《分层法》例题详解

合集下载

《分层法》例题详解

《分层法》例题详解

例:如图1所示一个二层框架,忽略其在竖向荷载作用下的框架侧移,用分层法计算框架的弯矩图,括号内的数字,表示各梁、柱杆件的线刚度值(EIil)。

图1解:1、图1所示的二层框架,可简化为两个如图2、图3所示的,只带一层横梁的框架进行分析。

图2 二层计算简图图3 底层计算简图2、计算修正后的梁、柱线刚度与弯矩传递系数采用分层法计算时,假定上、下柱的远端为固定,则与实际情况有出入。

因此,除底层外,其余各层柱的线刚度应乘以0.9的修正系数。

底层柱的弯矩传递系数为12,其余各层柱的弯矩传递系数为13。

各层梁的弯矩传递系数,均为12。

图4 修正后的梁柱线刚度图5 各梁柱弯矩传递系数3、计算各节点处的力矩分配系数计算各节点处的力矩分配系数时,梁、柱的线刚度值均采用修正后的结果进行计算,如:G节点处:7.630.6687.63 3.79GH GHGHGH GDGjGi ii iiμ====++∑GD3.790.3327.63 3.79GD GDGH GDGjGi ii iiμ====++∑H节点处:7.630.3537.63 3.7910.21HG HGHGHG HE HIHjHi ii i iiμ====++++∑3.790.1757.63 3.7910.21HI HIHIHG HE HIHjHi ii i iiμ====++++∑10.210.4727.63 3.7910.21HE HEHEHG HE HIHjHi ii i iiμ====++++∑同理,可计算其余各节点的力矩分配系数,计算结果见图6、图7。

图6 二层节点处力矩分配系数图7 底层节点处力矩分配系数4、采用力矩分配法计算各梁、柱杆端弯矩(1)第二层:①计算各梁杆端弯矩。

先在G、H、I节点上加上约束,详见图8图8 二层计算简图计算由荷载产生的、各梁的固端弯矩(顺时针转向为正号),写在各梁杆端下方,见图9:213.13kN m 12F GHql M =-=-⋅213.13kN m 12F HGql M ==⋅ 27.32kN m 12F HI ql M=-=-⋅27.32kN m 12F IHql M==⋅ 在节点G 处,各梁杆端弯矩总与为:13.13kN m FG GH M M ==-⋅在节点H 处,各梁杆端弯矩总与为:13.137.32 5.81kN m F F H HG HI M M M =+=-=⋅在节点I 处,各梁杆端弯矩总与为:7.32kN m F I IH M M ==⋅②各梁端节点进行弯矩分配,各两次,详见图9 第一次弯矩分配过程:放松节点G,即节点G 处施加力矩13.13kN m ⋅,乘以相应分配系数0、668与0、332,得到梁端+8.76kN m ⋅与柱端+4.37kN m ⋅,+8.76kN m ⋅按12传到GH 梁H 端;放松节点I,即在节点I 处施加力矩7.32kN m -⋅,乘以相应分配系数0、935与0、065,得到梁端 6.32kN m -⋅与柱端+1.00kN m ⋅, 6.32kN m -⋅按12传到IH 梁H 端;放松节点H,相应的在节点H 处新加一个外力偶矩,其中包括GH 梁右端弯矩、IH 梁左端弯矩、GH 梁与IH 梁传来的弯矩。

《分层法》例题详解

《分层法》例题详解

例:如图1所示一个二层框架,忽略其在竖向荷载作用下的框架侧移,用分层法计算框架的弯矩图,括号内的数字,表示各梁、柱杆件的线刚度值(EIil )。

图1解:1、图1所示的二层框架,可简化为两个如图2、图3所示的,只带一层横梁的框架进行分析。

图2 二层计算简图图3 底层计算简图2、计算修正后的梁、柱线刚度与弯矩传递系数采用分层法计算时,假定上、下柱的远端为固定,则与实际情况有出入。

因此,除底层外,其余各层柱的线刚度应乘以0.9的修正系数。

底层柱的弯矩传递系数为12,其余各层柱的弯矩传递系数为13。

各层梁的弯矩传递系数,均为12。

图4 修正后的梁柱线刚度图5 各梁柱弯矩传递系数3、计算各节点处的力矩分配系数计算各节点处的力矩分配系数时,梁、柱的线刚度值均采用修正后的结果进行计算,如:G节点处:7.630.6687.63 3.79GH GHGHGH GDGjGi ii iiμ====++∑GD3.790.3327.63 3.79GD GDGH GDGjGi ii iiμ====++∑H节点处:7.630.3537.63 3.7910.21HG HGHGHG HE HIHjHi ii i iiμ====++++∑3.790.1757.63 3.7910.21HI HIHIHG HE HIHjHi ii i iiμ====++++∑10.210.4727.63 3.7910.21HE HEHEHG HE HIHjHi ii i iiμ====++++∑同理,可计算其余各节点的力矩分配系数,计算结果见图6、图7。

图6 二层节点处力矩分配系数图7 底层节点处力矩分配系数4、采用力矩分配法计算各梁、柱杆端弯矩(1)第二层:①计算各梁杆端弯矩。

先在G、H、I节点上加上约束,详见图8图8 二层计算简图计算由荷载产生的、各梁的固端弯矩(顺时针转向为正号),写在各梁杆端下方,见图9:213.13kN m 12FGHql M =-=-⋅213.13kN m 12F HGql M ==⋅ 27.32kN m 12F HIql M=-=-⋅27.32kN m 12F IHql M==⋅ 在节点G 处,各梁杆端弯矩总和为:13.13kN m FG GH M M ==-⋅在节点H 处,各梁杆端弯矩总和为:13.137.32 5.81kN m F F H HG HI M M M =+=-=⋅在节点I 处,各梁杆端弯矩总和为:7.32kN m F I IH M M ==⋅②各梁端节点进行弯矩分配,各两次,详见图9 第一次弯矩分配过程:放松节点G ,即节点G 处施加力矩13.13kN m ⋅,乘以相应分配系数0.668和0.332,得到梁端+8.76kN m ⋅和柱端+4.37kN m ⋅,+8.76kN m ⋅按12传到GH 梁H 端; 放松节点I ,即在节点I 处施加力矩7.32kN m -⋅,乘以相应分配系数0.935和0.065,得到梁端 6.32kN m -⋅和柱端+1.00kN m ⋅, 6.32kN m -⋅按12传到IH 梁H 端; 放松节点H ,相应的在节点H 处新加一个外力偶矩,其中包括GH 梁右端弯矩、IH梁左端弯矩、GH梁和IH梁传来的弯矩。

分层法

分层法

以上两图实际比较,为降低漏油率, 以上两图实际比较,为降低漏油率,应采用李师傅的操作方 但如果按两种因素进行交叉分层又会得出新的结论。 法,但如果按两种因素进行交叉分层又会得出新的结论。 但如果按两种因素进行交叉分层又会得出新的结论
分层法(续)
方法三、 方法三、按两种因素交叉分层 操作者 王师傅 李师傅 张师傅 合计 总计 漏油否 漏油 不漏油 漏油 不漏油 漏油 不漏油 漏油 不漏油 汽缸垫生产 A厂 厂 6 2 0 5 3 7 9 14 23 B厂 厂 0 11 3 4 7 2 10 17 27 合计 6 13 3 9 10 9 19 31 50
分层法
分层法
分层法的应用 收集数据; 收集数据; 将收集到的数据按不同目的选择分层标志; 将收集到的数据按不同目的选择分层标志; 分层; 分层; 按所分层次归类。 按所分层次归类。 分层法应用实例: 分层法应用实例: 某装配厂的气缸与气缸盖之间经常漏油。经过对 套产品进行调查后发 某装配厂的气缸与气缸盖之间经常漏油。经过对50套产品进行调查后发 现两种情况: 、操作者操作方法不同。 生产气缸垫的厂家不同 生产气缸垫的厂家不同。 现两种情况:1、操作者操作方法不同。2生 操作者 王师傅 李师傅 张师傅 共计 漏油 6 3 10 19 不漏油 13 9 9 31 漏油率(%) 漏油率(%) 32 25 53 38
分层法(续)
方法二、 方法二、按生产厂家分层 操作者 A厂 厂 B厂 厂 共计 漏油 9 10 19 不漏油 14 17 31 漏油率 39 37 38

分层法例题(力矩分配法)资料讲解

分层法例题(力矩分配法)资料讲解
可见“体验化消费”广受大学生的欢迎、喜欢,这是我们创业项目是否成功的关键,必须引起足够的注意。
五、创业机会和对策分析
10、如果学校开设一家DIY手工艺制品店,你希望_____
情感性手工艺品。不少人把自制的手机挂坠作为礼物送给亲人朋友,不仅特别,还很有心思。每逢情人节、母亲节等节假日,顾客Байду номын сангаас别多。
在调查中我们注意到大多数同学都比较注重工艺品的价格,点面氛围及服务。
加拿大beadworks公司就是根据年轻女性要充分展现自己个性的需求,将世界各地的珠类饰品汇集于“碧芝自制饰品店”内,由消费者自选、自组、自制,这样就能在每个消费者亲手制作、充分发挥她们的艺术想像力的基础上,创作出作品,达到展现个性的效果
据调查统计在对大学生进行店铺经营风格所考虑的因素问题调查中,发现有50%人选择了价格便宜些,有28%人选择服务热情些,有30%人选择店面装潢有个性,只有14%人选择新颖多样。如图(1-5)所示
1、你一个月的零用钱大约是多少?可见“体验化消费”广受大学生的欢迎、喜欢,这是我们创业项目是否成功的关键,必须引起足够的注意。
300-400元1632%

分层法题目解答

分层法题目解答

分层法例:某教学楼为四层现浇钢筋混凝土框架结构。

梁的截面尺寸:250mm×600mm,混凝土采用C20;柱的截面尺寸:450mm×450mm,混凝土采用C30。

试按分层法计算钢筋混凝土框架的弯矩,并绘出弯矩图。

屋面和楼面荷载标准值见下表。

解:(1)计算梁、柱线刚度1)梁的线刚度边跨梁:k b=E b I b/l=[25.5×106×(1/12)×0.25×0.63×1.5]/5.7=24.16×103kN·m(框架梁截面惯性矩增大系数均采用1.5)中跨梁:k b=E b I b/l=[25.5×106×(1/12)×0.25×0.63×2.0]/3.00=45.90×103kN·m2)柱的线刚度底层柱:k c=E c I c/h=[30×106×(1/12)×0.45×0.453]/4.55=22.53×103kN·m 其他层柱:k c=E c I c/h=[30×106×(1/12)×0.45×0.453]/3.60=28.48×103kN·m(2)计算分配系数除底层外,各层柱的线刚度应乘以0.9。

(3)荷载分析1)屋面梁上线荷载设计值恒载:1.2[(2.93+1.00+2.60)×4.5+0.25×0.60×25×1.2]=40.67kN/m 活载: 1.4×0.7×4.5=4.41kN/m (系数1.2为考虑梁挑檐及抹灰重的系数)q1=45.08kN/m 2)楼面梁上线荷载设计值教室恒载:1.2[(1.10+1.00+2.60)×4.5+0.25×0.60×25×1.2]=30.78kN/m活载: 1.4×2.00×4.5×0.9=11.34kN/m (系数0.9为屋面及楼面活荷载折减系数)q2=42.12kN/m 走道恒载:30.78kN/m 活载: 1.4×2.50×4.5×0.9=14.18kN/mq3=44.96kN/m(4)梁端固端弯矩M F顶层边跨梁(教室):M F=q1l12/12=45.08×5.72/12=122.05kN·m中跨梁(走道):M F=q1l22/3=45.08×(3/2)2/3=33.81kN·m其他层边跨梁(教室):M F=q2l12/12=41.12×5.72/12=114.04kN·m中跨梁(走道):M F=q3l22/3=44.96×(3/2)2/3=33.72kN·m(5)弯矩分配与传递(用弯矩分配法计算)1)屋面层列表计算,如表1。

1《分层法》例题详细讲解

1《分层法》例题详细讲解

例:如图1所示一个二层框架,忽略其在竖向荷载作用下的框架侧移,用分层法计算框架的弯矩图,括号的数字,表示各梁、柱杆件的线。

图1解:1、简化为两个图:图2、图3所示图2 第二层计算简图图3 底层计算简图2、计算修正后的梁、柱线刚度与弯矩传递系数除底层外,其余各层柱的线刚度应乘以0.9的修正系数。

底层柱的弯矩传递系数为1/2,其余各层柱的弯矩传递系数为1/3。

各层梁的弯矩传递系数,均为1/2.图4 修正后的梁柱线刚度图5 各梁柱弯矩传递系数3、计算各节点处的力矩分配系数 如:G 节点处:7.630.6687.63 3.79GHGH GH GH GD GjGi i i i iμ====++∑ GD 3.790.3327.63 3.79GDGD GH GD GjGi i i i iμ====++∑H 节点处:7.630.3537.63 3.7910.21HGHG HG HG HE HI HjHi i i i i iμ====++++∑3.790.1757.63 3.7910.21HIHI HI HG HE HI HjHi i i i i iμ====++++∑10.210.4727.63 3.7910.21HEHE HE HG HE HI HjHi i i i i iμ====++++∑其余各节点的力矩分配系数见图6、图7。

图6 二层节点处力矩分配系数图7 底层节点处力矩分配系数4、采用力矩分配法计算各梁、柱杆端弯矩(1)第二层: ①计算各梁杆端弯矩。

将各杆变成单跨梁,刚节点看成是固定端。

图8 二层计算简图计算由荷载产生的、各梁的固端弯矩(顺时针转向为正号左负右正),213.13kN m 12F GHql M=-=-⋅ 213.13kN m 12F HGql M ==⋅ 27.32kN m 12F HIql M=-=-⋅ 27.32kN m12F IH ql M ==⋅ ②各梁端节点进行负弯矩分配和传递,各两次,第一次负弯矩分配与传递后再进行第二次负弯矩分配与传递:③计算各柱的杆端弯矩。

分层法与反弯点法例题

分层法与反弯点法例题

2021/2/4
7
第2层:
∑P=10+19=29kN
VDG=9.67kN VEH=12.89kN VFI=6.44kN 第1层:
∑P=10+19+22=51kN
VGJ=17kN
VHK=20.4kN
VIL=13.6kN
2021/2/4
8
(2) 计算柱端弯矩 第3层
MAD=MDA=6.66kN·m MBE=MEB=8.9kN·m MCF=MFC=4.44kN·m 第2层 MDG=MGD=24.18kN·m MEH=MHE=32.23kN·m MFI=MIF=16.1kN·m
分层法与反弯点法例题图Fra bibliotek2.11 例12.1计算简图
2021/2/4
2
图12.12 例12.1二层计算单元
2021/2/4
3
图12.13 例12.1底层计算单元
2021/2/4
4
图12.14
2021/2/4
5
注意事项:
➢ 分层法计算的各梁弯矩为最终弯矩,各柱的最终弯矩为 与各柱相连两层计算弯矩的叠加;
图12.15 M图(单位: kN·m)
2021/2/4
6
【例12.2】用反弯点法求图12.18所示框架的弯矩图。图 中括号内数字为各杆的相对线刚度。 【解】(1) 计算柱的剪力
当同层各柱h相等时,各柱剪力可直接按其线刚度分 配。 第3层:
∑P=10kN
VAD=3.33kN VBE=4.45kN VCF=2.22kN
根据以
2021/2/4
12
图12.17 节点杆端弯矩
2021/2/4
13
图12.18
2021/2/4

1《分层法》例题详解

1《分层法》例题详解

例:如图1所示一个二层框架,忽略其在竖向荷载作用下的框架侧移,用分层法计算框架的弯矩图,括号内的数字,表示各
1/3。

各层梁的弯矩传递系数,均为1/2.
图4 修正后的梁柱线刚度
图5 各梁柱弯矩传递系数
3、计算各节点处的力矩分配系数 如:G 节点处:
7.630.6687.63 3.79GH
GH GH GH GD Gj
G
i i i i i
μ=
===++∑
将各杆变成单跨梁,刚节点看成是固定端。

图8 二层计算简图
计算由荷载产生的、各梁的固端弯矩(顺时针转向为正号左负右正),
②各梁端节点进行负弯矩分配和传递,各两次,
图9 二层弯矩分配传递过程(2)第一层:
①计算各梁杆端弯矩。

图10 底层计算简图
计算由荷载产生的、各梁的固端弯矩(顺时针转向为正号),写在各梁杆端下
递,
13
89
图11 底层弯矩分配传递过程
5、将二层与底层各梁、柱杆端弯矩的计算结果叠加,就得到各梁、柱的最后
弯矩图,详见图12。

图12 弯矩图(单位:kN m )
6、力矩再分配
由以上各梁、柱的杆端弯矩图可知,。

分层法

分层法

表2-5 综合分层的漏气情况
甲厂 A工人
漏气 不漏气 漏气率 p/%
乙厂
0 11
合计
6 13
6 2
75
0 5
0
3 4
32
3 9
B工人
漏气 不漏气 漏气率 p/%
0
3 7
43
7 2
25
10 9
C工人
漏气 不漏气 漏气率 p/%
30
9 14
78
10 17
53
19 31
合计
漏气 不漏气 漏气率 p/% 合计
表2-3 按工人分层的漏气情况 工人 A B C 合计 漏气 6 3 10 19 不漏气 漏气率 p/% 13 32 9 9 31 25 53 38
表2-4 按工厂分层的漏气情况 工厂 甲厂 乙厂 合计 漏气 9 10 19 不漏气 漏气 率p/% 14 39 17 37 31 38
由表2-3和表2-4,人们似乎认为,降低气 缸漏气率的办法可采用乙厂提供的汽缸垫和 工人B的操作方法。但实践结果表明,这样做 漏气率非但没有降低,反而增加到43%,这 是什么原因呢? 这是由于仅单纯的分别考虑操作者和原 材料造成漏气的情况, 材料造成漏气的情况,没有进一步考虑不同 工人用不同工厂提供的汽缸垫也会造成漏气。 工人用不同工厂提供的汽缸垫也会造成漏气。 为此,需要进行更细致的综合分析,如表2-5
39
23
37
27
38
50
从表5再次提出降低气缸漏气率的措施是: ①使用甲厂提供的汽缸垫时,要采用工 人B的操作方法。 B ②使用乙厂提供的气缸垫时,要采用工 人A的操作方法。 实践表明,上述的分层法及采用的措施 十
分层法 分层法就是把所收集的数据进行合理的分类, 把性质相同、在同一生产条件下收集的数据 归在一起,把划分的组叫做“层”,通过数 据分层把错综复杂的影响质量因素分析清楚。 通常,我们将分层与其他质量管理中统 计方法一起联用,即将性质相同、在同一生 性质相同、 性质相同 产条件下得到的数据归在一起,然后再分别 产条件下 用其他方法制成分层排列图、分层直方图、 分层散布图等。

【绝对精品】土木工程本科:分层法例题

【绝对精品】土木工程本科:分层法例题

7.11
0.466
D
(9.53) E
(7.11) (4.84)
F (12.77)
(3.64)
DA
7.11 0.9 4.21 9.53
7.11
0.348
A
B
C
CSD
节点 E:
ED
9.53 9.53 0.9 4.2112.77 4.84
0.308
G
H
(0.9×4.21)
EH
9.53
0.9 4.21 0.9 4.2112.77
4.84
0.123
(0.9×4.21)
D
(9.53) E
EF
12.77 9.53 0.9 4.2112.77
4.84
0.413
(7.11)
(4.84)
I
(0.9×1.79)
F (12.77)
(3.64)
EB
9.53
4.84 0.9 4.2112.77
4.84
0.156 A
B
C
CSD
节点 F:
G
底层计算简图
G (0.9×4.21) H
(0.9×4.21)
3.8 kN/m
I
(0.9×1.79)
3.4 kN/m
D
E
FD
(9.53) E (12.77) F
顶层计算简图
(7.11) (4.84)
(3.64)
A
B
C
CSD
计算节点弯矩分配系数
G
(7.63) H
I (10.21)
节点 G:
GH
7.63 7.63 0.9 4.21
本章中,杆端弯矩以顺时针为正,剪力以使隔 离体产生顺时针转动趋势为正,轴力以受压为正; 杆端转角以顺时针为正,侧移或相对侧移以向右为 正。

混凝土框架结构分层法计算框架内力

混凝土框架结构分层法计算框架内力

分层法近似计算框架内力2010-07-03 08:53:43| 分类:默认分类|字号大中小订阅将框架结构划分为平面框架后,按照楼板的支承方式计算由楼盖传到框架上的荷载,即按照框架的承荷面积计算竖向荷载。

图24-4(a)所示为框架上的可能出现的竖向荷载形式,可能是均布荷载,或者是三角形或梯形分布荷载,如有次梁,则还有集中荷载。

在柱上作用的集中力是另一方向的梁传来的荷截,当这个集中力作用在柱截面重心轴上时,只产生柱轴力。

多层多跨框架在一般竖向荷载作用下侧移是很小的,可按照无侧移框架的计算方法进行内力分析。

由影响线理论及精确分析可知,各层荷载对其他层杆件的内力影响不大。

因此,可将多层框架简化为多个单层框架,并且用力矩分配法求解杆件内力,这种分层计算法是一种近似的内力计算法。

如图24-4(a)所示的三层框架分成如图24-4(b)所示的三个单层框架分别计算。

分层计算所得的梁弯矩即为最终弯矩;每一根柱都同时属于上、下两层,必须将上、下两层所得的同一根柱子的内力叠加,才能得到该柱的最终内力。

用力矩分配法计算各单层框架内力的要点如下,具体计算见例24-1。

(1)框架分层后,各层柱高及梁跨度均与原结构相同,把柱的远端假定为固端。

图24-4 竖向荷载下分层计算简图(2)各层梁上竖向荷载与原结构相同,计算竖向荷载在梁端的固端弯矩。

(3)计算梁柱线刚度及弯矩分配系数。

梁柱的线刚度分别为,,、分别为梁、柱截面惯性矩,、分别为梁跨度与层高。

计算梁截面的惯性矩时,应考虑楼板的影响,现浇楼板的有效作用宽度可取楼板厚度的6倍(梁每侧),设计时也可按下式近似计算有现浇楼板的梁截面惯性矩:式中,为由矩形截面计算得到的截面惯性矩。

除底层柱外,其他各层柱端并非固定端,分层计算时假定它为固端,因而除底层柱以外的其他柱子的线刚度乘以0.9修正系数(底层柱不修正),在计算每个节点周围各杆件为刚度分配系数时,用修正以后的柱线刚度计算。

(4)计算传递系数。

分层法例题详解

分层法例题详解

例:如图1所示一个二层框架,忽略其在竖向荷载作用下的框架侧 移,用分层法计算框架的弯矩图,括号内的数字,表示各梁、柱杆件的 线刚度值(i =旦).l解 : 1、图1所示的二层框架,可简化为两个如图2、图3所示的,只带 一层横梁的框架进行分析。

图2二层计算简图7<50rq=P<BkN∕n■■■ ■■■■E■■■■ ■ ,*,-∙、:CI二■P,J/11心H∖-’.i。

A kM/r[ •JJnJl III F r"77⅛Γ,^77?S t-VΛ5Dr 5.60r图3底层计算简图2、计算修正后的梁、柱线刚度与弯矩传递系数采用分层法计算时,假定上、下柱的远端为固定,则与实际情况有出入.因此,除底层外,其余各层柱的线刚度应乘以0.9的修正系数。

底层柱的弯矩传递系数为1,其余各层柱的弯矩传递系数为—。

各层梁的弯2 3矩传递系数,均为1。

27.5On图4修正后的梁柱线刚度FC J iCIΓriGlz≡H1/21/3。

/31/3D1 Jr nE—P1/2。

JFr ,777/Z7。

50rZ_____Z7图5各梁柱弯矩传递系数3、计算各节点处的力矩分配系数计算各节点处的力矩分配系数时,梁、柱的线刚度值均采用修正后 的结果进行计算,如:H 节点处:亘=—血7630。

353T。

i HG+i HEf 7.63 + 3.79+10.21 I HjH同理,可计算其余各节点的力矩分配系数,计算结果见图6、图7G 节点处:J G ^-I-I0. 6 6 8 、•・I GH ■ ∣GD 7. 633. 7 9iGjGGD—iGj Gi GD■ 1 ■i GH i GD3.79 7.63 3.79-0.332i HII HI■ +・ +・ i HG i HE iHI3.79 7.63 3.7910.2= 0.175HE∣HE∣HEViHj Hi HG i HE i HI10.21 7.63 3.79 10.21=0.472i GD图6二层节点处力矩分配系数图7底层节点处力矩分配系数4、采用力矩分配法计算各梁、柱杆端弯矩 1)第二层:① 计算各梁杆端弯矩。

《分层法》例题详解

《分层法》例题详解

例:如图1所示一个二层框架,忽略其在竖向荷载作用下的框架侧移,用分层法计算框架的弯矩图,括号内的数字,表示各梁、柱杆件的线刚度值(EIil )。

图1解:1、图1所示的二层框架,可简化为两个如图2、图3所示的,只带一层横梁的框架进行分析。

图2 二层计算简图图3 底层计算简图2、计算修正后的梁、柱线刚度与弯矩传递系数采用分层法计算时,假定上、下柱的远端为固定,则与实际情况有出入。

因此,除底层外,其余各层柱的线刚度应乘以0.9的修正系数。

底层柱的弯矩传递系数为12,其余各层柱的弯矩传递系数为13。

各层梁的弯矩传递系数,均为12。

图4 修正后的梁柱线刚度图5 各梁柱弯矩传递系数3、计算各节点处的力矩分配系数计算各节点处的力矩分配系数时,梁、柱的线刚度值均采用修正后的结果进行计算,如:G节点处:7.630.6687.63 3.79GH GHGHGH GDGjGi ii iiμ====++∑GD3.790.3327.63 3.79GD GDGH GDGjGi ii iiμ====++∑H节点处:7.630.3537.63 3.7910.21HG HGHGHG HE HIHjHi ii i iiμ====++++∑3.790.1757.63 3.7910.21HI HIHIHG HE HIHjHi ii i iiμ====++++∑10.210.4727.63 3.7910.21HE HEHEHG HE HIHjHi ii i iiμ====++++∑同理,可计算其余各节点的力矩分配系数,计算结果见图6、图7。

图6 二层节点处力矩分配系数图7 底层节点处力矩分配系数4、采用力矩分配法计算各梁、柱杆端弯矩(1)第二层:①计算各梁杆端弯矩。

先在G、H、I节点上加上约束,详见图8图8 二层计算简图计算由荷载产生的、各梁的固端弯矩(顺时针转向为正号),写在各梁杆端下方,见图9:213.13kN m 12FGHql M =-=-⋅213.13kN m 12F HGql M ==⋅ 27.32kN m 12F HIql M=-=-⋅27.32kN m 12F IHql M==⋅ 在节点G 处,各梁杆端弯矩总和为:13.13kN m FG GH M M ==-⋅在节点H 处,各梁杆端弯矩总和为:13.137.32 5.81kN m F F H HG HI M M M =+=-=⋅在节点I 处,各梁杆端弯矩总和为:7.32kN m F I IH M M ==⋅②各梁端节点进行弯矩分配,各两次,详见图9 第一次弯矩分配过程:放松节点G ,即节点G 处施加力矩13.13kN m ⋅,乘以相应分配系数0.668和0.332,得到梁端+8.76kN m ⋅和柱端+4.37kN m ⋅,+8.76kN m ⋅按12传到GH 梁H 端;放松节点I,即在节点I处施加力矩7.32kN m-⋅,乘以相应分配系数0.935和0.065,得到梁端 6.32kN m-⋅和柱端+1.00kN m⋅, 6.32kN m-⋅按12传到IH梁H端;放松节点H,相应的在节点H处新加一个外力偶矩,其中包括GH梁右端弯矩、IH梁左端弯矩、GH梁和IH梁传来的弯矩。

混凝土 分层法,弯矩分配法计算题

混凝土 分层法,弯矩分配法计算题

计算例题
【例题3 2】某三跨五层钢筋混凝土框架,各层框架梁所受竖向荷 载设计值(恒载)如图3.11所示,各杆件相对刚度示于图中, 试用二次弯矩分配法计算各杆件的弯矩。
q=32.8kN/m
i=0.498
i=0.498
i=1
i=1.24
q=40.2kN/m
i=0.498
i=0.498
i=1
i=1.24
49.0 -49.0
上柱 下柱 右梁 0.250 0.250 0.500 -120.6 30.1 30.1 60.3 16.4 15.1 -18.4 -3.3 -3.3 -6.6 43.2 41.9 -85.3
左梁 上柱 下柱 右梁 0.383 0.190 0.190 0.237 120.6 -24.4
q=40.2kN/m
q=32.8kN/m
33.1
顶层
+116.1
107.9
3.1
8.5
39.7
顶层
下柱 0.309
上柱 0
右梁 0.691 -98.4
左梁 0.513 +98.4 +34.0 -17.4 +3.0 -1.5 +116.5
上柱 0
下柱
右梁
0.230 0.257 -98.4 -49.2
q=40.2kN/m
i=0.498
i=0.498
i=1
i=1.24
q=40.2kN/m
i=0.498
i=0.498
i=1
i=1.24
q=40.2kN/m
i=0.471
i=0.471
i=1
i=1.24
6000
2700
6000

混凝土-分层法-弯矩分配法计算题

混凝土-分层法-弯矩分配法计算题

109.5 109.5 50.0 50.0 84.7 42.4 42.2 29.8 29.7 29.7 29.8 42.2 84.7 42.4
105.9 105.9 52.7 52.7 76.1 26.9 46.5 21.4 31.8 31.8 21.4 46.5 76.1 26.9
10.7 14.8 10.7 14.8
+30.4
+68.0 -8.7
-7.8
-8.7
+8.7
+2.7 +33.1
+6.0 -33.1
-0.7 -8.5 -2.8
-0.8 -107.9
+0.8 -39.7
+11.0
33.1 33.1
+116.5
107.9
8.5
39.7
11.0
2.8
顶层
四层
q=40.2kN/m
+9.5
-2.0
+10.1
下图所示为一个二层框架,用分层法和二次弯矩分配法 作框架的弯矩图。括号内的数字表示杆件的线刚度的相 对值。
q=4kN/m
(7.63) (4.21) q=5kN/m (4.21) (9.53) (7.11) (4.84) (10.21) (1.79)
(12.77) (3.64)
-36.8 -18.3 -18.3 -22.8 30.2 -9.2 -9.2 -4.5 -2.2 -2.2 -2.8 109.5 -29.7 -29.7 -50.0
上柱 下柱 右梁 0.250 0.250 0.500 -120.6 30.1 30.1 60.3 15.1 15.1 -18.4 -3.0 -3.0 -6.0 42.2 42.2 -84.7
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例:如图1所示一个二层框架,忽略其在竖向荷载作用下的框架侧移,用分层法计算框架的弯矩图,括号内的数字,表示各梁、柱杆件的
线刚度值(
EI
i
l )。

图1
解:1、图1所示的二层框架,可简化为两个如图2、图3所示的,只带一层横梁的框架进行分析。

图2 二层计算简图
图3 底层计算简图
2、计算修正后的梁、柱线刚度与弯矩传递系数
采用分层法计算时,假定上、下柱的远端为固定,则与实际情况有出入。

因此,除底层外,其余各层柱的线刚度应乘以0.9的修正系数。


层柱的弯矩传递系数为1
2
,其余各层柱的弯矩传递系数为
1
3。

各层梁的弯
矩传递系数,均为1
2。

图4 修正后的梁柱线刚度
图5 各梁柱弯矩传递系数
3、计算各节点处的力矩分配系数
计算各节点处的力矩分配系数时,梁、柱的线刚度值均采用修正后的结果进行计算,如:
G节点处:
7.63
0.668
7.63 3.79
GH GH
GH
GH GD
Gj
G
i i
i i
i
μ====
++

GD
3.79
0.332
7.63 3.79
GD GD
GH GD
Gj
G
i i
i i
i
μ====
++

H节点处:
7.63
0.353
7.63 3.7910.21
HG HG
HG
HG HE HI
Hj
H
i i
i i i
i
μ====
++++

3.79
0.175
7.63 3.7910.21
HI HI
HI
HG HE HI
Hj
H
i i
i i i
i
μ====
++++

10.21
0.472
7.63 3.7910.21
HE HE
HE
HG HE HI
Hj
H
i i
i i i
i
μ====
++++

同理,可计算其余各节点的力矩分配系数,计算结果见图6、图7。

图6 二层节点处力矩分配系数
图7 底层节点处力矩分配系数
4、采用力矩分配法计算各梁、柱杆端弯矩
(1)第二层:
①计算各梁杆端弯矩。

先在G、H、I节点上加上约束,详见图8
图8 二层计算简图
计算由荷载产生的、各梁的固端弯矩(顺时针转向为正号),写在各梁杆端下方,见图9:
213.13kN m 12F
GH
ql M =-=-⋅
213.13kN m 12
F HG
ql M ==⋅ 27.32kN m 12
F HI
ql M
=-=-⋅
27.32kN m 12
F IH
ql M
==⋅ 在节点G 处,各梁杆端弯矩总和为:
13.13kN m F
G GH M M ==-⋅
在节点H 处,各梁杆端弯矩总和为:
13.137.32 5.81kN m F F H HG HI M M M =+=-=⋅
在节点I 处,各梁杆端弯矩总和为:
7.32kN m F I IH M M ==⋅
②各梁端节点进行弯矩分配,各两次,详见图9 第一次弯矩分配过程:
放松节点G ,即节点G 处施加力矩13.13kN m ⋅,乘以相应分配系数0.668和0.332,得到梁端+8.76kN m ⋅和柱端+4.37kN m ⋅,+8.76kN m ⋅按1
2
传到GH 梁H 端;
放松节点I ,即在节点I 处施加力矩7.32kN m -⋅,乘以相应分配系数0.935和0.065,得到梁端 6.32kN m -⋅和柱端+1.00kN m ⋅, 6.32kN m -⋅按12
传到IH 梁H 端;
放松节点H ,相应的在节点H 处新加一个外力偶矩,其中包括GH 梁右端弯矩、IH 梁左端弯矩、GH 梁和IH 梁传来的弯矩。

其值为
(13.13+4.387.32 3.16)kN m=7.03kN m ---⋅-⋅,乘以分配系数,HI 梁分配
3.56kN m -⋅、HG 梁分配 2.73kN m -⋅、HE 柱分配 1.32kN m -⋅, 3.56kN m -⋅按12
传到I 端, 2.73kN m -⋅按
1
2
传到G 端。

第一次分配过程完成。

第二次弯矩分配过程:
重复第一次弯矩分配过程,叠加两次结果,得到杆端最终弯矩值。

③计算各柱的杆端弯矩。

二层柱的远端弯矩为各柱的近端弯矩的13
(即传递系数为
13
),带*号的数值是各梁的固端弯矩,各杆分配系数写在图中的长方框内
图9 二层弯矩分配传递过程
(2)第一层:
①计算各梁杆端弯矩。

先在D 、E 、F 节点上加上约束,详见图10
图10 底层计算简图
计算由荷载产生的、各梁的固端弯矩(顺时针转向为正号),写在各梁杆端下方:
217.81kN m 12F
DE
ql M =-=-⋅
217.81kN m 12
F ED
ql M ==⋅ 28.89kN m 12
F EF ql M
=-=-⋅
28.89kN m 12
F FE
ql M
==⋅ 在节点D 处,各梁杆端弯矩总和为:
17.81kN m F
D D
E M M ==-⋅
在节点E 处,各梁杆端弯矩总和为:
17.818.898.92kN m F F E ED EF M M M =+=-=⋅
在节点I 处,各梁杆端弯矩总和为:
8.89kN m F F FE M M ==⋅
②各梁端节点进行弯矩分配,各两次,分配以及传递过程同第二层,但弯矩传递时要注意传递系数的差别。

③计算各柱的杆端弯矩。

二层柱的远端弯矩为各柱的近端弯矩的1 3
(即传递系数为1
3
),底层柱的远端弯矩为近端弯矩的
1
2
(即传递系数为
1
2
),带*号的数值是各梁的固端弯矩,各杆分配系数写在图中的长方框内。

图11 底层弯矩分配传递过程
5、将二层与底层各梁、柱杆端弯矩的计算结果叠加,就得到各梁、柱的最后弯矩图,详见图12。

图12 弯矩图(单位:kN m

6、力矩再分配
由以上各梁、柱的杆端弯矩图可知,节点处有不平衡力矩,可以将不平衡力矩再在节点处进行一次分配,此次分配只在节点处进行,并且在各杆件上不再传递。

在本题中,由于不平衡力矩相对较小,力矩可不再分配。

相关文档
最新文档