离公式、点斜式、对称点,考查了计算能力,属于中档题.10.(5分)(2015•山东)设函数f(x)=,则满足f(f(a))=2f(a)的a 的取值范围是()A.[,1]B.[0,1]C.[,+∞)D.[1,+∞)考点:分段函数的应用.专题:创新题型;函数的性质及应用;不等式的解法及应用.分析:令f(a)=t,则f(t)=2t,讨论t<1,运用导数判断单调性,进而得到方程无解,讨论t≥1时,以及a<1,a≥1,由分段函数的解析式,解不等式即可得到所求范围.解答:解:令f(a)=t,则f(t)=2t,当t<1时,3t﹣1=2t,由g(t)=3t﹣1﹣2t的导数为g′(t)=3﹣2t ln2,在t<1时,g′(t)>0,g(t)在(﹣∞,1)递增,即有g(t)<g(1)=0,则方程3t﹣1=2t无解;当t≥1时,2t=2t成立,由f(a)≥1,即3a﹣1≥1,解得a≥,且a<1;或a≥1,2a≥1解得a≥0,即为a≥1.综上可得a的范围是a≥.故选C.点评:本题考查分段函数的运用,主要考查函数的单调性的运用,运用分类讨论的思想方法是解题的关键.二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)(2015•山东)观察下列各式:C=40;C+C=41;C+C+C=42;C+C+C+C=43;…照此规律,当n∈N*时,C+C+C+…+C=4n﹣1.考点:归纳推理;组合及组合数公式.专题:推理和证明.分析:仔细观察已知条件,找出规律,即可得到结果.解答:解:因为C=40;C+C=41;C+C+C=42;C+C+C+C=43;…照此规律,可以看出等式左侧最后一项,组合数的上标与等式右侧的幂指数相同,可得:当n∈N*时,C+C+C+…+C=4n﹣1;故答案为:4n﹣1.点评:本题考查归纳推理的应用,找出规律是解题的关键.12.(5分)(2015•山东)若“∀x∈[0,],tanx≤m”是真命题,则实数m的最小值为1.考点:命题的真假判断与应用.专题:函数的性质及应用;三角函数的图像与性质.分析:求出正切函数的最大值,即可得到m的范围.解答:解:“∀x∈[0,],tanx≤m”是真命题,可得tanx≤1,所以,m≥1,实数m的最小值为:1.故答案为:1.点评:本题考查函数的最值的应用,命题的真假的应用,考查计算能力.13.(5分)(2015•山东)执行如图程序框图,输出的T的值为.考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的n,T的值,当n=3时不满足条件n<3,退出循环,输出T的值为.解答:解:模拟执行程序框图,可得n=1,T=1满足条件n<3,T=1+xdx,n=2满足条件n<3,T=1+xdx+x2dx=1+=,n=3不满足条件n<3,退出循环,输出T的值为.故答案为:点评:本题主要考查了循环结构的程序框图,考查了定积分的应用,属于基本知识的考查.14.(5分)(2015•山东)已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[﹣1,0],则a+b=﹣.考点:函数的值域.专题:函数的性质及应用.分析:对a进行分类讨论,分别题意和指数函数的单调性列出方程组,解答:解:当a>1时,函数f(x)=a x+b在定义域上是增函数,所以,解得b=﹣1,=0不符合题意舍去;当0<a<1时,函数f(x)=a x+b在定义域上是减函数,所以解得b=﹣2,a=综上a+b=,故答案为;﹣点评:本题考查指数函数的单调性的应用,以及分类讨论思想,属于基础题15.(5分)(2015•山东)平面直角坐标系xOy中,双曲线C1:﹣=1(a>0,b>0)的渐近线与抛物线C2:x2=2py(p>0)交于点O,A,B,若△OAB的垂心为C2的焦点,则C1的离心率为.考点:双曲线的简单性质.专题:计算题;创新题型;圆锥曲线的定义、性质与方程.分析:求出A的坐标,可得=,利用△OAB的垂心为C2的焦点,可得×(﹣)=﹣1,由此可求C1的离心率.解答:解:双曲线C1:﹣=1(a>0,b>0)的渐近线方程为y=±x,与抛物线C2:x2=2py联立,可得x=0或x=±,取A(,),则=,∵△OAB的垂心为C2的焦点,∴×(﹣)=﹣1,∴5a2=4b2,∴5a2=4(c2﹣a2)∴e==.故答案为:.点评:本题考查双曲线的性质,考查学生的计算能力,确定A的坐标是关键.三、解答题16.(12分)(2015•山东)设f(x)=sinxcosx﹣cos2(x+).(Ⅰ)求f(x)的单调区间;(Ⅱ)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f()=0,a=1,求△ABC 面积的最大值.考点:正弦函数的单调性;两角和与差的正弦函数;余弦定理.专题:三角函数的图像与性质;解三角形.分析:(Ⅰ)由三角函数恒等变换化简解析式可得f(x)=sin2x﹣,由2k≤2x≤2k,k∈Z可解得f(x)的单调递增区间,由2k≤2x≤2k,k∈Z可解得单调递减区间.(Ⅱ)由f()=sinA﹣=0,可得sinA,cosA,由余弦定理可得:bc,且当b=c时等号成立,从而可求bcsinA≤,从而得解.解答:解:(Ⅰ)由题意可知,f(x)=sin2x﹣=sin2x﹣=sin2x﹣由2k≤2x≤2k,k∈Z可解得:k≤x≤k,k∈Z;由2k≤2x≤2k,k∈Z可解得:k≤x≤k,k∈Z;(k∈Z);单调递减区间是:[k,所以f(x)的单调递增区间是[k,k],k],(k∈Z);(Ⅱ)由f()=sinA﹣=0,可得sinA=,由题意知A为锐角,所以cosA=,由余弦定理a2=b2+c2﹣2bccosA,可得:1+bc=b2+c2≥2bc,即bc,且当b=c时等号成立.因此bcsinA≤,所以△ABC面积的最大值为.点评:本题主要考查了正弦函数的图象和性质,余弦定理,基本不等式的应用,属于基本知识的考查.17.(12分)(2015•山东)如图,在三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC的中点.(Ⅰ)求证:BD∥平面FGH;(Ⅱ)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.考点:二面角的平面角及求法;直线与平面平行的判定.专题:空间位置关系与距离;空间角;空间向量及应用.分析:(Ⅰ)根据AB=2DE便可得到BC=2EF,从而可以得出四边形EFHB为平行四边形,从而得到BE∥HF,便有BE∥平面FGH,再证明DE∥平面FGH,从而得到平面BDE∥平面FGH,从而BD∥平面FGH;(Ⅱ)连接HE,根据条件能够说明HC,HG,HE三直线两两垂直,从而分别以这三直线为x,y,z轴,建立空间直角坐标系,然后求出一些点的坐标.连接BG,可说明为平面ACFD的一条法向量,设平面FGH的法向量为,根据即可求出法向量,设平面FGH与平面ACFD所成的角为θ,根据cosθ=即可求出平面FGH与平面ACFD所成的角的大小.解答:解:(Ⅰ)证明:根据已知条件,BC=2EF,H为BC中点,EF∥BC;∴EF∥BH,且EF=BH;∴四边形EFHB为平行四边形;∴BE∥HF,HF⊂平面FGH,BE⊄平面FGH;∴BE∥平面FGH;同样,因为GH为△ABC中位线,∴GH∥AB;又DE∥AB;∴DE∥GH;∴DE∥平面FGH,DE∩BE=E;∴平面BDE∥平面FGH,BD⊂平面BDE;∴BD∥平面FGH;(Ⅱ)连接HE,则HE∥CF;∵CF⊥平面ABC;∴HE∥平面ABC,并且HG⊥HC;∴HC,HG,HE三直线两两垂直,分别以这三直线为x,y,z轴,建立如图所示空间直角坐标系,设HC=1,则:H(0,0,0),G(0,1,0),F(1,0,1),B(﹣1,0,0);连接BG,根据已知条件BA=BC,G为AC中点;∴BG⊥AC;又CF⊥平面ABC,BG⊂平面ABC;∴BG⊥CF,AC∩CF=C;∴BG⊥平面ACFD;∴向量为平面ACFD的法向量;设平面FGH的法向量为,则:,取z=1,则:;设平面FGH和平面ACFD所成的锐二面角为θ,则:cosθ=|cos|=;∴平面FGH与平面ACFD所成的角为60°.点评:考查棱台的定义,平行四边形的定义,线面平行的判定定理,面面平行的判定定理及其性质,线面垂直的性质及线面垂直的判定定理,以及建立空间直角坐标系,利用空间向量求二面角的方法,平面法向量的概念及求法,向量垂直的充要条件,向量夹角余弦的坐标公式,平面和平面所成角的定义.18.(12分)(2015•山东)设数列{a n}的前n项和为S n,已知2S n=3n+3.(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n},满足a n b n=log3a n,求{b n}的前n项和T n.考点:数列的求和.专题:等差数列与等比数列.分析:(Ⅰ)利用2S n=3n+3,可求得a1=3;当n>1时,2S n﹣1=3n﹣1+3,两式相减2a n=2S n﹣2S n﹣1,可求得a n=3n﹣1,从而可得{a n}的通项公式;(Ⅱ)依题意,a n b n=log3a n,可得b1=,当n>1时,b n=31﹣n•log33n﹣1=(n﹣1)×31﹣n,于是可求得T1=b1=;当n>1时,T n=b1+b2+…+b n=+(1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n),利用错位相减法可求得{b n}的前n项和T n.解答:解:(Ⅰ)因为2S n=3n+3,所以2a1=31+3=6,故a1=3,当n>1时,2S n﹣1=3n﹣1+3,此时,2a n=2S n﹣2S n﹣1=3n﹣3n﹣1=2×3n﹣1,即a n=3n﹣1,所以a n=.(Ⅱ)因为a n b n=log3a n,所以b1=,当n>1时,b n=31﹣n•log33n﹣1=(n﹣1)×31﹣n,所以T1=b1=;当n>1时,T n=b1+b2+…+b n=+(1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n),所以3T n=1+(1×30+2×3﹣1+3×3﹣2+…+(n﹣1)×32﹣n),两式相减得:2T n=+(30+3﹣1+3﹣2+…+32﹣n﹣(n﹣1)×31﹣n)=+﹣(n ﹣1)×31﹣n)=﹣,所以T n=﹣,经检验,n=1时也适合,综上可得T n=﹣.点评:本题考查数列的求和,着重考查数列递推关系的应用,突出考“查错位相减法”求和,考查分析、运算能力,属于中档题.19.(12分)(2015•山东)若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分,若能被5整除,但不能被10整除,得﹣1分,若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X的分布列和数学期望EX.考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:概率与统计.分析:(Ⅰ)根据“三位递增数”的定义,即可写出所有个位数字是5的“三位递增数”;(Ⅱ)随机变量X的取值为:0,﹣1,1分别求出对应的概率,即可求出分布列和期望.解答:解:(Ⅰ)根据定义个位数字是5的“三位递增数”有:125,135,145,235,245,345;(Ⅱ)由题意知,全部“三位递增数”的个数为,随机变量X的取值为:0,﹣1,1,当X=0时,可以选择除去5以外的剩下8个数字中选择3个进行组合,即;当X=﹣1时,首先选择5,由于不能被10整除,因此不能选择数字2,4,6,8,可以从1,3,5,7中选择两个数字和5进行组合,即;当X=1时,有两种组合方式,第一种方案:首先选5,然后从2,4,6,8中选择2个数字和5进行组合,即;第二种方案:首先选5,然后从2,4,6,8中选择1个数字,再从1,3,7,9中选择1个数字,最后把3个数字进行组合,即.则P(X=0)==,P(X=﹣1)==,P(X=1)==,X 0 ﹣1 1PEX=0×+(﹣1)×+1×=.点评:本题主要考查离散型随机变量的分布列和期望的计算,求出对应的概率是解决本题的关键.20.(13分)(2015•山东)平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,左、右焦点分别是F1,F2,以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆E:+=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E 于A,B两点,射线PO交椭圆E于点Q.(i)求||的值;(ii)求△ABQ面积的最大值.考点:直线与圆锥曲线的综合问题;椭圆的标准方程;曲线与方程.专题:创新题型;直线与圆;圆锥曲线的定义、性质与方程.分析:(Ⅰ)运用椭圆的离心率公式和a,b,c的关系,计算即可得到b,进而得到椭圆C 的方程;(Ⅱ)求得椭圆E的方程,(i)设P(x0,y0),||=λ,求得Q的坐标,分别代入椭圆C,E的方程,化简整理,即可得到所求值;(ii)设A(x1,y1),B(x2,y2),将直线y=kx+m代入椭圆E的方程,运用韦达定理,三角形的面积公式,将直线y=kx+m代入椭圆C的方程,由判别式大于0,可得t的范围,结合二次函数的最值,又△ABQ的面积为3S,即可得到所求的最大值.解答:解:(Ⅰ)由题意可知,2a=4,可得a=2,又=,a2﹣c2=b2,可得b=1,即有椭圆C的方程为+y2=1;(Ⅱ)由(Ⅰ)知椭圆E的方程为+=1,(i)设P(x0,y0),||=λ,由题意可知,Q(﹣λx0,﹣λy0),由于+y02=1,又+=1,即(+y02)=1,所以λ=2,即||=2;(ii)设A(x1,y1),B(x2,y2),将直线y=kx+m代入椭圆E的方程,可得(1+4k2)x2+8kmx+4m2﹣16=0,由△>0,可得m2<4+16k2,①则有x1+x2=﹣,x1x2=,所以|x1﹣x2|=,由直线y=kx+m与y轴交于(0,m),则△AOB的面积为S=|m|•|x1﹣x2|=|m|•=2,设=t,则S=2,将直线y=kx+m代入椭圆C的方程,可得(1+4k2)x2+8kmx+4m2﹣4=0,由△≥0可得m2≤1+4k2,②由①②可得0<t≤1,则S=2在(0,1]递增,即有t=1取得最大值,即有S,即m2=1+4k2,取得最大值2,由(i)知,△ABQ的面积为3S,即△ABQ面积的最大值为6.点评:本题考查椭圆的方程和性质,主要考查直线方程和椭圆方程联立,运用韦达定理,同时考查三角形的面积公式和二次函数的最值,属于中档题.21.(14分)(2015•山东)设函数f(x)=ln(x+1)+a(x2﹣x),其中a∈R,(Ⅰ)讨论函数f(x)极值点的个数,并说明理由;(Ⅱ)若∀x>0,f(x)≥0成立,求a的取值范围.考点:利用导数研究函数的极值;函数恒成立问题.专题:创新题型;导数的综合应用.分析:(I)函数f(x)=ln(x+1)+a(x2﹣x),其中a∈R,x∈(﹣1,+∞).=.令g(x)=2ax2+ax﹣a+1.对a与△分类讨论可得:(1)当a=0时,此时f′(x)>0,即可得出函数的单调性与极值的情况.(2)当a>0时,△=a(9a﹣8).①当时,△≤0,②当a时,△>0,即可得出函数的单调性与极值的情况.(3)当a<0时,△>0.即可得出函数的单调性与极值的情况.(II)由(I)可知:(1)当0≤a时,可得函数f(x)在(0,+∞)上单调性,即可判断出.(2)当<a≤1时,由g(0)≥0,可得x2≤0,函数f(x)在(0,+∞)上单调性,即可判断出.(3)当1<a时,由g(0)<0,可得x2>0,利用x∈(0,x2)时函数f(x)单调性,即可判断出;(4)当a<0时,设h(x)=x﹣ln(x+1),x∈(0,+∞),研究其单调性,即可判断出解答:解:(I)函数f(x)=ln(x+1)+a(x2﹣x),其中a∈R,x∈(﹣1,+∞).=.令g(x)=2ax2+ax﹣a+1.(1)当a=0时,g(x)=1,此时f′(x)>0,函数f(x)在(﹣1,+∞)上单调递增,无极值点.(2)当a>0时,△=a2﹣8a(1﹣a)=a(9a﹣8).①当时,△≤0,g(x)≥0,f′(x)≥0,函数f(x)在(﹣1,+∞)上单调递增,无极值点.②当a时,△>0,设方程2ax2+ax﹣a+1=0的两个实数根分别为x1,x2,x1<x2.∵x1+x2=,∴,.由g(﹣1)>0,可得﹣1<x1.∴当x∈(﹣1,x1)时,g(x)>0,f′(x)>0,函数f(x)单调递增;当x∈(x1,x2)时,g(x)<0,f′(x)<0,函数f(x)单调递减;当x∈(x2,+∞)时,g(x)>0,f′(x)>0,函数f(x)单调递增.因此函数f(x)有两个极值点.(3)当a<0时,△>0.由g(﹣1)=1>0,可得﹣1<x1.∴当x∈(﹣1,x2)时,g(x)>0,f′(x)>0,函数f(x)单调递增;当x∈(x2,+∞)时,g(x)<0,f′(x)<0,函数f(x)单调递减.因此函数f(x)有一个极值点.综上所述:当a<0时,函数f(x)有一个极值点;当0≤a时,函数f(x)无极值点;当a0时,函数f(x)有两个极值点.(II)由(I)可知:(1)当0≤a时,函数f(x)在(0,+∞)上单调递增.∵f(0)=0,∴x∈(0,+∞)时,f(x)>0,符合题意.(2)当<a≤1时,由g(0)≥0,可得x2≤0,函数f(x)在(0,+∞)上单调递增.又f(0)=0,∴x∈(0,+∞)时,f(x)>0,符合题意.(3)当1<a时,由g(0)<0,可得x2>0,∴x∈(0,x2)时,函数f(x)单调递减.又f(0)=0,∴x∈(0,x2)时,f(x)<0,不符合题意,舍去;(4)当a<0时,设h(x)=x﹣ln(x+1),x∈(0,+∞),h′(x)=>0.∴h(x)在(0,+∞)上单调递增.因此x∈(0,+∞)时,h(x)>h(0)=0,即ln(x+1)<x,可得:f(x)<x+a(x2﹣x)=ax2+(1﹣a)x,当x>时,ax2+(1﹣a)x<0,此时f(x)<0,不合题意,舍去.点评:本题考查了导数的运算法则、利用导数研究函数的单调性极值,考查了分析问题与解决问题的能力,考查了分类讨论思想方法、推理能力与计算能力,属于难题.。