最新苏教版高中数学必修一综合检测【2】及答案
新改版苏教版高中数学必修一第一二章综合题含答案
新改版苏教版高中数学必修一第一二章综合题含答案一、单选题1.已知命题:,命题:,,则命题是命题为真命题的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.命题的否定为()A.B.C.D.3.已知集合,,,则()A .B.C.D.4.集合的子集中,含有元素0的子集共有()A.8个B.4个C.3个D.2个5.已知命题p:对任意x∈R,2x2+2x+<0,命题q:存在x∈R,sin x-cos x=,则下列判断正确的是( )A.p是真命题B.q是假命题C.p的否定是假命题D.q的否定是假命题6.已知集合,,那么等于()A.B.C.D.7.给出下列命题:其中正确命题的序号是()①已知,若,则="1,"=4①不存在实数,使①是函数的一个对称轴中心①已知函数.A.①①B.①①C.①①D.①8.若集合,则()A .B.C.D.9.设,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.下列关系中正确的是()A .B.C.D.11.已知集合,,则(). A.B.C.D.12.已知实数,,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件二、多选题13.下列命题正确的是()A.“x<1,x2<1”的否定是“x≥1,x2≥1” B.“a>”是“<2”的充分不必要条件C.“a=0”是“ab=0”的充分不必要条件D.“x≥1且y≥1”是“x2+y2≥2”的必要不充分条件14.给出下列四个结论,其中结论错误的有()A.是空集B.若,则C.“,2x为偶数”是假命题D.集合是有限集15.下列表示正确的是()A .B.C.D.16.已知,则下列选项中是的充分不必要条件的是()A.B.C.D.17.下列说法中正确的是()A.“”是真命题是“”为真命题的必要不充分条件。
高中数学必修1综合测试题及答案(K12教育文档)
(完整word版)高中数学必修1综合测试题及答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)高中数学必修1综合测试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)高中数学必修1综合测试题及答案(word版可编辑修改)的全部内容。
高中数学必修一综合测试一、选择题1.函数y =xln (1-x )的定义域为( ) A .(0,1) B .[0,1) C .(0,1] D .[0,1]2.已知U ={y|y =log 2x ,x>1},P =错误!,则∁U P =( ) A 。
错误! B.错误! C .(0,+∞) D .(-∞,0)∪错误!3.设a 〉1,函数f (x)=log a x 在区间[a,2a ]上的最大值与最小值之差为12,则a=( )A.错误! B .2 C .2 错误! D .44.设f(x)=g(x )+5,g(x)为奇函数,且f (-7)=-17,则f(7)的值等于( ) A .17 B .22 C .27 D .125.已知函数f (x)=x 2-ax -b 的两个零点是2和3,则函数g(x)=bx 2-ax -1的零点是( )A .-1和-2B .1和2 C.错误!和错误! D .-错误!和-错误! 6.下列函数中,既是偶函数又是幂函数的是( )A .f(x)=xB .f(x )=x 2C .f(x)=x -3D .f (x)=x -1 7.方程2x =2-x 的根所在区间是( ).A .(-1,0)B .(2,3)C .(1,2)D .(0,1) 8.若log2 a <0,b⎪⎭⎫⎝⎛21>1,则( ).A .a >1,b >0B .a >1,b <0C .0<a <1,b >0D .0<a <1,b <09.下列四类函数中,具有性质“对任意的x>0,y>0,函数f (x)满足f (x +y)=f (x)f (y)”的是( )A .幂函数B .对数函数C .指数函数D .一次函数10.函数y =x 416-的值域是( ).A .[0,+∞)B .[0,4]C .[0,4)D .(0,4)二、填空题(每小题5分,共20分) 11.计算:错误!÷10012-=__________。
新教材苏教版高中数学必修第一册阶段性综合测验汇总(含四套,附解析)
苏教版必修第一册各阶段综合测验第1~3章综合测验 ............................................................................................................... - 1 - 第4、5章综合测验 ............................................................................................................... - 9 - 第6章综合测验 ................................................................................................................... - 18 - 第7、8章综合测验 ............................................................................................................. - 28 -第1~3章综合测验(120分钟150分)一、单选题(每小题5分,共40分)1.集合A={x∈R|x(x-1)(x-2)=0},则集合A的非空子集的个数为( )A.4B.8C.7D.6【解析】选C.集合A={x∈R|x(x-1)(x-2)=0}={0,1,2},共有23=8个子集,其中非空子集有7个.2.命题“∀x∈R,x2+x+1>0”的否定为( )A.∃x∈R,x2+x+1≥0B.∃x∈R,x2+x+1≤0C.∀x∈R,x2+x+1≥0D.∀x∉R,x2+x+1≥0【解析】选B.由题意得原命题的否定为∃x∈R,x2+x+1≤0.3.若a,b,c∈R且a>b,则下列不等式成立的是( )A.a2>b2B.<C.a>bD.>【解析】选D.选项A: a=0,b=-1,符合a>b,但不等式a2>b2不成立,故本选项是错误的;选项B:当a=0,b=-1符合已知条件,但零没有倒数,故<不成立,故本选项是错误的;选项C:当c=0时a>b不成立,故本选项是错误的;选项D:因为c2+1>0,所以根据不等式的性质,由a>b能推出>.4.已知集合A=,B=,则A∪B= ( )A. B.C. D.【解析】选C.因为A=,B=,所以A∪B=.5.(2019·浙江高考)若a>0,b>0,则“a+b≤4”是“ab≤4”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】选A.如图所示,由a>0,b>0,a+b≤4⇒ab≤4,反之不成立.所以“a+b≤4”是“ab≤4”的充分不必要条件.6.(-6≤a≤3)的最大值为( )A.9B.C.3D.【解析】选B.因为-6≤a≤3,所以3-a≥0,a+6≥0,所以≤=(当且仅当a=-时取等号).即(-6≤a≤3)的最大值为.7.不等式mx2-ax-1>0(m>0)的解集可能是( )A.B.RC.D.【解析】选A.因为Δ=a2+4m>0,所以函数y=mx2-ax-1的图象与x轴有两个交点,又m>0,所以原不等式的解集不可能是B、C、D选项.8.某市原来居民用电价为0.52元/(kW·h),换装分时电表后,峰时段(早上八点到晚上九点)的电价为0.55元/(kW·h),谷时段(晚上九点到次日早上八点)的电价为0.35元/(kW·h).对于一个平均每月用电量为200kW·h的家庭,换装分时电表后,每月节省的电费不少于原来电费的10%,则这个家庭每月在峰时段的平均用电量至多为( )A.110kW·hB.114kW·hC.118kW·hD.120kW·h【解析】选C.设每月峰时段的平均用电量为x kW·h,则谷时段的用电量为(200-x)kW·h;根据题意得(0.52-0.55)x+(0.52-0.35)(200-x)≥200×0.52×10%,解得x≤118.所以这个家庭每月峰时段的平均用电量至多为118kW·h.二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分)9.下列命题是真命题的是( )A.若x=1,则x2+x-2=0B.若x2=16,则x=4C.若A⊇B,m∈A,则m∈BD.全等三角形的面积相等【解析】选AD.x2=16时x=±4,B是假命题,若A⊇B,m∈A,m不一定属于B,C是假命题;AD是真命题.10.如果是的充分不必要条件,则a的值可以是( )A.-1B.0C.2D.3【解析】选CD.因为是的充分不必要条件,所以,故a的值可以是2,3.11.下列不等式不正确的是( )A.≥2B.≥2C.>xyD.≥【解析】选BCD.因为x与同号,所以=|x|+≥2,当且仅当x=±1时,等号成立,A正确;当x,y异号时,B不正确;当x=y时,=xy,C不正确;当x=1,y=-1时,D不正确.12.已知二次函数y=ax2+bx+c,且不等式y>-2x的解集为,则( )A.a<0B.方程ax2+bx+c=0的两个根是1,3C. b=-4a-2D. 若方程y+6a=0有两个相等的根,则实数a=-【解析】选ACD.由于不等式y>-2x的解集为,即关于x的二次不等式ax2+x+c>0的解集为,则a<0.由题意可知,1,3为关于x的二次方程ax2+x+c=0的两根,由根与系数的关系得-=1+3=4,=1×3=3,所以b=-4a-2,c=3a,所以y=ax2-x+3a.由题意知,关于x的方程y+6a=0有两相等的根,即关于x的二次方程ax2-x+9a=0有两相等的根,则Δ=-36a2==0,因为a<0,解得a=-.三、填空题(每小题5分,共20分)A=.13.已知集合U=,A=,则U【解析】因为U=,A=,所以A=U答案:14.若二次函数y=x2-mx+3有且只有一个零点,则m=.【解析】二次函数y=x2-mx+3有且只有一个零点,等价于方程x2-mx+3=0的判别式Δ=m2-12=0,所以m=±2.答案:±215.已知A={x|1<x<2},B={x|x2-2ax+a2-1<0},若A⊆B,则a的取值范围是.【解析】方程x2-2ax+a2-1=0的两根为a+1,a-1,且a+1>a-1,所以B={x|a-1<x<a+1}.因为A⊆B,所以解得1≤a≤2.答案:1≤a≤216.若0<x<,则函数y=x的最大值为.【解析】因为0<x<,所以1-4x2>0,所以x=×2x≤×=,当且仅当2x=,即x=时等号成立.答案:四、解答题(共70分)17.(10分)已知集合A={x|x2-4x+3≤0},B={x|x>2}.B)∪A;(1)分别求A∩B,(R(2)已知集合C={x|1<x<a},若C⊆A,求实数a的取值范围.【解析】(1)A={x|x2-4x+3≤0}={x|1≤x≤3},B={x|x>2},所以A∩B={x|2<x≤3},B)∪A={x|x≤2}∪{x|1≤x≤3}={x|x≤3},(R(2)①当a≤1时,C=∅,此时C⊆A;②当a>1时,C⊆A,则1<a≤3;综合①②,可得a的取值范围是(-∞,3].18.(12分)已知p:x2-8x-20≤0,q:x2-2x+1-m2≤0(m>0),若q是p的充分不必要条件,求实数m的取值范围.【解析】由x2-8x-20≤0,得-2≤x≤10.由x2-2x+1-m2≤0,得1-m≤x≤1+m(m>0),所以p:{x|-2≤x≤10},q:{x|1-m≤x≤1+m},因为q是p的充分不必要条件,所以解得0<m≤3,所以所求实数m的取值范围是{m|0<m≤3}.19.(12分)(1)若x<3,求y=2x+1+的最大值;(2)已知x>0,求y=的最大值.【解析】(1)因为x<3,所以3-x>0.又因为y=2(x-3)++7=-+7,由基本不等式可得2(3-x)+≥2=2,当且仅当2(3-x)=,即x=3-时,等号成立,于是-≤-2,-+7≤7-2,故y的最大值是7-2.(2)y==.因为x>0,所以x+≥2=2,所以0<y≤=1,当且仅当x=,即x=1时,等号成立.故y的最大值为1.20.(12分)设a,b,c为△ABC的三边,求证:方程x2+2ax+b2=0与x2+2cx-b2=0有公共根的充要条件是∠A=90°.,则【证明】(1)必要性:设方程x2+2ax+b2=0与x2+2cx-b2=0有公共根x+2ax0+b2=0,+2cx-b2=0,两式相减可得x=,将此式代入+2ax+b2=0,可得b2+c2=a2,故∠A=90°.(2)充分性:因为∠A=90°,所以b2+c2=a2,b2=a2-c2.①将①代入方程x2+2ax+b2=0,可得x2+2ax+a2-c2=0,即(x+a-c)(x+a+c)=0.将①代入方程x2+2cx-b2=0,可得x2+2cx+c2-a2=0,即(x+c-a)(x+c+a)=0.故两方程有公共根x=-(a+c).所以方程x2+2ax+b2=0与x2+2cx-b2=0有公共根的充要条件是∠A=90°.21.(12分) 2018年起,政府对环保不达标的养鸡场进行限期整改或勒令关闭.一段时间内,鸡蛋的价格起伏较大(不同周价格不同).假设第一周、第二周鸡蛋的价格分别为x、y(单位:元/kg);甲、乙两人的购买方式不同:甲每周购买3 kg鸡蛋,乙每周购买10元钱鸡蛋.(1)若x=8,y=10,求甲、乙两周购买鸡蛋的平均价格;(2)判断甲、乙两人谁的购买方式更实惠(平均价格低视为实惠),并说明理由. 【解析】(1)因为x=8,y=10,所以甲两周购买鸡蛋的平均价格为=9(元), 乙两周购买鸡蛋的平均价格为=(元).(2)甲两周购买鸡蛋的平均价格为=, 乙两周购买鸡蛋的平均价格为=,由(1)知x=8,y=10时乙两周购买鸡蛋的平均价格比甲两周购买鸡蛋的平均价格低,猜测乙的购买方式更实惠.依题意x,y>0,且x≠y,因为-==>0,所以>,所以乙两周购买鸡蛋的平均价格比甲两周购买鸡蛋的平均价格低,即乙的购买方式更实惠.22.(12分)志愿者团队要设计一个如图所示的矩形队徽ABCD,已知点E在边CD 上,AE=CE,AB>AD,矩形的周长为 8 cm.(1)设AB=x cm,试用x表示出图中DE的长度,并求出x的取值范围;(2)计划在△ADE区域涂上蓝色代表星空,如果要使△ADE的面积最大,那么应怎样设计队徽的长和宽.【解析】(1)由题意可得AD=4-x,且x>4-x>0,可得2<x<4,CE=AE=x-DE,在直角三角形ADE中,可得AE2=AD2+DE2,即(x-DE)2=(4-x)2+DE2,化简可得DE=4-(2<x<4).=AD·DE=(4-x)(2)S△ADE=2≤2=12-8,当且仅当x=2,4-x=4-2,即队徽的长和宽分别为2 cm,(4-2)cm时, △ADE的面积取得最大值.第4、5章综合测验(120分钟150分)一、单选题(每小题5分,共40分)1.化简的值是( )A.-B.-C.D.±【解析】选A.==-.2.(2020·临汾高一检测)已知函数f(x)=则f(f(-2))=( )A. B. C.1 D.2【解析】选A.根据题意函数f(x)=则f(-2)=2-2=,则f(f(-2))=f==.【补偿训练】已知函数f(x)=则f= ( )A.1B.eC.D.-1【解析】选A.根据题意,函数f(x)=则有f==e,则f=f(e)=ln e=1.3.函数f(x)=的定义域为( )A.{x|x≤2或x≥3}B.{x|x≤-3或x≥-2}C.{x|2≤x≤3}D.{x|-3≤x≤-2}【解析】选A.由x2-5x+6≥0,解得,所以函数f(x)=的定义域为{x|x≤2或x≥3}.4.已知f()=x2-2x,则函数f(x)的解析式为( )A.f(x)=x4-2x2(x≥0)B.f(x)=x4-2x2C.f(x)=x-2(x≥0)D.f(x)=x-2【解析】选A.f()=x2-2x=()4-2()2,所以f(x)=x4-2x2(x≥0).5.函数f(x)=[x]的函数值表示不超过x的最大整数,如[-3.5]=-4,[2.2]=2,当x∈(-2.5,-2)时,函数f(x)的解析式为f(x)= ( )A.-2xB.-3xC.-3D.-2【解析】选C.根据函数f(x)=[x]的定义可知:当-2.5<x<-2时,f(x)=-3.【补偿训练】设y=f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x-x+c,则f(1)=( )A.-B.C.0D.1【解析】选A.因为y=f(x)是定义在R上的奇函数,且当x≤0时,f(x)=2x-x+c,所以f(0)=1-0+c=0,所以c=-1,所以x≤0时,f(x)=2x-x-1,所以f(1)=-f(-1)=-=-.6.(2020·襄阳高一检测)设a<b,函数y=(x-b)2(x-a)的图象可能是( )【解析】选 D.当x>b时,(x-b)2>0,x-a>0,故y>0,故排除A,B;当a<x<b 时,(x-b)2>0,x-a>0,故y>0,故排除C.7.下列各组函数是同一函数的是( )①f(x)=与g(x)=x②f(x)=与g(x)=③f(x)=x0与g(x)=④f(x)=x2-2x-1与f(t)=t2-2t-1A.②④B.③④C.②③D.①④【解析】选B.对于①,函数f(x)==-x(x≤0),与g(x)=x(x≤0)的对应关系不同,不是同一函数;对于②,函数f(x)==x(x>0),与g(x)==|x|(x∈R)的定义域不同,对应关系也不同,不是同一函数;对于③,函数f(x)=x0=1(x≠0),与g(x)==1(x≠0)的定义域相同,对应关系也相同,是同一函数;对于④,函数f(x)=x2-2x-1(x∈R),与f(t)=t2-2t-1(t∈R)的定义域相同,对应关系也相同,是同一函数;综上知是同一函数的序号是③④.8.(2020·南昌高一检测)已知函数f(x)的定义域为R,f(x+2)是偶函数,f(4)=2, f(x)在(-∞,2)上是增函数,则不等式f(4x-1)>2的解集为( )A.B.∪C.(-∞,-1)∪(17,+∞)D.(-1,17)【解析】选A.依题意,函数f(x)的图象关于x=2对称,则f(4)=f(0)=2,故f(4x-1)>2⇔0<4x-1<4⇔<x<.二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分)9.设集合P={x|0≤x≤4},Q={y|0≤y≤4},能表示集合P到集合Q的函数关系的有( )【解析】选BC.由函数的定义知A中的定义域不是P,D中集合P中有的元素在集合Q中对应两个函数值不符合函数定义,故不对,只有BC成立.10.若函数y=x2-4x-4的定义域为[0,m],值域为[-8,-4],则实数m的值可能为( ) A.2 B.3 C.4 D.5【解析】选ABC.函数y=x2-4x-4的对称轴方程为x=2,当0≤m≤2时,函数在[0,m]上是减函数,x=0时取最大值-4,x=m时有最小值m2-4m-4=-8,解得m=2.则当m>2时,最小值为-8,而f(0)=-4,由对称性可知,m≤4.所以实数m的值可能为2,3,4.11.(2020·潍坊高一检测)若10a=4,10b=25,则( )A.a+b=2B.b-a=1C.ab>8lg22D.b-a<lg 6【解析】选AC.因为10a=4,10b=25,所以a=lg 4,b=lg 25,所以a+b=lg 4+lg 25=lg 100=2,b-a=lg 25-lg 4=lg >lg 6,ab=2lg 2×2lg 5=4lg 2·lg 5>8lg22=4lg 2·lg 4.12.已知函数f(x)=x3+2x,则满足不等式f(2x)+f(x-1)>0的x可以为( )A.0B.C.D.【解析】选CD.函数f(x)为奇函数,且函数f(x)为增函数,则不等式f(2x)+f(x-1)>0等价为f(2x)>-f(x-1)=f(1-x),则2x>1-x,得3x>1,得x>,所以x 可以取,.三、填空题(每小题5分,共20分)13.(2020·黄山高一检测)计算-(2 019)0+ln e+=.【解析】原式=-1+1+=2.答案:214.函数f(x)=为定义在R上的奇函数,则f=.【解析】根据题意,f(x)=为定义在R上的奇函数,则有f(0)=40+m=0,可得m=-1,则f(log23)=-1=-1=8,则f=f(-log23)=-f(log23)=-8.答案:-815.已知实数a,b满足a+b=5,log2a=log3b,则a=,b=.【解析】设log2a=log3b=k,则a=2k,b=3k,所以a+b=2k+3k=5,所以k=1,所以a=2,b=3.答案:2 316.已知f(x)=ln,则f+f(lg 2)等于. 【解析】根据题意,f(x)=ln(-3x),则f(-x)=ln(+3x),则有f(x)+f(-x)=ln(-3x)+ln(+3x)=ln 1=0,故f+f(lg 2)=f(-lg 2)+f(lg 2)=0.答案:0四、解答题(共70分)17.(10分)化简求值:(1)0.008 -+(ln 2)0;(2)lg 4+lg 25+log3-.【解析】(1)原式=0.-+1=-+1=3.(2)原式=lg 100+-2=.18.(12分)已知y=f(x)是定义在R上的奇函数,且x<0时,f(x)=x2+4x-1.(1)求函数f(x)的解析式;(2)画出函数f(x)的图象;(3)写出函数f(x)的单调区间.【解析】(1)设x>0,则-x<0,所以f(-x)=(-x)2+4(-x)-1=x2-4x-1,又y=f(x)是R上的奇函数,所以f(x)=-f(-x)=-x2+4x+1,又f(0)=0,所以f(x)=(2)先画出y=f(x)(x<0)的图象,利用奇函数的对称性可得到相应y=f(x)(x>0)的图象,且f(0)=0,其图象如图所示.(3)由图可知,f(x)的单调递增区间为(-2,0)和(0,2),单调递减区间为(-∞,-2]和[2,+∞).19.(12分)已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x+-4.(1)求函数f(x)在R上的解析式;(2)用单调性定义证明函数f(x)在区间(,+∞)上是增函数.【解析】(1)设x<0,则-x>0,由x>0时f(x)=x+-4可知,f(-x)=-x--4,又f(x)为奇函数,故f(x)=x++4(x<0),所以函数f(x)在R 上的解析式为f(x)=(2)设<x 1<x 2,则f(x 1)-f(x 2)=x 1+-x 2-=(x 1-x 2)+=(x 1-x 2),因为<x 1<x 2,所以x 1-x 2<0,1->0,所以f(x 1)-f(x 2)<0,即f(x 1)<f(x 2),所以函数f(x)在区间(,+∞)上是增函数.20.(12分)(2020·长春高一检测)已知函数的解析式为f(x)=(1)求f ;(2)画出这个函数的图象,并写出函数的值域;(3)若f(x)=k,有两个不相等的实数根,求k 的取值范围. 【解析】(1)f=-6,故f=-1.(2)图象如图,值域为.(3)原题转化为y=k与y=f有两个交点,由图象知k≤0.21.(12分)已知f(x)=x2+2ax,a∈R.(1)当a=-1时,求f(2x)的最小值及相应的x值;(2)若f(2x)在区间[0,1]上是增函数,求a的取值范围.【解析】(1)a=-1时,f(2x)=(2x)2-2×2x=(2x-1)2-1,所以当2x=1,x=0时,f(2x)取得最小值-1.(2)f(2x)=(2x)2+2a·2x=(2x+a)2-a2,当x∈[0,1]时,y=2x是增函数,且1≤2x≤2,令t=2x,t∈[1,2].又f(t)=(t+a)2-a2的单调增区间为[-a,+∞),所以-a≤1,所以a≥-1.22.(12分)已知函数f(x)=是奇函数.(1)求函数f(x)的解析式;(2)函数f(x)在(0,)上为增函数,试求p的最大值,并说明理由.【解析】(1)根据题意,函数f(x)=是奇函数,则有f(-x)=-f(x),即=-,变形可得a+3x=3x-a,则有a=0,即f(x)=-.(2)f(x)=-=-,设0<x1<x2,则f(x1)-f(x2)=-=-,当x1<x2≤时,有x1x2<2,且x1-x2<0,x1x2>0,则f(x1)-f(x2)<0,则f(x)在区间(0,]上为增函数,若函数f(x)在(0,]上为增函数,必有≤,则p≤2,即p的最大值为2.第6章综合测验(120分钟150分)一、单选题(每小题5分,共40分)1.(2019·荆州高一检测)若幂函数f(x)=x a的图像过点(4,2),则f(a2)=( )A.aB.-aC.±aD.|a|【解析】选D.由题意f(4)=4a=2,解得a=,所以f(x)=,所以f(a2)=(a2=|a|.2.设a∈,则使函数y=x a的定义域是R,且为奇函数的所有a的值是( ) A.1,3 B.-1,1C.-1,3D.-1,1,3【解析】选A.当a=-1时,y=x-1的定义域是,且为奇函数;当a=1时,函数y=x的定义域是R且为奇函数;当a=时,函数y=的定义域是{x|x≥0}且为非奇非偶函数.当a=3时,函数y=x3的定义域是R且为奇函数.3.函数y=的值域是( )A.[2,+∞)B.(2,+∞)C.(0,1]D.[1,+∞)【解析】选D.由于≥0,所以函数y=≥30=1,故函数的值域为[1,+∞).4.(2020·龙海高一检测)已知函数f(x)是定义在R上的奇函数,且当x≥0时,f(x)=log2(x+2)-1,则f(-6)= ( )A.2B.4C.-2D.-4【解析】选C.由题意可得f(6)=log2(6+2)-1=2,由于函数f(x)是定义在R上的奇函数,所以,f(-6)=-f(6)=-2.5.已知函数y=loga(x+c)(a,c为常数,其中a>0,a≠1)的图像如图所示,则下列结论成立的是( )A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<1【解析】选D.因为函数单调递减,所以0<a<1,当x=1时loga (x+c)=loga(1+c)<0,即1+c>1,即c>0,当x=0时loga (x+c)=logac>0,即c<1,即0<c<1.6.已知函数f(x)=且f(a)=-3,则f(6-a)= ( )A.-B.-C.-D.-【解析】选A.由于f(a)=-3,①若a≤1,则2a-1-2=-3整理得2a-1=-1,由于2x>0,所以2a-1=-1无解,②若a>1,则-log2(a+1)=-3,解得a+1=8,a=7,所以f(6-a)=f(-1)=2-1-1-2=-.7.(2020·三明高一检测)已知函数f(x)=的值域为[-8,1],则实数a的取值范围是 ( )A.(-∞,-3]B.[-3,0)C.[-3,-1]D.{-3}【解析】选B.当0≤x≤4时f(x)=-x2+2x=-(x-1)2+1,所以-8≤f(x)≤1;当a≤x<0时,f(x)=-,所以-≤f(x)<1,因为f(x)的值域为[-8,1],所以故-3≤a<0.8.(2020·永清高一检测)函数f(x)的定义域为D,若满足①f(x)在D内是单调函数;②存在[m,n]⊆D使f(x)在[m,n]上的值域为,那么就称y=f(x)为“成功(a x+t)(a>0,a≠1)是“成功函数”,则t的取值范围是、函数”,若函数f(x)=loga( ) A. B.C. D.(a x+t)(a>0,a≠1)是“成功函数”,当a>1时,f(x)在【解析】选A.因为f(x)=loga其定义域内为增函数,当0<a<1时,f(x)在其定义域内为增函数,所以f(x)在其定义域内为增函数,(a x+t)=,由题意得f(x)=loga所以a x+t=,a x-+t=0,令m=>0,所以m2-m+t=0有两个不同的正数根,所以,解得t∈.二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分)9.下列说法正确的是( )A.若幂函数的图象经过点,则解析式为y=x-3B.若函数f(x)=,则f(x)在区间(-∞,0)上单调递减C.幂函数y=xα(α>0)始终经过点(0,0)和(1,1)D.若函数f(x)=,则对于任意的x1,x2∈[0,+∞)有≤f【解析】选CD.若幂函数的图象经过点,则解析式为y=,故A错误;函数f(x)=是偶函数且在上单调递减,故在上单调递增,B 错误;幂函数y=xα(α>0)始终经过点和,C正确;任意的x1,x2∈[0,+∞),要证≤f,即证≤,即证≤,即证(-)2≥0,易知成立,故D正确.10.对于0<a<1,下列四个不等式中成立的是 ( )A.loga (1+a)<logaB.loga (1+a)>logaC.a1+a<D.a1+a>【解析】选B、D.因为0<a<1, 所以a<,从而1+a<1+.所以loga (1+a)>loga.又因为0<a<1,所以a1+a>.11.设函数f(x)=2x,对于任意的x1,x2(x1≠x2),下列命题中正确的是( )A.f(x1+x2)=f(x1)·f(x2)B.f(x1·x2)=f(x1)+f(x2)C.>0D.f<【解析】选ACD.·=,所以A成立,×≠,所以B不成立,函数f(x)=2x,在R上是单调递增函数,若x1>x2则f(x1)>f(x2),则>0,若x1<x2则f(x1)<f(x2),则>0,故C正确;f<说明函数是凹函数,而函数f(x)=2x是凹函数,故D正确.12.(2020·滕州高一检测)已知函数f(x)=logax(a>0,a≠1)的图象经过点(4,2),则下列命题正确的有( )A.函数为增函数B.函数为偶函数C.若x>1,则f(x)>0D.若0<x1<x2,则<f【解析】选ACD.由题知2=loga4,a=2,故f(x)=log2x.对A,函数为增函数,正确.对B,f(x)=log2x不为偶函数.对C,当x>1时,f(x)=log2x>log21=0成立.对D,因为f(x)=log2x往上凸,故若0<x1<x2,则<f成立.三、填空题(每小题5分,共20分)13.(2020·沈阳高一检测)若幂函数f(x)的图象过点(2,),则函数y=f(x)+1-x 的最大值为.【解析】设f(x)=xα,因为f(x)的图象过点(2,),所以f(2)=2α=,所以α=,则f(x)=,y=+1-x=-+,故其最大值为.答案:14.(2020·石嘴山高一检测)不等式>1的解集是.【解析】>1⇔x2-2x-3<0⇔-1<x<3.答案:15.设f(x)=则f(f(2))= .【解析】因为f(2)=log(22-1)=1,3所以f(f(2))=f(1)=2e1-1=2.答案:216.已知函数f(x)=为定义在区间[-2a,3a-1]上的奇函数,则a= ,f= .【解析】因为f(x)是定义在[-2a,3a-1]上的奇函数,所以定义域关于原点对称,即-2a+3a-1=0,所以a=1,因为函数f(x)=为奇函数,所以f(-x)===-,即b·2x-1=-b+2x,所以b=1,所以f=,所以f===2-3.答案:1 2-3四、解答题(共70分)17.(10分)(2020·南昌高一检测)已知函数f(x)=2x-4x.(1)求y=f(x)在[-1,1]上的值域;(2)解不等式f(x)>16-9×2x;(3)若关于x的方程f(x)+m-1=0在[-1,1]上有解,求m的取值范围.【解析】(1)设t=2x,因为x∈[-1,1],所以t∈,y=t-t2=-+,所以t=时,f(x)=,t=2时,maxf(x)min=-2.所以f(x)的值域为.(2)设t=2x,由f(x)>16-9×2x,得t-t2>16-9t,即t2-10t+16<0,所以2<t<8,即2<2x<8,所以1<x<3,所以不等式的解集为{x|1<x<3}.(3)方程有解等价于m在1-f(x)的值域内,所以m的取值范围为.18.(12分)若函数y=f(x)=为奇函数.(1)求a的值;(2)求函数的定义域;(3)求函数的值域.【解析】因为函数y=f(x)==a-,(1)由奇函数的定义,可得f(-x)+f(x)=0,即2a--=0,所以a=-.(2)因为y=--,所以3x-1≠0,即x≠0.所以函数y=--的定义域为{x|x≠0}.(3)因为x≠0,所以3x-1>-1.因为3x-1≠0,所以-1<3x-1<0或3x-1>0.所以-->或--<-.即函数的值域为.19.(12分)已知a>2,函数f(x)=log4(x-2)-log4(a-x).(1)求f(x)的定义域;(2)当a=4时,求不等式f(2x-5)≤f(3)的解集.【解析】(1)由题意得:解得因为a>2,所以2<x<a,故f(x)的定义域为.(2)因为a=4,所以f(2x-5)=log4(2x-7)-log4(9-2x),f(3)=log41-log41=0,因为f(2x-5)≤f(3),所以log4(2x-7)-log4(9-2x)≤0,即log4(2x-7)≤log4(9-2x),从而解得<x≤4,故不等式f(2x-5)≤f(3)的解集为.20.(12分)对年利率为r的连续复利,要在x年后达到本利和A,则现在投资值为B=Ae-rx,e是自然对数的底数.如果项目P的投资年利率为r=6%的连续复利.(1)现在投资5万元,写出满n年的本利和,并求满10年的本利和.(精确到0.1万元)(2)一个家庭为刚出生的孩子设立创业基金,若每年初一次性给项目P投资2万元,那么,至少满多少年基金共有本利和超过一百万元?(精确到1年)【解析】(1)由题意可得5=A·e-0.06n,所以A=5·e0.06n;当n=10时,A=5·e0.6≈9.1万元.(2)n年后的本利和为A=2·e0.06n+2·e0.06(n-1)+2·e0.06(n-2)+…+2·e0.06=2·,令2·>100,可得n>22.7.所以至少满23年后基金共有本利和超过一百万元.21.(12分)已知函数f(x)=log2.(1)若函数f(x)是R上的奇函数,求a的值.(2)若函数f(x)的定义域是一切实数,求a的取值范围.(3)若函数f(x)在区间[0,1]上的最大值与最小值的差不小于2,求实数a的取值范围.【解析】(1)函数f(x)是R上的奇函数,则f(0)=0,求得a=0.又此时f(x)=-x是R上的奇函数.所以a=0为所求.(2)函数f(x)的定义域是一切实数,则+a>0恒成立.即a>-恒成立,由于-∈(-∞,0).故只要a≥0即可.(3)由已知函数f(x)是减函数,故f(x)在区间[0,1]上的最大值是f(0)=log2(1+a),最小值是f(1)=log2.由题设log2(1+a)-log2≥2⇒.故-<a≤-为所求.22.(12分)(2020·南京高一检测)函数f(x)=log2(4x-1).(1)求函数f(x)的定义域;(2)若x∈[1,2],函数g(x)=2f(x)-m·2x+1是否存在实数m使得g(x)的最小值;为,若存在,求m的值;若不存在,请说明理由.【解析】(1)由题意4x-1>0,所以4x>1,则x>0,所以函数f(x)的定义域为(0,+∞).(2)g(x)=2f(x)-m·2x+1=-m·2x+1=4x-1-m·2x+1=4x-m·2x.令t=2x,因为x∈[1,2],所以t∈[2,4],则h(t)=t2-mt,t∈[2,4],对称轴为t=,①若t=≤2,即m≤4时,h(t)在[2,4]上为增函数,此时当t=2时最小,即h(2)=4-2m=,解得m=成立;②若t=≥4,即m≥8时,h(t)在[2,4]上为减函数,此时当t=4时最小,即h(4)=16-4m=,解得m=(舍去);③若t=∈(2,4),即4<m<8 =h=-≠,即此时不满足条件.综上所述,存在实数m=使得g(x)时,h(t)min的最小值为.第7、8章综合测验(120分钟150分)一、单选题(每小题5分,共40分)1.下列各个角中与2 020°终边相同的是( )A.-150°B.680°C.220°D.320°【解析】选C.因为2 020°=5×360°+220°,所以与2 020°终边相同的是220°.2.若扇形的圆心角α=120°,弦长AB=12 cm,则弧长l=cm( )A. B. C. D.【解析】选B.因为扇形的圆心角α=120°,弦长AB=12 cm,所以半径r==4,所以弧长l=|α|r=×4=.3.(2020·濮阳高一检测)在某种新型材料的研制中,实验人员获得了下列一组实验数据:现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是 ( )x 3 4 5.15 6.126y 4.041 8 7.5 12 18.01A.y=(x2-1)B.y=2x-2x D.y=lo xC.y=log2【解析】选A.对于选项A:各组数据都很接近,故y=(x2-1)可以近似地表示这些数据的规律,对于选项B:当x=5.15时,y=8.3,与实际数据相差较大,当x=6.126时,y=10.252,与实际数据相差较大,故选项B不合适,对于选项C;当x=4时,y=2,与实际数据相差较大,故选项C不合适,对于选项D:y=lo x是减函数,显然不符合题意.4.已知θ∈,则2 sin θ+= ( )A.sin θ+cosθB.sin θ-cos θC.3sin θ-cos θD.3sin θ+cos θ【解析】选A.因为θ∈,则cos θ>sinθ,由三角函数的诱导公式和三角函数的基本关系得,2sin θ+=2sin θ+=2sin θ+cos θ-sin θ=sin θ+cos θ.5.已知tan α=2,则cos2α= ( )A. B. C. D.【解析】选D.因为cos2α==,且tan α=2,所以cos2α==.6.若x0=cos x,则( )A.x0∈ B.x∈C.x0∈ D.x∈【解析】选C.x0=cos x,方程的根就是函数f(x)=x-cos x的零点,函数是连续函数, 并且f=-cos=-<0,f=->0,所以f·f<0,所以函数的零点在之间,所以x∈.7.已知函数f(x)=2sin(πx+1),若对于任意的x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为( )A.2B.1C.4D.【解析】选B.由于函数f(x)=2sin(πx+1)的周期为=2,对于任意x∈R,都有f(x1)≤f(x)≤f(x2)成立,可知f(x1)是函数的最小值,f(x2)是函数的最大值,|x1-x2|的最小值就是函数的半周期=1.8.已知f(α)=, 则f的值为( )A.-B.C.-D.【解题指南】已知关系式右边利用诱导公式化简确定出f(α),即可求出所求式子的值.【解析】选B.f(α)==cos α,则f=cos=cos=cos=.二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分)9.已知角α的终边与单位圆交于点,则= ( )A. B.- C. D.【解析】选AB.因为角α的终边与单位圆交于点,所以+=1, =±,所以tan α==±.所以y则当tan α=时,==;当tan α=-时,==-.10.有下列四种变换方式:①向右平移个单位长度,再将横坐标变为原来的2倍(纵坐标不变);②横坐标变为原来的2倍(纵坐标不变),再向右平移个单位长度;③横坐标变为原来的(纵坐标不变),再向右平移个单位长度;④向右平移个单位长度,再将横坐标变为原来的(纵坐标不变).其中能将正弦函数y=sin x的图象变为y=sin图象的是 ( )A.①B.②C.③D.④【解题指南】结合选项中的各种变换顺序,求出经过相应的变换后的函数解析式,进行比较即可判断.【解析】选CD.①y=sin x向右平移个单位长度,再将横坐标变为原来的2倍(纵坐标不变)可得y=sin;②y=sin x横坐标变为原来的2倍(纵坐标不变),再向右平移个单位长度可得y=sin;③y=sin x横坐标变为原来的(纵坐标不变),再向右平移个单位长度可得y=sin;④y=sin x向右平移个单位长度,再将横坐标变为原来的(纵坐标不变)可得y=sin.11.将函数y=3tan的图象上所有点的横坐标缩短到原来的倍(纵坐标不变),再把得到的图象向右平移个单位长度,得到函数y=g(x)的图象,下列结论正确的是 ( )A.函数y=g(x)的图象关于点对称B.函数y=g(x)的图象最小正周期为πC.函数y=g(x)的图象在上单调递增D.函数y=g(x)的图象关于直线x=对称【解析】选AC.函数y=3tan的图象上所有点的横坐标缩短到原来的倍(纵坐标不变),再把得到的图象向右平移个单位长度,得到函数y=g(x)=3tan的图象,当x=时,g=0,故选项A正确.函数的最小正周期为,故B错误.由于函数在一个周期为单调递增,故C正确.对于正切型函数不存在对称轴,故D错误.12.新能源汽车包括纯电动汽车、增程式电动汽车、混合动力汽车、燃料电池电动汽车、氢发动机汽车、其他新能源汽车等.它是未来汽车的发展方向.一个新能源汽车制造厂引进了一条新能源汽车整车装配流水线,这条流水线生产的新能源汽车数量x(辆)与创造的价值y(万元)之间满足二次函数关系.已知产量为0时,创造的价值也为0;当产量为40 000辆时,创造的价值达到最大6 000万元.若这家工厂希望利用这条流水线创收达到 5 625万元,则它可能生产的新能源汽车数量是辆. ( )A.30 000B.40 000C.50 000D.60 000【解析】选AC.设y=ax2+bx(a≠0),因为当产量为40 000辆时,创造的价值达到最大6 000万元,所以解得所以y=-x2+x,令y=5 625得-x2+x=5 625,解得:x=30 000或50 000.三、填空题(每小题5分,共20分)13.函数f(x)=cos在[0,π]的零点个数为.【解析】因为f(x)=cos=0,所以3x+=+kπ,k∈Z,所以x=+kπ,k∈Z,当k=0时,x=,当k=1时,x=π,当k=2时,x=π,当k=3时,x=π,因为x∈[0,π],所以x=,或x=π,或x=π,故零点的个数为3.答案:314.已知函数f(x)=sin(ω>0),若当x=时,函数f(x)取得最大值,则ω的最小值为.【解析】当x=时,f(x)取得最大值,即f=sin=1,即ω-=+2kπ,k∈Z,即ω=12k+5,k∈Z,由于ω>0,所以当k=0时,ω的最小值为5.答案:515.若函数f(x)=tan(ωx+φ)的一个单调区间为,且f(0)=,则f= .【解析】函数f(x)=tan(ωx+φ)的一个单调区间为,则T=,解得ω=2,由于f(0)=,则φ=,故f(x)=tan,则f=tan=.答案:16.(2020·朝阳高一检测)已知函数f(x)=其中k≥0.(1)若k=2,则f(x)的最小值为;(2)关于x的函数y=f(f(x))有两个不同零点,则实数k的取值范围是. 【解析】(1)若k=2,则f(x)=作函数f(x)的图象如图所示,显然,当x=0时,函数f(x)取得最小值,且最小值为f(0)=-1.(2)令m=f(x),显然f(m)=0有唯一解m=1,由题意,f(x)=1有两个不同的零点,由图观察可知,k<1,又k≥0,则实数k的取值范围为0≤k<1.答案:(1)-1 (2)[0,1)四、解答题(共70分)17.(10分)已知sin θ-2cos θ=0.(1)若θ∈,求sin θ,cosθ及tan θ的值;(2)求的值.【解析】(1)因为sin θ-2cos θ=0,所以tan θ=2,又因为sin2θ+cos2θ=1,所以5cos2θ=1,因为θ∈,所以cos θ=,sin θ=.(2)====1.18.(12分)已知函数f(x)=2sin,其中ω>0.(1)若f(x+θ)是最小正周期为2π的偶函数,求ω和θ的值;(2)若f(x)在上是增函数,求ω的最大值.【解析】(1)由f(x)=2sin,其中ω>0,所以f(x+θ)=2sin,因为f(x+θ)是最小正周期为2π的偶函数,所以=2π,所以ω=,因为3ωθ+=θ+=kπ+,k∈Z,即θ=kπ+,k∈Z.综上可得,ω=,θ=kπ+,k∈Z.(2)f(x)=2sin在上是增函数,在上,3ωx+∈,所以ωπ+≤,所以ω≤,即ω的最大值为.19.(12分)已知函数f(x)=asin+a+b,当x∈时,函数f(x)的值域是[-,2].(1)求常数a,b的值;(2)当a<0时,设g(x)=f,判断函数g(x)在上的单调性.【解析】(1)当x∈时,2x+∈,所以sin∈.①当a>0时,由题意可得即解得a=2,b=-2.②当a<0时,由题意可得即解得a=-2,b=4-.(2)当a<0时,f(x)=-2sin+2-, 所以g(x)=f=-2sin+2-=2sin+2-;由-+2kπ≤2x+≤+2kπ,k∈Z,解得-+kπ≤x≤+kπ,k∈Z.当k=0时,由∩=,所以函数g(x)在上单调递增.同理,函数g(x)在上单调递减.【补偿训练】已知函数f(x)=sin,(1)填表并在坐标系中用“五点法”画出函数f(x)在一个周期上的图象:2x+0 π2πxf(x)(2)求f(x)的对称轴与对称中心;(3)求f(x)在区间上的最大值和最小值以及对应x的值.【解析】(1)2x+0 π2πx -f(x) 0 1 0 -1 0(2)令2x+=+kπ,即对称轴为:x=+(k∈Z).令2x+=kπ,即对称中心为:(k∈Z).(3)当x∈时,2x+∈,由函数图象性质可有,当2x+=-,=f=1.即x=-时,f(x)max当2x+=-,=f=-.即x=-时,f(x)min20.(12分)(2020·赤峰高一检测)某工厂生产某种产品,每日的成本C(单位:万元)与日产量x(单位:吨)满足函数关系式C=3+x,每日的销售额S(单位:万元)与日产量x的函数关系式S=已知每日的利润L=S-C,且当x=2时,L=3.(1)求k的值;(2)当日产量为多少吨时,每日的利润可以达到最大?并求出最大值.【解析】(1)由题意得L=因为x=2时,L=3,所以3=2×2++2,所以k=18.(2)当0<x<6时,L=2x++2=2(x-8)++18=-+18≤-2+18=6,当且仅当2(8-x)=,即x=5时取等号.当x≥6时,L=11-x≤5,所以当x=5时,L取得最大值6,所以当日产量为5吨时,每日的利润可以达到最大值6万元.21.(12分)滨海市政府今年加大了招商引资的力度,吸引外资的数量明显增加.一外商计划在滨海市投资两个项目,总投资20亿元,其中甲项目的10年收益额X(单位:亿元)与投资额x(单位:亿元)满足X=8+x,乙项目的10年收益额Y(单位:亿元)与投资额y(单位:亿元)满足Y=y2-10,并且每个项目至少要投资2亿元.设两个项目的10年收益额之和为f(x).(1)求f(10);(2)如何安排甲、乙两个项目的投资额,才能使这两个项目的10年收益额之和f(x)最大?【解析】(1)由题意可知甲项目投资为10亿元,乙项目投资20-10=10(亿元),所以f(10)=8+×10+×102-10=28(亿元).(2)由题意可知乙项目的投资额为20-x,且解得2≤x≤18,所以f(x)=8+x+×(20-x)2-10=x2-x+98=(x-19)2+,x∈[2,18];所以当x=2时,f(x)的最大值为f(2)=80(亿元).即甲项目投资额为2亿元,乙项目投资额为18亿元时,这两个项目的10年收益额之和f(x)最大,为80亿元.22.(12分)某公司对营销人员有如下规定:(ⅰ)年销售额x(万元)不大于8时,没有年终奖金;(ⅱ)年销售额x(万元)大于8时,年销售额越大,年终奖金越多.此时,当年销售额x+b(a>0,且a≠1)发放;当x(万元)不大于64时,年终奖金y(万元)按关系式y=loga年销售额x(万元)不小于64时,年终奖金y(万元)为年销售额x(万元)的一次函数.经测算,当年销售额分别为16万元,64万元,80万元时,年终奖金依次为1万元,3万元,5万元.(1)求y关于x的函数解析式.(2)某营销人员年终奖金高于2万元但低于4万元,求该营销人员年销售额x(万元)的取值范围.【解析】(1)因为8<x≤64,年销售额越大,奖金越多,所以y=logx+b在(8,64]上是a增函数.所以,解得.x;所以8<x≤64时,y=-3+log2又因为x≥64时,y是x的一次函数,设y=kx+m(k≠0),。
最新2018-2019学年高中数学苏教版必修一第2章章末综合检测含答案
(时间:120分钟;满分:160分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上)1.函数y =lg(x -1)+2-x 的定义域为________.解析:要使函数有意义,则⎩⎨⎧x -1>0,2-x ≥0,∴1<x ≤2.答案:(1,2]2.求值:(-3.1)0+(278)-23+lg4+lg25+ln1=________.解析:原式=1+[(32)3]-23+lg22+lg52+0=1+(32)-2+2(lg2+lg5)=1+(23)2+2=319.答案:3193.已知幂函数f(x)=kx xα的图象过点(12,22),则k +α=________.解析:由幂函数定义可知k=1,由过点(12,22),∴22=(12)α,∴α=12,∴k+α=32.答案:3 24.若函数f(x)=x+1,则f(x)=________.解析:令x=t,则x=t2(t≥0),∴f(t)=t2+1,故f(x)=x2+1(x≥0).答案:x2+1(x≥0)5.设函数f(x)=(2k-1)x-4在(-∞,+∞)是单调递减函数,则k的取值范围是________.解析:由题意2k-1<0,∴k<1 2 .答案:(-∞,1 2 )6.用“<”将0.2-0.2、2.3-2.3、log0.22.3从小到大排列是________.解析:log0.22.3<0,0<2.3-2.3<2.30=1,0.2-0.2>0.20=1,∴log0.22.3<2.3-2.3<0.2-0.2.答案:log0.22.3<2.3-2.3<0.2-0.27.用二分法求函数f(x)=3x-x-4的一个零点,其参考数据如下:根为______.(精确到0.01)解析:由f(1.5562)·f(1.5625)<0,及精确度要求可知近似解为1.56.答案:1.568.已知y=f(x)是定义在R上的偶函数,且当x<0时,f(x)=1+2x,则当x>0时,f(x)=________.解析:当x>0时,-x<0,∴f(-x)=1+2(-x)=1-2x,∵f(x)为偶函数,∴f(-x)=f(x),∴当x>0时,f(x)=1-2x.答案:1-2x9.函数y=ln 1x的图象先作关于x轴对称得到图象C1,再将C1向右平移一个单位得到图象C2,则C2的解析式为________.解析:C 1对应的解析式为y =-ln 1x ,即y =lnx ,C 2对应的解析式为y =ln(x -1). 答案:y =ln(x -1)10.若f(x)=12x -1+a 是奇函数,则a =________.解析:∵f(x)是奇函数,∴f(-x)=-f(x),即12-x -1+a =-12x -1-a.∴2x1-2x +12x-1=-2a.∴1-2x2x -1=-2a. ∴-1=-2a ,即a =12.答案:1211.一个家庭的蓄水池是长为acm 、宽为bcm 、高为ccm 的长方体容器,将水池蓄满.已知该家庭每天用水量是ncm 3/天,该家庭用水的天数y 与蓄水池内剩余水面的高度xcm 的函数解析式为______________.解析:因为蓄水池内剩余水面的高度为xcm ,所以用去水的高度为(c -x)cm ,故yn =ab(c -x),整理得y =abn(c -x).答案:y =abn(c -x)(0≤x ≤c)12.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =|log 0.5x|的定义域为[a ,b],值域为[0,2],则区间[a ,b]长度的最大值为________.解析:画出y =|log 12x|的图象,由图象可知值域为[0,2]时,[a ,b]长度的最大值为154.答案:15413.若函数f(x)=kx 2,x ∈R 的图象上的任意一点都在函数g(x)=1-kx ,x ∈R 的下方,则实数k 的取值范围是________. 解析:由题意kx 2-(1-kx)<0恒成立, ∴kx 2+kx -1<0.当k =0时,-1<0,满足题意;当k ≠0时,⎩⎨⎧k<0Δ=k 2+4k<0, ∴-4<k<0, 综上可知-4<k ≤0. 答案:(-4,0]14.若函数f(x)具有性质:①f(x)满足f(-x)=f(x);②对任意x∈R,都有f(π4-x)=f(π4+x),则函数f(x)的解析式可以是________(只需写出满足条件的f(x)的一个解析式即可).解析:∵f(π4-x)=f(π4+x),∴f(x)的图象关于x=π4对称.又f(x)的图象关于y轴对称,∴f(x)=5满足题设.本题有多种答案,如f(x)=2也可以.答案:f(x)=5二、解答题(本大题共6小题,共90分,解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)设函数f(x)=ax2+(b-8)x-a-ab的两个零点分别是-3和2.(1)求f(x)的解析式;(2)当函数f(x)的定义域是[0,1]时,求函数f(x)的值域.解:(1)∵f(x)的两个零点分别是-3和2,∴函数图象过点(-3,0),(2,0),∴有9a-3(b-8)-a-ab=0,①4a+2(b-8)-a-ab=0,②①-②得,b=a+8,③③代入②得,4a+2a-a-a(a+8)=0,即a2+3a=0.∵a≠0,∴a=-3,∴b=a+8=5.∴f(x)=-3x2-3x+18.(2)由(1)得,f(x)=-3x2-3x+18=-3(x+12)2+34+18,图象的对称轴方程是x=-12且0≤x≤1,∴f(x)min=f(1)=12,f(x)max=f(0)=18,∴函数f(x)的值域是[12,18].16.(本小题满分14分)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出,若每辆车的月租金每增加50元,未租出的车将会增加一辆,租出的车辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少时,租赁公司的月收益最大,最大月收益是多少?解:(1)当每辆车的月租金定为3600元时,未租出的车为3600-300050=12辆,所以能租出88辆车;(2)设每辆车的月租金定为x 元,则租赁公司的月收益为 f(x)=(100-x -300050)(x -150)-x -300050×50,整理得f(x)=-x 250+162x -21000=-150(x -4050)2+307050.所以当x =4050时,f(x)最大,其最大值为f(4050)=307050. 故当每辆车的月租金定为4050元时,租赁公司的月收益最大,最大月收益是307050元.17.(本小题满分14分)已知a 是实数,函数f(x)=-x 2+ax -3在区间(0,1)与(2,4)上各有一个零点,求a 的取值范围. 解:∵函数f(x)=-x 2+ax -3的图象是开口向下的抛物线,在区间(0,1)与(2,4)上与x 轴各有一个交点,结合图象可知.⎩⎪⎨⎪⎧f (0)<0f (1)>0f (2)>0f (4)<0⇒⎩⎪⎨⎪⎧a -4>02a -7>04a -19<0,解得:4<a <194.∴所求a的取值范围是:4<a<19 4 .18.(本小题满分16分)设函数f(x)=lg(a x-b x)(常数a>1>b>0).(1)求f(x)的定义域;(2)若f(x)在(1,+∞)上递增且恒取正值,求a,b满足的关系式.解:(1)由a x-b x>0,得(ab)x>1,由已知ab>1,故x>0,即f(x)的定义域为(0,+∞).(2)因为f(x)在(1,+∞)上递增且恒为正值,∴f(x)>f(1),这样只要f(1)≥0.即lg(a-b)≥0,即当a≥b+1时,f(x)在(1,+∞)上递增且恒取正值.19.(本小题满分16分)已知定义域为R的函数f(x)=-2x+b 2x+1+a是奇函数.(1)求a,b的值;(2)判断函数f(x)在定义域上的单调性,并证明;(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k 的取值范围.解:(1)因为f(x)是奇函数,所以f(0)=0,即b -1a +2=0⇒b =1.∴f(x)=1-2xa +2x +1,又由f(1)=-f(-1)知1-2a +4=1-12a +1⇒a =2. (2)由(1)知f(x)=1-2x2+2x +1,设x 1>x 2,则f(x 1)-f(x 2)=1-2x 12+2x 1+1-1-2x 22+2x 2+1=4(2x 2-2x 1)(2+2x 1+1)(2+2x 2+1)<0, ∴f(x 1)<f(x 2),∴f(x)在(-∞,+∞)上为减函数.(3)因f(x)是奇函数,从而不等式:f(t 2-2t)+f(2t 2-k)<0⇔f(t 2-2t)<-f(2t 2-k)=f(k -2t 2).因f(x)为减函数,由上式推得:t 2-2t>k -2t 2,即对一切t ∈R 有3t 2-2t -k>0,从而判别式Δ=4+12k<0⇒k<-13.20.(本小题满分16分)已知函数f(x)=|x -a|,g(x)=ax ,(a ∈R).(1)若函数y =f(x)是偶函数,求出的实数a 的值;(2)若方程f(x)=g(x)有两解,求出实数a 的取值范围;(3)若a>0,记F(x)=g(x)·f(x),试求函数y =F(x)在区间[1,2]上的最大值.解:(1)因为函数f(x)=|x -a|为偶函数,所以f(-x)=f(x),即|-x -a|=|x -a|,所以x +a =x -a 或x +a =a -x 恒成立,故a =0.(2)法一:当a>0时,|x -a|-ax =0有两解,等价于方程(x -a)2-a 2x 2=0在(0,+∞)上有两解,即(a 2-1)x 2+2ax -a 2=0在(0,+∞)上有两解,令h(x)=(a 2-1)x 2+2ax -a 2, 因为h(0)=-a 2<0,所以⎩⎨⎧a 2-1<0,Δ=4a 2+4a 2(a 2-1)>0, 故0<a<1;同理,当a<0时,得到-1<a<0;当a =0时,不合题意,舍去.综上可知实数a 的取值范围是(-1,0)∪(0,1).法二:|x -a|=ax 有两解,即x -a =ax 和a -x =ax 各有一解分别为x =a 1-a 和x =a 1+a,若a>0,则a 1-a >0且a 1+a>0,即0<a<1; 若a<0,则a 1-a <0且a 1+a<0,即-1<a<0; 若a =0时,不合题意,舍去.综上可知实数a 的取值范围是(-1,0)∪(0,1).(3)∵F(x)=f(x)·g(x),x ∈[1,2],①当0<a ≤1时,F(x)=a(x 2-ax),对称轴x =a 2∈(0,12],函数在[1,2]上是增函数, 所以此时函数y =F(x)的最大值为4a -2a 2.②当1<a ≤2时,F(x)=⎩⎨⎧-a (x 2-ax ),1<x ≤a a (x 2-ax ),a<x ≤2,对称轴x =a 2∈(12,1], 所以函数y =F(x)在(1,a]上是减函数,在[a ,2]上是增函数. F(1)=a 2-a ,F(2)=4a -2a 2,1)若F(1)<F(2),即1<a<53,此时函数y =F(x)的最大值为4a -2a 2;2)若F(1)≥F(2),即53≤a ≤2,此时函数y =F(x)的最大值为a 2-a ;③当2<a ≤4时,F(x)=-a(x 2-ax)对称轴,x =a 2∈(1,2]. 此时F(x)max =F(a 2)=a 34. ④当a>4时,对称轴x =a 2∈(2,+∞),此时F(x)max =F(2)=2a 2-4a.综上可知,函数y =F(x)在区间[1,2]上的最大值[F(x)]max=⎩⎪⎪⎪⎨⎪⎪⎪⎧4a -2a 2,0<a<53,a 2-a ,53≤a ≤2,a 34,2<a ≤4,2a 2-4a ,a>4.。
2021_2022学年新教材高中数学第2章常用逻辑用语测评含解析苏教版必修第一册
第2章测评(时间:120分钟满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021某某某某高二期末)下列语句能作为命题的是()A.3比5大B.太阳和月亮C.高二年级的学生D.x2+y2=0:能判断真假的陈述句,A正确,B,C不是陈述句,D不能判断真假.故选A.2.下列全称量词命题中是假命题的是()A.每一个末位是0的整数都是5的倍数B.线段垂直平分线上的点到这条线段两个端点的距离相等C.对任意负数x,x的平方是正数D.梯形的对角线相等0的整数都是10的倍数,而10是5的倍数,所以A为真命题;根据线段垂直平分线的定义可知B为真命题;负数的平方为正数,故C为真命题;等腰梯形的对角线相等,故D为假命题.故选D.3.(2021某某某某高二期末)命题“∃x>1,x2≥1”的否定是()A.∃x≤1,x2≥1B.∃x≤1,x2<1C.∀x≤1,x2≥1D.∀x>1,x2<1,所以命题“∃x>1,x2≥1”的否定是“∀x>1,x2<1”.故选D.4.(2020某某,2)设a∈R,则“a>1”是“a2>a”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件a>1,则a2>a成立.若a2>a,则a>1或a<0.∴“a>1”是“a2>a”的充分不必要条件.故选A.5.(2021某某松江高一期末)要证明命题“所有实数的平方都是正数”是假命题,只需()A.证明所有实数的平方都不是正数B.证明平方是正数的实数有无限多个C.至少找到一个实数,其平方是正数D.至少找到一个实数,其平方不是正数“所有实数的平方都是正数”是全称量词命题,若其为假命题,那么命题的否定是真命题,所以只需“至少找到一个实数,其平方不是正数”.故选D.6.(2021某某某某高二期末)若命题“∃x ∈[-1,2],-x 2+2≥a ”是假命题,则实数a 的取值X 围是()A.(2,+∞)B.[2,+∞)C.(-2,+∞)D.[-2,+∞)“∃x ∈[-1,2],-x 2+2≥a ”是假命题,则命题“∀x ∈[-1,2],-x 2+2<a ”是真命题,当x=0时,(-x 2+2)max =2,所以a>2.故选A.7.(2021某某凉山彝族自治州高二期末)若条件p :|x-1|≤1,条件q :x ≤a ,p 是q 的充分条件,但不是必要条件,则a 的取值X 围是()A.[2,+∞)B.(-∞,2]C.[-2,+∞)D.(-∞,-2]:|x-1|≤1,解得0≤x ≤2,设A={x|0≤x ≤2},B={x|x ≤a },p 是q 的充分条件,但不是必要条件,则A 是B 的真子集,则a ≥2.故选A.8.(2021某某某某高一期末)“关于x 的不等式x 2-3mx+4≥0的解集为R ”的一个必要不充分条件是()A.-43≤m ≤43B.-2<m ≤43C.-4<m ≤43D.-43≤m<0x 的不等式x 2-3mx+4≥0的解集为R ,可得Δ=(-3m )2-4×4≤0,解得-43≤m ≤43,根据是必要条件,但不是充分条件的概念可知B 项正确.故选B.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.(2021某某某某高二期末)对下列命题的否定说法正确的是()A.p :∀x ∈R ,x>0,命题p 的否定:∃x ∈R ,x ≤0B.p :∃x ∈R ,x 2≤-1;命题p 的否定:∃x ∈R ,x 2>-1C.p :任意x<2,x<1;命题p 的否定:存在x<2,x ≥1D.p :∀x ∈R ,使x 2+1≠0;命题p 的否定:∃x ∈R ,x 2+1=0:∀x ∈R ,x>0;命题p 的否定:∃x ∈R ,x ≤0,A 正确;p :∃x ∈R ,x 2≤-1;命题p 的否定:∀x ∈R ,x 2>-1,B 错误;p :任意x<2,x<1;命题p 的否定:存在x<2,x ≥1,C 正确;p :∀x ∈R ,使x 2+1≠0;命题p 的否定:∃x ∈R ,x 2+1=0,D 正确.故选ACD.10.(2020某某某某中学高一期中)设全集为U ,下列选项是B ⊆A 的充要条件的有()A.A ∪B=AB.A ∩B=AC.(∁U A )⊆(∁U B )D.A ∪(∁U B )=UVenn 图所示,选项A 中,若A ∪B=A ,则B ⊆A ;反过来,若B ⊆A ,则A ∪B=A.故互为充要条件.选项C 中,若(∁U A )⊆(∁U B ),则B ⊆A ;反过来,若B ⊆A ,则(∁U A )⊆(∁U B ).故互为充要条件.选项D 中,若A ∪(∁U B )=U ,则(∁U A )⊆(∁U B ),故B ⊆A ;反过来,若B ⊆A ,则(∁U A )⊆(∁U B ),故A ∪(∁U B ).故互为充要条件.选项B 中,如下Venn 图,若A ∩B=A ,则A ⊆B ,推不出B ⊆A.故错误.故选ACD.11.(2020某某日照五莲高一期中)一元二次方程ax 2+4x+3=0(a ≠0)有一个正根和一个负根的充分不必要条件是()A.a<0B.a<-2C.a<-1D.a<1ax 2+4x+3=0(a ≠0)有一个正根和一个负根,则{Δ=16-12a >0,3a <0,解得a<0,则充分不必要条件应为(-∞,0)的真子集,故选BC.12.(2021某某某某高一期末)命题“∀x ∈R ,x 2-ax+1≥0”为真命题的一个必要不充分条件可以是()A.-2≤a ≤2B.a ≥-2C.a ≤2D.-2<a<2“∀x ∈R ,x 2-ax+1≥0”为真命题,可得Δ=(-a )2-4≤0,解得-2≤a ≤2,对于A,-2≤a ≤2是命题为真的充要条件;对于B,由a ≥-2不能推出-2≤a ≤2,反之成立,所以a ≥-2是命题为真的一个必要不充分条件;对于C,a ≤2不能推出-2≤a ≤2,反之成立,所以a ≤2也是命题为真的一个必要不充分条件;对于D,-2<a<2能推出-2≤a ≤2,反之不成立,-2<a<2是命题为真的一个充分不必要条件.故选BC.三、填空题:本题共4小题,每小题5分,共20分.13.(2021某某某某高二期末)若命题p :“∀x ∈R ,x 2-2mx+1≥0”,则命题p 的否定是.x ∈R ,x 2-2mx+1<0p :“∀x ∈R ,x 2-2mx+1≥0”,则命题p 的否定为:∃x ∈R ,x 2-2mx+1<0.14.(2021某某某某高二期末)已知p :x<m ,q :-1≤x ≤3,若p 是q 的必要不充分条件,则m 的值可能为(填一个满足条件的值即可).答案不唯一,只需填大于3的数即可)p 是q 的必要不充分条件,∴m>3,故m 的值可能为4.15.(2021某某某某高一期末)若命题“∃x ∈R ,x 2-2x+a ≤0”是假命题,则实数a 的取值X 围是.+∞)“∃x ∈R ,x 2-2x+a ≤0”是假命题,所以∀x ∈R ,x 2-2x+a>0恒成立.所以4-4a<0,解得a>1.16.(2021某某高二期末)设α:x ≤-5或x>1,β:x ≤-2m-3或x ≥-2m+1,m ∈R ,α是β的充分条件,但不是必要条件,则实数m 的取值X 围是.α是β的充分条件,但不是必要条件,∴{-5≤-2m -3,1≥-2m +1,(等号不能同时成立)解得0≤m ≤1. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(2020某某镇雄第四中学高一月考)写出下列命题的否定,并判断其真假:(1)∀x ∈R ,x 2+x+1>0;(2)∃x ∈R ,x 2-x+1=0.∃x ∈R ,x 2+x+1≤0,假命题.(2)∀x ∈R ,x 2-x+1≠0,真命题.18.(12分)(2020某某某某清新凤霞中学高一期中)已知集合A={x|-2≤x ≤3},B={x|x<-1或x>2},C={x|x>a }.(1)求A ∩B 和A ∪B ;(2)若p :x ∈C 是q :x ∈B 的充分条件,求a 的取值X 围.A ∩B={x|-2≤x<-1或2<x ≤3},A ∪B=R .(2)若p :x ∈C 是q :x ∈B 的充分条件,则C ⊆B ,所以a ≥2,a 的取值X 围是[2,+∞).19.(12分)(2020某某彭水第一中学高一期中)已知命题“∃x ∈R ,不等式x 2-2x-m ≤0”是假命题.(1)某某数m 的取值集合A ;(2)若q :-4<m-a<4是集合A 的充分条件,但不是必要条件,某某数a 的取值X 围.因为命题“∃x ∈R ,不等式x 2-2x-m ≤0”是假命题,所以命题的否定“∀x ∈R ,不等式x 2-2x-m>0”是真命题,即Δ=4+4m<0,解得m<-1,故集合A={m|m<-1}.(2)因为-4<m-a<4,即a-4<m<a+4,所以q :a-4<m<a+4.因为q :a-4<m<a+4是集合A 的充分条件,但不是必要条件,令集合B={m|a-4<m<a+4},集合B 是集合A 的真子集,即4+a ≤-1,解得a ≤-5,故实数a 的取值X 围是(-∞,-5].20.(12分)(2021某某泗县第一中学高二开学考试)已知p :实数x 满足a<x<4a (其中a>0),q :实数x 满足2<x<5.(1)若a=1,且p 与q 都为真命题,某某数x 的取值X 围;(2)若p 是q 的必要条件,但不是充分条件,某某数a 的取值X 围.当a=1时,p :实数x 满足1<x<4,q :实数x 满足2<x<5,因为p 与q 都为真命题,所以{1<x <4,2<x <5,解得2<x<4,即x 的取值X 围为(2,4).(2)令A={x|a<x<4a ,a>0},B={x|2<x<5},因为p 是q 的必要条件,但不是充分条件,所以B ⫋A ,所以{a ≤2,4a ≥5,解得54≤a ≤2, 所以实数a 的取值X 围是54,2.21.(12分)(2020某某某某江都大桥高级中学高一月考)已知集合A={x|-2≤x ≤5},B={x|m+1≤x ≤2m-1},(1)若命题p :∀x ∈B ,x ∈A 是真命题,求m 的取值X 围;(2)命题q :∃x ∈A ,x ∈B 是真命题,求m 的取值X 围.因为命题p :∀x ∈B ,x ∈A 是真命题,所以B ⊆A ,当B=⌀时,m+1>2m-1,解得m<2;当B ≠⌀时,{m +1≤2m -1,m +1≥-2,2m -1≤5,解得2≤m ≤3.综上,m 的取值X 围为(-∞,3].(2)因为q :∃x ∈A ,x ∈B 是真命题,所以A ∩B ≠⌀,所以B ≠⌀,即m ≥2,所以m+1≥3,所以A ∩B ≠⌀只需满足m+1≤5即可,即m ≤4.故m 的取值X 围为[2,4].22.(12分)(2020某某某某高二期中)已知命题p :关于x 的方程x 2-(3m-2)x+2m 2-m-3=0有两个大于1的实数根.(1)若命题p 为真命题,某某数m 的取值X 围;(2)命题q :3-a<m<3+a ,是否存在实数a 使得p 是q 的必要条件,但不是充分条件,若存在,求出实数a 的取值X 围;若不存在,说明理由.由x 2-(3m-2)x+2m 2-m-3=0得[x-(m+1)][x-(2m-3)]=0,所以x=m+1或x=2m-3.因为命题p 为真命题,所以m+1>1且2m-3>1,解得m>2.故实数m 的取值X 围为(2,+∞).(2)存在.设集合A={m|m>2},集合B={m|3-a<m<3+a },因为p 是q 的必要条件,但不是充分条件,所以B ⫋A.当B=⌀时,3-a ≥3+a ,解得a ≤0;当B ≠⌀时,{3-a <3+a ,3-a ≥2,解得0<a ≤1. 综上所述,存在a ∈(-∞,1]满足条件.。
高中数学综合测评苏教版选择性必修第一册
综合测评(满分:150分;时间:120分钟)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线x-√3y-3=0的倾斜角为()A.π6B.π3C.2π3D.5π62.函数f(x)=1+1x 的图象在点(12, x(12))处的切线的斜率为 ()A.2B.-2C.4D.-43.已知F1,F2为定点,F1F2=4,在同一平面内的动点M满足MF1+MF2=t(t为常数),且t≥4,则动点M的轨迹是()A.椭圆B.线段C.圆D.线段或椭圆4.在等比数列{a n}中,a2+a3=1,a4+a5=2,则a6+a7= ()A.2B.2√2C.4D.4√25.已知两圆的方程分别是C1:(x-3)2+(y+2)2=1,C2:(x-7)2+(y-1)2=36,则这两圆的位置关系是()A.内含B.内切C.相交D.外切6.我国古代数学名著《增删算法统宗》中有如下问题:“一个公公有九个儿,若问生年总不知,知长排来争三岁,其年二百七岁期,借问长儿多少岁,各儿岁数要详推.”其大致意思是:一个公公有九个儿子,若问他们的生年是不知道的,但从老大的生年开始排列,后面每个儿子都比前面一个儿子小3岁,九个儿子共207岁,则老大的岁数是 ()A.38B.35C.32D.297.已知在平面直角坐标系xOy中,双曲线C:x2x2-x2x2=1(a>0,b>0)的左焦点为F,点M,N在双曲线C上,若四边形OFMN为菱形,则双曲线C的离心率为 ()A.√3-1B.√5-1C.√3+1D.√5+18.已知函数f(x)=ln x+ax2+(2+a)x(a<0),g(x)=xe x-2,对任意的x0∈(0,2],关于x的方程f(x)=g(x0)在(0,e]上都有实数根,则实数a的取值范围为()(其中e=2.718 28…为自然对数的底数)A.[-1e ,0) B.(-∞,-1e]C.[-e,0)D.(-∞,-e]二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知方程mx2+ny2=1(m,n∈R),则()A.当mn>0时,方程表示椭圆B.当mn<0时,方程表示双曲线C.当m=0时,方程表示两条直线D.此方程表示的曲线不可能为抛物线10.设等差数列{a n}的首项为a1,公差为d,其前n项和为S n,已知S16>0,S17<0,则下列结论正确的是()A.a1>0,d<0B.a8+a9>0C.S8与S9均为S n的最大值D.a9<011.已知抛物线C:y2=2px(p>0)的焦点F到其准线的距离为2,过点F的直线与抛物线交于P,Q 两点,M为线段PQ的中点,O为坐标原点,则()A.抛物线C的准线方程为y=-1B.线段PQ的长度的最小值为4C.S△OPQ≥2D.xx⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·xx⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-312.已知f(x)=e x·x3,则下列结论正确的是()A. f(x)在R上单调递增B. f(log52)<f(e-12)<f(ln π)C.方程f(x)=-1有实数根D.存在实数k,使得方程f(x)=kx有4个实数根三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上)13.在平面直角坐标系xOy中,已知直线l1:x+ay=0和直线l2:2x-(a-3)y-4=0,a∈R,若l1与l2平行,则l1与l2之间的距离为.14.已知数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n∈N*),则a6=.15.已知函数f(x)=x3+ax2+x+1在区间(-23,-13)内是减函数,则实数a的取值范围是.16.已知椭圆x2x2+x2x2=1(a>b>0)的短轴长为2,上顶点为A,左顶点为B,左、右焦点分别是F1、F2,且△F1AB的面积为2-√32,则椭圆的标准方程为;若点P为椭圆上的任意一点,则1xx1+1xx2的取值范围是.(第一个空2分,第二个空3分)四、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)在①S4-a3=a6;②S3是a1与a9的等差中项;③a1+a3+a5+a7+a9=5S3这三个条件中任选一个,补充在下面的问题中,并解答.记S n为等差数列{a n}的前n项和,已知a3=5,且.(1)求{a n}的通项公式;(2)在(1)的条件下,记b n=1x x·x x+1,求数列{b n}的前n项和T n.注:选择多个条件分别解答时,按第一个解答计分.18.(本小题满分12分)已知某曲线C:x2+y2+2x-4y+a=0.(1)若此曲线是圆,求a的取值范围,并求出其圆心和半径;(2)若a=1,且此曲线与直线l:x-y+1=0相交于M,N两点,求弦长MN.19.(本小题满分12分)设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1(n∈N*).数列{b n}是首项为a1,公差不为零的等差数列,且b1,b2,b7成等比数列.(1)求数列{a n}和{b n}的通项公式;(2)若c n=x xx x,数列{c n}的前n项和为T n,且T n<m恒成立,求m的取值范围.20.(本小题满分12分)新冠肺炎疫情发生后,某地政府为了支持企业复工复产,决定向当地企业发放补助款,其中对纳税额x(万元)在[4,8]之间的小微企业做统一方案,方案要求同时具备下列两个条件:①补助款f(x)(万元)随企业原纳税额x(万元)的增加而增加;②补助款不低于原纳税额的50%.经测算,政府决定采用f(x)=x4-xx+4(其中m为参数)作为补助款发放的函数模型.(1)当参数m=13时是否满足条件,并说明理由;(2)求同时满足条件①②的参数m的取值范围.21.(本小题满分12分)已知抛物线C:x2=2py(p>0)的准线方程为y=-1,直线l过点P(0,-1),且与抛物线C交于A,B两点.点A关于y轴的对称点为A',连接A'B.(1)求抛物线C的标准方程;(2)问直线A'B是否过定点?若是,求出定点坐标;若不是,请说明理由.22.(本小题满分12分)已知函数f(x)=e x-1-x-ax2,g(x)=bx-b ln x,其中e为自然对数的底数.(1)若当x≥0时,不等式f(x)≥0恒成立,求实数a的取值范围;(2)若x>0,证明:(e x-1)ln(x+1)>x2.答案全解全析一、单项选择题1.A 直线x -√3y -3=0可化为y =√33x -√3,斜率k =tan α=√33,又α∈[0,π),∴α=π6.故选A .2.D 因为f (x )=1+1x ,所以f'(x )=-1x 2, 所以 f'(12)=-4.故选D .3.D 当t =4时,点M 的轨迹是线段F 1F 2;当t >4时,点M 的轨迹是椭圆.故选D .4.C 设等比数列{a n }的公比为q ,则x 4+x 5x 2+x 3=x 2x 2+x 3x 2x 2+x 3=q 2=2,∴a 6+a 7=a 4q 2+a 5q 2=(a 4+a 5)q 2=2×2=4.故选C .5.B 根据两圆的方程得到两圆的圆心间的距离d =√(7-3)2+(1+2)2=5,又圆C 1的半径r 1=1,圆C 2的半径r 2=6,且d ,r 1,r 2满足r 2-r 1=d ,所以两圆内切.6.B 由题意可知,九个儿子的年龄可以看成以老大的年龄为首项,公差为-3的等差数列,记此等差数列为{a n },则9a 1+9×82×(-3)=207,解得a 1=35,故选B .7.C 由题意可知OF =c ,由四边形OFMN 为菱形,可得MN =OF =c ,设点M 在F 的上方,可知M 、N 关于y 轴对称,可设M (-x 2,√3x2),代入双曲线方程可得 (-x 2)2x 2-(√3x2)2x 2=1,结合a 2+b 2=c 2,可得c 4+4a 4-8a 2c 2=0,两边同除以a 4,可得e 4+4-8e 2=0,解得e 2=4+2√3或e 2=4-2√3,因为e >1,所以e =√4+2√3=√(1+√3)2=√3+1,故选C .8.C 由题意,g (x )=xe x -2,x ∈(0,2],g'(x )=e x -x e x (e x )2=1-x e x ,令g'(x )=0,得x =1,当0<x <1时,g'(x )>0;当1<x ≤2时,g'(x )<0,故当x =1时,g (x )取得极大值,也是最大值,为1e -2,且g (0)=-2,g (2)=2e 2-2>-2,设g (x )=x ex -2,x ∈(0,2]的值域为A ,则A =(-2,1e-2].设f (x )=ln x +ax 2+(2+a )x ,x ∈(0,e]的值域为B ,因为对任意的x 0∈(0,2],关于x 的方程f (x )=g (x 0)在(0,e]上都有实数根, 所以A ⊆B.因为当x →0+,f (x )→-∞,所以只需f (x )max ≥1e -2. 易得f'(x )=1x +2ax +2+a =(2x +1)(xx +1)x ,令f'(x )=0,得x =-1x 或x =-12(舍去),当-1x ≥e,即-1e ≤a <0时,f (x )在(0,e]上是增函数, 则f (x )max =f (e)=1+a e 2+2e+a e ≥1e -2, 解得a ≥-(2e +e -1e 3+e 2),∴-1e ≤a <0.当-1x <e,即a <-1e 时,f (x )在(0,-1x )上单调递增,在(-1x ,e ]上单调递减,则f (x )max =f (-1x )=ln (-1x )+1x -2x -1≥1e -2,即ln (-1x )-1x ≥1e -1,令h (x )=ln x +x ,易知h (x )在(0,+∞)上单调递增, 而h (1e )=1e -1, 于是-1x ≥1e ,解得-e ≤a <-1e . 综上,实数a 的取值范围为-e ≤a <0. 二、多项选择题9.BD 当mn >0时,将原方程整理,得x 21x +x 21x=1,若m ,n 同负或1x =1x,则方程不表示椭圆,A 错误;当mn <0时,1x 与1x 异号,方程表示双曲线,B 正确;当m =0时,方程为ny 2=1,当n ≤0时,方程无解,故C 错误;无论m 、n 为何值,此方程都不可能表示抛物线,D 正确.故选BD . 10.ABD ∵S 16=16(x 1+x 16)2>0,∴a 8+a 9=a 1+a 16>0,∴B 正确. 又S 17=17(x 1+x 17)2=17a 9<0,∴a 9<0,∴a 8>0,∴d =a 9-a 8<0,∴a 1>0,∴A、D 正确.易知S 8是S n 的最大值,S 9不是S n 的最大值,∴C 错误.故选ABD .11.BCD 因为抛物线的焦点F 到其准线的距离为2,所以p =2,所以抛物线C 的焦点为F (1,0),准线方程为x =-1,故选项A 错误;当直线PQ 垂直于x 轴时,线段PQ 的长度最小,此时不妨设P (1,2),Q (1,-2),所以PQ min =4,故选项B 正确;设P (x 1,y 1),Q (x 2,y 2),直线PQ 的方程为x =my +1,联立{x =xx +1,x 2=2xx ,消去x ,将p =2代入可得y 2-4my -4=0,所以y 1+y 2=4m ,y 1y 2=-4,S△OPQ=12×OF ×|y 1-y 2|=12×1×√(x 1+x 2)2-4x 1x 2=12×√16x 2+16≥2,当且仅当m =0时“=”成立,故选项C 正确;x 1x 2=(my 1+1)(my 2+1)=m (y 1+y 2)+m 2y 1y 2+1=1,y 1y 2=-4,所以xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=-3,故选项D 正确.故选BCD .12.BCD ∵f (x )=e x ·x 3, ∴f'(x )=e x(x 3+3x 2). 令f'(x )=0,得x =0或x =-3. 当x <-3时,f'(x )<0,f (x )单调递减, 当x >-3时,f'(x )≥0,f (x )单调递增,A 错误. 又0<log 52<12<e -12<1<lnπ,∴f (log 52)<f (e -12)<f (lnπ),B 正确. ∵f (0)=0,f (-3)=e -3·(-3)3=-(3e )3<-1,∴f (x )=-1有实数根,C 正确. 显然x =0是方程f (x )=kx 的根, 当x ≠0时,k =x (x )x=e x ·x 2,设g (x )=e x ·x 2(x ≠0),则g'(x )=x (x +2)e x ,令g'(x )=0,得x =0或x =-2.当x 发生变化时,g'(x ),g (x )的变化情况如下表:x (-∞,-2)-2 (-2,0) 0 (0,+∞) g'(x ) + 0 - 0 + g (x )↗4x 2↘↗画出函数g (x )的大致图象,如图所示,∴当0<k <4e 2时,g (x )=k 有3个实数根,∴D 正确.故选BCD . 三、填空题 13.答案 √2解析 由于直线l 1与l 2平行,则2a =-(a -3)且0≠-4a ,解得a =1,所以直线l 1的方程为x +y =0,直线l 2的方程为x +y -2=0,因此,直线l 1与l 2之间的距离为√22=√2.14.答案 768解析 由a n +1=3S n ,得S n +1-S n =3S n ,即S n +1=4S n ,又S 1=a 1=1,所以数列{S n }是首项为1,公比为4的等比数列,所以S n =4n -1,所以a 6=S 6-S 5=45-44=3×44=768. 15.答案 [2,+∞)解析 ∵f (x )=x 3+ax 2+x +1,∴f'(x )=3x 2+2ax +1,∵函数f (x )在区间-23,-13内是减函数,∴f'(x )≤0在区间(-23,-13)内恒成立,即a ≥-3x 2-12x 在区间(-23,-13)内恒成立,令g (x )=-3x 2-12x (-23<x <-13),则g'(x )=-32+12x 2=-3x 2+12x 2,∴当x ∈(-23,-√33)时,g'(x )<0,g (x )单调递减;当x ∈(-√33,-13)时,g'(x )>0,g (x )单调递增, 又g (-23)=74,g (-13)=2,∴g (x )<2,∴a ≥2.16.答案x 24+y 2=1;[1,4]解析 由题意可知2b =2,则b =1,x △x 1xx =12(a -c )b =x -x 2=2-√32,故有{x -x =2-√3,x 2=x 2-x 2=1,x >0,x >0,解得{x =2,x =√3,所以椭圆的标准方程为x 24+y 2=1.由题意可得2-√3≤PF 1≤2+√3,PF 1+PF 2=2a =4,所以1xx 1+1xx 2=xx 1+xx 2xx 1·xx 2=4xx 1·(4-xx 1),因为PF 1·(4-PF 1)=-(xx 1-2)2+4∈[1,4],所以1xx 1+1xx 2=4xx1·(4-xx 1)∈[1,4].四、解答题17.解析 (1)选择条件①: 设等差数列{a n }的公差为d ,则{x 1+2x =5,4x 1+4×32x -x 1-2x =x 1+5x ,(2分) 解得{x 1=1,x =2,(4分)∴a n =2n -1. (5分) 选择条件②:设等差数列{a n }的公差为d ,则{x 1+2x =5,2(3x 1+3×22x )=x 1+x 1+8x , (2分) 解得{x 1=1,x =2,(4分)∴a n =2n -1. (5分)选择条件③:设等差数列{a n }的公差为d ,则{x 1+2x =5,5x 5=5(x 1+4x )=5(3x 1+3×22x ),(2分) 解得{x 1=1,x =2,(4分)∴a n =2n -1. (5分) (2)由(1)可得b n =1x x ·x x +1=1(2x -1)(2x +1)=12(12x -1-12x +1),(7分)∴T n =b 1+b 2+…+b n=12(11-13+13-15+…+12x -1-12x +1) =12(1-12x +1)=x2x +1.(10分)18.解析 (1)方程x 2+y 2+2x -4y +a =0可化为(x +1)2+(y -2)2=5-a. (2分) 若其曲线是圆,则5-a >0,得a <5.(4分)其圆心坐标为C (-1,2),半径r =√5-x . (6分) (2)当a =1时,曲线的方程为(x +1)2+(y -2)2=4, (7分) 它表示的是圆,圆心为C (-1,2),半径r =2. (8分)圆心到直线l 的距离d =√2=√2. (10分)∴弦长MN =2√x 2-x 2=2√4-2=2√2. (12分) 19.解析 (1)∵a n +1=2S n +1(n ∈N *),① ∴当n ≥2时,a n =2S n -1+1,② ①-②,化简可得a n +1=3a n , (1分) 即数列{a n }是以3为公比的等比数列, (2分)又∵S 2=4, ∴a 1+3a 1=4,解得a 1=1,即a n =3n -1. (3分) 设数列{b n }的公差为d (d ≠0),b 1=a 1=1, ∵b 1,b 2,b 7成等比数列, ∴1×(1+6d )=(1+d )2, (4分) 解得d =4或d =0(舍去),即b n =4n -3,∴数列{a n }和{b n }的通项公式分别为a n =3n -1,b n =4n -3. (6分) (2)由(1)得c n =x x x x =4x -33x -1, (7分)∴T n =(13)0+5×(13)1+9×(13)2+…+(4n -3)(13)x -1,③13T n =(13)1+5×(13)2+9×(13)3+…+(4n -7)×(13)x -1+(4n -3)(13)x,④ ③-④,得23T n =1+4×(13)1+4×(13)2+…+4×(13)x -1-(4n -3)(13)x=3-(4n +3)(13)x. (10分) ∴T n =92-3(4x +3)2(13)x,即有T n <92恒成立,由T n <m 恒成立, 可得m ≥92,即m 的取值范围是[92,+∞). (12分)易错警示 (1)利用a n =S n -S n -1(n ≥2)求a n 时,要注意n ≥2这一限制条件;(2)当数列{a n }、{b n }分别为等差数列、等比数列时,数列{a n ·b n }或{xx x x}的前n 项和一般用错位相减法求解,但在求和时要特别注意两式相减后抵消了哪些项、各项的符号有没有发生变化等. 20.解析 (1)当m =13时,函数f (x )=x 4-13x +4(x ∈[4,8]),可得f'(x )=14+13x 2>0, 所以f (x )在区间[4,8]上为增函数,满足条件①; (2分) 又因为f (4)=74<2=12×4,所以当m =13时不满足条件②. (3分)综上可得,当参数m =13时不满足条件. (5分) (2)由函数f (x )=x 4-xx+4,可得f'(x )=14+x x 2=x 2+4x 4x 2,x ∈[4,8], (6分)所以当m ≥0时,f'(x )≥0,满足条件①; (8分) 当m <0时,令f'(x )=0,可得x =2√-x (负值舍去), 当x ∈[2√-x ,+∞)时,f'(x )≥0,f (x )单调递增, 所以此时若要满足条件①,应有2√-x ≤4,解得-4≤m <0. 综上可得,m ≥-4. (10分)由条件②可知,f (x )≥x2,即不等式x 4+xx ≤4在[4,8]上恒成立,等价于m ≤-14x 2+4x =-14(x -8)2+16在[4,8]上恒成立. 当x =4时,y =-14(x -8)2+16取得最小值,最小值为12, 所以m ≤12. (11分)综上,参数m 的取值范围是[-4,12]. (12分)21.解析 (1)因为抛物线C :x 2=2py (p >0)的准线方程为y =-1, 所以x2=1,即p =2, (3分)所以抛物线C 的标准方程为x 2=4y. (4分)(2)由题意知直线l 的斜率存在,故可设直线l 的方程为y =kx -1,A (x 1,y 1),B (x 2,y 2),则A'(-x 1,y 1),联立{x 2=4x ,x =xx -1,得x 2-4kx +4=0.则Δ=16k 2-16>0,x 1x 2=4,x 1+x 2=4k , (6分) 所以k A'B =x 2-x 1x 2+x 1=x 224-x 124x 1+x 2=x 2-x 14. (7分)于是直线A'B 的方程为y -x 224=x 2-x 14(x -x 2),所以y =x 2-x 14x +x 224-(x 2-x 1)x 24,即y =x 2-x 14x +1, (10分)当x =0时,y =1.即直线A'B 过定点(0,1). (12分)22.解析 (1)由已知得f'(x )=e x-1-2ax , (1分) 令h (x )=e x-1-2ax ,则h'(x )=e x-2a , 当x ≥0时,e x ≥1.故当2a ≤1时,h'(x )=e x-2a ≥0恒成立, ∴h (x )在[0,+∞)上单调递增,∴h (x )≥h (0)=0,即f'(x )≥0,∴f (x )在[0,+∞)上为增函数, ∴f (x )≥f (0)=0恒成立,∴a ≤12时满足条件. (3分)当2a >1时,令h'(x )=0,解得x =ln2a ,在[0,ln2a )上,h'(x )<0,h (x )在[0,ln2a )上单调递减, ∴当x ∈[0,ln2a )时,有h (x )≤h (0)=0,即f'(x )≤0,当且仅当x =0时,f'(x )=0,故f (x )在[0,ln2a )上为减函数,∴f (x )<f (0)=0,不符合题意. (5分)综上,实数a 的取值范围为(-∞,12]. (6分) (2)证明:由(1)得,当a =12,x >0时,e x>1+x +x 22成立,即e x-1>x +x 22=x 2+2x 2成立, (7分)∵x >0, ∴ln(x +1)>0,要证不等式(e x-1)ln(x +1)>x 2, 只需证e x-1>x 2ln(x +1), (8分) 只需证x 2+2x 2>x 2ln(x +1),只需证ln(x +1)>2x2+x 成立, (9分) 设F (x )=ln(x +1)-2xx +2(x >0), (10分) 则F'(x )=1x +1-4(x +2)2=x 2(x +1)(x +2)2,∴当x >0时,F'(x )>0恒成立,故F (x )在(0,+∞)上单调递增, 又F (0)=0, ∴F (x )>0恒成立, ∴原不等式成立. (12分)。
苏教版高中数学必修一模块综合测评.docx
高中数学学习材料马鸣风萧萧*整理制作模块综合测评(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上)1.已知集合A ={}0,1,2,3,4,B ={}x ||x |<2,则A ∩B =________. 【解析】 B ={}x ||x |<2={}x |-2<x <2,A ∩B ={}0,1. 【答案】{}0,12.如果集合P ={x |x >-1},那么下列结论成立的是________.(填序号) (1)0⊆P ;(2){0}∈P ;(3)∅∈P ;(4){0}⊆P .【解析】 元素与集合之间的关系是从属关系,用符号∈或∉表示,故(1)(2)(3)不对,又0∈P ,所以{0}⊆P .【答案】 (4)3.设集合B ={a 1,a 2,…,a n },J ={b 1,b 2,…,b m },定义集合B ⊕J ={(a ,b )|a =a 1+a 2+…+a n ,b =b 1+b 2+…+b m },已知B ={0,1,2},J ={2,5,8},则B ⊕J 的子集为________.【解析】 因为根据新定义可知,0+1+2=3,2+5+8=15,故B ⊕J 的子集为∅,{(3,15)}.【答案】 ∅,{(3,15)}4.若函数f (x )=log 2 (x -1)2-x 的定义域为A ,g (x )=ln (1-x )的定义域为B ,则∁R (A ∪B )=________.【解析】 由题意知,⎩⎨⎧x -1>0,2-x >0⇒1<x <2.∴A =(1,2).⎩⎨⎧1-x >0,ln (1-x )≥0⇒x ≤0. ∴B =(-∞,0], A ∪B =(-∞,0]∪(1,2), ∴∁R (A ∪B )=(0,1]∪[2,+∞). 【答案】 (0,1]∪[2,+∞)5.若方程x 3-x +1=0在区间(a ,b )(a ,b ∈Z ,且b -a =1)上有一根,则a +b 的值为________.【解析】 设f (x )=x 3-x +1,则f (-2)=-5<0,f (-1)=1>0,所以a =-2,b =-1,则a +b =-3.【答案】 -36.已知函数y =g (x )与y =log a x 互为反函数,f (x )=g (3x -2)+2,则f (x )的图象恒过定点________.【解析】 由题知g (x )=a x ,∴f (x )=a 3x -2+2,由3x -2=0,得x =23,故函数f (x )=a 3x -2+2(a >0,a ≠1)的图象恒过定点⎝ ⎛⎭⎪⎫23,3. 【答案】 ⎝ ⎛⎭⎪⎫23,37.已知函数f (x )=(m -1)x 2+2mx +3为偶函数,则f (x )在(-5,-2)上是________.(填序号)①增函数;②减函数;③非单调函数;④可能是增函数,也可能是减函数. 【解析】 ∵f (x )为偶函数,∴m =0,即f (x )=-x 2+3在(-5,-2)上是增函数.【答案】 ①8.已知函数f (x )=a x +log a x (a >0且a ≠1)在[1,2]上的最大值与最小值之和为log a 2+6,则a =________.【解析】 依题意,函数f (x )=a x +log a x (a >0且a ≠1)在[1,2]上具有单调性,因此a +a 2+log a 2=log a 2+6,解得a =2.【答案】 29.已知f (x )=⎩⎨⎧x 2+1,x ≤0,2x ,x >0,若f (x )=10,则x =________.【解析】 当x ≤0时,令x 2+1=10,解得x =-3或x =3(舍去); 当x >0时,令2x =10, 解得x =5.综上,x =-3或x =5. 【答案】 -3或510.若y =f (x )是奇函数,当x >0时,f (x )=2x +1,则f ⎝ ⎛⎭⎪⎫log 2 13=________.【解析】 ∵f (x )是奇函数, ∴f ⎝ ⎛⎭⎪⎫log 2 13=f (-log 2 3) =-f (log 2 3).又log 2 3>0,且x >0时,f (x )=2x +1,∴f ⎝ ⎛⎭⎪⎫log 2 13=-4.【答案】 -411.定义在R 上的函数f (x )满足f (x )=⎩⎨⎧log 2(4-x ),x ≤0,f (x -1)-f (x -2),x >0,则f (3)的值为________.【解析】 ∵3>0,且x >0时,f (x )=f (x -1)-f (x -2),∴f (3)=f (2)-f (1),又f (2)=f (1)-f (0),所以f (3)=-f (0),又∵x ≤0时,f (x )=log 2 (4-x ),∴f (3)=-f (0)=-log 2 (4-0)=-2.【答案】 -212.函数y =f (x )的图象如图1所示,则函数y =log 12f (x )的图象大致是________.(填序号)图1【解析】 设y =log 12u ,u =f (x ),所以根据外层函数是单调减函数,所以看函数u =f (x )的单调性,在(0,1)上u =f (x )为减函数,所以整体是增函数,u >1,所以函数值小于0,在(1,2)上u =f (x )为增函数,所以整体是减函数,u >1,所以函数值小于0,所以选③.【答案】 ③13.若函数y =⎝ ⎛⎭⎪⎫12|1-x |+m 的图象与x 轴有公共点,则m 的取值范围是________.【解析】 ∵y =⎝ ⎛⎭⎪⎫12|1-x |=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -1(x ≥1),2x -1(x <1),∴画图象可知-1≤m <0. 【答案】 [-1,0)14.已知f (x )=x 2-2ax +2(a ≤-1),若当x ∈[-1,+∞)时,f (x )≥a 恒成立,则实数a 的取值范围是________.【解析】 函数f (x )的对称轴为直线x =a , 当a ≤-1,x ∈[-1,+∞)时, f (x )min =f (-1)=3+2a .又f (x )≥a 恒成立,所以f (x )min ≥a , 即3+2a ≥a ,解得a ≥-3.所以-3≤a ≤-1. 【答案】 [-3,-1]二、解答题(本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤)(2)原式=⎝ ⎛⎭⎪⎫log 2 3+23log 2 3⎝ ⎛⎭⎪⎫2log 3 2+32log 3 2+log 3 2+(lg 2)2+(1+lg 2)lg 5=53log 2 3·92log 3 2+(lg 2)2+lg 2·lg 5+lg 5=152+lg 2(lg 5+lg 2)+lg 5=152+lg 2+lg 5=152+1=172.16.(本小题满分14分)已知集合A ={x |3≤3x ≤27},B ={x |log 2 x >1}. (1)分别求A ∩B ,(∁R B )∪A ;(2)已知集合C ={x |1<x <a },若C ⊆A ,求实数a 的取值范围. 【解】 (1)A ={x |3≤3x ≤27}={x |1≤x ≤3},B ={x |log 2 x >1}={x |x >2},A ∩B ={x |2<x ≤3},(∁R B )∪A ={x |x ≤2}∪{x |1≤x ≤3}={x |x ≤3}.(2)①当a ≤1时,C =∅,此时C ⊆A ; ②当a >1时,C ⊆A ,则1<a ≤3.综合①②,可得a 的取值范围是(-∞,3].17.(本小题满分14分)某企业拟共用10万元投资甲、乙两种商品.已知各投入x 万元时,甲、乙两种商品可分别获得y 1,y 2万元的利润,利润曲线P 1:y 1=ax n ,P 2:y 2=bx +c 如图2所示.图2(1)求函数y 1,y 2的解析式;(2)为使投资获得最大利润,应怎样分配投资? 【解】 由题图知P 1:y 1=ax n 过点⎝ ⎛⎭⎪⎫1,54,⎝ ⎛⎭⎪⎫4,52,∴⎩⎪⎨⎪⎧ 54=a ·1n,52=a ·4n ,∴⎩⎪⎨⎪⎧a =54,n =12,∴y 1=54x ,x ∈[0,+∞).P 2:y 2=bx +c 过点(0,0),(4,1),∴⎩⎨⎧0=0+c ,1=4b +c ,∴⎩⎪⎨⎪⎧c =0,b =14,∴y 2=14x ,x ∈[0,+∞). (2)设用x 万元投资甲商品,那么投资乙商品为(10-x )万元,则y =54x +14(10-x )=-14x +54 x +52=-14⎝ ⎛⎭⎪⎫x -522+6516(0≤x ≤10),当且仅当x =52即x =254=6.25时,y max =6516, 此时投资乙商品为10-x =10-6.25=3.75万元,故用6.25万元投资甲商品,3.75万元投资乙商品,才能获得最大利润. 18.(本小题满分16分)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=a x -1.其中a >0且a ≠1.(1)求f (2)+f (-2)的值; (2)求f (x )的解析式;(3)解关于x 的不等式-1<f (x -1)<4,结果用集合或区间表示. 【解】 (1)∵f (x )是奇函数, ∴f (-2)=-f (2), 即f (2)+f (-2)=0. (2)当x <0时,-x >0,∴f (-x )=a -x -1.由f (x )是奇函数,有f (-x )=-f (x ), 即f (x )=-a -x +1(x <0). ∴所求的解析式为f (x )=⎩⎨⎧a x-1(x ≥0),-a -x+1(x <0).(3)不等式等价于 ⎩⎨⎧ x -1<0,-1<-a-x +1+1<4, 或⎩⎨⎧x -1≥0,-1<a x -1-1<4,即⎩⎨⎧ x -1<0,-3<a -x +1<2或⎩⎨⎧x -1≥0,0<a x -1<5. 当a >1时,有⎩⎨⎧x <1,x >1-log a 2或⎩⎨⎧x ≥1,x <1+log a 5,注意此时log a 2>0,log a 5>0,可得此时不等式的解集为(1-log a 2,1+log a 5). 同理可得,当0<a <1时,不等式的解集为R . 综上所述,当a >1时,不等式的解集为(1-log a 2,1+log a 5); 当0<a <1时,不等式的解集为R .19.(本小题满分16分)已知函数f (x )=log a (a x -1)(a >0,a ≠1), (1)求函数f (x )的定义域; (2)判断函数f (x )的单调性.【解】 (1)函数f (x )有意义,则a x -1>0, 当a >1时,由a x -1>0,解得x >0; 当0<a <1时,由a x -1>0,解得x <0. ∴当a >1时,函数的定义域为(0,+∞);当0<a <1时,函数的定义域为(-∞,0).由函数单调性定义知:当0<a <1时,f (x )在(-∞,0)上是单调递增的. 20.(本小题满分16分)设函数y =f (x )是定义域为R ,并且满足f (x +y )=f (x )+f (y ),f ⎝ ⎛⎭⎪⎫13=1,且当x >0时,f (x )>0.(1)求f (0)的值; (2)判断函数的奇偶性;(3)如果f (x )+f (2+x )<2,求x 的取值范围. 【解】 (1)令x =y =0, 则f (0)=f (0)+f (0),∴f (0)=0. (2)令y =-x ,得f (0)=f (x )+f (-x )=0,∴f (-x )=-f (x ).故函数f (x )是R 上的奇函数. (3)任取x 1,x 2∈R ,x 1<x 2, 则x 2-x 1>0, ∴f (x 2)-f (x 1) =f (x 2-x 1+x 1)-f (x 1) =f (x 2-x 1)+f (x 1)-f (x 1) =f (x 2-x 1)>0.∴f (x 1)<f (x 2).故f (x )是R 上的增函数. ∵f ⎝ ⎛⎭⎪⎫13=1,∴f ⎝ ⎛⎭⎪⎫23=f ⎝ ⎛⎭⎪⎫13+13=f ⎝ ⎛⎭⎪⎫13+f ⎝ ⎛⎭⎪⎫13=2.∴f (x )+f (2+x )=f [x +(2+x )] =f (2x +2)<f ⎝ ⎛⎭⎪⎫23,又由y =f (x )是定义在R 上的增函数, 得2x +2<23,解得x <-23. 故x ∈⎝ ⎛⎭⎪⎫-∞,-23.。
苏教版数学高一 必修1模块综合测评
模块综合测评(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上)1.已知集合A ={}0,1,2,3,4,B ={}x ||x |<2,则A ∩B =________. 【解析】 B ={}x ||x |<2={}x |-2<x <2,A ∩B ={}0,1. 【答案】{}0,12.如果集合P ={x |x >-1},那么下列结论成立的是________.(填序号) (1)0⊆P ;(2){0}∈P ;(3)∅∈P ;(4){0}⊆P .【解析】 元素与集合之间的关系是从属关系,用符号∈或∉表示,故(1)(2)(3)不对,又0∈P ,所以{0}⊆P .【答案】 (4)3.设集合B ={a 1,a 2,…,a n },J ={b 1,b 2,…,b m },定义集合B ⊕J ={(a ,b )|a =a 1+a 2+…+a n ,b =b 1+b 2+…+b m },已知B ={0,1,2},J ={2,5,8},则B ⊕J 的子集为________.【解析】 因为根据新定义可知,0+1+2=3,2+5+8=15,故B ⊕J 的子集为∅,{(3,15)}.【答案】 ∅,{(3,15)} 4.若函数f (x )=log 2 (x -1)2-x的定义域为A ,g (x )=ln (1-x )的定义域为B ,则∁R (A ∪B )=________.【解析】 由题意知,⎩⎪⎨⎪⎧x -1>0,2-x >0⇒1<x <2.∴A =(1,2).⎩⎪⎨⎪⎧1-x >0,ln (1-x )≥0⇒x ≤0.∴B =(-∞,0], A ∪B =(-∞,0]∪(1,2), ∴∁R (A ∪B )=(0,1]∪2,+∞). 【答案】 (0,1]∪2,+∞)5.若方程x 3-x +1=0在区间(a ,b )(a ,b ∈Z ,且b -a =1)上有一根,则a +b 的值为________.【解析】 设f (x )=x 3-x +1,则f (-2)=-5<0,f (-1)=1>0,所以a =-2,b =-1,则a +b =-3.【答案】 -36.已知函数y =g (x )与y =log a x 互为反函数,f (x )=g (3x -2)+2,则f (x )的图象恒过定点________.【解析】 由题知g (x )=a x ,∴f (x )=a 3x -2+2,由3x -2=0,得x =23,故函数f (x )=a 3x -2+2(a >0,a ≠1)的图象恒过定点⎝ ⎛⎭⎪⎫23,3. 【答案】 ⎝ ⎛⎭⎪⎫23,37.已知函数f (x )=(m -1)x 2+2mx +3为偶函数,则f (x )在(-5,-2)上是________.(填序号)①增函数;②减函数;③非单调函数;④可能是增函数,也可能是减函数. 【解析】 ∵f (x )为偶函数,∴m =0,即f (x )=-x 2+3在(-5,-2)上是增函数.【答案】 ①8.已知函数f (x )=a x +log a x (a >0且a ≠1)在1,2]上的最大值与最小值之和为log a 2+6,则a =________.【解析】 依题意,函数f (x )=a x +log a x (a >0且a ≠1)在1,2]上具有单调性,因此a +a 2+log a 2=log a 2+6,解得a =2.【答案】 29.已知f (x )=⎩⎨⎧x 2+1,x ≤0,2x ,x >0,若f (x )=10,则x =________. 【导学号:37590093】【解析】 当x ≤0时,令x 2+1=10,解得x =-3或x =3(舍去); 当x >0时,令2x =10, 解得x =5.综上,x =-3或x =5. 【答案】 -3或510.若y =f (x )是奇函数,当x >0时,f (x )=2x +1,则f ⎝ ⎛⎭⎪⎫log 2 13=________.【解析】 ∵f (x )是奇函数, ∴f ⎝ ⎛⎭⎪⎫log 2 13=f (-log 2 3) =-f (log 2 3).又log 2 3>0,且x >0时,f (x )=2x +1, 故f (log 2 3)=2log 2 3+1=3+1=4, ∴f ⎝ ⎛⎭⎪⎫log 2 13=-4. 【答案】 -411.定义在R 上的函数f (x )满足f (x )=⎩⎨⎧log 2(4-x ),x ≤0,f (x -1)-f (x -2),x >0,则f (3)的值为________.【解析】 ∵3>0,且x >0时,f (x )=f (x -1)-f (x -2),∴f (3)=f (2)-f (1),又f (2)=f (1)-f (0),所以f (3)=-f (0),又∵x ≤0时,f (x )=log 2 (4-x ),∴f (3)=-f (0)=-log 2 (4-0)=-2.【答案】 -212.函数y =f (x )的图象如图1所示,则函数y =log 12f (x )的图象大致是________.(填序号)图1【解析】 设y =log 12u ,u =f (x ),所以根据外层函数是单调减函数,所以看函数u =f (x )的单调性,在(0,1)上u =f (x )为减函数,所以整体是增函数,u >1,所以函数值小于0,在(1,2)上u =f (x )为增函数,所以整体是减函数,u >1,所以函数值小于0,所以选③.【答案】 ③13.若函数y =⎝ ⎛⎭⎪⎫12|1-x |+m 的图象与x 轴有公共点,则m 的取值范围是________. 【导学号:37590094】【解析】∵y =⎝ ⎛⎭⎪⎫12|1-x |=⎩⎨⎧⎝ ⎛⎭⎪⎫12x -1(x ≥1),2x -1(x <1),∴画图象可知-1≤m <0. 【答案】 -1,0)14.已知f (x )=x 2-2ax +2(a ≤-1),若当x ∈-1,+∞)时,f (x )≥a 恒成立,则实数a 的取值范围是________.【解析】 函数f (x )的对称轴为直线x =a ,当a ≤-1,x ∈-1,+∞)时, f (x )min =f (-1)=3+2a .又f (x )≥a 恒成立,所以f (x )min ≥a , 即3+2a ≥a ,解得a ≥-3. 所以-3≤a ≤-1. 【答案】 -3,-1]二、解答题(本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分) 的值;(2)求(log 2 3+log 8 9)(log 3 4+log 9 8+log 3 2)+(lg 2)2+lg 20×lg 5的值.【解】(2)原式=⎝ ⎛⎭⎪⎫log 2 3+23log 2 3⎝ ⎛⎭⎪⎫2log 3 2+32log 3 2+log 3 2+(lg 2)2+(1+lg 2)lg 5=53log 2 3·92log 3 2+(lg 2)2+lg 2·lg 5+lg 5=152+lg 2(lg 5+lg 2)+lg 5=152+lg 2+lg 5=152+1=172.16.(本小题满分14分)已知集合A ={x |3≤3x ≤27},B ={x |log 2 x >1}. (1)分别求A ∩B ,(∁R B )∪A ;(2)已知集合C ={x |1<x <a },若C ⊆A ,求实数a 的取值范围. 【解】 (1)A ={x |3≤3x ≤27}={x |1≤x ≤3},B ={x |log 2 x >1}={x |x >2},A ∩B ={x |2<x ≤3},(∁R B )∪A ={x |x ≤2}∪{x |1≤x ≤3}={x |x ≤3}.(2)①当a ≤1时,C =∅,此时C ⊆A ; ②当a >1时,C ⊆A ,则1<a ≤3.综合①②,可得a 的取值范围是(-∞,3].17.(本小题满分14分)某企业拟共用10万元投资甲、乙两种商品.已知各投入x 万元时,甲、乙两种商品可分别获得y 1,y 2万元的利润,利润曲线P 1:y 1=ax n ,P 2:y 2=bx +c 如图2所示.图2(1)求函数y 1,y 2的解析式;(2)为使投资获得最大利润,应怎样分配投资? 【解】 由题图知P 1:y 1=ax n 过点⎝ ⎛⎭⎪⎫1,54,⎝ ⎛⎭⎪⎫4,52,x ∈0,+∞).P 2:y 2=bx +c 过点(0,0),(4,1), ∴⎩⎪⎨⎪⎧0=0+c ,1=4b +c ,∴⎩⎨⎧c =0,b =14,∴y 2=14x ,x ∈0,+∞).(2)设用x 万元投资甲商品,那么投资乙商品为(10-x )万元,则y =54x +14(10-x )=-14x +54 x +52=-14⎝ ⎛⎭⎪⎫x -522+6516(0≤x ≤10),当且仅当x =52即x =254=6.25时,y max =6516, 此时投资乙商品为10-x =10-6.25=3.75万元,故用6.25万元投资甲商品,3.75万元投资乙商品,才能获得最大利润. 18.(本小题满分16分)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=a x -1.其中a >0且a ≠1.(1)求f (2)+f (-2)的值; (2)求f (x )的解析式;(3)解关于x 的不等式-1<f (x -1)<4,结果用集合或区间表示. 【解】 (1)∵f (x )是奇函数, ∴f (-2)=-f (2), 即f (2)+f (-2)=0. (2)当x <0时,-x >0, ∴f (-x )=a -x -1.由f (x )是奇函数,有f (-x )=-f (x ), 即f (x )=-a -x +1(x <0). ∴所求的解析式为f (x )=⎩⎪⎨⎪⎧a x -1(x ≥0),-a -x +1(x <0).(3)不等式等价于⎩⎪⎨⎪⎧ x -1<0,-1<-a-x +1+1<4,或⎩⎪⎨⎪⎧x -1≥0,-1<a x -1-1<4,即⎩⎪⎨⎪⎧ x -1<0,-3<a -x +1<2或⎩⎪⎨⎪⎧x -1≥0,0<a x -1<5.当a >1时,有⎩⎪⎨⎪⎧x <1,x >1-log a 2或⎩⎪⎨⎪⎧x ≥1,x <1+log a 5,注意此时log a 2>0,log a 5>0,可得此时不等式的解集为(1-log a 2,1+log a 5). 同理可得,当0<a <1时,不等式的解集为R . 综上所述,当a >1时,不等式的解集为(1-log a 2,1+log a 5); 当0<a <1时,不等式的解集为R .19.(本小题满分16分)已知函数f (x )=log a (a x -1)(a >0,a ≠1), (1)求函数f (x )的定义域; (2)判断函数f (x )的单调性.【解】 (1)函数f (x )有意义,则a x -1>0, 当a >1时,由a x -1>0,解得x >0; 当0<a <1时,由a x -1>0,解得x <0. 所以当a >1时,函数的定义域为(0,+∞); 当0<a <1时,函数的定义域为(-∞,0).(2)当a >1时,任取x 1,x 2∈(0,+∞),且x 1>x 2,则即f (x 1)>f (x 2).由函数单调性定义知:当0<a <1时,f (x )在(-∞,0)上是单调递增的. 20.(本小题满分16分)设函数y =f (x )是定义域为R ,并且满足f (x +y )=f (x )+f (y ),f ⎝ ⎛⎭⎪⎫13=1,且当x >0时,f (x )>0.(1)求f (0)的值;(2)判断函数的奇偶性; 【导学号:37590095】 (3)如果f (x )+f (2+x )<2,求x 的取值范围. 【解】 (1)令x =y =0, 则f (0)=f (0)+f (0), ∴f (0)=0. (2)令y =-x ,得f (0)=f (x )+f (-x )=0,∴f (-x )=-f (x ).故函数f (x )是R 上的奇函数.(3)任取x 1,x 2∈R ,x 1<x 2, 则x 2-x 1>0, ∴f (x 2)-f (x 1) =f (x 2-x 1+x 1)-f (x 1) =f (x 2-x 1)+f (x 1)-f (x 1) =f (x 2-x 1)>0.∴f (x 1)<f (x 2).故f (x )是R 上的增函数. ∵f ⎝ ⎛⎭⎪⎫13=1, ∴f ⎝ ⎛⎭⎪⎫23=f ⎝ ⎛⎭⎪⎫13+13 =f ⎝ ⎛⎭⎪⎫13+f ⎝ ⎛⎭⎪⎫13=2.∴f (x )+f (2+x )=f x +(2+x )] =f (2x +2)<f ⎝ ⎛⎭⎪⎫23,又由y =f (x )是定义在R 上的增函数, 得2x +2<23,解得x <-23. 故x ∈⎝ ⎛⎭⎪⎫-∞,-23.。
2020-2021学年苏教版高中数学必修一模块综合检测题及解析
(新课标)最新苏教版高中数学必修一模块综合检测卷(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题意的)1.已知全集U={1,2,3,4},A={1,2},B={2,3},则∁U(A∪B)=( )A.{3} B.{4}C.{3,4} D.{1,3,4}解析:因为A={1,2},B={2,3},所以A∪B={1,2,3}.所以∁U(A∪B)={4}.答案:B2.当a>1时,在同一平面直角坐标系中,函数y=a-x与y=log a x的图象是( )答案:A3.已知集合A={x|y=x+1},B={y|y=x2+1},则A∩B=( ) A.∅B.[-1,1]C.[-1,+∞) D.[1,+∞)解析:A={x|y=x+1}={x|x≥-1},B={y|y=x2+1}={y|y≥1}.所以A∩B=[1,+∞).答案:D4.设f(x)是R上的偶函数,且在(0,+∞)上是减函数,若x1<0,x1+x2>0,则( )A.f(-x1)>f(-x2)B.f(-x1)=f(-x2)C.f(-x1)<f(-x2)D.f(-x1)与f(-x2)大小不确定解析:由x1<0,x1+x2>0得x2>-x1>0,又f(x)是R上的偶函数,且在(0,+∞)上是减函数,所以f(-x 2)=f(x 2)<f(-x 1). 答案:A5.已知函数f(x)的单调递增区间是(-2,3),则y =f(x +5)的单调递增区间是( )A .(3,8)B .(-7,-2)C .(-2,3)D .(0,5)解析:因为f(x)的单调递增区间是(-2,3),则f(x +5)的单调递增区间满足-2<x +5<3,即-7<x <-2.答案:B6.若x ∈[0,1],则函数y =x +2-1-x 的值域是( ) A .[2-1,3-1] B .[1, 3 ] C .[2-1, 3 ]D .[0,2-1]解析:该函数为增函数,自变量最小时,函数值最小;自变量最大时,函数值最大.故y min =2-1,y max = 3.答案:C7.下列不等式正确的是( )A.⎝ ⎛⎭⎪⎪⎫1612<⎝ ⎛⎭⎪⎪⎫1312<⎝ ⎛⎭⎪⎪⎫1614 B.⎝ ⎛⎭⎪⎪⎫1614<⎝ ⎛⎭⎪⎪⎫1612<⎝ ⎛⎭⎪⎪⎫1312 C.⎝ ⎛⎭⎪⎪⎫1312<⎝ ⎛⎭⎪⎪⎫1614<⎝ ⎛⎭⎪⎪⎫1612D.⎝ ⎛⎭⎪⎪⎫1312<⎝ ⎛⎭⎪⎪⎫1612<⎝ ⎛⎭⎪⎪⎫1614 答案:A8.已知函数f(x)=e x -1,g(x)=-x 2+4x -3,若有f(a)=g(b),则b 的取值范围为( )A .[2-2,2+2]B .(2-2,2+2)C .[1,3]D .(1,3)解析:f(x)=e x -1>-1,g(x)=-x 2+4x -3=-(x -2)2+1≤1,若有f(a)=f(b),则g(b)∈(-1,1],即-b 2+4b -3>-1⇒2-2<b<2+ 2.答案:B9.已知函数f(x)=⎩⎪⎨⎪⎧2x -1-2, x ≤1,-log 2(x +1),x >1,且f(a)=-3,则f(6-a)=( )A .-74B .-54C .-34D .-14解析:当a ≤1时,f(a)=2a -1-2=-3, 则2a -1=-1不成立,舍去. 当a >1时,f(a)=-log 2(a +1)=-3. 所以a +1=8,a =7.此时f(6-a)=f(-1)=2-2-2=-74.答案:A10.设偶函数f(x)=log a |x +b|在(0,+∞)上是单调减函数,则f(b -2)与f(a +1)的大小关系是( )A .f(b -2)=f(a +1)B .f(b -2)>f(a +1)C .f(b -2)<f(a +1)D .不能确定解析:因为y =log a |x +b|是偶函数,b =0, 所以y =log a |x|.又在(0,+∞)上是单调递减函数, 所以0<a <1.所以f(b -2)=f(-2)=f(2),f(a +1)中1<a +1<2. 所以f(2)<f(a +1),因此f(b -2)<f(a +1). 答案:C11.某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时, 则该食品在33 ℃的保鲜时间是( )A .16小时B .20小时C .24小时D .28小时解析:由题设得e b =192,① e 22k +b =e 22k ·e b =48,②将①代入②得e 22k=14,则e 11k=12.当x =33时,y =e 33k +b =(e 11k )3·e b =⎝ ⎛⎭⎪⎪⎫123×192=24.所以该食品在33 ℃的保鲜时间是24小时.答案:C12.已知函数f(x)=⎩⎪⎨⎪⎧x 2-ax +5,x <1,1+1x, x ≥1,在R 上单调,则实数a 的取值范围是( )A .(-∞,2]B .[2,+∞)C .[4,+∞)D .[2,4]解析:当x ≥1时,f(x)=1+1x 为减函数,所以f(x)在R 上应为单调递减函数, 要求当x <1时,f(x)=x 2-ax +5为减函数,所以a 2≥1,即a ≥2,并且满足当x =1时,f(x)=1+1x 的函数值不大于x =1时f(x)=x 2-ax +5的函数值,即1-a +5≥2,解得a ≤4.所以实数a 的取值范围[2,4]. 答案:D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.2-3,312与log 25三个数中最大的数是________.解析:因为2-3<1,312<2,log 25>2. 所以这三个数中最大的数为log 25. 答案:log 2514.函数y =x -2x -3lg4-x 的定义域是__________.解析:由题知⎩⎪⎨⎪⎧x -2≥0,x -3≠0,4-x >0,所以2≤x <4且x ≠3.答案:[2,3)∪(3,4)15.已知函数f(x)=b -2x2x +1为定义是区间[-2a ,3a -1]上的奇函数,则a +b =________.解析:因为函数f(x)=b -2x2x +1为定义是区间[-2a ,3a -1]上的奇函数,所以-2a +3a -1=0,所以a =1.又f(0)=b -2020+1=b -12=0,所以b =1.故a +b =2. 答案:216.若函数f(x)=|4x -x 2|-a 的零点个数为3,则a =________. 解析:作出g(x)=|4x -x 2|的图象,g(x)的零点为0和4.由图象可知,将g(x)的图象向下平移4个单位时,满足题意,所以a =4.答案:4三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程式演算步骤)17.(本小题满分10分)设函数f(x)=ax 2+(b -8)x -a -ab 的两个零点分别是-3和2.(1)求f(x);(2)当函数f(x)的定义域是[0,1]时,求函数f(x)的值域. 解:(1)因为f(x)的两个零点是-3和2, 所以函数图象过点(-3,0),(2,0). 所以有9a -3(b -8)-a -ab =0.① 4a +2(b -8)-a -ab =0.② ①-②得b =a +8.③③代入②得4a +2a -a -a(a +8)=0,即a 2+3a =0, 因为a ≠0, 所以a =-3. 所以b =a +8=5. 所以f(x)=-3x 2-3x +18.(2)由(1)得f(x)=-3x 2-3x +18=-3⎝⎛⎭⎪⎪⎫x +122+34+18,图象的对称轴方程是x =-12,又0≤x ≤1,所以f(x)min =f(1)=12,f(x)max =f(0)=18. 所以函数f(x)的值域是[12,18].18.(本小题满分12分)已知二次函数f(x)=ax 2+bx +1(a >0),F(x)=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,若f(-1)=0,且对任意实数x 均有f(x)≥0, (1)求F(x)的表达式;(2)当x ∈[-2,2]时,g(x)=f(x)-kx 是单调函数,求k 的取值范围.解:(1)因为f(x)=ax 2+bx +1,f(-1)=0, 所以a -b +1=0.又因为对任意实数x ,均有f(x)≥0, 所以Δ=b 2-4a ≤0. 所以(a +1)2-4a ≤0. 所以a =1,b =2. 所以f(x)=x 2+2x +1.所以F(x)=⎩⎪⎨⎪⎧x 2+2x +1,x >0,-x 2-2x -1,x <0.(2)因为g(x)=f(x)-kx =x 2+2x +1-kx =x 2+(2-k)x +1, 在[-2,2]上是单调函数, 所以k -22≥2或k -22≤-2,解之得k ≥6或k ≤-2.所以k 的取值范围是{k|k ≥6或k ≤-2}.19.(本小题满分12分)已知函数f(x)=2x -1x ,其定义域为{x|x ≠0}.(1)用单调性的定义证明函数f(x)在区间(0,+∞)上为增函数; (2)利用(1)所得到的结论,求函数f(x)在区间[1,2]上的最大值与最小值.(1)证明:设x 1,x 2∈(0,+∞),且x 1<x 2,则x 2-x 1>0. f(x 2)-f(x 1)=2x 2-1x 2-2x 1-1x 1=x 2-x 1x 1x 2.因为x 1<x 2, 所以x 2-x 1>0.又因为x 1,x 2∈(0,+∞), 所以x 2x 1>0,f(x 2)-f(x 1)>0.故f(x)=2x -1x在区间(0,+∞)上为增函数.(2)解:因为f(x)=2x -1x 在区间(0,+∞)上为增函数,所以f(x)min =f(1)=2-11=1,f(x)max =f(2)=2×2-12=32.20.(本小题满分12分)已知函数f(x)=x m-4x,且f(4)=3.(1)求m 的值; (2)判断f(x)的奇偶性;(3)若不等式f(x)-a >0在区间[1,+∞)上恒成立,求实数a 的取值范围.解:(1)因为f(4)=3, 所以4m-44=3,所以m =1.(2)由(1)知f(x)=x -4x,其定义域为{x|x ≠0},关于原点对称.又f(-x)=-x -4-x =-⎝⎛⎭⎪⎪⎫x -4x =-f(x),所以f(x)是奇函数.(3)因为y =x ,y =-1x 在区间[1,+∞)上都是增函数,所以f(x)在区间[1,+∞)上为增函数,所以f(x)≥f(1)=-3. 因为不等式f(x)-a >0在区间[1,+∞)上恒成立, 即不等式a <f(x)在区间[1,+∞)上恒成立, 所以a <-3,故实数a 的取值范围是(-∞,-3).21.(本小题满分12分)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v(单位:千克/年)是养殖密度x(单位:尾/立方米)的函数.当x 不超过4(尾/立方米)时,v 的值为2(千克/年);当4≤x ≤20时,v 是x 的一次函数;当x 达到20(尾/立方米)时,因缺氧等原因,v 的值为0(千克/年).(1)当0<x ≤20时,求函数v(x)的表达式;(2)当养殖密度x 为多大时,鱼的年生长量(单位:千克/立方米)f(x)=x ·v(x)可以达到最大,并求出最大值.解:(1)由题意:当0<x ≤4时,v(x)=2;当4<x ≤20时,设v(x)=ax +b ,显然该函数在[4,20]是减函数,由已知得⎩⎪⎨⎪⎧20a +b =0,4a +b =2,解得⎩⎪⎨⎪⎧a =-18,b =52.故函数v(x)=⎩⎪⎨⎪⎧2, 0<x ≤4,x ∈N *,-18x +52, 4≤x ≤20,x ∈N *.(2)依题意并由(1)可得f(x)=⎩⎪⎨⎪⎧2x , 0<x ≤4,x ∈N *,-18x 2+52x , 4≤x ≤20,x ∈N *.当0≤x ≤4时,f(x)为增函数,故f max (x)=f(4)=4×2=8;当4≤x ≤20时,f(x)=-18x 2+52x =-18(x 2-20x)=-18(x -10)2+10028,f max (x)=f(10)=12.5.所以,当0<x ≤20时,f(x)的最大值为12.5.当养殖密度为10尾/立方米时,鱼的年生长量可以达到最大,最大值约为12.5千克/立方米.22.(本小题满分12分)已知奇函数f(x)=m -g (x )1+g (x )的定义域为R ,其中g(x)为指数函数,且过定点(2,9).(1)求函数f(x)的解析式;(2)若对任意的t ∈[0,5],不等式f(t 2+2t +k)+f(-2t 2+2t -5)>0恒成立,求实数k 的取值范围.解:(1)设g(x)=a x (a >0,且a ≠1),则a 2=9.所以a =-3(舍去)或a =3,所以g(x)=3x ,f(x)=m -3x1+3x . 又f(x)为奇函数,且定义域为R ,所以f(0)=0, 则m -301+30=0,所以m =1,所以f(x)=1-3x 1+3x . (2)设x 1<x 2,则f(x 1)-f(x 2)=1-3x 11+3x 1-1-3x 21+3x 2=2(3x 2-3x 1)(1+3x 1)(1+3x 2).因为x 1<x 2, 所以3x 2-3x 1>0,所以2(3x 2-3x 1)(1+3x 1)(1+3x 2)>0,所以f(x 1)-f(x 2)>0,即f(x 1)>f(x 2), 所以函数f(x)在R 上单调递减.要使对任意的t ∈[0,5],f(t 2+2t +k)+f(-2t 2+2t -5)>0恒成立, 即f(t 2+2t +k)>-f(-2t 2+2t -5)恒成立. 因为f(x)为奇函数,所以f(t 2+2t +k)>f(2t 2-2t +5)恒成立. 又因为函数f(x)在R 上单调递减,所以对任意的t ∈[0,5],t 2+2t +k <2t 2-2t +5恒成立, 即对任意的t ∈[0,5],k <t 2-4t +5=(t -2)2+1恒成立. 而当t ∈[0,5]时,1≤(t -2)2+1≤10,所以k <1.。
(苏教版 提高版)高中数学 必修第一册答案
狓3=0成立,A是真命题.狓2+狓+1= 狓+12 2+34>0(狓∈犚)恒成立,因此不存在狓∈犚,使狓2+狓+ 1=0,B是假命题;2是偶数,C是真命题;0是有理数,0没有倒数,D是真命题 7.C 提示 由题意知 犃犆,则瓓犝犆瓓犝犃.由犅瓓犝犆,得犃∩犅=.若犃∩犅=,则存在集合犆,使得犃犆,犅瓓犝犆,所以 “存在集合犆,使得犃犆,犅瓓犝犆”是“犃∩犅=”的充要条件 8.C 提示 因为犅犃={-3,2},所 以若犅=,则犿=0;若犅≠,则狓=-3或狓=2,所以-3犿+1=0或2犿+1=0,解得犿=13或犿= -12.综上,犿=0或 13 或- 12 9.ABCD 提示 对于 A,方程 槡2狓-1+|3狔+3|=0的解集为
得犪≤0或犪≥4,所以实数犪 的取值范围是(-∞,0]∪[4,+∞) 20.(1)当犪=2时,犃={狓|1<狓< 7},犅={狓|-2≤狓≤4},所以犃∩犅={狓|1<狓≤4}.又犝=犚,所以(瓓犝犃)∪(瓓犝犅)=瓓犝(犃∩犅)={狓|
{ [ ] 狓≤1或狓>4} (2)若犃∪犅=犅,则犃犅.当犪-1≥2犪+3,即犪≤-4时,犃=,满足题意;当犪>-4
时,应满足 犪2犪-+13≥≤-42,,解得-1≤犪≤12.综上,实数犪的取值范围是(-∞,-4]∪ -1,12 21.①必 要性:因为犪+犫=1,所以犫=1-犪,所以犪3+犫3+犪犫-犪2-犫2=犪3+(1-犪)3+犪(1-犪)-犪2-(1-犪)பைடு நூலகம்= 犪3+1-3犪+3犪2-犪3+犪-犪2-犪2-1+2犪-犪2=0.②充分性:因为犪3+犫3+犪犫-犪2-犫2=0,即(犪+犫)·
{( )} 12,-1 ;对于B,方程狓2-狓-6=0的解集为{-2,3};对于C,犕 是数集,犖 是点集;对于D,方程
高一数学必修一第二章测试题及答案-苏教版
高中数学必修一第二章测试题一、选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、若0a >,且,m n 为整数,则下列各式中正确的是 ( )A 、m m n n a a a ÷=B 、m n m n aa a = C 、()n m m n a a += D 、01n n a a -÷= 2、已知(10)x f x =,则(5)f = ( )A 、510B 、105 C 、lg10 D 、lg 53、对于0,1a a >≠,下列说法中,正确的是 ( )①若M N =则log log a a M N =;②若log log a a M N =则M N =;③若22log log a a M N =则M N =;④若M N =则22log log a a M N =。
A 、①②③④B 、①③C 、②④D 、②4、设集合2{|3,},{|1,}x S y y x R T y y x x R ==∈==-∈,则S T 是 ( )A 、∅B 、TC 、SD 、有限集5、函数22log (1)y x x =+≥的值域为 ( )A 、()2,+∞B 、(),2-∞C 、[)2,+∞D 、[)3,+∞6、设 1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭,则 ( )A 、312y y y >>B 、213y y y >>C 、132y y y >>D 、123y y y >>7、在(2)log (5)a b a -=-中,实数a 的取值范围是 ( )A 、52a a ><或B 、2335a a <<<<或C 、25a <<D 、34a <<8、计算()()22lg 2lg52lg 2lg5++等于 ( )A 、0B 、1C 、2D 、39、已知3log 2a =,那么33log 82log 6-用a 表示是( )A 、52a -B 、2a -C 、23(1)a a -+D 、 231a a --10、若21025x =,则10x -等于 ( )A 、15B 、15-C 、150D 、162511、某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格比较,变化的情况是( )A 、减少7.84%B 、增加7.84%C 、减少9.5%D 、不增不减12、若函数()log (01)a f x x a =<<在区间[],2a a 上的最大值是最小值的3倍,则a 的值为( )A 、4B 、2C 、14D 、12二、填空题:(本题共4小题,每小题5分,共20分,请把答案填写在答题纸上)13、化简22log (1log (1+= 。
高中数学(苏教版必修一)配套单元检测第2、3章章末检测A Word版含答案
第、章章末检测()
(时间:分钟满分:分)
一、填空题(本大题共小题,每小题分,共分)
.若<,则化简的结果是.
.函数=+(-)的定义域是.
.函数=+(+)(≥)的值域为.
.已知==,且+=,则的值是.
.已知函数()=+(-)+在(-∞,-]上递增,则的取值范围是.
.设()=,则()的值是.
.函数=+的零点是.
.利用一根长米的木料,做一个如图的矩形窗框(包括中间两条横档),则窗框的高和宽的比值为时透过的光线最多(即矩形窗框围成的面积最大).
.某企业年月份的产值是这年月份产值的倍,则该企业年度产值的月平均增长率为..已知函数=()是上的增函数,且(+)≤(),则实数的取值范围是.
.函数()=-++在区间[-]上的最大值与最小值的和为.
.若函数()=为奇函数,则实数=.
.函数()=-+的零点均是正数,则实数的取值范围是.
.设偶函数()=+在(,+∞)上具有单调性,则(-)与(+)的大小关系为.
二、解答题(本大题共小题,共分)
.(分)()设=,=,求+的值;
()计算:-+
5
lg
2 10 .
.(分)函数()是上的偶函数,且当>时,函数的解析式为()=-. ()用定义证明()在(,+∞)上是减函数;
()求当<时,函数的解析式.
.(分)已知函数()=(>且≠),
()求()的定义域;
()判断函数的奇偶性和单调性.。
苏教版数学高一必修1章末综合测评2(2)
章末综合测评(二)函数(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.请把答案填写在题中横线上)1.若f (x)=ax2-2(a>0),且f (2)=2,则a=______.【解析】∵f (2)=2a-2=2,∴a=1+2 2.【答案】1+2 22.设全集为R,函数f (x)=1-x2的定义域为M,则∁R M=________.【解析】由1-x2≥0,知-1≤x≤1.∴M=-1,1],∴∁R M=(-∞,-1)∪(1,+∞).【答案】(-∞,-1)∪(1,+∞)3.下列各图表示的对应能构成映射的是________.(填序号)【解析】(1)(2)(3)这三个图所表示的对应都符合映射的定义,即A中每一个元素在对应法则下,B中都有唯一的元素与之对应.对于(4),(5),A的每一个元素在B中有2个元素与之对应,所以不是A到B的映射.对于(6),A中的元素a3,a4在B中没有元素与之对应,所以不是A到B的映射.综上可知,能构成映射的是(1),(2),(3).【答案】(1)(2)(3)4.下列每组函数是同一函数的是________.(填序号)(1)f (x)=x-1,g(x)=(x-1)2;(2)f (x)=x2-4x-2,g(x)=x+2;(3)f (x)=|x-3|,g(x)=(x-3)2;(4)f (x)=(x-1)(x-3),g(x)=x-1x-3.【解析】(1)中函数定义域不同;(2)中函数定义域不同;(3)中函数定义域和对应关系都相同,是同一函数;(4)中定义域不同.【答案】(3)5.为了确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b +c,2c+3d,4d.例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,解密得到的明文为________.【解析】由题意得a+2b=14,2b+c=9,2c+3d=23,4d=28,解得d=7,c=1,b=4,a=6.【答案】6,4,1,76.已知f (x)=g(x)+2,且g(x)为奇函数,若f (2)=3,则f (-2)=________.【解析】∵f (2)=3,∴g(2)=1,∵g(x)为奇函数,∴g(-x)=-g(x),∴g(-2)=-g(2)=-1,∴f (-2)=g(-2)+2=-1+2=1.【答案】 17.函数y=f (x)是R上的偶函数,且在(-∞,0]上是增函数,若f (a)≤f (2),则实数a的取值范围是________.【解析】∵y=f (x)是偶函数,且在(-∞,0]上是增函数,∴y=f (x)在0,+∞)上是减函数,由f (a)≤f (2),得f (|a|)≤f (2).∴|a|≥2,得a≤-2或a≥2.【答案】(-∞,-2]∪2,+∞)8.已知f (x)在R上是奇函数,且满足f (x+4)=f (x),当x∈(0,2)时,f (x)=2x2,则f (7)=________.【解析】∵f (x+4)=f (x),∴f (7)=f (3+4)=f (3)=f (-1+4)=f (-1)=-f (1)=-2×12=-2.【答案】 -29.函数f (x )=x 2-2x +3在区间0,a ]上的最大值为3,最小值为2,则实数a 的取值范围为________.【解析】 函数f (x )=x 2-2x +3在x =1处取得最小值为2,在x =0处取得最大值3,结合函数图象(略)可知实数a 的取值范围为1,2].【答案】 1,2]10.已知f (x )=⎩⎪⎨⎪⎧x 2+3x +6,x ≤0,-4x,x >0,若f (x )=10,则x =________.【解析】 因为f (x )=10,所以当x ≤0时,由x 2+3x +6=10,得x =-4或x =1>0(舍去);当x >0时,由-4x =10,得x =-25<0(舍去).故x =-4.【答案】 -411.若f (x )和g (x )都是奇函数,且F (x )=f (x )+g (x )+2在(0,+∞)上有最大值8,则在(-∞,0)上F (x )有最________值,为________.【导学号:37590044】【解析】 由题意知f (x )+g (x )在(0,+∞)上有最大值6, 因为f (x )和g (x )都是奇函数,所以f (-x )+g (-x )=-f (x )-g (x ) =-f (x )+g (x )], 即f (x )+g (x )也是奇函数,所以f (x )+g (x )在(-∞,0)上有最小值-6, 所以F (x )=f (x )+g (x )+2在(-∞,0) 上有最小值-4. 【答案】 小 -412.若f (x )是偶函数,其定义域为(-∞,+∞),且在0,+∞)上是减函数,则f ⎝ ⎛⎭⎪⎫-32与f ⎝ ⎛⎭⎪⎫a 2+2a +52的大小关系是____________________________. 【解析】 因为a 2+2a +52=(a +1)2+32≥32, 又因为f (x )在0,+∞)上是减函数, 所以f ⎝ ⎛⎭⎪⎫a 2+2a +52≤f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-32.【答案】 f ⎝ ⎛⎭⎪⎫-32≥f ⎝ ⎛⎭⎪⎫a 2+2a +5213.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x ,那么不等式f (x +2)<5的解集是________.【解析】 设x <0,则-x >0. ∵当x ≥0时,f (x )=x 2-4x , ∴f (-x )=(-x )2-4(-x ). ∵f (x )是定义在R 上的偶函数, ∴f (-x )=f (x ), ∴f (x )=x 2+4x (x <0), ∴f (x )=⎩⎨⎧x 2-4x ,x ≥0,x 2+4x ,x <0.由f (x )=5,得⎩⎨⎧ x 2-4x =5,x ≥0或⎩⎨⎧x 2+4x =5,x <0, ∴x =5或x =-5.观察图象可知由f (x )<5,得-5<x <5. 由f (x +2)<5,得-5<x +2<5, ∴-7<x <3.∴不等式f (x +2)<5的解集是{x |-7<x <3}.【答案】 {x |-7<x <3}14.若对任意x ∈R ,不等式|x |≥ax 恒成立,则实数a 的取值范围是________. 【解析】 当x >0时,x ≥ax 恒成立,即a ≤1, 当x =0时,0≥a ×0恒成立,即a ∈R , 当x <0时,-x ≥ax 恒成立,即a ≥-1,若对任意x ∈R ,不等式|x |≥ax 恒成立,所以-1≤a ≤1.【答案】 -1≤a ≤1二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)已知二次函数f (x )=x 2+2(m -2)x +m -m 2. (1)若函数的图象经过原点,且满足f (2)=0,求实数m 的值; (2)若函数在区间2,+∞)上为增函数,求m 的取值范围. 【解】 (1)∵f (0)=0,f (2)=0, ∴⎩⎨⎧m -m 2=0,4+4(m -2)+m -m 2=0, ∴m =1.(2)∵y =f (x )在2,+∞)上为增函数, ∴对称轴x =-2(m -2)2≤2, ∴实数m 的取值范围是0,+∞).16.(本小题满分14分)(1)求函数f (x )=4-2x +(x -1)0+1x +1的定义域;(要求用区间表示)(2)若函数f (x +1)=x 2-2x ,求f (3)的值和f (x )的解析式.【解】(1)要使函数有意义,需有⎩⎨⎧4-2x ≥0,x -1≠0,x +1≠0,解得x ≤2且x ≠1且x ≠-1.所以函数的定义域为(-∞,-1)∪(-1,1)∪(1,2].(2)因为f (x +1)=x 2-2x ,所以令x =2,得f (3)=22-2×2=0.用配凑法求函数解析式:∵f (x +1)=x 2-2x ,∴f (x +1)=(x +1)2-4(x +1)+3,故f (x )=x 2-4x +3,(x ∈R ).17.(本小题满分14分)若f (x )是定义在(0,+∞)上的增函数,且对一切x ,y >0,满足f ⎝ ⎛⎭⎪⎫x y =f (x )-f (y ).(1)求f (1)的值; 【导学号:37590045】(2)若f (6)=1,解不等式f (x +3)-f ⎝ ⎛⎭⎪⎫13<2.【解】 (1)在f ⎝ ⎛⎭⎪⎫x y =f (x )-f (y )中,令x =y =1,则有f (1)=f (1)-f (1),∴f (1)=0. (2)∵f (6)=1,∴f (x +3)-f ⎝ ⎛⎭⎪⎫13<2=f (6)+f (6),∴f (3x +9)-f (6)<f (6), 即f ⎝⎛⎭⎪⎫x +32<f (6). ∵f (x )是(0,+∞)上的增函数, ∴⎩⎪⎨⎪⎧x +32>0,x +32<6,解得-3<x <9.即不等式的解集为(-3,9).18.(本小题满分16分)已知函数f (x )=⎩⎨⎧3-x 2(x >0),2(x =0),1-2x (x <0),(1)画出函数f (x )图象;(2)求f (a 2+1)(a ∈R ),f (f (3))的值; (3)当f (x )≥2时,求x 的取值范围. 【解】 (1)图象:(2)f (a 2+1)=3-(a 2+1)2=-a 4-2a 2+2,f (f (3))=f (-6)=13. (3)当x >0时,3-x 2≥2,解得0<x ≤1. 当x =0时,2≥2符合题意. 当x <0时,1-2x ≥2,解得x ≤-12.综上,f (x )≥2时,x 的取值范围为⎩⎨⎧⎭⎬⎫x |x ≤-12或x =0或0<x ≤1.19.(本小题满分16分)已知二次函数y =f (x )满足f (-2)=f (4)=-16,且f (x )的最大值为2.(1)求函数y =f (x )的解析式;(2)求函数y =f (x )在t ,t +1](t >0)上的最大值.【解】 (1)因为二次函数y =f (x )满足f (-2)=f (4)=-16,且f (x )的最大值为2,故函数图象的对称轴为x =1, 设函数f (x )=a (x -1)2+2,a <0. 根据f (-2)=9a +2=-16, 求得a =-2,故f (x )=-2(x -1)2+2=-2x 2+4x .(2)当t ≥1时,函数f (x )在t ,t +1]上是减函数, 故最大值为f (t )=-2t 2+4t ,当0<t <1时,函数f (x )在t,1]上是增函数,在1,t +1]上是减函数, 故函数的最大值为f (1)=2. 综上,f (x )max =⎩⎨⎧2,0<t <1,-2t 2+4t ,t ≥1.20.(本小题满分16分)已知函数f (x )=px +qx (实数p ,q 为常数),且满足f (1)=52,f (2)=174.(1)求函数f (x )的解析式;(2)试判断函数f (x )在区间⎝ ⎛⎦⎥⎤0,12上的单调性,并用函数单调性的定义证明;(3)当x ∈⎝ ⎛⎦⎥⎤0,12时,函数f (x )≥2-m 恒成立,求实数m 的取值范围.【解】 (1)∵⎩⎪⎨⎪⎧f (1)=52,f (2)=174,∴⎩⎪⎨⎪⎧p +q =52,2p +q 2=174,∴⎩⎪⎨⎪⎧p =2,q =12,所以f (x )=2x +12x .(2)由(1)问可得f (x )=2x +12x ,∴f (x )在区间⎝ ⎛⎦⎥⎤0,12 上是单调递减的.证明:设任意的两个实数0<x 1<x 2<12,f (x 1)-f (x 2)=2(x 1-x 2)+12x 1-12x 2=2(x 2-x 1)+x 2-x 12x 1x 2=(x 2-x 1)(1-4x 1·x 2)2x 1x 2,∵0<x 1<x 2<12,∴x 2-x 1>0,0<x 1x 2<14,1-4x 1x 2>0, ∴f (x 1)-f (x 2)>0,所以f (x )=2x +12x 在区间⎝ ⎛⎦⎥⎤0,12上是单调递减的. (3)由(2)知f (x )=2x +12x 在区间⎝ ⎛⎦⎥⎤0,12 上的最小值是f ⎝ ⎛⎭⎪⎫12=2.要使当x ∈⎝ ⎛⎦⎥⎤0,12时,函数f (x )≥2-m 恒成立,则x ∈⎝ ⎛⎦⎥⎤0,12时,函数f (x )min ≥2-m 即可,∴2≥2-m所以m ≥0.。
【苏教版】高中数学必修一同步辅导与检测(含答案) 第2章 章末过关检测卷(二)
章末过关检测卷(二)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只有一项是符合题目要求的)1.设全集为R,函数f(x)=1-x2的定义域为M,则∁R M为()A.[-1,1]B.(-1,1)C.(-∞,-1)∪[1,+∞)D.(-∞,-1)∪(1,+∞)解析:由1-x2≥0,知-1≤x≤1.所以M=[-1,1].所以∁R M=(-∞,-1)∪(1,+∞).答案:D2.下列图中不能作为函数图象的是()解析:选项B对于给定的变量有两个值与其对应,不是函数的图象.答案:B3.已知函数f(x)=2x2-4kx-5在区间[-1,2]上不具有单调性,则k的取值范围是()A.[-1,2] B.(-1,2)C.(-∞,2) D.(-1,+∞)解析:因为函数f(x)=2x2-4kx-5在区间[-1,2]上不具有单调性,即对称轴直线x=k在此区间内,所以有-1<k<2.答案:B4.下列函数中,既是偶函数又在(0,+∞)上单调递增的函数() A.y=x B.y=|x|+1C.y=-x2+1 D.y=-2x解析:A、D中函数是奇函数,不是偶函数,B中y=|x|+1是偶函数,且在(0,+∞)上递增,但D中,y=-x2+1在(0,+∞)上是减函数.答案:B5.函数y=x2-2x+3,-1≤x≤2的值域是()A.R B.[3,6]C.[2,6] D.[2,+∞)解析:画出函数的图象,如图所示,观察函数的图象可得图象上所有点的纵坐标的取值范围是[2,6],所以值域是[2,6].答案:C6.设f (x )=⎩⎪⎨⎪⎧x +3(x >10),f (f (x +5))(x ≤10),则f (5)的值是( ) A .24 B .21 C .18 D .16解析:f (5)=f (f (10))=f (f (f (15)))=f (f (18))=f (21)=24.答案:A7.若二次函数y =f (x )满足f (5+x )=f (5-x ),且方程f (x )=0有两个实根x 1,x 2,则x 1+x 2等于( )A .5B .10C .20 D.52解析:因为f (x +5)=f (5-x ),所以f (x )的对称轴为x 0=5,x 1+x 2=2x 0=10.答案:B8.若对于任意实数x ,都有f (-x )=f (x ),且f (x )在区间(-∞,0]上是增函数,则( )A .f (-2)<f (2)B .f (-1)<f ⎝ ⎛⎭⎪⎫-32C .f ⎝ ⎛⎭⎪⎫-32<f (2)D .f (2)<f ⎝ ⎛⎭⎪⎫-32 解析:根据题意可知,f (x )是偶函数.因为f (x )在区间(-∞,0]上是增函数,所以f (x )在区间(0,+∞)上是减函数.所以f ⎝ ⎛⎭⎪⎫-32=f ⎝ ⎛⎭⎪⎫32>f (2). 答案:D9.若奇函数f (x )在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为-1,则2f (-6)+f (-3)的值为( )A .10B .-10C .-15D .15解析:依题意可得,f (x )在[3,6]上是增函数,所以f (6)=8,f (3)=-1.又y =f (x )为奇函数,所以2f (-6)+f (-3)=-2f (6)-f (3)=-15.答案:C10.已知函数f (x )=1+x 21-x 2,则有( ) A .f (x )是奇函数,且f ⎝ ⎛⎭⎪⎫1x =-f (x ) B .f (x )是奇函数,且f ⎝ ⎛⎭⎪⎫1x =f (x ) C .f (x )是偶函数,且f ⎝ ⎛⎭⎪⎫1x =-f (x ) D .f (x )是偶函数,且f ⎝ ⎛⎭⎪⎫1x =f (x ) 解析:由f (-x )=1+(-x )21-(-x )2=1+x 21-x 2=f (x ), 得f (x )为偶函数.又f ⎝ ⎛⎭⎪⎫1x =1+⎝ ⎛⎭⎪⎫1x 21-⎝ ⎛⎭⎪⎫1x 2=x 2+1x 2-1=-f (x ), 故C 选项正确.答案:C11.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c ,若f (0)=f (4)>f (1),则( )A .a >0,4a +b =0B .a <0,4a +b =0C .a >0,2a +b =0D .a <0,2a +b =0解析:由f (0)=f (4),知函数图象关于直线x =2对称,所以-b 2a=2.所以b +4a =0,由f (0)>f (1)知函数图象开口向上,所以a >0.答案:A12.若函数f (x )=⎩⎪⎨⎪⎧-x 2+2ax -2a ,x ≥1,ax +1,x <1是(-∞,+∞)上的减函数,则实数a 的取值范围是( )A .(-2,0)B .[-2,0)C .(-∞,1]D .(-∞,0)解析:由x ≥1时,f (x )=-x 2+2ax -2a 是减函数,得a ≤1, 由x <1时,函数f (x )=ax +1是减函数,得a <0,分段点1处的值应满足-12+2a ×1-2a ≤1×a +1,解得a ≥-2,所以-2≤a <0.答案:B二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.(·课标全国Ⅱ卷)偶函数y =f (x )的图象关于直线x =2对称,f (3)=3,则f (-1)=________.解析:利用函数的对称轴和奇偶性来确定函数值即可.因为f (x )的图象关于直线x =2对称,所以f (4-x )=f (x ).所以f (4-1)=f (1)=f (3)=3,则f (1)=3.又y =f (x )是偶函数,所以f (-1)=f (1)=3.答案:314.已知f(x)是定义在[-2,0)∪(0,2]上的奇函数,当x>0时,f(x)的图象如图所示,则f(x)的值域是________.解析:当x>0时,f(x)的值域是(2,3].根据奇函数的性质可得,f(x)的值域是[-3,-2)∪(2,3].答案:[-3,-2)∪(2,3]15.若f(x),g(x)都是奇函数,且F(x)=af(x)+bg(x)+2在区间(0,+∞)上有最大值8,则在区间(-∞,0)上的最小值是________.解析:因为f(x),g(x)为奇函数,所以F(x)-2=af(x)+bg(x)为奇函数.则F(-x)-2=-(F(x)-2)=2-F(x).因为F(x)在(0,+∞)上有最大值8.当x<0时,-x>0,F(-x)≤8.所以F(-x)-2≤6,从而-(F(x)-2)≤6.因此F(x)≥-4,F(x)在(-∞,0)上的最小值为-4.答案:-416.若定义在R上的偶函数f(x)满足对任意x1,x2∈[0,+∞)(x1≠x2)都有f(x2)-f(x1)x2-x1<0,则f(1),f(-2),f(3)的大小关系是________.解析:由f(x2)-f(x1)x2-x1<0可知,f(x)在区间[0,+∞)上为减函数,所以f(1)>f(2)>f(3).又因为f (x )是偶函数,所以f (-2)=f (2),因此f (1)>f (-2)>f (3).答案:f (1)>f (-2)>f (3)三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数f (x )=x +m x,且f (1)=3. (1)求m ;(2)判断函数f (x )的奇偶性.解:(1)因为f (1)=3,即1+m =3,所以m =2.(2)由(1)知,f (x )=x +2x, 其定义域是{x |x ≠0},关于原点对称,又f (-x )=-x +2-x=-⎝ ⎛⎭⎪⎫x +2x =-f (x ), 所以此函数是奇函数.18.(本小题满分12分)已知函数f (x )=x 2+2ax +3,x ∈[-4,6].(1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数.解:(1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1.又因为x ∈[-4,6],所以函数f (x )在[-4,2]上为减函数,在[2,6]上为增函数.所以f(x)max=f(-4)=(-4-2)2-1=35,f(x)min=f(2)=-1.(2)因为函数f(x)=x2+2ax+3的对称轴为x=-a,且f(x)在[-4,6]上是单调函数,所以-a≥6或-a≤-4,即a≤-6或a≥4.故a的取值范围是(-∞,-6]∪[4,+∞).19.(本小题满分12分)设f(x)为定义在R上的奇函数.如图是函数图象的一部分,当0≤x≤2时,是线段OA;当x>2时,图象是顶点为P(3,4)的抛物线的一部分.(1)在图中的直角坐标系中画出函数f(x)的图象;(2)求函数f(x)在[2,+∞)上的解析式;(3)写出函数f(x)的单调区间.解:(1)图象如图所示.(2)当x≥2时,设f(x)=a(x-3)2+4(a≠0).因为f(x)的图象过点A(2,2),所以f(2)=a(2-3)2+4=2所以a=-2.所以f(x)=-2(x-3)2+4.(3)由f(x)的图象知,f(x)的单调递减区间为(-∞,-3]和[3,+∞),单调递增区间为[-3,3].20.(本小题满分12分)已知函数f(x)=xx-a(x≠a).(1)若a=-2,试证明f(x)在区间(-∞,-2)上单调递增;(2)若a>0,且f(x)在区间(1,+∞)上单调递减,求a的取值范围.(1)证明:任取x1<x2<-2,则f(x1)-f(x2)=x1x1+2-x2x2+2=2(x1-x2)(x1+2)(x2+2).因为(x1+2)(x2+2)>0,x1-x2<0,所以f(x1)<f(x2).故函数f(x)在区间(-∞,-2)上单调递增.(2)解:任取1<x1<x2,则f(x1)-f(x2)=x1x1-a-x2x2-a=2(x1-x2)(x1-a)(x2-a).因为a>0,x1-x2<0,所以要使f(x1)-f(x2)>0,只需(x1-a)(x2-a)>0恒成立,所以a≤1.故a的取值范围是(0,1].21.(本小题满分12分)某商场经销一批进价为每件30元的商品,在市场试销中发现,此商品的销售单价x(元)与日销售量y(件)之间有如下表所示的关系:x 30 40 45 50y 60 30 15 0(1)在所给的坐标图纸中,根据表中提供的数据,描出实数对(x ,y )的对应点,并确定y 与x 的一个函数关系式.(2)设经营此商品的日销售利润为P 元,根据上述关系,写出P 关于x 的函数关系式,并指出销售单价x 为多少元时,才能获得最大日销售利润?解:(1)由题表作出(30,60),(40,30),(45,15),(50,0)的对应点,它们近似地分布在一条直线上,如图所示.设它们共线于直线y =kx +b ,则⎩⎪⎨⎪⎧50k +b =0,45k +b =15,⎩⎪⎨⎪⎧k =-3,b =150.所以y =-3x +150(0≤x ≤50,且x ∈N *),经检验(30,60),(40,30)也在此直线上.所以所求函数解析式为y =-3x +150(0≤x ≤50,且x ∈N *).(2)依题意P =y (x -30)=(-3x +150)(x -30)=-3(x -40)2+300.所以当x =40时,P 有最大值300,故销售单价为40元时,才能获得最大日销售利润.第11页 共11页 22.(本小题满分12分)若f (x )是定义在(0,+∞)上的增函数,且对一切x ,y >0,满足f ⎝ ⎛⎭⎪⎫x y =f (x )-f (y ). (1)求f (1)的值;(2)若f (6)=1,解不等式f (x +3)-f ⎝ ⎛⎭⎪⎫13<2. 解:(1)在f ⎝ ⎛⎭⎪⎫x y =f (x )-f (y )中,令x =y =1, 则有f (1)=f (1)-f (1),所以f (1)=0.(2)因为f (6)=1,所以f (x +3)-f ⎝ ⎛⎭⎪⎫13<2=f (6)+f (6). 所以f (3x +9)-f (6)<f (6),即f ⎝ ⎛⎭⎪⎫x +32<f (6). 因为f (x )是(0,+∞)上的增函数,所以⎩⎨⎧x +32>0,x +32<6,解得-3<x <9. 故不等式的解集为(-3,9).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新教学资料·苏教版数学综合检测(二)第二章 函 数(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上)1.已知函数f (x )=2x +3的值域为{-1,2,5,8},则它的定义域为________.【解析】 由2x +3=-1可知x =-2,同理当f (x )=2,5,8时对应x 分别为-12,1,52,∴函数f (x )的定义域为{-2,-12,1,52}.【答案】 {-2,-12,1,52}2.(2013·宿迁高一检测)已知函数f (x )=⎩⎨⎧x +1,x ≥0,x 2,x <0,则f [f (-2)]的值为________.【解析】 当x =-2时,f (-2)=4,故f [f (-2)]=f (4)=4+1=5.【答案】 53.给出下列四个对应,其中构成映射的是________.【解析】 由映射的定义可知④正确.【答案】 ④4.设函数f (x )=x 2+(a +1)x +a +1为奇函数,则实数a =________.【解析】 ∵f (x )的定义域为R ,且f (x )为奇函数,∴f (0)=0,即a +1=0,∴a =-1.【答案】 -15.当x ∈[-2,1]时,函数f (x )=x 2+2x -2的值域是________.【解析】 f (x )=(x +1)2-3,∵-2≤x ≤1,∴f (x )min =f (-1)=-3,f (x )max =f (1)=1.∴函数f (x )的值域是[-3,1].【答案】 [-3,1]6.(2013·淮安高一检测)已知f (x )=⎩⎨⎧x 2+1,x ≤0-2x ,x >0,若f (a )=10,则a 的值为________.【解析】 若a ≤0,则a 2+1=10,解得a =-3,若a >0,则-2a =10,a =-5,不合题意,故a =-3.【答案】 -37.已知f (x -1)=x 2-2x -3,则f (x )=________.【解析】 ∵f (x -1)=(x -1)2-4,∴f (x )=x 2-4.【答案】 x 2-48.函数f (x )=|x -1|+2的单调递增区间为________.【解析】 ∵f (x )=|x -1|+2的图象可由g (x )=|x |+2的图象向右平移1个单位得到,故f (x )的单调递增区间为[1,+∞).【答案】 [1,+∞)9.设f (x )是R 上的偶函数,且在(-∞,0)上为减函数,若x 1<0,且x 1+x 2>0,则f (x 1)与f (x 2)的大小关系是________.【解析】 由题意可知:-x 2<x 1<0,又f (x )在(-∞,0)上为减函数,故f (-x 2)>f (x 1),又f (x )为偶函数,从而f (x 2)>f (x 1).【答案】 f (x 2)>f (x 1)图110.某工厂八年来某种产品总产量C (单位)与时间t (年)的函数关系如图1所示.下列说法正确的是________.①前三年中产量增长的速度越来越快;②前三年中产量增长的速度保持稳定;③第三年后产量增长的速度保持稳定;④第三年后产量保持不变;⑤第三年后这种产品停止生产.【解析】 所给的图表示的是产量C 与时间t 的函数关系,由图可知,前三年中产量增长的速度保持稳定,而第三年以后总产量不再增加,即这种产品停止生产.【答案】 ②⑤11.若函数f (x )=(x +1)(x -a )为偶函数,则a =________.【解析】 ∵f (x )为偶函数,∴f (-1)=f (1).即0=2(1-a ),∴a =1.【答案】 112.函数y =⎩⎨⎧2|x |-3,x <12x -5,x ≥2的单调增区间是________,最小值是________.【解析】 作出函数图象,如图所示.由图象知,函数单调递增区间是[0,1)和[2,+∞),最小值是-3.【答案】 [0,1)和[2,+∞) -313.已知函数f (x )=x 5+ax 3+bx -8,且f (-2)=10,则f (2)=________.【解析】 法一 设g (x )=x 5+ax 3+bx ,x ∈R .∵g (-x )=-g (x ),∴g (x )为奇函数.而f (x )=g (x )-8,又f (-2)=g (-2)-8=10,∴g (2)=-g (-2)=-18,∴f (2)=g (2)-8=-26.法二 由题设有f (x )+f (-x )=-16,∴f(2)+f(-2)=-16.又∵f(-2)=10,∴f(2)=-16-10=-26.【答案】-2614.若函数f(x)=x2+bx+c对任意实数x都有f(2+x)=f(2-x),那么f(2)、f(1)、f(4)的大小关系是________.【解析】由f(2+x)=f(2-x)可知:函数f(x)的对称轴为x=2,由二次函数f(x)开口方向,可得f(2)最小;又f(4)=f(2+2)=f(2-2)=f(0),在x<2时y=f(x)为减函数.∵0<1<2,∴f(0)>f(1)>f(2),即f(2)<f(1)<f(4).【答案】f(2)<f(1)<f(4)二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)已知函数f(x)=x+2 x-6.(1)点(3,14)在f(x)的图象上吗?(2)当x=4时,求f(x)的值;(3)当f(x)=2时,求x的值.【解】(1)∵f(3)=3+23-6=-53≠14.∴点(3,14)不在f(x)的图象上.(2)f(4)=4+24-6=-3.(3)由x+2x-6=2,得x=14.16.(本小题满分14分)函数f(x)=x2-2|x|,画出此函数的图象,并指出图象的对称性及其单调区间.【解】 f (x )=x 2-2|x |=⎩⎨⎧x 2-2x x ≥0x 2+2x x <0, 其图象如图所示,图象关于y 轴对称,此函数的递减区间是(-∞,-1]和[0,1),递增区间是(-1,0)和[1,+∞).17.(本小题满分14分)设函数f (x )与g (x )的定义域是x ∈R 且x ≠±1,f (x )是偶函数,g (x )是奇函数,且f (x )+g (x )=1x -1,求f (x )和g (x )的解析式. 【解】 ∵f (x )是偶函数,g (x )是奇函数,∴f (-x )=f (x ),且g (-x )=-g (x ).而f (x )+g (x )=1x -1,得f (-x )+g (-x )=1-x -1, 即f (x )-g (x )=1-x -1=-1x +1, ∴f (x )=1x 2-1,g (x )=x x 2-1. 18.(本小题满分16分)设函数f (x )=x 2+16-x ,x ∈[-3,0]上最大值为a ,最小值为b ,求a ,b 的值.【解】 设x 1,x 2∈[-3,0],且x 1<x 2,则f (x 2)-f (x 1)=(x 22+16-x 2)-(x 21+16-x 1)=(x 2+x 1)(x 2-x 1)x 22+16+x 21+16+(x 1-x 2). 又x 1+x 2<0,x 2-x 1>0,x 1-x 2<0,∴f (x 2)-f (x 1)<0,即f (x 1)>f (x 2),∴f (x )在[-3,0]上递减,∴a =f (-3)=8,b =f (0)=4.19.(本小题满分16分)已知f (x )是定义在[-6,6]上的奇函数,且f (x )在[0,3]上是x 的一次式,在[3,6]上是x 的二次式,且当3≤x ≤6时,f (x )≤f (5)=3,f (6)=2,求f (x )的表达式.【解】 由题意,当3≤x ≤6时,设f (x )=a (x -5)2+3,∵f (6)=2,∴2=a (6-5)2+3.∴a =-1.∴f (x )=-(x -5)2+3(3≤x ≤6).∴f (3)=-(3-5)2+3=-1.又∵f (x )为奇函数,∴f (-0)=-f (0),f (0)=0.∴一次函数图象过(0,0),(3,-1)两点.∴f (x )=-13x (0≤x ≤3).当-3≤x ≤0时,-x ∈[0,3],∴f (-x )=-13(-x )=13x .又f (-x )=-f (x ),∴f (x )=-13x .∴f (x )=-13x (-3≤x ≤3).当-6≤x ≤-3时,3≤-x ≤6,∴f (-x )=-(-x -5)2+3=-(x +5)2+3.又f (-x )=-f (x ),∴f (x )=(x +5)2-3.∴f (x )=⎩⎪⎨⎪⎧ (x +5)2-3,-6≤x ≤-3,-13x ,-3<x <3,-(x -5)2+3,3≤x ≤6.20.(本小题满分16分)(2013·宜春高一检测)设函数y =f (x )是定义在(0,+∞)上的增函数,并满足f (xy )=f (x )+f (y ),f (4)=1.(1)求f (1)的值;(2)若存在实数m ,使f (m )=2,求m 的值;(3)如果f (4x -5)<2,求x 的取值范围.【解】 (1)令x =y =1,则有f (1)=f (1)+f (1),∴f (1)=0.(2)∵f (4)=1,∴f (4)+f (4)=f (16)=2,又f (m )=2,f (x )是定义在(0,+∞)上的增函数,∴m =16.(3)由(2)知,不等式f (4x -5)<2变为f (4x -5)<f (16).结合f (x )的单调性可知⎩⎨⎧ 4x -5>04x -5<16, 解得54<x <214.即x 的范围是(54,214).。