动量守恒板块模型专题培训课件

合集下载

人教版高一物理选修3-5第十六章动量守恒定律第4节碰撞专题板块模型课件(共16张PPT)

人教版高一物理选修3-5第十六章动量守恒定律第4节碰撞专题板块模型课件(共16张PPT)

-μmgx=0- 1
2
mv
2 0
(4)平板车的绝对位移,对平板车动能定理
-μmgx1=
1 2
Mv12-
1 2
Mv
2 0
-μmgx2=
1 2
Mv22-
1 2
Mv
2 0
(5)涉及作用时间,选择小滑块动量定理
-μmgt=mv2-(-mv0) 选择平板车动量定理 μmgt=Mv2-Mv0
【课堂训练】
1.如图所示,在光滑水平面上,有一质量为M=3kg的薄板和 质量m=1kg的物块,都以v=4m/s的初速度朝相反的方向运动, 它们之间有摩擦,薄板足够长,当薄板的速度为2.4m/s时, 物块的运动情况是( A ) A.做加速运动
高一物理选修3-5 第十六章动量守恒定律 第4节碰撞专题板块模型
包头市百灵庙中学
史殿斌
【由一例得一法】 例题:如图所示,一个质量为m的滑块以初速度v0冲上静止 在光滑水平面上质量为M的木板之后,滑块带动木板向前运动 一段时间后两者相对静止。两者间的动摩擦因数为μ。求: (1)滑块和木板最终的速度 (2)上述过程中滑块和木板 在水平面上滑行的距离 (3)滑块在木板上滑行的距离
因素μ=0.2,取g=10m/s2。求:
(1)A在车上刚停止滑动时,A和车的速度大小 v=1.4m/s (2)A、B在车上都停止滑动时车的速度及此时车运动了多 长时间 t=4s
上滑行的位移或者是木板的长度)利用能量守恒求解,其中
机械能转化为的内能表达式:ΔE=Q=μmgd相对
滑块模型的能量守恒为:1
2
mv02=
1(M+m)v2+μmgd
2
4.涉及作用时间或者内力的冲量,可以选择性地利用动量定

动量守恒定律PPT课件

动量守恒定律PPT课件

二、动量守恒定律的推导
v1
v2
m1
m2
设m1、 m2分别以v1 、 v2相碰,碰后速度分别为v1′、 v2 ′碰 撞时间为t,规定v1的方向为正方向,由动量定理得:
对m1:-F1t =m1v1 ′ -m1v1----- (1)
对m2:F2t = m2v2 ′-m2v2---------(2)
由牛顿第三定律: F1=F2-------- -- (3) - m1v1 ′+ m1v1 = m2v2 ′-m2v2
•总定【适例用6】。质量为M的小车上站有一个质量为m的人
,它们一起以速度v沿着光滑的水平面匀速运动,某
时刻人沿竖直方向跳起。则跳起后,车子的速度为:
A. v
C. Mmv M
A
B. M m v m
D. 无法确定。
(3)矢量性:是矢量表达式,规定正方向
(4引)伸相对1. 性如:图式所子示中,各在速度光必滑须的是水相平对地于面同一上参,考有系一 (v能2′相5应辆速)加是平运同作时板动用性车,后:载已同v着知1一、时一车v2刻…人 的应的以 质速是速 量作度度M用,=v前不01=0同是60m一同kg/时一s,水刻时人平的刻的向速的质度左动量,量匀不v1′、
m1v1 ′+m2v2来自′ = m1v1+m2v2
三、动量守恒定律
1.内容:一个系统不受外力或者所受外力的和为零, 这个系统的总动量保持不变。
2.表达式:m 1 v 1 m 2 v 2 m 1 v 1 m 2 v 2
3. 守恒条件为:
①不受外力 1)严格条件
②所受外力的合力为零,即F合=0
2)近似条件
第十六章 动 量 守 恒 定 律
一、基本概念

动量守恒定律 (共19张PPT)

动量守恒定律 (共19张PPT)
B
A


F外 0
F x =0
F y =0
5、斜面B置于光滑水平面上,物体A沿 光滑斜面滑下,则AB组成的系统动量守 恒吗? 光滑
x
光滑
F外 0
F x =0
F y 0
空中爆炸
F外 0
但是F 内 ?
F x 0
F y 0
F

3. 成立条件
(1) 系统不受外力或所受外力的矢量和为零。
4、动量的变化P
1、表达式:
P2
P1
△P
P=P2-P1 =mv2-mv1=m(v2-v1)
2、运算:
(1)成θ角,平行四边形定则 (2)在一条直线上,确定正方向后,用正 负表示方向,就转化为代数运算
3、方向:与速度变化量的方向相同。
预 学
理解三个概念:
(请自主阅读教材P12)
1. 系统:相互作用的 两个或多个物体 组成的整体。系统可按 解决问题的需要灵活选取。
这个系统的总动量保持不变。
m11 m2 2 m11 m2 2
二、动量守恒定律成立的条件 1. 系统不受力,或者 F外合 = 0 2. F内 >> F外合
3. 若系统在某一方向上满足上述 1 或 2,则在该方向上系
统的总动量守恒。
三、应用动量守恒定律解决问题的基本步骤
定系统
判条件
2. 动量守恒定律是一个 独立的实验定律 ,它适用于目前为 止物理学研究的 一切 领域。
3. 与牛顿运动定律相比较,动量守恒定律解决问题优越性表 现在哪里? 动量守恒定律只涉及始末两个状态,与过程中力的 细节无关,往往能使问题大大简化。
课 堂 总 结

微专题6:动量守恒定律的典型模型(共33张PPT)优秀课件

微专题6:动量守恒定律的典型模型(共33张PPT)优秀课件
对系统应用能量转化和守恒定律:
力对空间的积累效应是功, 功是能量发生变化的原因
根本模型:
S2 L
S1
根本模型:
S2 L
S1
子弹射穿木块的条件:
①假设共速,相对位移d>L ②假设到木板最右端,那么子弹速度大于木板速 度
动量关系 :
能量关系 :
变式一:图像应用
S1、S2、S相对的大小与m、 M的关系?
假设m1= m2物块m1从圆弧面滑下后,二者速度
m1 v0
m2
v
m
m
0
1
2
v0
1
2
完全非弹性碰撞: 二者共速;动能
损失最大即转化为其它形式能最多
E=12m1v12 12m2v2212m1 m2v2 2m m11m1m2v1 v22
二.子弹打木块的模型
1.运动性质:子弹对地在滑动摩擦力作用下匀减
速直线运动;木块在滑动摩擦力作用下做匀加速 运动。
〔1〕木块A的最终速度; 〔2〕滑块C离开A时的速度。
变式训练3:如下图,A、B是静止在水平地面上完全 相同的两块长木板,A的左端和B的右端相接触,两板 的质量均为,长度均为l =1.0m,C 是一质量为的木 块.现给它一初速度v0,使它从B板的左端开始向右运 动.地面是光滑的,而C与A、B之间的动摩擦因数皆 为.求最后A、B、C各以多大的速度做匀速运动.取 重力加速度g=10m/s2.
m=1.0kg
C
.0kg M=2.0kg
根本知识
根本概念:与动量有关:冲量、动量、弹性碰撞、非弹性碰撞 与能量有关:功、功率、动能、势能、内能
根本规律:与动量有关:
动量定理、 动量守恒
定律
与能量有关:

动量守恒定律的内容与理解PPT课件

动量守恒定律的内容与理解PPT课件

问题导学
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
当堂检测
解析:甲对乙的冲量与乙对甲的冲量大小相等,方向相反,选项 A 错
误;甲、乙组成的系统动量守恒,动量变化量等大反向,选项 B 正确;甲、
乙相互作用时,虽然她们之间的相互作用力始终大小相等,方向相反,但
当堂检测
迁移训练 2(2013·福建理综)将静置在地面上,质量为
m0(含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度 v0 竖
直向下喷出质量为 m 的炽热气体。忽略喷气过程重力和空气阻力的影
响,则喷气结束时火箭模型获得的速度大小是(
A.
m
v
m0 0
m
m0
v0
m0 -m
B. m0 v0
C.
)
当堂检测
4.如何理解动量守恒定律的“同时性”?
答案:同时性是指动量守恒定律中 p1、p2、…必须是系统中各物体
在相互作用前同一时刻的动量,p1'、p2'、…必须是系统中各物体在相互
作用后同一时刻的动量。
5.如何理解动量守恒定律的“普适性”?
答案:普适性是指动量守恒定律不仅适用于两个物体组成的系统,
也适用于多个物体组成的系统。不仅适用于宏观物体组成的系统,也适
答案:条件性是指动量守恒是有条件的,应用时一定要首先判断系
统是否满足守恒条件。
(1)系统不受外力或所受外力的矢量和为零,系统的动量守恒。
(2)系统受外力,但在某一方向上合外力为零,则系统在这一方向上
动量守恒。
问题导学

课前预习导学
课堂合作探究

动量守恒定律PPT精品课件_1

动量守恒定律PPT精品课件_1

v
(M m)v Mv
v’
v M m v M
动量守恒的相对性
例5:如图所示,在光滑的水平面上有一 质量为60kg的小车,小车的右端站着质 量为40kg的人一起以2m/s的速度向右运 动,若人水平向右以相对车的速度4m/s 跳离小车,则人离开车后,小车的速度 大小和方向各如何?
例6
一辆质量为M的小车以速率v1在光滑的水
【解析】(1)选取小船和 从大船投过的麻袋为系 统如图5-2-2,并以小船 m1的速度方向为正方向, 依动量守恒定律有:
(m1-m)v1-mv2=0
即450v1-50v2=0……①
(2)选取大船和从小船投过的麻袋为系统, 有:
-(m2-m)v2+mv1=-m2v, 即-950v2+50v1=-1000×8.5……② (3)选取四个物体为系统,有:
mC vC
(mA mC
mB )vA
5.5m / s
练习:两只小船平行逆向航行,航线 邻近,当它们头尾相齐时,由每一只 船上各投质量m=50kg的麻袋到对面一 只船上去,结果载重较小的一只船停 了下来,另一只船以v=8.5m/s的速度 向原方向航行,设两只船及船上的载 重量各为m1=500kg,m2=1000kg,问在 交换麻袋前两只船的速率各为多少? (水的阻力不计)
A物体时,A、C的速度各为多少?
v0
C
A
B
分析与解
• 设A的速度为vA mvC mAvA (mB mC )v
vA
mC vC
(mB mA
mC
)v
0.5m /
s
• 当C越过A进入B时,AB的速度的速度相
等,而且是v=0.5m/s
mCvC (mA mB )vA mCvC/

第37课时动量守恒中的四类模型2025届高考物理一轮复习课件

第37课时动量守恒中的四类模型2025届高考物理一轮复习课件

kg和mB=2.0 kg,用轻弹簧拴接,放在光滑的水平地面上,物块B右侧
与竖直墙相接触。另有一物块C在t=0时刻以一定速度向右运动,在t
=4 s时与物块A相碰,并立即与A粘在一起不再分开,物块C的v-t图像
如图乙所示,下列说法正确的是(

目录
高中总复习·物理
A. 物块B离开墙壁前,弹簧的最大弹性势能为48 J
2
2
滑块上升的最大高度,不一定等于圆弧轨道的高度。
(2)滑块返回最低点时,滑块与曲面体分离
①系统水平方向动量守恒:mv0=mv1+Mv2;
1
1
1
2
2
②系统机械能守恒: mv0 = mv1 + Mv2 2 。
2
2
2
目录
高中总复习·物理
【典例3】 如图所示,质量为m=1 kg的工件甲静置在光滑水平面
上,其上表面由光滑水平轨道AB和四分之一光滑圆弧轨道BC组成,
②系统机械能守恒: m1v0 = (m1+m2)v共 2 +Epm。
2
2
(2)弹簧处于原长时弹性势能为零
①系统动量守恒:m1v0=m1v1+m2v2;
1
1
1
2
2
②系统机械能守恒: m1v0 = m1v1 + m2v2 2 。
2
2
2
目录
高中总复习·物理
【典例4】
(多选)如图甲所示,物块A、B的质量分别是mA=4.0
板,物块与滑板之间的动摩擦因数均为μ=0.1。重力加速度大小取g=
10 m/s2。
目录
高中总复习·物理
(1)若0<k<0.5,求碰撞后瞬间新物块和新滑板各自速度的大小和
方向;
答案:5(1-k)m/s

动量守恒定律的典型模型黄肖斌课件

动量守恒定律的典型模型黄肖斌课件
量守恒。
弹性碰撞
两个弹性球发生碰撞时,由于球 之间的相互作用力是弹性的,因 此碰撞前后两球的动量之和保持
不变,即动量守恒。
火箭推进
火箭推进器喷射燃料时,燃料燃 烧产生的气体以高速向反方向喷 出,根据动量守恒定律,火箭获 得向前的动量,从而推动火箭前
进。
REPORT
CATALOG
DATE
ANALYSIS
REPORT
CATALOG
DATE
ANALYSIS
SUMMARY
动量守恒定律的典型 模型黄肖斌课件
目录
CONTENTS
• 动量守恒定律的概述 • 理想气体动量守恒的模型 • 弹性碰撞的动量守恒模型 • 非弹性碰撞的动量守恒模型 • 系统动量守恒的模型
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03
弹性碰撞的动量守恒模 型
弹性碰撞的定义
弹性碰撞
在两个物体碰撞过程中,没有能量损 失,碰撞后两物体以与碰撞前相同的 速度反向弹回。
非弹性碰撞
在两个物体碰撞过程中,存在能量损 失,碰撞后两物体的速度与碰撞前不 同。
弹性碰撞的动量守恒公式
动量守恒定律
在封闭系统中,没有外力作用时,系统的总动量保持不变。 即,m1v1 + m2v2 = m1v1' + m2v2'。
动量守恒定律的重要性
基础性
动量守恒定律是物理学中的基础 性定律之一,对于理解力学、碰 撞、火箭技术等领域的问题具有
重要意义。
广泛应用
动量守恒定律在日常生活、工业、 军事等领域有广泛的应用,如车辆 设计、火箭发射、天体运动等。
理论基石

动量守恒—板块模型ppt课件

动量守恒—板块模型ppt课件

相等、方向相反的初速度(如图),使A开始向左运动、B
开始向右运动,但最后A刚好没有滑离木板.以地面为参
考系.
(1)若已知A和B的初速度大小为v0,求它们最后的速度 的大小和方向;
(2)若初速度的大小未知,求小木块A向左运动到达的最
远处(从地面上看)离出发点的距离.
v0
v0
.
v0
A B
“板块”两体模型
A.木块获得的动能变大 B.木块获得的动能变小 C.子弹穿过木块的时间变长 D.子弹穿过木块的时间变短
.
例3、质量为M的均匀木块静止在光滑水平面上,木块左 右两侧各有一位拿着完全相同步枪和子弹的射击手。首先左 侧射手开枪,子弹水平射入木块的最大深度为d1,然后右侧 射手开枪,子弹水平射入木块的最大深度为d2,如图设子弹 均未射穿木块,且两颗子弹与木块之间的作用力大小均相同。
对物块的动能定理: fs11 2m Av121 2m Av02 (2) f = m A a 1
对木块的动量定理: ft1m Bv10 (3)
f m Ba2
v1 =v0 a1t 2a1s1=v12v02
v1 = a2t
对木块的动能定理: fs2 12mBv120 (4)
2a2s2=v12 0
几何关系:
.
.
.
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
s1s2L (5)
s1 s2 L
系统动量守恒: ( 1 ) ( 3 ):m A v 0 m A v 1 m B v 1 (6 )
系统能量守恒: ( 2 ) ( 4 ) 并 将 ( 5 ) 代 入 :f L 1 2 m A v 0 2 ( 1 2 m A v 1 2 1 2 m B v 1 2 ) ( 7 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v1 = a2t
对木块的动能定理: fs2 12mBv120 (4)
2a2s2=v12 0
几何关系:
s1s2L (5)
s1 s2 L
系统动量守恒: ( 1 ) ( 3 ):m A v 0 m A v 1 m B v 1 (6 )
系统能量守恒: ( 2 ) ( 4 ) 并 将 ( 5 ) 代 入 :f L 1 2 m A v 0 2 ( 1 2 m A v 1 2 1 2 m B v 1 2 ) ( 7 )
f'
B
v
v0
s2
vB 0
s 2'
s1
v A v1
fA
B
f'
v
v
1 2
O
s
2
'
s
1'
A
vA vB v2
ቤተ መጻሕፍቲ ባይዱ
B
v0
课堂练习:求B向左运动的最大距离
怎样表示A在B上滑动的距离?
L=s1s2s1's2'
C D
t1 t2 t
例1、如图所示,一质量M=3.0kg的长方形木板B放在光
滑水平地面上,在其右端放一个质量m=1.0kg的小木块A。
v0
fA
f'
B
s2
mA2m,mBm
L=s1 s2
v1
s1
A
B
v
v0
mAv0=(mA+mB)v1
v1
C
L
O
解法2:牛顿第二定律+运动学
t1
t
a1

mAg
mA

g
a2

mAg
mB

2g
s1

v0t1

1 2
a1t12
s2

1 2
a 2t12
v1v0a1t1a2t1
L=s1 s2
相同。当两颗子弹均相对木块静止时,下列说法正确的是
()
C
A.最终木块静止,d1=d2 B.最终木块向右运动,d1<d2 C.最终木块静止,d1<d2 D.最终木块向左运动,d1=d2
例4.(1992年·全国)如图所示,一质量为M、长为l的长 方形木板B放在光滑的水平地面上,在其右端放一质量为 m的小木块A,m<M.现以地面为参照系,给A和B以大小 相等、方向相反的初速度(如图),使A开始向左运动、 B开始向右运动,但最后A刚好没有滑离木板.以地面为 参考系.
v0
fA
f'
B
s2
mA2m,mBm
L=s1 s2
v1
s1
A
B
L
解法3:v-t图象 1
L = 2 v0t
m Agtm A v1m A v0
mAgt mBv1
v
v0
mAv0=(mA+mB)v1
v1 L
C
O
t1
t
a1

mAg
mA

g
a2

mAg
mB
2g
v1v0a1t1a2t1
动量守 恒—板块
模型
1992全国卷
m2 v0 m1
2009天津卷
1993全国卷
A R
B
2010新课程卷
s=5R
Em
M
l=6.5R
2011广东卷
D R
C L
v0
A B
“板块”两体模型
质量为mB=m的长木板B静止在光滑水平面上,现有质量为 mA=2m的可视为质点的物块,以水平向右的速度大小v0从左 端滑上长木板,物块和长木板间的动摩擦因数为μ。求:
v
v
1 2
f'
O
s 1'
A
vA vB v2
B
v0
课堂练习:求B向左运动的最大距离
m A v 0 m B v 0= m A v 1 m B 0
v1

1 2
v0
m A v 0 m B v 0= (m A m B )v 2
1 v2 3 v0
C D
t1 t2 t
f
A
v0
v0
mA2m,mBm
现以地面为参照系,给A和B以大小均为4.0m/s,方向相
反的初速度,使A开始向左运动,B开始向右运动,但最
后A并没有滑离B板。站在地面的观察者看到在一段时间
内小木块A正在做加速运动,则在这段时间内的某时刻木
板对地面的速度大小可能是(BC )
A.1.8m/s
B.2.4m/
B
vAv
C.2.6m/s
D.3.0m/s
(2) (1)
:
s1
v0
v1 2
t1(8)
(2) (1)
:
s2

0v1 2
t1(9)
v
v0
v1
C
将 (8)(9)代 入 (5):L0 2v0t1(10)O
t1
v0
fA
f'
B
s2
t
v1
s1
A
B
L
f
A
v0
v0
mA2m,mBm
f'
B
v
v0
s2
s1
vB 0 f A
B
s 2'
v A v1
(1)若已知A和B的初速度大小为v0,求它们最后的速度 的大小和方向;
(2)若初速度的大小未知,求小木块A向左运动到达的最 远处(从地面上看)离出发点的距离.
v0
v0
v0
A B
f1
f
A
v0
v0
f'
s2
s1
vB 0 f A
B
mA2m,mBm A与B及B与地间的动摩擦因数均为μ
B
v A v1 f'
f1
v0
v1
v
C
s 1'
A B
O t1
t2t
v0
例2、一颗子弹以较大的水平速度水平击穿原来静止在光滑 水平面上的木块,设木块对子弹的阻力恒定,则当子弹射入
速度增大时,下列说法正确的是 ( BD )
“板块”两体模型——力学密
搞清楚是对谁列的方程?
码对物块的动量定理: ft1m A v 1 m A v0 (1 )
对物块的动能定理: fs11 2m Av121 2m Av02 (2) f = m A a 1
对木块的动量定理: ft1m Bv10 (3)
f m Ba2
v1 =v0 a1t 2a1s1=v12v02
(1)要使物块不从长木板右端滑出,长木板的长度L至少为多 少?(至少用两种方法求解)
v0
fA
f'
B
s1
s2
L
v0
fA
f'
A
B
B
v0
fA
f'
A
B
B
s1
s2
L
mAv0=(mA+mB)v1
good
大家最好不要在非地参考系中解题
v0
fA
f'
B
s2
mA2m,mBm
L=s1 s2
A.木块获得的动能变大
B.木块获得的动能变小
C.子弹穿过木块的时间变长
D.子弹穿过木块的时间变短
例3、质量为M的均匀木块静止在光滑水平面上,木块左
右两侧各有一位拿着完全相同步枪和子弹的射击手。首先
左侧射手开枪,子弹水平射入木块的最大深度为d1,然后右 侧射手开枪,子弹水平射入木块的最大深度为d2,如图设子 弹均未射穿木块,且两颗子弹与木块之间的作用力大小均
v1
s1
A
B
v
v0
mAv0=(mA+mB)v1
v1
C
L
解法1:动量守恒+动能定理
O
t1
t
mAv0=(mA+mB)v1
m Ags11 2m Av1 21 2m Av0 2
mAgs212mBv120
L=s1 s2
m A gL 1 2m A v 0 2 (1 2m A v 1 2 1 2m B v 1 2)
相关文档
最新文档