高二数学下期末测试题及答案

合集下载

高二年级下学期期末考试数学试题与答案解析(共三套)

高二年级下学期期末考试数学试题与答案解析(共三套)

高二年级下学期期末考试数学试题(一)注意事项:1.本试卷共22题。

全卷满分150分。

考试用时120分钟。

2.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

3.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.记S n为等差数列{a n}的前n项和,若a2=3,a5=9,则S6为()A.36 B.32 C.28 D.242.的展开式中的常数项为()A.﹣60 B.240 C.﹣80 D.1803.设曲线在处的切线与直线y=ax+1平行,则实数a等于()A.﹣1 B.C.﹣2 D.24.在2022年高中学生信息技术测试中,经统计,某校高二学生的测试成绩X~N(86,σ2),若已知P(80<X≤86)=0.36,则从该校高二年级任选一名考生,他的测试成绩大于92分的概率为()A.0.86 B.0.64 C.0.36 D.0.145.设函数,若f(x)在点(3,f(3))的切线与x轴平行,且在区间[m﹣1,m+1]上单调递减,则实数m的取值范围是()A.m≤2 B.m≥4 C.1<m≤2 D.0<m≤36.利用独立性检验的方法调查高中生的写作水平与喜好阅读是否有关,通过随机询问120名高中生是否喜好阅读,利用2×2列联表,由计算可得K2=4.236.P(K2≥0.100 0.050 0.025 0.010 0.001k0)k0 2.706 3.841 5.024 6.635 10.828参照附表,可得正确的结论是()A.有95%的把握认为“写作水平与喜好阅读有关”B.有97.5%的把握认为“写作水平与喜好阅读有关”C.有95%的把握认为“写作水平与喜好阅读无关”D.有97.5%的把握认为“写作水平与喜好阅读无关”7.某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形ABCD(边长为2个单位)的顶点A处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为i(i=1,2,…,6),则棋子就按逆时针方向行走i个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到点A处的所有不同走法共有()A.22种B.24种C.25种D.27种8.若两个等差数列{a n},{b n}的前n项和分别为A n、B n,且满足,则的值为()A.B.C.D.二、多选题:本题共4小题,每小题5分,共20分。

2021-2022学年高二下学期期末考试数学试题含答案

2021-2022学年高二下学期期末考试数学试题含答案

一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.78915⨯⨯⨯⋅⋅⋅⨯可表示为( ) A .915AB .815AC .915CD .815C2.从1~7这七个数字中选3个数字,组成无重复数字的三位数,其中偶数的个数为( ) A .210B .120C .90D .453.()91x -的展开式的第6项的系数为( ) A .69CB .69C -C .59CD .59C -4.日常生活中的饮用水是经过净化的,随着水的纯净度的提高,所需净化费用不断增加.已知将1t 水净化到纯净度为x %时所需费用(单位:元)为()()528480100100c x x x=<<-,则净化到纯净度为98%左右时净化费用的变化率,大约是净化到纯净度为90%左右时净化费用变化率的( ) A .30倍B .25倍C .20倍D .15倍5.根据分类变量X 与Y 的成对样本数据,计算得到26.147χ=.根据小概率值0.01α=的独立性检验(0.016.635x =),结论为( )A .变量X 与Y 不独立B .变量X 与Y 不独立,这个结论犯错误的概率不超过0.01 C .变量X 与Y 独立 D .变量X 与Y 独立,这个结论犯错误的概率不超过0.016.已知6件产品中有2件次品,4件正品,检验员从中随机抽取3件进行检测,记取到的正品数为X ,则()E X =( )A .2B .1C .43D .237.某人在11次射击中击中目标的次数为X ,若()~11,0.8X B ,若()P X k =最大,则k=( ) A .7 B .8C .9D .108.已知函数()()1e x f x x =+,过点M (1,t )可作3条与曲线()y f x =相切的直线,则实数t 的取值范围是( ) A .24,0e ⎛⎫-⎪⎝⎭B .242,e e ⎛⎫-⎪⎝⎭ C .36,2e e ⎛⎫-⎪⎝⎭D .36,0e ⎛⎫-⎪⎝⎭二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.对经验回归方程,下列正确的有( ) A .决定系数2R 越小,模型的拟合效果越好 B .经验回归方程只适用于所研究的样本的总体C .不能期望经验回归方程得到的预报值就是响应变量的精确值D .残差平方和越小,模型的拟合效果越好10.甲、乙两地举行数学联考,统计发现:甲地学生的成绩()()2111~,0X N μσσ>,乙地学生的成绩()()2222~,0Y N μσσ>.下图分别是其正态分布的密度曲线,则( )A .甲地数学的平均成绩比乙地的低B .甲地数学成绩的离散程度比乙地的小C .()()90948290PX P X ≤<>≤< D .若28σ=,则()921240.84P Y ≤<≈(附:若随机变量()()2~,0X N μσσ>,则()0.6827P X μσμσ-<≤+≈,()220.9545P X μσμσ-<≤+≈,()330.9973P X μσμσ-<≤+≈)11.下列命题正确的有( )A .现有1、3、7、13四个数,从中任取两个相加得到m 个不相等的和;从中任取两个相减得到n 个不相等的差,则m +n =18B .在()()()567111x x x +++++的展开式中,含3x 的项的系数为65 C .若(5122a b =-(a ,b 为有理数),则b =-29D .02420202022202020222022202220222022C C C C C 2+++⋅⋅⋅++= 12.已知函数()()()ln 2f x x x ax a a =-+∈R 有两个极值点1x ,()212x x x <,则( )A .104a <<B .122x x +>C .()112f x >D .()20f x >三、填空题:本题共4小题,每小题5分,共20分. 13.已知函数()3f x x =,则曲线()y f x =在点(1,1)处的切线的方程为______.14.将4名博士分配到3个不同的实验室,每名博士只分配到一个实验室,每个实验室至少分配一名博士,则不同的分配方案有______种.15.某小微企业制造并出售球形瓶装的某种饮料,瓶子的制造成本是21.6r π分,其中r (单位:cm )是瓶子的半径,已知每出售1mL 的饮料,可获利0.4分,且能制作的瓶子的最大半径为6cm ,当每瓶饮料的利润最大时,瓶子的半径为______cm . 16.已知离散型随机变量X 的取值为有限个,()72E X =,()3512D X =,则()2E X =______. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)两批同种规格的产品,第一批占40%,次品率为5%;第二批占60%,次品率为4%.将两批产品混合,从混合产品中任取一件. (Ⅰ)求这件产品是次品的概率;(Ⅱ)已知取到的是次品,求它取自第一批产品的概率. 18.(本小题满分12分)若()*,0,na x a a n x ⎛⎫-∈≠∈ ⎪⎝⎭R N 的展开式中只有第4项的二项式系数最大,且展开式中的常数项为-20. (Ⅰ)求n ,a 的值; (Ⅱ)若()()()()220212022202220212020012202120221111a x a x x a x x a x x a x a +-+-+⋅⋅⋅+-+-=,求1232022a a a a +++⋅⋅⋅+.19.(本小题满分12分)某校组织数学知识竞赛活动,比赛共4道必答题,答对一题得4分,答错一题扣2分.学生甲参加了这次活动,假设每道题甲能答对的概率都是34,且各题答对与否互不影响.设甲答对的题数为Y ,甲做完4道题后的总得分为X . (Ⅰ)试建立X 关于Y 的函数关系式,并求()0P X <;(Ⅱ)求X 的分布列及()E X .20.(本小题满分12分) 已知函数()e ln x m f x x +=-.(Ⅰ)若()f x 在[)1,+∞上单调递增,求实数m 的取值范围;(Ⅱ)求证:2m ≥-时,()0f x >.21.(本小题满分12分)某公司对其产品研发的年投资额x (单位:百万元)与其年销售量y (单位:千件)的数据进行统计,整理后得到如下统计表:(Ⅰ)求变量x 和y 的样本相关系数r (精确到0.01),并推断变量x 和y 的线性相关程度(参考:若0.75r ≥,则线性相关程度很强;若0.300.75r ≤<,则线性相关程度一般;如果0.25r ≤,则线性相关程度较弱);(Ⅱ)求年销售量y 关于年投资额x 的线性回归方程;(Ⅲ)当公司对其产品研发的年投资额为600万元时,估计产品的年销售量. 参考公式:对于变量x 和变量y ,设经过随机抽样获得的成对样本数据为()11,x y ,()22,x y ,…,(),n n x y ,其中1x ,2x ,…,n x 和1y ,2y ,…,n y 的均值分别为x 和y .称()()niix x y y r --=∑x 和y 的样本相关系数.线性回归方程ˆˆˆybxa =+中,()()()121ˆniii n i i x x yy b x x ==--=-∑∑,ˆˆay bx=-. 7.14≈.22.(本小题满分12分) 已知函数()()()sin ln 1f x a x x a =-+∈R 在区间(-1,0)内存在极值点.(Ⅰ)求a 的取值范围; (Ⅱ)判断关于x 的方程()0f x =在()1,π-内实数解的个数,并说明理由.参考答案一、单项选择题(每小题5分,共40分)1.A 2.C 3.D 4.B 5.C 6.A 7.C 8.D 二、多项选择题(每小题5分,共20分) 9.BCD10.AD11.BC12.BD三、填空题(每小题5分,共20分)13.y =3x -2 14.36 15.6 16.916四、解答题(共70分) 17.(本小题满分10分)解:设事件B 为“取到的产品是次品”,()1,2A i =为“取到的产品来自第i 批”.(Ⅰ)由全概率公式,所求概率为()()()()()1122||P B P A P B A P A P B A =+40%5%60%4%0.044=⨯+⨯=.(Ⅱ)所求概率为()()()()()()1111||P BA P A P B A P A B P B P B ==40%5%50.04411⨯==.18.(本小题满分12分) (Ⅰ)解:由题意,n =6. 展开式的通项()662166C C kk kkkk k a T x a x x --+⎛⎫=-=- ⎪⎝⎭,k =0,1,…,6. 令6-2k =0,得k =3.由题意,得()336C 20a -=-,即32020a -=-.解得a =1.(Ⅱ)解法1:()202211x x ⎡⎤=+-⎣⎦()()()()2202120220202212021220202021202220222022202220222022C C 1C 1C 1C 1x x x x x x x x =+-+-+⋅⋅⋅+-+-又()()()2202220222021202001220221111a x a x x a x x a x +-+-+⋅⋅⋅+-=,所以202201220212022202220222022202220222022C C C C C 2ii a==+++++=∑. 解法2:由(Ⅰ),知()()()2202220222021202001220221111a x a x x a x x a x +-+-+⋅⋅⋅+-=.令12x =,得2022202120202202201220221111111111222222a a a a ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+⨯-+⨯-+⋅⋅⋅+-= ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,即20222022202220220122022111112222a a a a ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+= ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭.上式两边同乘以20222,得202220222i i a ==∑.由()()()2202220222021202001220221111a x a x x a x x a x +-+-+⋅⋅⋅+-=,令1x =,得01a =.所以2022202220220121i ii i a a a===-=-∑∑.19.(本小题满分12分)(Ⅰ)由题意,X =4Y -2(4-Y )=6Y -8. 由X =6Y -8<0,得43Y <.所以Y =0,1. 所以()()()431413113001C 444256P X P Y P Y ⎛⎫⎛⎫<==+==+⨯⨯= ⎪ ⎪⎝⎭⎝⎭. (Ⅱ)由题意,知3~4,4Y B ⎛⎫ ⎪⎝⎭. X 与Y 的对应值表为:于是,()()4318014256P X P Y ⎛⎫=-===-= ⎪⎝⎭;()()31433321C 14464P X P Y ⎛⎫=-===⨯-⨯=⎪⎝⎭; ()()2224332742C 144128P X P Y ⎛⎫⎛⎫====⨯-⨯= ⎪ ⎪⎝⎭⎝⎭; ()()3343327103C 14464P X P Y ⎛⎫⎛⎫====⨯-⨯=⎪ ⎪⎝⎭⎝⎭; ()()43811644256P X P Y ⎛⎫===== ⎪⎝⎭. 法1:()()()132727818241016102566412864256E X =-⨯+-⨯+⨯+⨯+⨯=.法2:()()()36868648104E X E Y E Y ⎛⎫=-=-=⨯⨯-= ⎪⎝⎭.20.(本小题满分12分) (Ⅰ)因为()f x 在[)1,+∞单调递增,所以()1e 0x m f x x +'=-≥在[)1,+∞恒成立,即1ln x m x+≥. 所以1ln ln m x x x x≥-=--. 令()ln gx x x =--,显然()g x 在[)1,+∞上单调递减,所以()g x 在[)1,+∞上的最大值为()()max 11g x g ==-.因此,1m ≥-. (Ⅱ)当2m ≥-时,()2e ln e ln x m x f x x x +-=-≥-.只需证明2e ln 0x x -->.证法1:令()2e ln x gx x -=-,则函数()g x 的定义域为()0,+∞.()21e x g x x -'=-.因为2e x y -=是增函数,1y x=-在()0,+∞上单调递增, 所以()21e x g x x -'=-在()0,+∞上单调递增.又因为()101e e 0g -'=-<,()e 211e e 10e eg -'=->->,由零点存在性定理,存在唯一的()01,e x ∈,使得()02001e 0x g x x-'=-=.当()00,x x ∈时,()()00g x g x ''<=,()g x 单调递减;当()0,x x ∈+∞时,()()00g x g x ''>=,()g x 单调递增. 所以,()()0200min e ln x gx g x x -==-.由()02001e 0x g x x -'=-=,得0201e x x -=,002ln x x -=-. 于是()()00min01220g x g x x x ==+->=. 所以,()2e ln 0x gx x -=->.证法2:要证2e ln 0x x -->,即证2e ln x x x x -->-.设()21e x h x x -=-,则()21e1x h x -='-.()210e 12x h x x ->⇔>⇔>';()102h x x '<⇔<,所以()1h x 在(0,2)上单调递减,在()2,+∞上单调递增. 所以()()11min 21h x h ==-.设()2ln h x x x =-,则()2111x h x xx-'=-=.()2001h x x '>⇔<<;()201h x x '<⇔>,所以()2h x 在(0,1)上单调递增,在()1,+∞上单调递减. 所以()()22max 11h x h ==-.可见,()()12h x h x >.所以原结论成立.证法3:要证明2e ln 0x x -->,而()2e121x x x -≥+-=-,当且仅当2x =时取等号;1ln x x -≥,当且仅当1x =时取等号.所以2e ln x x ->,即2e ln 0x x -->.注:证明2e 1x x -≥-,1ln x x -≥各得3分,给出取等的条件各得1分. 21.(本小题满分12分)解:(Ⅰ)由题意,3x =,6y =,52155ii x==∑,51123i i i x y ==∑,521307.5i i y ==∑.()()nniii i x x y y x y nxyr ---==∑∑=0.92=≈.因为0.75r ≥,所以变量x 和y 的线性相关程度很强.(Ⅱ)()()()1122211ˆnniii ii i nniii i x x yy x ynxybx x xnx ====---==--∑∑∑∑21235363.35553-⨯⨯==-⨯. ˆ6 3.33 3.9a=-⨯=-. 所以年销售量y 关于年投资额x 的线性回归方程为ˆ 3.3 3.9y x =-. (Ⅲ)当x =6时,由(Ⅱ),ˆ 3.36 3.915.9y =⨯-=.所以研发的年投资额为600万元时,产品的年销售量约为15.9千件. 22.(本小题满分12分) (Ⅰ)解:()()1cos 101f x a x x x'=--<<+. ①当1a ≤时,因为0cos 1x <<,所以()11011x f x x x'<-=<++. 所以()f x 在(-1,0)上单调递减,所以()f x 在(-1,0)上无极值点.故1a ≤不符合题意.②当a >1时,因为cos y a x =在(-1,0)上单调递增,11y x=-+在(-1,0)上单调递增, 所以()f x '在(-1,0)上单调递增.又()111,0a -∈-,111cos 10f a a a a ⎛⎫⎛⎫'-=--< ⎪ ⎪⎝⎭⎝⎭,()010f a '=->, 所以存在唯一的111,0x a ⎛⎫∈- ⎪⎝⎭,使得()10f x '=.当()11,x x ∈-时,()0f x '<,()f x 单调递减;当()1,0x x ∈时,()0f x '>,()f x 单调递增.所以()f x 在(-1,0)内存在极小值点1x .满足题意.综上,a 的取值范围是()1,+∞.(Ⅱ)当02x π<<时,()()2sin 11x f x a x ''=-++单调递减.又()010f ''=>,()24022f a ππ⎛⎫''=--< ⎪⎝⎭+,所以存在唯一的00,2x π⎛⎫∈ ⎪⎝⎭,使得()00f x ''=.当00x x <<时,()0f x ''>,()f x '单调递增;当02x x π<<时,()0f x ''<,()f x '单调递减,又()()0010f x f a ''>=->,2022f ππ⎛⎫'=-< ⎪+⎝⎭,所以存在唯一的0,2x πα⎛⎫∈ ⎪⎝⎭,使得()0f α'=.当()0,x α∈时,()0f x '>;当,2x πα⎛⎫∈ ⎪⎝⎭时,()0f x '<.又当2x ππ≤<时,()0f x '<恒成立,。

2023-2024学年重庆市高二(下)期末数学试卷(含答案)

2023-2024学年重庆市高二(下)期末数学试卷(含答案)

2023-2024学年重庆市高二(下)期末考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知f′(x)是函数f(x)的导函数,则满足f′(x)=f(x)的函数f(x)是( )A. f(x)=x 2B. f(x)=e xC. f(x)=lnxD. f(x)=tanx2.如图是学校高二1、2班本期中期考试数学成绩优秀率的等高堆积条形图,如果再从两个班中各随机抽6名学生的中期考试数学成绩统计,那么( )A. 两个班6名学生的数学成绩优秀率可能相等B. 1班6名学生的数学成绩优秀率一定高于2班C. 2班6名学生中数学成绩不优秀的一定多于优秀的D. “两班学生的数学成绩优秀率存在差异”判断一定正确3.对于函数f(x)=x 3+bx 2+cx +d ,若系数b ,c ,d 可以发生改变,则改变后对函数f(x)的单调性没有影响的是( )A. bB. cC. dD. b ,c4.某地根据以往数据,得到当地16岁男性的身高ycm 与其父亲身高xcm 的经验回归方程为y =1417x +29,当地人小王16岁时身高167cm ,他父亲身高170cm ,则小王身高的残差为( )A. −3cmB. −2cmC. 2cmD. 3cm5.若函数f(x)=(x 2+bx +1)e x ,在x =−1时有极大值6e −1,则f(x)的极小值为( )A. 0B. −e −3C. −eD. −2e 36.甲、乙、丙、丁、戊五个人站成一排照相,若甲不站最中间的位置,则不同的排列方式有( )A. 48种B. 96种C. 108种D. 120种7.若王阿姨手工制作的工艺品每一件售出后可以获得纯利润4元,她每天能够售出的工艺品(单位:件)均值为50,方差为1.44,则王阿姨每天能够获得纯利润的标准差为( )A. 1.2B. 2.4C. 2.88D. 4.88.若样本空间Ω中的事件A 1,A 2,A 3满足P(A 1)=P(A 1|A 3)=14,P(A 2)=23,P(−A 2|A 3)=25,P(−A 2|−A 3)=16,则P(A 1−A 3)=( )A. 114B. 17C. 27D. 528二、多选题:本题共3小题,共18分。

吉林长春东北师大附中2022-2023学年高二下学期期末数学试题(解析版)

吉林长春东北师大附中2022-2023学年高二下学期期末数学试题(解析版)

2022-2023学年东北师大附中(高二)年级(数学)科试卷下学期期末考试第I 卷(选择题)一、单项选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知某质点运动的位移y (单位;cm )与时间t (单位;s )之间的关系为()()ln 21y t t =+,则该质点在2s =t 时的瞬时速度为( ) A.15B.25C. 2D. 4【答案】B 【解析】【分析】对()()ln 21y t t =+求导得()221y t t ′=+,从而可求质点在2s =t 时的瞬时速度()2y ′. 【详解】因为()()ln 21y t t =+,所以()221y t t ′=+, 所以该质点在2s =t 时的瞬时速度为()2222125y ′==×+. 故选:B.2. 某中学课外活动小组为了研究经济走势,根据该市1999-2021年的GDP (国内生产总值)数据绘制出下面的散点图:该小组选择了如下2个模型来拟合GDP 值y 随年份x 的变化情况,模型一:(0,0)y kx b k x =+>>;模型二:e (0,0)x y k b k x =+>>,下列说法正确的是( ) A. 变量y 与x 负相关B. 根据散点图的特征,模型一能更好地拟合GDP 值随年份的变化情况C. 若选择模型二,e x y k b =+的图象一定经过点(),x yD. 当13x =时,通过模型计算得GDP 值为70,实际GDP 的值为71,则残差为1 【答案】D 【解析】【分析】对于AB ,由散点图的变化趋势分析判断,对于C ,由线性回归方程的性判断,对于D ,结合残差的定义判断.【详解】对于A ,由散点图可知y 随年份x 的增大而增大,所以变量y 与x 正相关,所以A 错误, 对于B ,由散点图可知变量y 与x 的变化趋向于一条曲线,所以模型二能更好地拟合GDP 值随年份的变化情况,所以B 错误,对于C ,若选择模型二:e (0,0)x y k b k x =+>>,令e x t =,则ykt b =+的图象经过点(),t y ,所以C 错误,对于D ,当13x =时,通过模型计算得GDP 值为70,实际GDP 的值为71,则残差为71701−=,所以D 正确, 故选:D 3. 函数21()ln 2f x x x =−的减区间为( ) A. (1,1)− B. (,1)−∞C. (0,1)D. (0,)+∞【答案】C 【解析】【分析】对函数求导,然后通分,进而令导函数小于0,最后求得单调递减区间. 【详解】函数()21ln 2f x x x =−的定义域为()0,∞+, 求导得()211x f x x x x =′−=−, 令()210x f x x−′=<,0x ,01x ∴<<,因此函数()21ln 2f x x x =−的减区间为()0,1. 故选:C.4. 已知随机变量X 的分布列为设23Y X =+,则()D Y 等于( )A.83B.53C.43D.173【答案】A 【解析】【分析】根据分布列求出()E X ,()D X ,再根据条件得()()4D Y D x =,计算答案即可. 【详解】由X 的分布列得()1110121333E X =×+×+×=, ()()()()22211120111213333D X =−×+−×+−×=,因为23Y X =+,则()()843D Y D X ==. 故选:A.5. 某教育局为振兴乡村教育,将5名教师安排到3所乡村学校支教,若每名教师仅去一所学校,每所学校至少安排1名教师,则不同的安排情况有( ) A. 300种 B. 210种 C. 180种 D. 150种【答案】D 【解析】【分析】根据部分均匀分组分配求解即可.【详解】由于每所学校至少安排1名教师,则不同的安排情况有2233535322C C C A 150A +=种. 故选:D .6. 已知数列{}n a ,{}n b ,其中11a =,且n a ,1n a +是方程220nn x b x −+=的实数根,则10b 等于( ) A. 24 B. 32C. 48D. 64【答案】D 【解析】【分析】根据题意,得到1n n n a a b ++=,12nn n a a +=,求得22a =,推出112n n a a +−=,进而可求出10a ,11a ,从而可求出结果.【详解】因为n a ,1n a +是方程220nn x b x −+=的实数根, 所以1n n n a a b ++=,12n n n a a +=, 又11a =,所以22a =; 当2n ≥时,112n n n a a −−=,所以11112n n n n n na a a a a a ++−−==, 因此4102232a a =⋅=,5111232a a =⋅= 所以101011323264b a a =+=+=. 故选:D.【点睛】本题主要考查由数列的递推关系求数列中的项,属于常考题型.7. 已知函数e ()xf x ax x=−,,()0x ∈+∞,当210x x >>时,不等式()()1221f x f x x x <恒成立,则实数a 的取值范围为( ) A. (,e]−∞ B. (,e)−∞C. e ,2−∞D. e ,2−∞【答案】D 【解析】【分析】根据不等式,构造函数并明确其单调性,进而可得导数的不等式,利用参数分离整理不等式,构造函数,利用导数求其最值,可得答案. 【详解】 当210x x >>时,不等式()()1221f x f x x x <恒成立,则()()1122f x x f x x <, 即函数()()2e xg x xf x ax ==−在()0,∞+上单调递增,则()e 20xg x ax ′=−≥, 整理可得2x e a x ≤,令()e x m x x =,则()()21e x x m x x−′=. 当()0,1x ∈时,()0m x ′<,()m x 单调递减,当()1,x ∈+∞时,()0m x ′>,()m x 单调递增,()()min 21e a m x m ∴≤==,e2a ∴≤. 故选:D.8. 设甲袋中有3个红球和4个白球,乙袋中有1个红球和2个白球,现从甲袋中任取1球放入乙袋,再从乙袋中任取2球,记事件A =“从甲袋中任取1球是红球”,事件B =“从乙袋中任取2球全是白球”,则下列说法正确的是( )A. 9()14=P BB. 6()7P AB =C. ()15P A B =D. 事件A 与事件B 相互独立【答案】C 【解析】分析】由古典概型概率计算公式,以及条件概率公式分项求解判断即可.【详解】现从甲袋中任取1球放入乙袋,再从乙袋中任取2球可知,从甲袋中任取1球对乙袋中任取2球有影响,事件A 与事件B 不是相互独立关系, 故D 错误; 从甲袋中任取1球是红球的概率为:()37P A =, 从甲袋中任取1球是白球的概率为:47, 所以乙袋中任取2球全是白球的概率为:()1212324312127474C C C C 125+C C C C 14714==+=P B ,故A 错误;()12321274C C 1C C 14==P AB ,故B 错误; ()()()11411455P AB P A B P B ==×=,故C 正确; 故选:C二、多项选择题:本大题共4小题,每小题4分,共16分.在每小题给出的四个选项中,有多项符合题目要求。

2021-2022学年福建省福州第二中学高二下学期期末考试数学试题(解析版)

2021-2022学年福建省福州第二中学高二下学期期末考试数学试题(解析版)

2021-2022学年福建省福州第二中学高二下学期期末考试数学试题一、单选题 1.设1i2i 1iz -=++,则||z =A .0B .12C .1 D【答案】C【详解】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数z ,然后求解复数的模. 详解:()()()()1i 1i 1i2i 2i 1i 1i 1i z ---=+=++-+ i 2i i =-+=, 则1z =,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.已知集合{}|22U x x =-≤≤,集合{}220A x x x =--<,则UA ( )A .{}21x x -≤<-B .{}21x x -≤≤-C .{}{}212x x -≤<-⋃D .{}{}212x x -≤≤-⋃【答案】D【分析】解出A 集合,通过补集运算算出UA 即可【详解】解:{}{}22012A x x x x x =--<=-<<所以UA{}{}212x x -≤≤-⋃故选:D3.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =- B .310n a n =- C .228n S n n =-D .2122n S n n =-【答案】A【分析】等差数列通项公式与前n 项和公式.本题还可用排除,对B ,55a =,44(72)1002S -+==-≠,排除B ,对C ,245540,25850105S a S S ==-=⨯-⨯-=≠,排除C .对D ,24554150,5250522S a S S ==-=⨯-⨯-=≠,排除D ,故选A .【详解】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,故选A .【点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断.4.已知直线()100,0ax by a b +-=>>平分圆C :222420170x y x y +---=,则aba b+的最大值为( ) A.3+B.3-CD .16【答案】B【分析】由题意知直线过圆C 的圆心得到21a b +=,求aba b+的最大值可转化为11a b ab a b +=+的最小值的倒数,利用基本不等式1“”的妙用求最值即可. 【详解】圆C :222420170x y x y +---=,∴圆心(1,2)C ,直线()100,0ax by a b +-=>>平分圆C :222420170x y x y +---=, ∴直线()100,0ax by a b +-=>>过圆心(1,2)C ,即()210,0a b a b +=>>,11112()(2)33a b b aa b ab a b a b a b+∴=+=++=++≥,3ab a b ∴≤=-+当且仅当2b a a b =,即212b a ==,ab a b +的最大值为3-故选:B5.已知圆锥SO 的底面半径为2,若其底面上存在两点A ,B ,使得90ASB ∠=︒,则该圆锥侧面积的最大值为( ) A. B .2πC.D .4π【答案】C【分析】根据OA OB AB +≥可确定l ≤. 【详解】设圆锥的母线长为l ,90ASB ∠=,AB ∴=,又OA OB AB +≥(当且仅当AB 为底面圆直径时取等号),4AB ∴≤,即l ≤,∴圆锥侧面积22S l l ππ=⨯⨯=≤,即所求最大值为.故选:C6.设()f x 是定义域为R 的偶函数,且在()0,+∞上单调递减,则( )A .()()()0.250.5log 0.5log 0.20.5f f f >> B .()()()0.250.5log 0.50.5log 0.2f f f >> C .()()()0.20.55log 0.20.5log 0.5f f f >> D .()()()0.20.550.5log 0.2log 0.5f f f >>【答案】B【分析】由于()f x 是()0,+∞上递减的偶函数,故只需要比较选项中自变量的绝对值的大小,结合指数函数,对数函数的单调性即可比较.【详解】由110.5222log 0.2log 5log 5log 42--==>=,即0.5log 0.22>,注意到()()52ln 2ln 5log 2log 51ln 5ln 2⨯=⨯=,由155550log 1log 0.5log 2log 2-=<==,故50log 20.5<<,即50log 0.50.5<<,又根据指数函数性质,0.5x y =是R 上的减函数,故10.200.50.50.5<<,即0.20.50.51<<,于是0.250.5log 0.50.5log 0.2<<,又()f x 是()0,+∞上递减的偶函数,则()()()0.250.5log 0.50.5log 0.2f f f >>.故选:B7.若双曲线C:22221x y a b -=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为A .2 BC D 【答案】A【详解】由几何关系可得,双曲线()222210,0x y a b a b-=>>的渐近线方程为0bx ay ±=,圆心()2,0到渐近线距离为d ==()2,0到直线0bx ay +=的距离为2bd c===即2224()3c a c -=,整理可得224c a =,双曲线的离心率2242c e a===.故选A . 点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式ce a=;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围). 8.函数()sin ln 23f x x x π=--的所有零点之和为( ) A .9 B .6 C .4.5 D .3【答案】A【分析】根据给定条件,构造函数sin y x =π,ln 23y x =-,作出这两个函数的部分图像,确定两个图像的交点个数,再结合性质计算作答.【详解】由()0sin ln |23|x x f x π=⇔=-,令 sin y x =π , ln 23y x =- , 显然sin y x =π与ln 23y x =-的图像都关于直线32x =对称, 在同一坐标系内作出函数sin y x =π,ln 23y x =-的图像,如图,观察图像知,函数sin y x =π,ln 23y x =-的图像有6个公共点,其横坐标依次为123456,,,,,x x x x x x ,这6个点两两关于直线32x =对称,有1625343x x x x x x +=+=+=, 所以,1234569x x x x x x +++++=,所以函数()sin ln 23f x x x π=--的所有零点之和为9.故选:A二、多选题9.某人有6把钥匙,其中n 把能打开门.如果随机地取一把钥匙试着开门,把不能开门的钥匙扔掉,设第二次才能打开门的概率为p ,则下列结论正确的是( ) A .当1n =时,16p = B .当2n =时,13p = C .当3n =时,310p = D .当4n =时,45p =【答案】AC【分析】根据n 不同的取值,分别计算对应概率求解. 【详解】当1n =时,511656p ⨯==⨯,选项A 正确; 当2n =时,4246515p ⨯==⨯,选项B 错误; 当3n =时,3336510p ⨯==⨯,选项C 正确; 当4n =时,2446515p ⨯==⨯,选项D 错误. 故选:AC10.函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则下列结论正确的是( )A .()f x 的最小正周期为2πB .,06π⎛⎫⎪⎝⎭是()y f x =图象的一个对称中心C .()f x 在区间11,212ππ⎡⎤⎢⎥⎣⎦上单调递减D .把()y f x =图象上所有点向右平移12π个单位长度后得到函数()2cos2g x x =-的图象 【答案】BCD【分析】根据正弦型函数的性质、图象的变换性质,结合已知图象逐一判断即可.【详解】由题意知,2A =,35341234T πππ⎛⎫=--= ⎪⎝⎭,所以周期T π=,22πωπ==, 又552sin 221212f ππϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,所以52,,2,623k k Z k k Z πππϕπϕπ+=+∈⇒=-∈, 因为2πϕ<,所以令0k =,即3πϕ=-,故()2sin 23f x x π⎛⎫=- ⎪⎝⎭,所以A 错误;又2sin 20663f πππ⎛⎫⎛⎫=⨯-= ⎪ ⎪⎝⎭⎝⎭,故B 正确;因为11,212x ππ⎡⎤∈⎢⎥⎣⎦,所以232,332x πππ⎡⎤-∈⎢⎥⎣⎦,由于正弦函数在其上单调递减,所以函数()f x 在11,212ππ⎡⎤⎢⎥⎣⎦上单调递减,故C 正确;将()y f x =图象上所有点向右平移12π个单位长度后得到2sin 22cos2122y f x x x ππ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭的图象,故D 正确.故选:BCD .11.已知函数()()R f x x ∈满足()()()492f x f x f =-+,又()9f x +的图象关于点()9,0-对称,且()12022f =,则( ) A .()20f =B .()()()4445462022f f f ++=-C .1133f x ⎛⎫-+ ⎪⎝⎭关于点()3,3对称D .1133f x ⎛⎫-+ ⎪⎝⎭关于点()1,3对称【答案】ABC【分析】将2代入()()()492f x f x f =-+可算出()20f =,故A 正确;将()20f =代入可得()f x 关于2x =对称,又因为()9f x +的图象关于点()9,0-对称,可得()f x 关于点()0,0对称,利用()f x 的双对称可以得到()f x 的周期,然后通过()f x 的周期和对称算出()()()44,45,46f f f ,故B 正确;先研究1133f x ⎛⎫-+ ⎪⎝⎭是由()f x 经过各种图像变换,就可求出1133f x ⎛⎫-+ ⎪⎝⎭的对称中心,故C 正确,D 错误【详解】解:将2x =代入()()()492f x f x f =-+得()()()2292f f f =+, 所以()20f =,故A 正确;将()20f =代入()()()492f x f x f =-+得()()4f x f x =-, 所以()f x 关于2x =对称,()9f x +是()f x 向左平移9个单位长度得到,因为()9f x +的图象关于点()9,0-对称,所以()f x 关于点()0,0对称 所以()()()()4,f x f x f x f x =-=--所以()()()44,f x f x f x =-=--()()()4448f x f x f x -=---=-- 所以()()8f x f x =-,所以()f x 的周期为8, 所以()()()()44485400f f f f =+⨯===,()()()()()453863312022f f f f f =-+⨯=-=-=-=- ()()()()46286220f f f f =-+⨯=-=-=所以()()()4445462022f f f ++=-,故B 正确;1133f x ⎛⎫-+ ⎪⎝⎭是由()f x 先向右平移一个单位得到()1f x -,再保持纵坐标不变,横坐标变为原来的三倍得到113f x ⎛-⎫⎪⎝⎭,最后向上平移3个单位长度得到1133f x ⎛⎫-+ ⎪⎝⎭,所以1133f x ⎛⎫-+ ⎪⎝⎭关于点()3,3对称,故C 正确,D 错误;故选:ABC12.已知正三棱柱111ABC A B C -中,2AB =,11AA =,M 为AB 的中点,点P 在线段1BC 上,则下列结论正确的是( ) A .直线1//BC 平面1A MC B .A 和P 到平面1A MC 的距离相等C .三棱锥1P A MC -D .不存在点P ,使得1AP A C ⊥【答案】ABD【分析】连接11,A C AC 交于点O ,连接OM ,证得1//OM BC ,进而得到1//BC 平面1A MC ,可判定A 正确;证得AN NP =,结合斜线与平面所成的角相等,可判断B 正确;先证明CM AB ⊥,并求出CM 的长度,1//BC 平面1A MC ,所以,B P 到平面1A MC 的距离是一样的,所以11P A MC B A MC V V --=,继而算出答案,可得C 是错误的;假设存在点P ,使得1AP A C ⊥,令[]1(1),0,1AP AB AC λλλ=+-∈,结合10AC AP ⋅>,可判定D 正确.【详解】对于A 中,如图所示,连接11,A C AC 交于点O ,连接OM , 因为111ABC A B C -为正三棱柱,所以其侧面都是矩形,所以O 为1AC 的中点,又因为M 是AB 的中点,所以1//OM BC ,由OM ⊂平面1A MC ,且1BC ⊄平面1A MC ,所以1//BC 平面1A MC ,所以A 正确;对于B 中,在1ABC ,因为AP 交OM 于点N ,1//OM BC ,AM MB =,所以AN NP =, 因为AN 与PN 与平面1A MC 成角相等,所以A 和P 到平面1A MC 的距离相等, 所以B 正确;对于C 中,因为底面是正三角形,且M 为AB 的中点,所以CM AB ⊥, 所以22213CM -因为1//BC 平面1A MC ,且P 在1BC 上, 所以11111113131332P A MC B A MC A BMC BMC V V V SAA ---===⋅=⨯⨯=C 错误 对于D 中,假设存在点P ,使得1AP A C ⊥,令[]1(1),0,1AP AB AC λλλ=+-∈,可得1111(1)AC AP AC AB AC AC λλ⋅=⋅+-⋅, 易得1AC 和AB 所成角为锐角,1AC 和1AC 所成角为锐角,所以1110,0AC AB AC AC ⋅>⋅>,所以1111(1)0AC AP AC AB AC AC λλ⋅=⋅+-⋅>, ,所以不存在点P ,使得1AP A C ⊥,所以D 正确. 故选:ABD三、填空题13.若平面向量()()1,1,2,a b m ==满足()a ab ⊥-,则m =___________. 【答案】0【分析】由题意得()0-⋅=a b a ,代入坐标进行计算即可. 【详解】∵()a a b ⊥-,∴()0-⋅=a b a , 又()()1,1,2,a b m ==,()1,1-=--a b m , ∴110m -+-=,即0m =, 故答案为:0.14.8(1)()yx y x-+的展开式中35x y 的系数为___________.【答案】14-【分析】把8(1)()y x y x -+化为88()()y x y x y x -++,根据8()x y +展开式的通项,讨论求出k 的值,进行运算即可得到答案.【详解】8()x y +展开式的通项为:()818C 0,1,2,8k kk k T xy k -+==由于888(1)()()()y y x y x y x y x x=-+-++,所以当5k =当时,53568C T x y =,当4k =当时,44458C T x y =,所以8(1)()y x y x-+的展开式中35x y 的项为,()()535444543535358888C C =C C 567014y x y x y x y x y x y x--=-=-, 所以8(1)()y x y x-+的展开式中35x y 的系数为14-.故答案为:14-.15.写出一个使等式sin cos 2sin cos 66ααππαα+=⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭成立的α的值为_____________. 【答案】8π(答案不唯一,只要满足()2148k k Z παπ+=-∈即可). 【分析】利用二倍角和两角和差正弦公式化简已知等式得到sin 2sin 263ππαα⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,由正弦函数性质可确定()()222136k k Z ππααπ+++=+∈,由此可解得结果. 【详解】sin cos cos sin sin cos 66sin cos sin cos 6666ππααααααππππαααα⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭+=⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭sin 2621sin 223παπα⎛⎫+ ⎪⎝⎭==⎛⎫+ ⎪⎝⎭,sin 2sin 263ππαα⎛⎫⎛⎫∴+=+ ⎪ ⎪⎝⎭⎝⎭,()()222136k k Z ππααπ∴+++=+∈,解得:()2148k k Z παπ+=-∈, 当0k =时,8πα=,∴使得等式成立的一个α的值为8π(答案不唯一). 故答案为:8π(答案不唯一,只要满足()2148k k Z παπ+=-∈即可). 16.有一凸透镜其剂面图(如图所示)是由椭圆221259x y +=和双曲线22188x y -=的实线部分组成,已知两曲线有共同焦点M ,N ,动点A ,B 分别在左右两部分实线上运动,则△ANB 周长的最小值为______________【答案】1042-【分析】根据已知条件,结合双曲线和椭圆的定义,将原问题转化为,,A B M 三点共线时,ANB 周长取得最小值,即可求解.【详解】由题意,双曲线22188x y -=,可得22a =, 根据双曲线的定义可得42AM AN -=,即42AN AM =-, 又由椭圆221259x y +=,可得5a =, 根据椭圆的定义可得10BM BN +=,所以10BN BM =-,所以ANB 周长为1042()10421042BM AM AB AB AB ---+≥--+=-, 故ANB 周长的最小值为1042-,其中,,A B M 三点共线时,等号成立. 故答案为:1042-.四、解答题17.甲、乙两名同学与同一台智能机器人进行象棋比赛,计分规则如下:在一轮比赛中,如果甲赢而乙输,则甲得1分;如果甲输而乙赢,则甲得1-分;如果甲和乙同时赢或同时输,则甲得0分.设甲赢机器人的概率为0.6,乙赢机器人的概率为0.5.求:(1)在一轮比赛中,甲的得分X的分布列;(2)在两轮比赛中,甲的得分Y的分布列及期望.【答案】(1)分布列见解析E Y=(2)分布列见解析,()0.2【分析】(1)依题意可得X的可能取值为1-,0,1,利用相互独立事件的概率公式求出所对应的概率,即可得到分布列;(2)依题意可得Y的可能取值为2-,1-,0,1,2,利用相互独立事件的概率公式求出所对应的概率,即可得到分布列及数学期望;【详解】(1)解:依题意可得X的可能取值为1-,0,1,P X=-=-⨯=,所以(1)(10.6)0.50.2(0)0.60.5(10.6)(10.5)0.5P X==⨯+-⨯-=,P X==⨯-=,(1)0.6(10.5)0.3所以X的分布列为(2)解:依题意可得Y的可能取值为2-,1-,0,1,2,所以2P Y P X P X=-==-⨯=-==,(2)(1)(1)0.20.04=-==-⨯=⨯=⨯⨯=,P Y P X P X(1)(1)(0)220.20.50.22===-⨯=⨯+=⨯==⨯⨯+=,(0)(1)(1)2(0)(0)20.30.20.50.37P Y P X P X P X P X===⨯=⨯=⨯⨯=,(1)(0)(1)20.30.520.3P Y P X P X2(2)(1)(1)0.30.09===⨯===,P Y P X P X所以Y的分布列为所以()20.0410.200.3710.320.090.2E Y =-⨯-⨯+⨯+⨯+⨯=.18.如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值. 【答案】(12;(270【分析】(1)以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设2BC a =,由已知条件得出0PB AM ⋅=,求出a 的值,即可得出BC 的长;(2)求出平面PAM 、PBM 的法向量,利用空间向量法结合同角三角函数的基本关系可求得结果.【详解】(1)[方法一]:空间坐标系+空间向量法PD ⊥平面ABCD ,四边形ABCD 为矩形,不妨以点D 为坐标原点,DA 、DC 、DP所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,设2BC a =,则()0,0,0D 、()0,0,1P 、()2,1,0B a 、(),1,0M a 、()2,0,0A a , 则()2,1,1PB a =-,(),1,0AM a =-,PB AM ⊥,则2210PB AM a ⋅=-+=,解得22a =,故22BC a ==; [方法二]【最优解】:几何法+相似三角形法如图,连结BD .因为PD ⊥底面ABCD ,且AM ⊂底面ABCD ,所以PD AM ⊥. 又因为PB AM ⊥,PBPD P =,所以AM ⊥平面PBD .又BD ⊂平面PBD ,所以AM BD ⊥.从而90ADB DAM ∠+∠=︒.因为90∠+∠=︒MAB DAM ,所以∠=∠MAB ADB . 所以∽ADB BAM ,于是=AD BAAB BM.所以2112BC =.所以2BC =. [方法三]:几何法+三角形面积法 如图,联结BD 交AM 于点N .由[方法二]知⊥AM DB .在矩形ABCD 中,有∽DAN BMN ,所以2==AN DA MN BM,即23AN AM =.令2(0)=>BC t t ,因为M 为BC 的中点,则BM t =,241=+DB t 21+AM t 由1122=⋅=⋅DABSDA AB DB AN ,得221241123=++t t t 212t =,所以22==BC t(2)[方法一]【最优解】:空间坐标系+空间向量法设平面PAM 的法向量为()111,,m x y z =,则2AM ⎛⎫= ⎪ ⎪⎝⎭,()2,0,1AP =-, 由111120220m AM x y m AP x z ⎧⋅=-+=⎪⎨⎪⋅=-+=⎩,取12x ()2,1,2m =,设平面PBM 的法向量为()222,,n x y z =,2BM ⎛⎫=- ⎪ ⎪⎝⎭,()2,1,1BP =--, 由222220220n BM x n BP x y z ⎧⋅=-=⎪⎨⎪⋅=--+=⎩,取21y =,可得()0,1,1n =,3314cos ,72m n m n m n ⋅===⋅⨯所以,270sin ,1cos ,14m n m n =-=, 因此,二面角A PM B --的正弦值为7014. [方法二]:构造长方体法+等体积法如图,构造长方体1111ABCD A B C D -,联结11,AB A B ,交点记为H ,由于11AB A B ⊥,1AB BC ⊥,所以AH ⊥平面11A BCD .过H 作1D M 的垂线,垂足记为G .联结AG ,由三垂线定理可知1⊥AG D M , 故AGH ∠为二面角A PM B --的平面角.易证四边形11A BCD 2的正方形,联结1D H ,HM . 111111111,2D HMD HMD A HHBMMCD A BCD SD M HG S S SSS=⋅=---正方形,由等积法解得310=HG 在Rt AHG 中,2310==AH HG ,由勾股定理求得35=AG . 所以,70sin AH AGH AG ∠==A PMB --70【整体点评】(1)方法一利用空坐标系和空间向量的坐标运算求解;方法二利用线面垂直的判定定理,结合三角形相似进行计算求解,运算简洁,为最优解;方法三主要是在几何证明的基础上,利用三角形等面积方法求得.(2)方法一,利用空间坐标系和空间向量方法计算求解二面角问题是常用的方法,思路清晰,运算简洁,为最优解;方法二采用构造长方体方法+等体积转化法,技巧性较强,需注意进行严格的论证.19.已知数列{}n a 的各项均不为零,n S 为其前n 项和,且121n n n a a S +=-.(1)证明:22n n a a +-=;(2)若11a =-,数列{}n b 为等比数列,11b a =,23b a =.求数列{}n n a b 的前2022项和2022T . 【答案】(1)证明见解析; (2)4044.【分析】(1)由题设递推式可得()1212n n n n a a a a +++-=,结合已知条件即可证结论.(2)由(1)及等比数列定义写出{}n b 通项公式,进而有(1)nn n n a b a =-,根据奇偶项的正负性,应用分组求和法及(1)的结论求2022T 即可. 【详解】(1)因为121n n n a a S +=-①,则12121n n n a a S +++=-②, ②-①得:()1212n n n n a a a a +++-=,又10n a +≠, 所以22n n a a +-=.(2)由11a =-得:31a =,于是231b a ==, 由11b =-得:{}n b 的公比1q =-.所以(1)n n b =-,(1)nn n n a b a =-.由12121a a a =-得:23a =由22n n a a +-=得:2022202120202019214a a a a a a -=-=⋅⋅⋅=-=, 因此2022123420212022T a a a a a a =-+-+-+⋅⋅⋅()()()214320222021a a a a a a =-+-+⋅⋅⋅+-()211011a a =⨯-10114=⨯4044=.20.在ABC 中,cos2cos2cos22sin sin 1A C B A C +-=-+. (1)求角B ;(2)设锐角ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且1c =,求ABC 面积的取值范围. 【答案】(1)π3.(2).【分析】(1)将已知条件按二倍角展开化简得222a c ac b+-=,再结合余弦定理即可求得角B;(2)结合题意可得有ππ62A<<,由正弦定理可得sin2πsin()3AaA=-,再由面积公式可得S,代入a并化简可得1311tan2SA=+,根据A的范围即可求出S的范围. 【详解】(1)解:因为cos2cos2cos22sin sin1A CB A C+-=-+.所以cos2cos22sin sin1cos2A C A C B++=+,即有22212sin12sin2sin sin112sinA C A C B-+-+=+-,即222sin sin sin sin sinA C A C B+-=,即222a c ac b+-=,由余弦定理可得:2222cosb ac ac B=+-,所以2cos1B=,即1cos2B=,又因为(0,π)B∈,所以π3B=.(2)解:由(1)可得:π3B=,所以2π3A C+=,所以2π3C A=-,又因为ABC为锐角三角形,所以π22ππ32AA⎧<<⎪⎪⎨⎪<-<⎪⎩,即有ππ62A<<;又因为1c=,12πsin sin sin()3a cA C A==-,所以sin2πsin()3AaA=-,又因为1sin2Sac B==sin2πsin()3AA-sin3cosA+1311tan2A+. 因为有ππ62A<<,所以有tan A1tan A<<所以13tan2A<<,所以以11122tan2A<+<,所以122311tan 2A <+,1311tan 2A <+即S ∈. 21.已知椭圆C :()222210x y a b a b +=>>的左、右焦点分别为1F 、2F ,焦距为2,点⎭在椭圆C 上. (1)求椭圆C 的方程;(2)若点()()000,0P x y y >是椭圆C 上一点,Q 为y 轴上一点,22PF PQ =,设直线l 与椭圆C 交于M ,N 两点,若直线PM ,PN 关于直线0x x =对称,求直线l 的斜率. 【答案】(1)22143x y += (2)12-【分析】(1)依题意列出几何量方程组,直接求解可得;(2)先求点P 坐标,然后可得直线PM 、PN 的斜率关系,设直线方程联立椭圆方程,利用韦达定理代入斜率关系,化简可得直线的斜率k .【详解】(1)解:依题意可得22223314c a b =⎧⎪⎨+=⎪⎩,又222b a c =-, 所以24a =,23b =,1c =. 所以22143x y +=; (2)解:因为22PF PQ =,所以Q 是2PF 的中点. 结合QO x ⊥轴,所以1PF x ⊥轴,所以01x =-,则2201314y +=,解得032y =±,因为00y >,所以032=y ,所以31,2P ⎛⎫- ⎪⎝⎭.因为直线PM 、PN 关于直线01x x ==-对称. 所以PM 、PN 的倾斜角互补,所以0PM PN k k +=,显然直线l 的斜率存在,设l :y kx m =+,由22143y kx m x y =+⎧⎪⎨+=⎪⎩,得()2224384120k x kmx m +++-=,由0∆>得2243m k <+.设()11,M x y , ()22,N x y ,则1228+43km x x k -=+,212241243m x x k -=+,由12123322011PMPNy y kk x x --+=+=++, 整理得()1212322302kx x k m x x m ⎛⎫++-++-= ⎪⎝⎭,所以2483420k k km m ++--=,即()()212320k k m ++-= 若232k m +-0=,则32m k =+, 所以直线MN 的方程为()312y k x -=+,此时,直线MN 过P 点,舍去. 所以21k +0=,即12k =-,所以直线l 的斜率为12-.22.已知函数()sin ln(1)f x x x =-+,()'f x 为()f x 的导数.证明: (1)()'f x 在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点. 【答案】(1)见解析;(2)见解析【分析】(1)求得导函数后,可判断出导函数在1,2π⎛⎫- ⎪⎝⎭上单调递减,根据零点存在定理可判断出00,2x π⎛⎫∃∈ ⎪⎝⎭,使得()00g x '=,进而得到导函数在1,2π⎛⎫- ⎪⎝⎭上的单调性,从而可证得结论;(2)由(1)的结论可知0x =为()f x 在(]1,0-上的唯一零点;当0,2x π⎛⎫∈ ⎪⎝⎭时,首先可判断出在()00,x 上无零点,再利用零点存在定理得到()f x 在0,2x π⎛⎫⎪⎝⎭上的单调性,可知()0f x >,不存在零点;当,2x ππ⎡⎤∈⎢⎥⎣⎦时,利用零点存在定理和()f x 单调性可判断出存在唯一一个零点;当(),x π∈+∞,可证得()0f x <;综合上述情况可证得结论. 【详解】(1)由题意知:()f x 定义域为:()1,-+∞且()1cos 1f x x x '=-+ 令()1cos 1g x x x =-+,1,2x π⎛⎫∈- ⎪⎝⎭ ()()21sin 1g x x x '∴=-++,1,2x π⎛⎫∈- ⎪⎝⎭()211x +在1,2π⎛⎫- ⎪⎝⎭上单调递减,sin x -,在1,2π⎛⎫- ⎪⎝⎭上单调递减()g x '∴在1,2π⎛⎫- ⎪⎝⎭上单调递减又()0sin0110g '=-+=>,()()2244sin 102222g ππππ⎛⎫'=-+=-< ⎪⎝⎭++00,2x π⎛⎫∴∃∈ ⎪⎝⎭,使得()00g x '=∴当()01,x x ∈-时,()0g x '>;0,2x x π⎛⎫∈ ⎪⎝⎭时,()0g x '<即()g x 在()01,x -上单调递增;在0,2x π⎛⎫⎪⎝⎭上单调递减则0x x =为()g x 唯一的极大值点即:()f x '在区间1,2π⎛⎫- ⎪⎝⎭上存在唯一的极大值点0x .(2)由(1)知:()1cos 1f x x x '=-+,()1,x ∈-+∞ ①当(]1,0x ∈-时,由(1)可知()f x '在(]1,0-上单调递增()()00f x f ''∴≤= ()f x ∴在(]1,0-上单调递减又()00f =0x ∴=为()f x 在(]1,0-上的唯一零点②当0,2x π⎛⎤∈ ⎥⎝⎦时,()f x '在()00,x 上单调递增,在0,2x π⎛⎫ ⎪⎝⎭上单调递减又()00f '= ()00f x '∴>()f x ∴在()00,x 上单调递增,此时()()00f x f >=,不存在零点又22cos 02222f ππππ⎛⎫'=-=-< ⎪++⎝⎭10,2x x π⎛⎫∴∃∈ ⎪⎝⎭,使得()10f x '=()f x ∴在()01,x x 上单调递增,在1,2x π⎛⎫ ⎪⎝⎭上单调递减又()()000f x f >=,2sin ln 1ln ln102222e f ππππ⎛⎫⎛⎫=-+=>=⎪ ⎪+⎝⎭⎝⎭()0f x ∴>在0,2x π⎛⎫⎪⎝⎭上恒成立,此时不存在零点第 21 页 共 21 页 ③当,2x ππ⎡⎤∈⎢⎥⎣⎦时,sin x 单调递减,()ln 1x -+单调递减 ()f x ∴在,2ππ⎡⎤⎢⎥⎣⎦上单调递减 又02f π⎛⎫> ⎪⎝⎭,()()()sin ln 1ln 10f ππππ=-+=-+< 即()02f f ππ⎛⎫⋅< ⎪⎝⎭,又()f x 在,2ππ⎡⎤⎢⎥⎣⎦上单调递减 ∴()f x 在,2ππ⎡⎤⎢⎥⎣⎦上存在唯一零点 ④当(),x π∈+∞时,[]sin 1,1x ∈-,()()ln 1ln 1ln 1x e π+>+>=()sin ln 10x x ∴-+<即()f x 在(),π+∞上不存在零点综上所述:()f x 有且仅有2个零点【点睛】本题考查导数与函数极值之间的关系、利用导数解决函数零点个数的问题.解决零点问题的关键一方面是利用零点存在定理或最值点来说明存在零点,另一方面是利用函数的单调性说明在区间内零点的唯一性,二者缺一不可.。

高二下学期期末数学考试试卷含答案(共5套)

高二下学期期末数学考试试卷含答案(共5套)

i A. > B. > 1 C. a 2 > b 2 D. ab < a + b - 18、已知 x > 0 , y > 0 ,若 2 y + > m 2 + 2m 恒成立,则实数 m 的取值范围是()高二年级下学期期末考试数学试卷一、选择题(本大题共 12 个小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、不等式 2x - 3 < 5 的解集为()A. (-1,4)B. (1,4)C. (1,-4)D. (-1,-4)2、设复数 z 满足 (1 + i) z = 2 ( i 为虚数单位),则复数 z 的共轭复数在复平面中对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3、某市对公共场合禁烟进行网上调查,在参与调查的 2500 名男性市民中有 1000 名持支持态度,2500 名女性市民中有 2000 人持支持态度,在运用数据说明市民对在公共场合禁烟是 否支持与性别有关系时,用什么方法最有说明力( ) A. 平均数与方差 B. 回归直线方程 C. 独立性检验 D. 概率4、若函数 f ( x ) = ax 4 + bx 2 + c 满足 f '(1) = 2 ,则 f '(-1) 等于()A. - 1B. - 2C. 2D. 05 、函数 y = f ( x ) 的图象过原点,且它的导函数y = f '( x ) 的图象是如图所示的一条直线,y = f ( x ) 的图象的顶点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6、在一组样本数据 ( x , y ) , ( x , y ) ,……, ( x , y ) (n ≥ 2, x , x ⋅ ⋅ ⋅ x 不全相等)的散点图中, 1 122nn12n若所有样本点 ( x , y ) (i = 1,2 ⋅ ⋅ ⋅ n) 都在直线 y = i i ( )1 2x + 1上,则这组样本数据的样本相关系数为A. - 1B. 0C. 12D. 17、若 a < 1 , b > 1 那么下列命题正确的是( )1 1 b a b a8xx yA. m ≥ 4 或 m ≤ -2B. m ≥ 2 或 m ≤ -4C. - 4 < m < 2D. - 2 < m < 49、某同学为了了解某家庭人均用电量( y 度)与气温( x o C )的关系,曾由下表数据计算回归直线方程 y = - x + 50 ,现表中有一个数据被污损,则被污损的数据为()+ 的取值范围A. ⎢ ,+∞ ⎪B. - ∞, ⎥C. ⎢ ,+∞ ⎪D. - ∞,- ⎥气温 30 2010 0 人均用电量20 30*50A. 35B. 40C. 45D. 4810、已知函数 f ( x ) 的导函数 f '( x ) = a( x + 1)( x - a) ,若 f ( x ) 在 x = a 处取得极大值,则a 的取值范围是()A. (-∞,1)B. (-1,0)C. (0,1)D. (0,+∞ )11、已知函数 f ( x ) = x 3 - 2ax 2 - bx 在 x = 1 处切线的斜率为 1 ,若 ab > 0 ,则 1 1a b( )⎡ 9 ⎫ ⎛ 9 ⎤ ⎡ 1 ⎫ ⎛ 1 ⎤ ⎣ 2 ⎭⎝ 2 ⎦ ⎣ 2 ⎭ ⎝2 ⎦12、已知 a > b > c > 1 ,设 M = a - cN = a - bP = 2( a + b- ab ) 则 M 、 N 、 P 的大小2关系为( )A. P > N > MB. N > M > PC. M > N > P二、填空题(本大题共 4 个小题,每小题 5 分,共 20 分) 13、下列的一段推理过程中,推理错误的步骤是_______ ∵ a < b∴ a + a < b + a 即 2a < b + a ……①∴ 2a - 2b < b + a - 2b 即 2(a - b ) < a - b ……②∴ 2(a - b )(a - b ) < (a - b )(a - b ) 即 2(a - b )2 < (a - b )2 ……③∵ (a - b )2 > 0∴ 可证得 2 < 1 ……④D. P > M > N14、已知曲线 y = x 2 4- 3ln x 在点( x , f ( x ) 处的切线与直线 2 x + y - 1 = 0 垂直,则 x 的值为0 0 0________15、 f ( x ) = x +1( x > 2) 在 x = a 年取得最小值,则 a =________x - 216、设 a 、 b ∈ R , a - b > 2 ,则关于实数 x 的不等式 x - a + x - b > 2 的解集是_______三、解答题(本大题共 6 小题,共 70 分。

潍坊市高二数学下学期期末考试试题含解析

潍坊市高二数学下学期期末考试试题含解析
5。 老师想要了解全班50位同学的成绩状况,为此随机抽查了10位学生某次考试的数学与物理成绩,结果列表如下:
学生










平均
标准差
数学
88
62
物理
75
63
若这10位同学的成绩能反映全班的成绩状况,且全班成绩服从正态分布,用实线表示全班数学成绩分布曲线,虚线表示全班物理成绩分布曲线,则下列正确的是( )
∴ 面 ,又 面 ,即有 ,故B正确
选项C中,点 运动到 中点时,即在△ 中 、 均为中位线
∴Q为中位线的交点
∴根据中位线的性质有: ,故C错误
选项D中,由于 ,直线 与 所成角即为 与 所成角:
结合下图分析知:点 在 上运动时
当 在 或 上时, 最大为45°
当 在 中点上时, 最小为
∴ 不可能是30°,故D正确
故选:B
【点睛】本题主要考查利用棱柱侧面展开图求解距离最值问题,意在考查学生对该知识的理解掌握水平.
8. 在桌面上有一个正四面体 .任意选取和桌面接触的平面的三边的其中一条边,以此边为轴将正四面体翻转至另一个平面,称为一次操作.如图,现底面为 ,且每次翻转后正四面体均在桌面上,则操作3次后,平面 再度与桌面接触的概率为( )
二、多项选择题:
9。 已知复数 的共轭复数为 ,且 ,则下列结论正确的是( )
A。 B。 虚部为 C。 D.
【答案】ACD
【解析】
【分析】
先利用题目条件可求得 ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.
【详解】由 可得, ,所以 , 虚部为 ;

高二下学期期末考试数学试卷(含参考答案)

高二下学期期末考试数学试卷(含参考答案)

高中二年级学业水平考试数学(测试时间120分钟,满分150分)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知i 是虚数单位,若复数))((R a i a i ∈+-的实部与虚部相等,则=a (A )2-(B )1- (C )1 (D )2(2)若集合{}0,1,2A =,{}24,B x x x N =≤∈,则AB =(A ){}20≤≤x x(B ){}22≤≤-x x (C ){0,1,2} (D ){1,2}(3)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 没有公共点”是“平面α和平面β平行”的(A )充分不必要条件(B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件(4)若()1sin 3πα-=,且2παπ≤≤,则sin 2α的值为(A )9-(B )9-(C )9(D )9(5)在区间[]1,4-上随机选取一个数x ,则1≤x 的概率为 (A )23 (B )15 (C )52 (D )14(6)已知抛物线2y x =的焦点是椭圆22213x y a +=的一个焦点,则椭圆的离心率为(A )37(B )13(C )14 (D )17(7)以下函数,在区间[3,5]内存在零点的是(A )3()35f x x x =--+ (B )()24x f x =-图2俯视图侧视图主视图(C )()2ln(2)3f x x x =-- (D )1()2f x x=-+ (8)已知(2,1),(1,1)a b ==,a 与b 的夹角为θ,则cos θ=(A)10 (B)10 (C)5 (D)5(9)在图1的程序框图中,若输入的x 值为2,则输出的y 值为(A )0 (B )12 (C )1- (D )32- (10)某几何体的三视图如图2所示,则该几何体的侧面积是(A )76 (B )70 (C )64 (D )62 (11)设2()3,()ln(3)xf x eg x x =-=+,则不等式(())(())11f g x g f x -≤的解集为(A )[5,1]- (B )(3,1]- (C )[1,5]- (D )(3,5]-(12) 已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且00x <,则a 的取值范围为(A )∞(-,-2) (B )1∞(-,-) (C )(1,+)∞ (D )(2,)+∞第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题(本大题共4小题,每小题5分,共20分,请把正确的答案填写在答题卡相应的横线上.(13)函数()cos f x x x =+的最小正周期为 .(14)已知实数y x ,满足不等式组⎪⎩⎪⎨⎧≤-≥+≤-3322y x y x x y ,则y x -2的最小值为 .(15)已知直线l :0x y a -+=,点()2,0A -,()2,0B . 若直线l 上存在点P 满足AP BP ⊥,则实数a 的取值范围为 .(16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知2,b =3B π=,且△ABC 的面DC 1B 1CBA积S =a c += .三、解答题:本大题必做题5小题,选做题2小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)已知等差数列{}n a 满足141,4a a ==;数列{}n b 满足12b a =,25b a =,数列{}n n b a -为等比数列. (Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)求数列{}n b 的前n 项和n S . (18)(本小题满分12分)某地区以“绿色出行”为宗旨开展“共享单车”业务.该地区某高级中学一兴趣小组由9名高二级学生和6名高一级学生组成,现采用分层抽样的方法抽取5人,组成一个体验小组去市场体验“共享单车”的使用.问:(Ⅰ)应从该兴趣小组中抽取高一级和高二级的学生各多少人;(Ⅱ)已知该地区有X ,Y 两种型号的“共享单车”,在市场体验中,该体验小组的高二级学生都租X 型车,高一级学生都租Y 型车.如果从组内随机抽取2人,求抽取的2人中至少有1人在市场体验过程中租X 型车的概率.(19)(本小题满分12分)如图3,已知四棱锥11A CBB C -的底面为矩形,D 为1AC 的中点,AC ⊥平面BCC 1B 1. (Ⅰ)证明:AB//平面CDB 1; (Ⅱ)若AC=BC=1,BB 1(1)求BD 的长;(2)求三棱锥C-DB 1C 1的体积. 图3 (20)(本小题满分12分)已知过点(0,1)A 的动直线l 与圆C :224230x y x y +---=交于M ,N 两点. (Ⅰ)设线段MN 的中点为P ,求点P 的轨迹方程; (Ⅱ)若2OM ON ⋅=-,求直线l 的方程. (21)(本小题满分12分)已知函数()ln f x x x =.(Ⅰ)求函数()f x 的极值;(Ⅱ)若对任意1,x e e⎡⎤∈⎢⎥⎣⎦,都有()213022f x x ax +++≤成立,求实数a 的取值范围. 请考生在(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题记分. (22)(本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的纵坐标不变,横坐标变为原来的14,得曲线C . (Ⅰ)写出C 的参数方程;(Ⅱ)设直线l :410x y ++=与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1 P 2的中点且与l 垂直的直线的极坐标方程. (23)(本小题满分10分)选修4-5:不等式选讲设函数()|2|||f x x x a =-+-. (Ⅰ)若2a =-,解不等式5)(≥x f ;(Ⅱ)如果当x R ∈时,()3f x a ≥-,求a 的取值范围.数学参考答案及评分说明一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.一、选择题:部分解析:(10)依题意知,该几何体是底面为直角梯形的直棱柱,故其侧面积为42+44+245=64⨯⨯⨯⨯.(11)(())(())11f g x g f x -≤即22(3)3211450x x x x +--≤⇒+-≤51x ⇒-≤≤,注意到30x +>,即3x >-,故31x -<≤.(12)当0a =时,函数2()31f x x =-+有两个零点,不符合题意,故0a ≠,2'()363(2)f x ax x x ax =-=-,令'()0f x =得0x =或2x a =,由题意知,0a >,且2()0f a>,解得2a >.二、填空题:(15)问题转化为求直线l 与圆2222x y +=有公共点时,a 的取值范围,数形结合易得a -≤.(16)由余弦定理得2222cos 4b a c ac B =+-=,即224a c ac +-=,1sin 24S ac B ac ===得4ac =,故2()164a c a c +=⇒+= 三、解答题:(17)解:(Ⅰ)由数列{}n a 是等差数列且141,4a a ==∴公差4113a a d -==, ------------------------------------------------------------------------------1分 ∴1(1)n a a n d n =+-=,------------------------------------------------------------------------------3分 ∵12b a ==2,25b a ==5,∴11221,3,b a b a -=-= ∴数列{}n n b a -的公比22113b a q b a -==-,-----------------------------------------------------------5分∴1111()3n n n n b a b a q ---=-=,∴13n n b n -=+;-------------------------------------------------------------------------------------------7分 (Ⅱ)由13n n b n -=+得21(12)(1333)n n S n -=++++++++--------------------------------------------------------9分(1)31231n n n +-=+- 3(1)12n n n ++-=------------------------------------------------------------------------------------ 12分 (18)解:(Ⅰ)依题意知,应从该兴趣小组中抽取的高一学生人数为56=29+6⨯, ------2分 高二学生的人数为:59=39+6⨯; -------------------------------------------------------------------4分 (Ⅱ)解法1:记抽取的2名高一学生为12,a a ,3名高二的学生为123,,b b b ,------------5分 则从体验小组5人中任取2人的所有可能为:12111213(,),(,),(,),(,)a a a b a b a b ,(a 2,b 1), (a 2,b 2), (a 2,b 3), (b 1,b 2), (b 1,b 3), (b 2,b 3),共10种可能; ----------------------------------------------------------8分 其中至少有1人在市场体验过程中租X 型车的有:111213(,),(,),(,)a b a b a b ,212223121323(,),(,),(,),(,),(,),(,)a b a b a b b b b b b b 共9种,------------------------------------------10分故所求的概率910P =.-----------------------------------------------------------------------------------------12分 【解法:2:记抽取的2名高一学生为12,a a ,3名高二的学生为123,,b b b ,------------------------5分 则从体验小组5人中任取2人的所有可能为:12111213(,),(,),(,),(,)a a a b a b a b ,EABCB 1C 1D212223121323(,),(,),(,),(,),(,),(,)a b a b a b b b b b b b 共10种可能;--------------------------------------8分其中所抽的2人都不租X 型车的有:12(,)a a 一种,-------------------------------------------------9分 故所求的概率1911010P =-=. ---------------------------------------------------------------------------12分 (19)解:(Ⅰ)证明:连结1BC 交1B C 于E ,连结DE , ------------------------------------------1分 ∵D 、E 分别为1AC 和1BC 的中点,∴DE//AB,---------------------------------- --------------------2分 又∵DE ⊂平面1CDB ,AB ⊄平面1CDB ,∴AB//平面CDB 1;---------------------------------------------4分 (Ⅱ)(1)∵AC ⊥平面BCC 1B 1,BC ⊂平面11BCC B , ∴BC AC ⊥, 又∵1BC CC ⊥,1ACCC C =,∴BC ⊥平面1ACC , ∵CD ⊂平面1ACC ,∴BC CD ⊥,----------------------------------------------------------------------------------------------------6分 在Rt BCD ∆,∵BC=1,1112CD AC ===, ∴BD =分【注:以上加灰色底纹的条件不写不扣分!】 (2)解法1:∵BC ⊥平面1ACC ,BC//B 1C 1∴11B C ⊥平面1CC A ,-----------------------------------------------------------------------------------------10分 ∴111111113C DB C B CDC CDC V V S B C --∆==⋅111134=⨯⨯=. ---------------------------------12分 【解法2:取1CC 中点F,连结DF ,∵DF 为△1ACC 的中位线,∴DF//AC,-------------------------------------------------------------------9分 ∵AC ⊥平面11CBB C ,从而可得DF ⊥平面11CBB C ,----------------------------------------------10分∴11111113C DB C D CB C CB C V V S DF --∆==⋅1111322=⨯⨯=. --------------------------------12分 (20)解法(Ⅰ)将224230x y x y +---=化为标准方程得:222(2)(1)x y -+-=, ----------------------------------------------------------------------------1分可知圆心C 的坐标为(2,1),半径r =设点P 的坐标为(,)x y ,则(2,1),(,1)CP x y AP x y =--=-,---------------------------------------2分 依题意知CP AP ⊥,∴0CP AP ⋅=(2)(1)(1)0x x y y ⇒-+--=整理得:222210x y x y +--+=, ------------------------------------------------------------------------4分∵点A 在圆C 内部, ∴直线l 始终与圆C 相交,∴点P 的轨迹方程为222210x y x y +--+=.----------------------------------------------------------6分 (Ⅱ)设1122(,),(,)M x y N x y ,若直线l 与x 轴垂直,则l 的方程为0x =,代入224230x y x y +---=得2230y y --=,解得1y =-或3y =,不妨设121,3y y =-=,则3OM ON ⋅=-,不符合题设, ------------------------------------------------7分 设直线l 的斜率为k ,则l 的方程为1y kx =+,由224230,1.x y x y y kx ⎧+---=⎨=+⎩消去y 得:22(1)440k x x +--=, --------------------------------8分 216(2)0k ∆=+>,则12122244,11x x x x k k+==-++,------------------------------------------------------------------------9分 由2OM ON ⋅=-得212121212(1)()12x x y y k x x k x x +=++++=-,∴22244(1)1211kk k k-+++=-++2410k k ⇒-+=,解得:2k =±分∴当2OM ON ⋅=-时,直线l 的方程为(21y x =++或(21y x =-+. --------------12分 (21)解:(Ⅰ)函数()f x 的定义域为(0,)+∞, ∵()ln 1f x x '=+,令'()0f x =得1x e=,-------------------------------------------------------------2分 当10x e <<时'()0f x <,当1x e>时,'()0f x >, ∴函数()f x 在1(0,)e 上单调递减,在1(,)e+∞上单调递增,----------------------------------------4分∴函数()f x 无极大值, 当1x e =时,函数()f x 在(0,)+∞有极小值,11()()f x f e e==-极小,--------------------------5分 (Ⅱ)当1,x e e ⎡⎤∈⎢⎥⎣⎦时,由()213022f x x ax +++≤,得3ln 22x a x x ≤---,--------------6分 记()3ln 22x g x x x =---,1,x e e ⎡⎤∈⎢⎥⎣⎦, 则()()()2231113222x x g x x x x +-'=--+=-, 当∈x 1,1e ⎛⎫ ⎪⎝⎭时,得'()0g x >,当∈x ()1,e 时, '()0g x <∴()g x 在1,1e ⎛⎫ ⎪⎝⎭上单调递增,在()1,e 上单调递减,---------------------------------------------------9分又113122e g e e ⎛⎫=-- ⎪⎝⎭,()3122e g e e=---, ∵012)()1(<-+=-e e e g e g ,∴()1g g e e ⎛⎫< ⎪⎝⎭,-------------------------------------------------10分故()g x 在1,e e ⎡⎤⎢⎥⎣⎦上的最小值为1g e ⎛⎫ ⎪⎝⎭,故只需1a g e ⎛⎫≤ ⎪⎝⎭,即实数a 的取值范围是13,122e e ⎛⎤-∞-- ⎥⎝⎦.------------------------------------------------------------12分 选做题:(22)解:(Ⅰ)由坐标变换公式1',4'.x x y y ⎧=⎪⎨⎪=⎩ 得4','x x y y ==-------------------------------------2分 代入221x y +=中得2216''1x y +=,--------------------------------------------------------------------3分故曲线C 的参数方程为1cos ,4sin .x y θθ⎧=⎪⎨⎪=⎩(θ为参数);----------------------------------------------------5分 (Ⅱ)由题知,121(,0),(0,1)4P P --,--------------------------------------------------------------------6分 故线段P 1 P 2中点11(,)82M --,---------------------------------------------------------------------------7分∵直线l 的斜率4k =-∴线段P 1 P 2的中垂线斜率为14,故线段P 1 P 2的中垂线的方程为111()248y x +=+------------------------------------------------------8分即832150x y --=,将cos ,sin x y ρθρθ==代入得其极坐标方程为8cos 32sin 150ρθρθ--=----------------------------------------------------------10分 (23)解:(Ⅰ)当a =-2时,f (x )=|x -2|+|x +2|, ①当2x ≤-时,原不等式化为:25,x -≥解得52x ≤-,从而52x ≤-;-------------------------1分 ②当22x -<≤时,原不等式化为:45≥,无解;---------------------------------------------------2分 ③当2x >时,原不等式化为:25,x ≥解得52x ≥,从而52x ≥;----------------------------------3分 综上得不等式的解集为⎭⎬⎫⎩⎨⎧≥-≤2525x x x 或.----------------------------------------------------------------5分(Ⅱ)当x R ∈时,|2||||2()||2|x x a x x a a -+-≥---=- ---------------------------------------7分 所以当x R ∈时,()3f x a ≥-等价于|2|3a a -≥------(*) 当2a ≥时,(*)等价于23,a a -≥-解得52a ≥,从而52a ≥;----------------------------------8分 当2a <时,(*)等价于23,a a -≥-无解;------------------------------------------------------------9分 故所求a 的取值范围为5[,+2∞). --------------------------------------------------------------------------10分。

2021-2022学年天津市部分区高二下学期期末数学试题(解析版)

2021-2022学年天津市部分区高二下学期期末数学试题(解析版)

2021-2022学年天津市部分区高二下学期期末数学试题一、单选题1.如图所示,散点图中需要去掉一组数据,使得剩下的四组数据的相关系数最大,则应去掉的数据所对应的点为( )A .AB .BC .CD .D【答案】D【分析】由相关系数的强弱关系求解即可【详解】由散点图可知,D 点偏离最远,所以去掉D 点后,剩下四组数据的相关系数最大. 故选:D2.已知2C 6n =,则n 的值为( ) A .3 B .4 C .5 D .6【答案】B【分析】根据组合数的计算公式即可求解. 【详解】()21C 6621n n n -=⇒=⨯,化简得:2120n n --=,解得:4n =或3n =-(舍去).故选:B3.下列说法中错误的是( )A .设()20,N ξσ~,且1(2)4P ξ<-=,则1(02)2P ξ<<= B .经验回归方程过成对样本数据的中心点(),x yC .两个随机变量的线性相关性越强,相关系数的绝对值越接近于1D .若变量x 和y 满足关系10.3y x =-,且变量y 与z 正相关,则x 与z 负相关 【答案】A【分析】选项A 根据正态曲线的对称性求解;选项B 由经验回归方程可以判断;选项C 根据线性相关系数的定义判断;选项D 根据两个变量的相关关系进行判断. 【详解】对于A ,正态曲线关于0x =对称,则(2)(2)P P ξξ<-=>,则1(22)12(2)2P P ξξ-<<=-<-=,则1(02)4P ξ<<=,所以A 错误; 对于B ,经验回归方程过成对样本数据的中心点(),x y ,B 正确; 对于C ,||r 越接近于1,两个随机变量的线性相关性越强,C 正确; 对于D ,10.3y x =-,则x 与y 负相关,所以x 与z 负相关,D 正确. 故选:A.4.下列运算正确的个数是( ) ①ππsin cos 77'⎛⎫= ⎪⎝⎭; ②()155x x x -'=⋅;③()31log ln3x x '=;④()545x x '=. A .1 B .2C .3D .4【答案】B【分析】直接利用初等函数的导数公式运算判断得解.【详解】①πsin 07'⎛⎫= ⎪⎝⎭,所以该运算错误;②()55ln 5x x '=,所以该运算错误;③()31log ln3x x '=,所以该运算正确;④()545x x '=,所以该运算正确. 所以正确的个数为2. 故选:B.5.在61x x ⎛⎫- ⎪⎝⎭的展开式中,4x 的系数是( )A .15B .6C .6-D .15-【答案】C【分析】写出通项公式,令x 的指数为4,求出参数值,代入通项即可得解.【详解】61x x ⎛⎫- ⎪⎝⎭的展开式通项为()6621661C C 1--+⎛⎫=⋅-=⋅-⋅ ⎪⎝⎭kk k k kk k T x x x ,令624k -=,解得1k =,因此,展开式中4x 的系数是()116C 16⋅-=-. 故选:C.6.某校从高一、高二、高三三个年级中各选派10名同学集中观看“庆祝中国共产主义青年团成立100周年大会”,其中三个年级选派同学中女生人数分别为5、6、7,观看后学校在选派的30名同学中随机选取一名同学汇报心得体会,则在选取一名女同学的条件下该名女同学来自高三年级的概率为( ) A .730B .13C .1130D .718【答案】D【分析】记事件:A 选取一名同学为女同学,记事件:B 选取的同学来自高三,利用条件概率公式可求得所求事件的概率.【详解】记事件:A 选取一名同学为女同学,记事件:B 选取的同学来自高三, 则()5673305P A ++==,()730P AB =,因此,()()()75730318P AB P B A P A ==⨯=. 故选:D.7.随机变量X 的分布列为若() 1.1E X =,则()D X =( )A .0.49 B .0.69 C .1 D .2【答案】A【分析】由分布列性质和数学期望公式可求得,n m 的值,由方差的公式可计算得到结果. 【详解】由分布列性质知:131510n ++=,解得:12n =;()11301 1.15210E X m ∴=⨯+⨯+⨯=,2m ∴=;()()()()2221130 1.11 1.12 1.10.495210D X ∴=-⨯+-⨯+-⨯=.故选:A.8.在6件产品中,有4件合格品,2件次品,每次从中任取一件检测,取后不放回,直到2件次品全被测出为止,则第二件次品恰好在第3次被测出的所有检测方法种数有( ) A .48B .24C .16D .8【答案】C【分析】根据排列组合的特点依照题意列式即可求解【详解】有题意可知:前面两次检测取到的是一件合格品一件次品,第三次又是次品,所以第二件次品恰好在第3次被测出的所有检测方法种数为:111242C C C 16=种,故选:C9.已知函数()f x 满足()(),11ln 1,1ax a x f x x x +≤-⎧+=⎨+>-⎩函数()()()g x f x f x =--恰有5个零点,则实数a 的取值范围为( ) A .1,0e ⎛⎫- ⎪⎝⎭B .10,e ⎛⎫ ⎪⎝⎭C .11,e e ⎛⎫- ⎪⎝⎭D .1,e ∞⎛⎫+ ⎪⎝⎭【答案】A【分析】画出()()、-f x f x 的图象, 因为y ax =与y ax =-,ln y x =与()ln y x =-的图象关于y 轴对称, 且y ax =与y ax =-交于原点,要使()()f x f x =-恰有5个零点, ln y x =与y ax =-的图象必需有两个交点,求出ln y x =与y ax =-相切时a 的值可得答案.【详解】因为()(),11ln 1,1ax a x f x x x +≤-⎧+=⎨+>-⎩,所以(),0ln ,0ax x f x x x ≤⎧=⎨>⎩,()(),0ln ,0ax x f x x x -≥⎧-=⎨-<⎩,因为函数()()()g x f x f x =--恰有5个零点,所以()()、-f x f x 的图象恰有5个交点,画出()()、-f x f x 的图象,由图象可得, 因为y ax =与y ax =-,ln y x =与()ln y x =-的图象关于y 轴对称, 且y ax =与y ax =-交于原点,要恰有5个零点,则y ax =与()ln y x =-,ln y x =与y ax =-的图象必有两个交点, 当ln y x =与y ax =-的图象相切时,设切点(),m n , 此时切线的斜率为11'===ny x m m,可得1n =,1ln =m 得e m =,所以切点()e,1, 即1ea -=,交点1a e =-,所以要使函数()()()g x f x f x =--恰有5个零点,则1,0e a ⎛⎫∈- ⎪⎝⎭.故选:A.二、填空题10.曲线e 1x y =+在点()0,2处的切线方程为___________. 【答案】2y x =+【分析】求导得e x y '=,进而得切线的斜率,再根据点斜式方程求解即可. 【详解】求导得e x y '=,故切线的斜率为0e 1=, 故切线方程为21(0)y x -=-, 即2y x =+. 故答案为:2y x =+ 11.设随机变量16,2B ⎛⎫⎪⎝⎭ξ,则()2P ξ=等于___________. 【答案】1564【分析】根据二项分布的概率公式计算即可得解. 【详解】解:因为随机变量16,2B ⎛⎫ ⎪⎝⎭ξ, 所以()242611152C 12264P ξ⎛⎫⎛⎫==⨯⨯-=⎪ ⎪⎝⎭⎝⎭. 故答案为:1564. 12.已知10名同学中有2名女生,若从中选取2名同学作为学生代表,则恰好选取1名女生的概率为___________. 【答案】1645【分析】根据古典概型,结合组合数公式求解即可.【详解】从10名同学中任选2人,共有210C 45=种取法,其中恰好选取1名女生的取法有1182C C 16=种,故恰好选取1名女生的概率为1645P =. 故答案为:164513.根据历年气象统计资料显示,某地四月份吹东风的概率为9,30下雨的概率为1130,既吹东风又下雨的概率为830,则在吹东风的条件下下雨的概率为___________. 【答案】89【分析】设事件A 表示吹东风,事件B 表示下雨,得到()P A ,()P AB ,结合()(|)()P AB P B A P A =,即可求解. 【详解】由题意,设事件A 表示吹东风,事件B 表示下雨,则34(),()1015P A P AB ==, 所以在吹东风的条件下下雨的概率为4()815(|)3()910P AB P B A P A ===. 故答案为:8914.若5个人排成一排照相,要求甲、乙两人必须相邻,则有___________种不同的排法(用数字作答). 【答案】48【分析】用捆绑法求解即可【详解】因为把甲、乙两人必须相邻,所以把甲、乙两人捆绑在一起看成一个整体,和其他3人进行全排列,再考虑甲乙之间的顺序,所以共有4242A A 48=种,故答案为:48 三、双空题15.已知函数()()e 1xf x x =-,则()f x 的极小值为___________;若函数()12g x mx =-,对于任意的[]12,2x ∈-,总存在[]21,2x ∈-,使得()()12f x g x >,则实数m 的取值范围是___________.【答案】 1- 11,,42⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【分析】(1)利用导数可求得函数()y f x =的极小值;(2)由题意可得出()()min min f x g x >,分0m >、0m <、0m =三种情况讨论,根据题意可得出关于m 的不等式,进而可求得m 的取值范围.【详解】由()()e 1xf x x =-,得()()e 1e e x x x f x x x '=-+=,令()0f x '=,得0x =,列表如下:所以,函数()y f x =的极小值为()()00e 011f =-=-;(2)[]12,2x ∀∈-,[]21,2x ∃∈-,使得()()12f x g x >,即()()min min f x g x >,()()min min 1g x f x ∴<=-.①当0m >时,函数()y g x =单调递增,()()min 112g x g m =-=--,112m ∴--<-,即12m >; ②当0m <时,函数()y g x =单调递减,()()min 1222g x g m ==-,1212m -∴<-,即14m <-;③当0m =时,()12g x =-,不符合题意.综上:11,,42m ⎛⎫⎛⎫∈-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.故答案为:1-;11,,42⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭.四、解答题16.为调查某商品一天的销售量及其价格是否具有线性相关关系,某市发改委随机选取五个超市的销售情况进行统计,数据如下表:通过分析,发现商品的销售量y 与价格x 具有线性相关关系.(1)根据上表提供的数据,用最小二乘法求出y 关于x 的经验回归方程;(ˆb保留两位小数)(2)根据(1)所得的经验回归方程,若使销售量为12件,估计价格是多少,(结果保留两位小数)附:在经验回归方程ˆˆˆybt a =+中,552122111ˆˆˆ,,386,508.5ni ii i i ini i ii x y nxyb a y bx x y x xnx ====-==-==-∑∑∑∑ 【答案】(1) 1.6524.5y x =-+;(2)预测销售量为12件时的售价是7.58元.【分析】(1)根据所给数据求出ˆb,ˆa ,即可得出回归直线方程; (2)根据回归方程,求出预测值即可. 【详解】(1)由题意知10x =,8y =,∴3865810= 1.65508.55100ˆb-⨯⨯≈--⨯,()8 1.651024ˆ.5a=--⨯=, ∴线性回归方程是 1.6524.5y x =-+;(2)令 1.6524.512y x =-+=, 可得7.58x ≈,∴预测销售量为12件时的售价是7.58元.17.已知函数()()22f x x x =-.(1)求()f x 的单调区间;(2)求()f x 在区间[]1,3-上的最大值和最小值.【答案】(1)递增区间为(),0∞-、4,3⎛⎫+∞ ⎪⎝⎭,递减区间为40,3⎛⎫⎪⎝⎭(2)()max 9f x =,()min 3f x =-【分析】(1)利用函数的单调性与导数的关系可求得函数()f x 的增区间和减区间; (2)分析函数()f x 在区间[]1,3-上的单调性,进而可求得函数()f x 在区间[]1,3-上的最大值和最小值. 【详解】(1)解:()()23222f x x x x x =-=-,所以,()234f x x x '=-.由()2340f x x x '=->,解得0x <或43x >; 由()2320f x x x '=-<,解得403x <<, 所以()f x 的递增区间为(),0∞-、4,3⎛⎫+∞ ⎪⎝⎭,递减区间为40,3⎛⎫⎪⎝⎭.(2)解:由(1)可知,函数()f x 在[)1,0-上单调递增,在40,3⎛⎫⎪⎝⎭上单调递减,在4,33⎛⎤ ⎥⎝⎦上单调递增,所以,()()00f x f ==极大值,()432327f x f ⎛⎫==- ⎪⎝⎭极小值,又因为()13f -=-,()39f =,所以, 由(1)知0x =是()f x 的极大值点,43x =是()f x 的极小值点, 所以()f x 极大值()00f ==,()f x 极小值432327f ⎛⎫==- ⎪⎝⎭,又()13f -=-,()39f =,()max 9f x =,()min 3f x =-.(1)以年龄50岁为分界点,由以上统计数据完成下面22⨯列联表.(2)根据(1)中列联表判断是否有99%的把握认为是否观看讲座与人的年龄有关. 下面的临界值表供参考:独立性检验统计量22()()()()()n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++【答案】(1)答案见解析(2)有99%的把握认为观看讲座人数与人的年龄有关 【分析】(1)由已知计算填表即可;(2)计算2χ,再由独立性检验的基本思想求解即可 【详解】(1)由以上统计数据填写下面22⨯列联表,如下(2)根据公式计算()225010271039.98 6.63537133020χ⨯-⨯=≈>⨯⨯⨯, 所以有99%的把握认为观看讲座人数与人的年龄有关19.已知条件①采用无放回抽取:②采用有放回抽取,请在上述两个条件中任选一个,补充在下面问题中横线上并作答,选两个条件作答的以条件①评分.问题:在一个口袋中装有3个红球和4个白球,这些球除颜色外完全相同,若___________,从这7个球中随机抽取3个球,记取出的3个球中红球的个数为X ,求随机变量X 的分布列和期望.【答案】分布列答案见解析,数学期望:97【分析】若选①,分别求出随机变量X 的取值为0,1,2,3的概率,即可得到分布列,计算期望;若选②,则随机变量X 服从二项分布,根据二项分布的概率公式列出分布列,计算期望. 【详解】若选①,由题意,随机变量X 的可能值为0,1,2,3()3437C 40C 35P X ===,()123437C C 181C 35P X ===,()213437C C 122C 35P X ===,()3337C 13C 35P X ===;所以X 的分布列为期望()41812190123353535357E X =⨯+⨯+⨯+⨯=; 若选②,由题意,随机变量X 的可能值为0,1,2,3,且3~3,7X B ⎛⎫ ⎪⎝⎭, ()333640C 17343P X ⎛⎫∴==-= ⎪⎝⎭, ()213331441C 177343P X ⎛⎫==⨯⨯-= ⎪⎝⎭, ()223331082C 177343X P ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭, ()3333273C 7343P X ⎛⎫=== ⎪⎝⎭, X ∴的分布列为:期望()37793E X =⨯=. 20.设函数()3x f x e ax =-+(a R ∈).(1)讨论函数()f x 的极值;(2)若函数()f x 在区间[]1,2上的最小值是4,求a 的值.【答案】(1)当0a ≤时,函数()f x 在R 上无极值;当0a >时,()f x 的极小值为ln 3a a a -+,无极大值.(2)1e -【分析】(1)求得函数的导数()x f x e a '=-,分类讨论即可求解函数的单调区间,得到答案.(2)由(1)知,当0a ≤时,函数()f x 在R 上单调递增,此时最小值不满足题意;当0a >时,由(1)得ln x a =是函数()f x 在R 上的极小值点,分类讨论,即可求解.【详解】解:(1)()x f x e a '=-.当0a ≤时,()0f x '>,()f x 在R 上单调递增;无极值当0a >时,()0f x '>,解得ln x a >,由()0f x '<,解得ln x a <.函数()f x 在(),ln a -∞上单调递减,函数()f x 在()ln ,a +∞上单调递增,()f x 的极小值为()ln ln 3f a a a a =-+,无极大值综上所述:当0a ≤时,函数()f x 在R 上无极值;当0a >时,()f x 的极小值为ln 3a a a -+,无极大值.(2)由(1)知,当0a ≤时,函数()f x 在R 上单调递增,∴函数()f x 在[]1,2上的最小值为()134f e a =-+=,即10a e =->,矛盾.当0a >时,由(1)得ln x a =是函数()f x 在R 上的极小值点.①当ln 1a ≤即0a e <≤时,函数()f x 在[]1,2上单调递增,则函数()f x 的最小值为()134f e a =-+=,即1a e =-,符合条件.②当ln 2a ≥即2a e ≥时,函数()f x 在[]1,2上单调递减,则函数()f x 的最小值为()22234f e a =-+=即2212e a e -=<,矛盾. ③当1ln 2a <<即2e a e <<时,函数()f x 在[]1,ln a 上单调递减,函数()f x 在[]ln ,2a 上单调递增,则函数()f x 的最小值为()ln ln ln 34a f a e a a =-+=,即ln 10a a a --=.令()ln 1h a a a a =--(2e a e <<),则()ln 0h a a '=-<,∴()h a 在()2,e e 上单调递减, 而()1h e =-,∴()h a 在()2,e e 上没有零点, 即当2e a e <<时,方程ln 10a a a --=无解.综上,实数a 的值为1e -.【点睛】本题主要考查导数在函数中的综合应用,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用;本题属于难题.。

高二下学期期末数学试卷及答案

高二下学期期末数学试卷及答案

高二下学期期末数学试卷一、单项选择1、设,若直线与线段相交,则的取值范围是( )A .B .C .D .2、已知点A (2,-3),B (-3,-2),直线l 方程为kx+y-k-1=0,且与线段AB 相交,求直线l的斜率k 的取值范围为( )A或 B C D 3、直线与曲线有两个不同的交点,则实数的k 的取值范围是( ) A .B .C .D .4、已知圆,直线l :,若圆上恰有4个点到直线l 的距离都等于1,则b 的取值范围为 A .B .C .D .5、若直线被圆截得弦长为,则) A . B . C6、设△ABC 的一个顶点是A (3,-1),∠B,∠C 的平分线方程分别是x=0,y=x ,则直线BC 的方程是( ) A .B .C .D .7、已知圆:,则过点(1,2)作该圆的切线方程为( )A .x+4y-4=0B .2x+y-5=0C .x=2D .x+y-3=0 8、阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数的点的轨迹是圆,后人将这个圆称为阿氏圆.若平面内两定点A 、B 间4k ≤-220(0,0)ax by a b -+=>>222410x y x y ++-+=494(0,1)k k k >≠的距离为,动点P、A、B不共线时,三角形PAB面积的最大值是()ABD9、若圆上有个点到直线的距离为1,则等于()A.2 B.1 C.4 D.310、圆的一条切线与圆相交于,两点,为坐标原点,则()AB.C.2 D11、已知直线与圆相交,则的取值范围是()A. B. C.D.12、古希腊数学家阿波罗尼奥斯的著作《圆锥曲线论》中给出了圆的另一种定义:平面内,到两个定点、距离之比是常数的点的轨迹是圆.若两定点、的距离为3,动点满足,则点的轨迹围成区域的面积为().A.B.C.D.13、已知直线l1:(k-3)x+(4-k)y+1=0与l2:2(k-3)x-2y+3=0平行,则k的值是()A.1或3 B.1或5 C.3或5 D.1或214、我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:“有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?”根据上面的已知条件可求得该女子第4天所织布的尺数为( )A.B C D15、在等比数列中,,前项和为,若数列也是等比数列,则等于()A.B.C.D.16、设数列满足,记数列的前项之积为,则2P22:(5)(1)4C x y-++=n4320x y+-=n 221x y+=224x y+=()11,A x y()22,B x y O1212x x y y+=2-:cos sin1()l x yααα+=∈R222:(0)C x y r r+=>r 01r<≤01r<<1r≥1r>)0(>>ba{}na21=a n n S{}1na+nS 122n+-3n2n31n-( ) A .B .C .D .17、已知公比不为的等比数列满足,若,则( )A .9B .10C .11D .12 18、设等差数列的前项和为,已知,,则( )A .B .C .D .19、在等差数列中,若,是方程的两根,则的前11项的和为( )A .22B .-33C .-11D .1120、已知数列满足,数列前项和为,则( )ABCD21、已知数列满足,,是数列的前项和,则( )A .B .C .数列是等差数列 D .数列是等比数列22、已知等数差数列中,是它的前项和,若且,则当最大时的值为( )A .9B .10 C .11 D .1823、已知正项等比数列{a n }满足:a 7=a 6+2a 5,若存在两项a m 、a n ,使得a m a n =16a 12 )1{}n a 15514620a a a a +=210m a =m ={}n a nnS ()()201920212017201720171201912000a a a -++-=()()20192021202020202020-1+201912038a a a +-=4036S =2019202020214036{}n a 2*1222...2()n n a a a n n N +++=∈n nS 12310...S S S S ⋅⋅⋅⋅={}n a n S n 180S >190S <n S nABCD .不存在24、的内角,,所对的边分别是,,.已知,则的最小值为( ) A . B .C .D .25、已知,,为的三个内角,,的对边,向量,,若,且,则角( )A .B .C .D .二、填空题26、点到直线的距离的最大值为________.27、已知点和圆,过点 作圆的切线有两条,则实数的取值范围是______28、已知直线l :x+y-6=0,过直线上一点P 作圆x 2+y 2=4的切线,切点分别为A ,B ,则四边形PAOB 面积的最小值为______,此时四边形PAOB 外接圆的方程为______. 29、已知实数满足,则的取值范围为________.30、已知实数x ,y 满足6x+8y-1=0,则的最小值为______.31、等比数列的前n 项和为32、若等差数列满足,则数列的前项和取得最大值时_________ 33、已知数列满足,则数列的最大值为________.34、已知数列中,,是数列的前项和,且对任意的,都有,则=_____35、已知首项与公比相等的等比数列中,若,,满足,则()1,2P 222:20C x y kx y k ++++=P C k {}n a n S {}n a 7897100,a a a a a ++>+<{}n a n n S =n {}n a 11a =n S {}n a n *,r t N ∈n a的最小值为_____.36、在锐角三角形中,角的对边分别为,若,则的最小值是_______.37、在锐角中,角,,所对应的边分别为,,.则________;若,则的最小值为________. 38、若△ABC 的内角,则的最小值是 . 39、已知分别是的内角的对边,,,则周长的最小值为_____。

高二(下)期末数学试卷

高二(下)期末数学试卷

高二(下)期末数学试卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)复数z 在复平面内对应点的坐标为(3,6),则|2|(z i -= ) A .3B .4C .5D .62.(5分)5人排成一行,其中甲、乙两人相邻的不同排法共有( ) A .24种B .48种C .72种D .120种3.(5分)52()x x-的展开式中3x 的系数为( )66666666666666A .10B .10-C .5D .5-4.(5分)某铁球在0C ︒时,半径为1dm .当温度在很小的范围内变化时,由于热胀冷缩,铁球的半径会发生变化,且当温度为C t ︒时铁球的半径为(1)at dm +,其中a 为常数,则在0t =时,铁球体积对温度的瞬时变化率为( )(参考公式:34)3V R π=球A .0B .a πC .43a πD .4a π5.(5分)长时间玩手机可能影响视力.据调查,某校学生大约有40%的人近视,而该校大约有20%的学生每天玩手机超过1小时,这些人的近视率约为50%.现从每天玩手机不超过1小时的学生中任意调查一名学生,则他近视的概率约为( ) A .0.125B .0.25C .0.375D .0.46.(5分)正四面体ABCD 中,M ,N 分别是BC ,AD 的中点,则直线AM 和CN 夹角的余弦值为( ) A .33B .63C .22D .237.(5分)如图,一个质点在随机外力的作用下,从原点O 出发,每次等可能地向左或向右移动一个单位.若质点移动6次,则回到原点O 的概率为( )A .0B .14C .516 D .588.(5分)已知函数()f x xlnx =,()24g x x =-,若12()()f x g x =,则21x x -的最小值为()A .22e -B .3e -C .2e -D .1二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分. 9.(5分)随机变量~(2,4)X N ,则( ) A .()2E X =B .()2D X =C .(4)(1)P X P X >><D .(1)(3)1P X P X >+>=10.(5分)已知函数()y f x =的导函数()y f x '=的图象如图所示,则(A .12()()f x f x <B .32()()f x f x <C .()f x 在(,)a b 内有2个极值点D .()f x 的图象在点0x =处的切线斜率小于011.(5分)把4个编号为1,2,3,4的球放入4个编号为1,2,3,4的盒子中,则()A .不同的放法有64种B .每个盒子放一个球的不同放法有24种C .每个盒子放一个球,且球的编号和盒子的编号都不相同的不同放法有9种D .恰有一个盒子不放球的不同放法有72种12.(5分)在棱长为1的正方体1111ABCD A B C D -中,点E ,F 分别满足AE AB λ=,BF BC μ=,其中[0λ=,1],[0μ∈,1],则( )A .当1μ=时,三棱锥11AB EF -的体积为定值 B .当12λ=时,点A ,B 到平面1B EF 的距离相等C .当12μ=时,存在λ使得1BD ⊥平面1B EF D .当λμ=时,11A F C E ⊥三、填空题:本题共4小题,每小题5分,共20分. 13.(5分)若31iz i-=+,则z z += . 14.(5分)已知(1A ,0,0),(0B ,1,0),(0C ,0,1),若点(P x ,1,1)在平面ABC 内,则x = .15.(5分)由0,1,2,3,4,5组成没有重复数字的三位数,其中偶数有 个.(用数字作答)16.(5分)函数,(),x xe x a f x x x a⎧=⎨>⎩,当0a =时,()f x 零点的个数是 ;若存在实数0x ,使得对于任意x R ∈,都有0()()f x f x ,则实数a 的取值范围是 .四、解答题:本题共6小题,共70分.解答应写出文字说明证明过程或演算步骤. 17.(10分)已知函数32()f x x ax b =++在2x =处有极值2-. (1)求()f x 的解析式;(2)求()f x 在[2-,3]上的最值.18.(12分)在国家政策扶持下,近几年我国新能源汽车产业迅速发展.某公司为了解职工购买新能源汽车的意愿,随机调查了30名职工,得到的部分数据如表所示:(1)请将上述22⨯列联表补充完整,并判断能否有99%的把握认为“该公司职工购买新能源汽车的意愿与性别有关”;(2)为进一步了解职工不愿意购买新能源汽车的原因,从不愿意购买新能源汽车的被调查职工中随机抽取3人进行问卷调查,求至少抽到2名女职工的概率. 附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.20()P K k0.100 0.050 0.010 0.001 0k2.7063.8416.63510.82819.(12分)如图,在三棱锥P ABC -中,PBC ∆是正三角形,AC BC ⊥,D 是AB 的中点. (1)证明:BC PD ⊥;(2)若2AC BC ==,22PA =,求二面角D PA C --的余弦值.20.(12分)为了解某地区未成年男性身高与体重的关系,对该地区12组不同身高i x (单位:)cm 的未成年男性体重的平均值i y (单位:)(1kg i =,2,,12)数据作了初步处理,得到下面的散点图和一些统计量的值.xyω1221()ii xx =-∑121()()ii i xx y y =--∑121()()ii i xx ωω=--∑11524.3582.95814300 6300 286表中(1i i lny i ω==,2,,12),112i i ωω==∑.(1)根据散点图判断y ax b =+和cx d y e +=哪一个适宜作为该地区未成年男性体重的平均值y 与身高x 的回归方程类型?(给出判断即可,不必说明理由). (2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)如果体重高于相同身高的未成年男性平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么该地区的一位未成年男性身高为175cm ,体重为78kg ,他的体重是否正常?附:对于一组数据1(u ,1)v ,2(u ,2)v ,⋯⋯,(n u ,)n v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为121()()ˆ()nii i nii uu v v uu β==--=-∑∑,ˆˆv u αβ=-,20.693ln ≈. 21.(12分)一个袋子中有10个大小相同的球,其中有4个白球,6个黄球,从中随机地摸4个球作为样本,用X 表示样本中黄球的个数,Y 表示样本中黄球的比例. (1)若有放回摸球,求X 的分布列及数学期望;(2)(ⅰ)分别就有放回摸球和不放回摸球,求Y 与总体中黄球的比例之差的绝对值不超过0.2的概率.(ⅱ)比较(ⅰ)中所求概率的大小,说明其实际含义. 22.(12分)已知函数()(1)()f x ln x ax a a R =++-∈. (1)讨论()f x 的单调性;(2)若()x a f x xe ax -+,求a 的取值范围.高二(下)期末数学试卷一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)复数212iz i=-的实部与虚部之和为( ) A .25-B .25C .45D .652.(5分)已知函数32()2f x x x =+,()f x '是()f x 的导函数,则f '(2)(= ) A .24B .26C .32D .283.(5分)函数()23x f x x =-在[0,2]上的平均变化率为( ) A .32 B .32-C .1D .2-4.(5分)4(23)x -展开式中的第3项为( ) A .216-B .216x -C .216D .2216x5.(5分)某学校高三年级总共有800名学生,学校对高三年级的学生进行一次体能测试.这次体能测试满分为100分,已知测试结果ξ服从正态分布2(70,)N σ.若ξ在[60,70]内取值的概率为0.2,则估计该学校高三年级体能测试成绩在80分以上的人数为( ) A .160B .200C .240D .3206.(5分)从1,2,3,4,5,6,7,8中不放回地依次取2个数,事件A 为“第一次取到的数是偶数”,事件B 为“第二次取到的数是偶数”,则(|)(P B A = ) A .12B .25 C .37D .387.(5分)已知复数1cos sin ()z i R θθθ=+∈,2z i =,且12z z 在复平面内对应的点在第一,三象限的角平分线上,则tan (θ= )A .2-B .2-+CD .8.(5分)某学校安排甲、乙,丙、丁、戊五位同学参加数学、物理、化学竞赛,要求每位同学仅报一科,每科至少有一位同学参加,且甲不参加数学竞赛,则不同的安排方法有()A .86种B .100种C .112种D .134种二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.(5分)已知复数(2)(1)z i i =+-,则( ) A .1z i =+B .||z =C .z 在复平面内对应的点在第四象限D .13zi i=- 10.(5分)已知~(4X B ,)(01)p p <<,则下列结论正确的有( )A .若13p =,则8()9E X =B .若13p =,则16(0)81P X ==C .()1maxD X =D .若(1)()3P x P X =>=,则102p <<11.(5分)下面四个结论中正确的有( )A .43)+展开式中各项的二项式系数之和为16B .用4个0和3个1可以组成35个不同的七位数C .0.290.251()x x+的展开式中不存在有理项D .方程10x y z ++=有36组正整数解12.(5分)已知函数2()(2)(2)f x x x a a =->,若函数()(()1)g x f f x =+恰有4个零点,则a 的取值可以是( ) A .52B .3C .4D .92三.填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.(5分)若随机变量ξ的分布列为.ξ0 1 2 Pa0.2a +0.3则a = .14.(5分)写出一个恰有1个极值点,且其图象经过坐标原点的函数()f x = . 15.(5分)某电影院的一个放映室前3排的位置如图所示,甲和乙各自买了1张同一个场次的电影票,已知他们买的票的座位都在前3排,则他们观影时座位相邻(相邻包括左右相邻和前后相邻)的概率为 .16.(5分)若221a lna c b d--==,则22()()a c b d -+-的最小值是 . 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)马拉松赛事是当下一项非常火爆的运动项目,受到越来越多人的喜爱.现随机在“马拉松跑友群”中选取100人,记录他们在某一天马拉松训练中的跑步公里数,并将数据整理如下: 跑步公里数 性别 [5,10) [10,15) [15,20) [20,25) [25,30) [30,35]男 4 6 10 25 10 5 女2581762(1)分别估计“马拉松跑友群”中的人在一天的马拉松训练中的跑步公里数为[5,15),[15,25),[25,35]的概率;(2)已知一天的跑步公里数不少于20公里的跑友被“跑友群”评定为“高级”,否则为“初级”,根据题意完成给出的22⨯列联表,并据此判断能否有95%的把握认为“评定级别”与“性别”有关.附:2K =,n a b c d =+++.2)k18.(12分)已知函数()f x 的导函数是()f x ',且21()(1)24f x f x f '=+(1)4x -. (1)求()f x 的解析式;(2)求经过点(0,6)-且与曲线()y f x =相切的直线方程. 19.(12分)已知6621201212(1)(1)x x a a x a x a x -+=+++⋯+.(1)求2221311a a a ++⋅⋅⋅+的值;(2)求2412a a a ++⋯+的值; (3)求46a a +的值.20.(12分)某小型企业在开春后前半年的利润情况如表所示:设第i 个月的利润为y 万元.(1)根据表中数据,求y 关于i 的回归方程ˆˆˆ(22)i yb i a =-+(系数精确到0.01); (2)由(1)中的回归方程预测该企业第7个月的利润是多少万元?(结果精确到整数部分,如98.1万元~98万元)(3)已知y 关于i 的线性相关系数为0.8834.从相关系数的角度看,y 与i 的拟合关系式更适合用ˆˆˆypi q =+还是ˆˆˆ(22)i y b i a =-+,说明你的理由. 参考数据:62221()1933.5,22523188,1418.5259ii yy =-=+=⨯=∑,1140.96109.44⨯=,取2005.4=.附:样本(i x ,)(1i y i =,2,⋯,)n的相关系数()()nii xx y y r --=∑线性回归方程ˆˆˆybx a =+中的系数1122211()()ˆ()nnii i ii i nniii i xx y y x ynxy b xx xnx ====---==--∑∑∑∑,ˆˆay bx =-. 21.(12分)在一个不透明的盒中,装有大小、质地相同的两个小球,其中1个是黑色,1个是白色,甲、乙进行取球游戏,两人随机地从盒中各取一球,两球都取出之后再一起放回盒中,这称为一次取球,约定每次取到白球者得1分,取到黑球者得0分,一人比另一人多3分或取满9次时游戏结束,并且只有当一人比另一人多3分时,得分高者才能获得游戏奖品.已知前3次取球后,甲得2分,乙得1分. (1)求甲获得游戏奖品的概率;(2)设X 表示游戏结束时所进行的取球次数,求X 的分布列及数学期望.22.(12分)已知函数234()sin 3f x x sin x m =-+.(1)求()f x 在[0,]π上的单调区间;(2)设函数4()2(2)(16)x g x x e ln x =--,若(0,)α∀∈+∞,[0β∀∈,]π,()()f g βα,求m 的取值范围.。

高二数学下学期期末考试试卷含答案(共3套)

高二数学下学期期末考试试卷含答案(共3套)

高二年级下学期期末考试数学试卷(考试时间:120分钟;满分:150分)一、选择题(本大题共12小题,每小题5分,共60分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.设103iZ i=+,则Z 的共轭复数为( ) A .13i -+ B .13i -- C .13i + D .13i -2.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( ) A .144 B .120 C .72 D .243.已知(1,21,0),(2,,),a t t b t t b a =--=-则的最小值是( )A B C D4.已知正三棱锥P ABC -的外接球O 的半径为1,且满足0,OA OB OC ++=则正三棱锥的体积为( )A .4 B .34C .2D .4 5.已知函数(),1,x xf x a b e=-<<且则( ) A .()()f a f b = B .()()f a f b <C .()()f a f b >D .()()f a f b ,大小关系不能确定 6.若随机变量~(,),X B n p 且()6,()3,(1)E X D X P X ===则的值为( ) A .232-• B .42- C .1032-• D .82-7.已知10件产品有2件是次品.为保证使2件次品全部检验出的概率超过0.6,至少应抽取作检验的产品件数为( )A .6B .7C .8D .98.若2211S x dx =⎰,2211S dx x =⎰,231x S e dx =⎰,则123,,S S S 的大小关系为( )A .123S S S <<B .213S S S <<C .231S S S <<D .321S S S <<9.平面内有n 条直线,最多可将平面分成()f n 个区域,则()f n 的表达式为( )A .1n +B .2nC .222n n ++ D .21n n ++10.设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b .若137a b =,则m =( )A .5B .6C .7D .811.已知一系列样本点(,)i i x y (1,2,3,i =…,)n 的回归直线方程为ˆ2,yx a =+若样本点(,1)(1,)r s 与的残差相同,则有( )A .r s =B .2s r =C .23s r =-+D .21s r =+12.设点P 在曲线12x y e =上,点Q 在曲线(2)y ln x =上,则PQ 的最小值为( )A .12ln - B2)ln - C .12ln + D2)ln + 二、填空题(本大题共4小题,每小题5分,共20分)13.已知复数5()12iz i i =+是虚数单位,则z =__________;14.直线21cos ρθ=与圆2cos ρθ=相交的弦长为__________; 15.二项式822x y 的展开式中,的系数为__________; 16.已知11()123f n =+++…*15(),(4)2,(8),(16)32n N f f f n +∈>>>经计算得,7(32),2f >则有__________(填上合情推理得到的式子).三、解答题(本大题共6小题,17小题10分, 18-22题每小题12分,共70分;解答应写出文字说明、证明过程或演算步骤)17.已知曲线C 的极坐标方程是2()3cos πρθ=+,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,且取相等的单位长度,建立平面直角坐标系,直线l的参数方程是1,()2x t t y =--⎧⎪⎨=+⎪⎩是参数,设点(1,2)P -. (Ⅰ)将曲线C 的极坐标方程化为直角坐标方程,将直线l 的参数方程化为普通方程; (Ⅱ)设直线l 与曲线C 相交于,M N 两点,求PM PN •的值.18.我校为了解学生喜欢通用技术课程“机器人制作”是否与学生性别有关,采用简单随机抽列联表:已知从该班随机抽取1人为喜欢的概率是3.(Ⅰ)请完成上面的22⨯列联表;(Ⅱ)根据列联表的数据,若按90%的可靠性要求,能否认为“喜欢与否和学生性别有关”?请说明理由.22(),()()()()n ad bc K n a b c d a b c d a c b d -==+++++++(参考公式:其中)19.在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设123,,a a a 分别表示甲,乙,丙3个盒中的球数. (Ⅰ)求1232,1,0a a a ===的概率;(Ⅱ)记12,a a ξ=+求随机变量ξ的概率分布列和数学期望.20.已知数列1111{},,21n n nx x x x +==+满足 其中n N *∈ . (Ⅰ)写出数列{}n x 的前6项;(Ⅱ)猜想数列2{}n x 的单调性,并证明你的结论.21.如图,四棱锥P ABCD -中,底面ABCD 是梯形,//AD BC ,,AD BC >090BAD ∠=,,,PA ABCD PA AB ⊥=底面点E PB 是的中点. (Ⅰ)证明:PC AE ⊥;(Ⅱ)若1,3,AB AD PA ==且与平面PCD 所成角的大小为045,求二面角A PD C --的正弦值.22.已知函数(),()()ln xg x f x g x ax x==-. (Ⅰ)求函数()g x 的单调区间;(Ⅱ)若函数()f x 在()1,a +∞上是减函数,求实数的最小值;(Ⅲ)若21212,[,],()()(0)x x e e f x f x a a '∃∈≤+>使成立,求实数a 的取值范围.下学期高二年级期末考试数学参考答案一、选择题二、填空题13.14. 15.70 16.*2(2)(2,)2n n f n n N +>≥∈ 三、解答题17.解:(Ⅰ) 曲线C 的极坐标方程化为直角坐标方程为:22x y x +=- ,即221()(122xy -++= ;直线l 20y ++= .(Ⅱ) 直线l 的参数方程化为标准形式为11,2()22x m m y m ⎧=--⎪⎪⎨⎪=+⎪⎩是参数,①将①式代入22x y x +=,得:23)60m m +++= ,②由题意得方程②有两个不同的根,设12,m m 是方程②的两个根,由直线参数方程的几何意义知:12PM PN m m •=•=6+. (Ⅱ)根据列联表数据,得到2260(1422618) 3.348 2.706,32282040K ⨯-⨯=≈>⨯⨯⨯ 所以有90%的可靠性认为“喜欢与否和学生性别有关”.19.解:由题意知,每次抛掷骰子,球依次放入甲,乙,丙盒中的概率分别为111,,632.(Ⅰ) 由题意知,满足条件的情况为两次掷出1点,一次掷出2点或3点,121233111(2,1,0)()()6336p p a a a C ====== .(Ⅱ) 由题意知,ξ可能的取值是0,1,2,3 .1231(0)(0,0,3),8p p a a a ξ======12121231233311113(1)(0,1,2)(1,0,2)()()()()32628p p a a a p a a a C C ξ=====+====+=123123123(2)(2,0,1)(1,1,1)(0,2,1)p p a a a p a a a p a a a ξ=====+===+===1231233311111113()()()()()()()62632328C A C =++=123123123(3)(0,3,0)(1,2,0)(2,1,0)p p a a a p a a a p a a a ξ=====+===+===+1231(3,0,0)8p a a a ====.故ξ的分布列为:期望()012388882E ξ=⨯+⨯+⨯+⨯= .20.解:(Ⅰ)由121112,213x x x ===+得; 由232213,315x x x ===+得; 由343315,518x x x ===+得; 由454518,8113x x x ===+得; 由5658113,13121x x x ===+得; (Ⅱ)由(Ⅰ)知246,x x x >>猜想:数列2{}n x 是递减数列. 下面用数学归纳法证明:①当1n =时,已证命题成立;②假设当n k =时命题成立,即222k k x x +>. 易知20k x >,当1n k =+时,2224k k x x ++- 21231111k k x x ++=-++23212123(1)(1)k k k k x x x x ++++-=++22222122230(1)(1)(1)(1)k k k k k k x x x x x x ++++-=>++++即2(1)2(1)2k k x x +++>.也就是说,当1n k =+时命题也成立.根据①②可知,猜想对任何正整数n 都成立.21. 解:解法一(向量法):建立空间直角坐标系A xyz -,如图所示.根据题设,可设(,0,0),(0,,0),(0,0,),(,,0)D a B b P b C c b , (Ⅰ)证明:0,,22b b AE ⎛⎫= ⎪⎝⎭,(,,)PC c b b =-, 所以0()022bb AE PCc b b ⋅=⨯+⋅+⋅-=, 所以AE PC ⊥,所以PC AE ⊥.(Ⅱ)解:由已知,平面PAD 的一个法向量为(0,1,0)AB =. 设平面PCD 的法向量为(,,)m x y z =, 由0,0,m PC m PD ⎧⋅=⎪⎨⋅=⎪⎩即0,00,cx y z y z +-=⎧⎪+⋅-=令1z =,得11m ⎫=⎪⎭.而(0,0,1)AP =,依题意PA 与平面PCD 所成角的大小为45︒,所以||sin 45||||m AP m AP ⋅︒==,即=,解得32BC c =(32BC c ==去),所以2133m ⎛⎫=⎪⎪⎭. 设二面角A PD C --的大小为θ,则233cos ||||12133m ABm AB θ⋅===++, 所以6sin θ,所以二面角A PD C --的正弦值为6. 解法二(几何法):(Ⅰ)证明:因为PA ⊥平面ABCD ,BC ⊂平面ABCD ,所以BC PA ⊥. 又由ABCD 是梯形,AD BC ∥,90BAD ∠=︒,知BC AB ⊥,而AB AP A =,AB ⊂平面PAB ,AP ⊂平面PAB ,所以BC ⊥平面PAB . 因为AE ⊂平面PAB ,所以AE BC ⊥.又PA AB =,点E 是PB 的中点,所以AE PB ⊥.因为PB BC B =,PB ⊂平面PBC ,BC ⊂平面PBC ,所以AE ⊥平面PBC . 因为PC ⊂平面PBC ,所以AE PC ⊥. (Ⅱ)解:如图4所示,过A 作AF CD ⊥于F ,连接PF , 因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以CD PA ⊥,则CD ⊥平面PAF ,于是平面PAF ⊥平面PCD ,它们的交线是PF . 过A 作AG PF ⊥于G ,则AG ⊥平面PCD , 即PA 在平面PCD 上的射影是PG ,所以PA 与平面PCD 所成的角是APF ∠.由题意,45APF ∠=︒. 在直角三角形APF 中,1PA AF ==,于是2AG PG FG ===. 在直角三角形ADF 中,3AD ,所以2DF = 方法一:设二面角A PD C --的大小为θ, 则2232cos 13PDG APDS PG DF S PA AD θ⋅===⋅⨯△△,所以sin θ,所以二面角A PD C --方法二:过G 作GH PD ⊥于H ,连接AH ,由三垂线定理,得AH PD ⊥,所以AHG ∠为二面角A PD C --的平面角, 在直角三角形APD中,2PD =,PA AD AH PD ⋅===. 在直角三角形AGH中,sin AG AHG AH ∠===, 所以二面角A PD C --22.解:由已知,函数()g x ,()f x 的定义域为(0,1)(1,),+∞ 且()ln xf x ax x=-. (Ⅰ)函数221ln ln 1()(ln )(ln )x x x x g x x x -⋅-'==, 当01()0x e x g x '<<≠<且时,;当()0x e g x '>>时,.所以函数()g x 的单调减区间是(0,1),(1,),()e e +∞增区间是,. (Ⅱ)因()f x 在(1,)+∞上为减函数,故2ln 1()0(ln )x f x a x -'=-≤在(1,)+∞上恒成立. 所以当(1,)x ∈+∞时,max ()0f x '≤. 又222ln 111111()()(),(ln )ln ln ln 24x f x a a a x x x x -'=-=-+-=--+- 故当11,ln 2x =即2x e =时,max 1()4f x a '=-. 所以1110,,444a a a -≤≥于是故的最小值为.(Ⅲ)命题“若21212,[,],()()x x e e f x f x a '∃∈≤+使成立”等价于 “当2min max [,],()()x e e f x f x a '∈≤+时有” . 由(Ⅱ)知,当2max max 11[,],(),()44x e e f x a f x a ''∈=-∴+=时有.问题等价于:“2min 1[,],()4x e e f x ∈≤当时有” .① 当14a ≥时,由(Ⅱ)知,2()[,]f x e e 在上为减函数,则222min2111()(),2424e f x f e ae a e==-≤≥-故 .②当104a <<时,由于2111()()ln 24f x a x '=--+-在2[,]e e 上为增函数,故21()(),(),4f x f e f e a a '''的值域为[],即[--] .由()f x '的单调性和值域知,200,,()0x e e f x '∃∈=唯一()使,且满足:当0,,()0,()x e x f x f x '∈<()时为减函数; 当20,,()0,()x x e f x f x '∈>()时为增函数; 所以,20min 00001()(),(,)ln 4x f x f x ax x e e x ==-≤∈ . 所以,2001111111,ln 4ln 4244a x x e e ≥->->-= 与104a <<矛盾,不合题意. 综上,得21124a e ≥-.高二年级第二学期期末考试数学试题一、选择题(每小题5分,共50分)1.已知集合{}322+<=x x x M ,{}2<=x x N ,则=⋂N M ( )A .(-1,2)B .(-3,2)C .(-3,1)D .(1,2)2.欧拉公式x i x e ix sin cos +=(i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天骄”。

高二数学下册试题及答案大全

高二数学下册试题及答案大全

高二数学下册期末试题(理科数学)(分值:150分 时间:120分钟)一、选择题(10×5分=50分)1、已知11mni i=-+,m n i 其中,是实数,是虚数单位,m ni +=则 A.1+2i B.1-2i C.2+i D.2 2、在相关分析中,对相关系数r ,下列说法正确的是A.r 越大,线性相关程度越强B.r 越小,线性相关程度越强C.r 越大,线性相关程度越弱,r 越小,线性相关程度越强D.1r ≤且r 越接近1,线性相关程度越强,r 越接近0,线性相关程度越弱3、某射击选手每次射击击中目标的概率是0.8,如果他连续射击5次,则这名射手恰有4次击中目标的概率是A.40.80.2⨯B.445C 0.8⨯ C.445C 0.80.2⨯⨯ D.45C 0.80.2⨯⨯ 4、3名教师和6名学生被安排到A 、B 、C 三个不同地方进行社会调查,每处安排1名教师和2名学生,则不同的安排方案有 A .90种B .180种C .540种D .3240种5、一工厂生产的100个产品中有90个一等品,10个二等品,现从这批产品中抽取4个,则其中恰好有一个二等品的概率为 A .41004901C C -B .4100390110490010C C C C C + C .4100110C C D .4100390110C C C .6、探索以下规律:则根据规律,从2004到2006,箭头的方向依次是A.向下再向右B.向右再向上C.向上再向右D.向右再向下 7、在独立性检验中,统计量2χ有两个临界值:3.841和6.635.当2 3.841χ>时,有95%的把握说明两个事件有关,当2 6.635χ>时,有99%的把握说明两个事件有关,当2 3.841χ≤时,认为两个事件无关.在一项打鼾与患心脏病的调查中,共调查了2000人,经计算220.87χ=.根据这一数据分析,认为打鼾与患心脏病之间(A )有95%的把握认为两者有关 (B )约有95%的打鼾者患心脏病 (C )有99%的把握认为两者有关 (D )约有99%的打鼾者患心脏病8、已知x 与y 之间的一组数据如右,5 7 9 10 11 …… ,3 4 8 0则y 与x 的线性回归方程为 y =bx +a 必过A .点()2,2B .点()0,5.1C .点()2,1D .点()4,5.19、将三颗骰子各掷一次,设事件A =“三个点数都不相同”,B =“至少出现一个6点”,则概率)(B A P 等于A .9160 B .21 C .185 D .21691 10、设连续函数0)(>x f ,则当b a <时,定积分()abf x dx ⎰的符号A.一定是正的B.一定是负的C.当b a <<0时是正的,当0<<b a 时是负的D.以上结论都不对二、填空题(5×5分=25分)11、工人制造机器零件尺寸在正常情况下,服从正态分布N (μ,σ2).在一次正常的实验中,取1000个零件时,不属于(μ-3σ,μ+3σ)这个尺寸范围的零件个数可能为 。

山西省运城市20232024学年高二下学期期末考试数学含答案(可编辑)

山西省运城市20232024学年高二下学期期末考试数学含答案(可编辑)

运城市2023-2024学年第二学期期末调研测试高二数学试题2024 7本试题满分150分,考试时间120分钟。

答案一律写在答题卡上。

注意事项:1 答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。

2 答题时使用0 5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。

3 请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。

4 保持卡面清洁,不折叠,不破损。

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一项是符合题目要求的.1.设全集U=R,集合A={x│y=2槡-x},B={y│y=2x,x∈A},则A∩B=A.(-∞,2]B.[2,+∞)C.(0,2]D.[2,4]2.函数f(x)=│x│(x-1)的单调递减区间是A.(-∞,0)B.(0,12)C.(12,1)D.(1,+∞)3.函数y=sinxex+e-x(x∈[-2,2])的图象大致为4.已知p:3x+2>1,q:-2≤x<1,则p是q的( )条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要5.已知函数f(x)=(13)x,x>11x,0<x<{1,则f(f(log槡32))=A.14B.4C.12D.26.若(x+mx)(x-1x)5的展开式中常数项是20,则m=A.-2B.-3C.2D.37.根据气象灾害风险提示,5月12日~14日某市进入持续性暴雨模式,城乡积涝和地质灾害风险极高,全市范围内降雨天气易涝点新增至36处.已知有包括甲乙在内的5个排水施工队前往3个指定易涝路口强排水(且每个易涝路口至少安排一个排水施工队),其中甲、乙施工队不在同一个易涝路口,则不同的安排方法有A.86B.100C.114D.1368.已知函数f(x)=│lnx│,x>0-x2-4x+1,x≤{0若关于x的方程[f(x)]2-2af(x)+a2-1=0有k(k∈N)个不等的实根x1,x2,…xk,且x1<x2<…<xk,则下列结论正确的是A.当a=0时,k=4B.当k=2时,a的取值范围为a<1C.当k=8时,x1+x4+x6x7=-3D.当k=7时,a的取值范围为(1,2)二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中有多项符合题目要求,全部选对得6分,部分选对的得部分分,有选错的得0分.9.已知全集U={x│x<10,x∈N},A U,B U,A∩(瓓UB)={1,9},A∩B={3},(瓓UA)∩(瓓UB)={4,6,7},则下列选项正确的为A.2∈BB.A的不同子集的个数为8C.{1} AD.6 瓓U(A∪B)10.已知由样本数据(xi,yi)(i=1,2,3,…,10)组成的一个样本,得到经验回归方程为^y=2x-0.4,且x=2,去除两个样本点(-2,1)和(2,-1)后,得到新的经验回归方程为^y=3x+b^.在余下的8个样本数据和新的经验回归方程中A.相关变量x,y具有正相关关系B.新的经验回归方程为^y=3x-3C.随着自变量x值增加,因变量y值增加速度变小D.样本(4,8 9)的残差为0.111.已知f(x)是定义在实数集R上的偶函数,当x≥0时,f(x)=2x4x+1.则下列结论正确的是A.对于x∈R,f(x)=2x4x+1B.f(x)在(0,+∞)上为减函数C.f(x)的值域为(-∞,12]D.f(0.30.4)>f(-0.40.3)>f(log237)三、填空题:本题共3小题,每小题5分,共15分.12.已知函数f(x)=x3-sinx(ax-1)(3x+2)为奇函数,则实数a的值为.13.一个袋子中有n(n∈N)个红球和5个白球,每次从袋子中随机摸出2个球.若“摸出的两个球颜色不相同”发生的概率记为p(n),则p(n)的最大值为.14.已知函数f(x),g(x)的定义域均为R,f(x)为奇函数,g(x+1)为偶函数,f(-1)=2,g(x+2)-f(x)=1,则∑61i=1g(i)=.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知集合A={x│x2-5x-6<0},集合B={x│[x-(1-a)][x-(1+a)]>0},其中a>0.(1)若a=2,求A∩(瓓RB);(2)设命题p:x∈A,命题q:x∈B,若p是瓙q的必要而不充分条件,求实数a的取值范围.16.已知函数f(x)=log2(4x+a·2x+16),其中a∈R.(1)若a=-10,求函数f(x)的定义域;(2)当x∈[1,+∞)时,f(x)>x恒成立,求实数a的取值范围.17.某疾病可分为A,B两种类型,为了解该疾病的类型与患者性别是否相关,在某地区随机抽取了1800名该疾病的患者进行调查,发现女性患者人数是男性患者人数的12,男性患A型疾病的人数为男性患者人数的23,女性患A型疾病的人数是女性患者人数的34.(1)根据所给信息完成下列2×2列联表:性别疾病类型A型B型合计男女合计(2)基于(1)中完成的2×2列联表,依据小概率值α=0.001的 2独立性检验,分析所患疾病的类型与性别是否有关?(3)某团队进行预防A型疾病的疫苗的研发试验,试验期间至多安排2个周期接种疫苗,每人每个周期接种3次,每次接种费用为9元.该团队研发的疫苗每次接种后产生抗体的概率为23,如果第一个周期内至少2次出现抗体,则该周期结束后终止试验,否则进入第二个周期,记该试验中1人用于接种疫苗的费用为ξ,求E(ξ).附: 2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),n=a+b+c+dα0.1000.0500.0100.0050.001α2.7063.8416.6357.87910.82818.基础学科招生改革试点,也称强基计划,是教育部开展的招生改革工作,主要是为了选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生.强基计划的校考由试点高校自主命题,某试点高校校考过程中笔试通过后才能进入面试环节.2022年报考该试点高校的学生的笔试成绩X近似服从正态分布N(μ,σ2).其中,μ近似为样本平均数,σ2近似为样本方差s2.已知μ的近似值为76.5,s的近似值为5.5,以样本估计总体.(1)假设有84.135%的学生的笔试成绩高于该校预期的平均成绩,求该校预期的平均成绩大约是多少?(2)若笔试成绩高于76.5分进入面试,若从报考该试点高校的学生中随机抽取10人,设其中进入面试学生数为ξ,求随机变量ξ的期望.(3)现有甲、乙、丙、丁四名学生进入了面试,且他们通过面试的概率分别为13、13、12、12.设这4名学生中通过面试的人数为X,求随机变量X的分布列和数学期望.参考数据:若X~N(μ,σ2),则:P(μ-σ<X≤μ+σ)≈0.6827;P(μ-2σ<X≤μ+2σ)≈0.9545;P(μ-3σ<X≤μ+3σ)≈0.9973.19.定义一种新的运算“ ”: x,y∈R,都有x y=lg(10x+10y).(1)对于任意实数a,b,c,试判断(a b)-c与(a-c) (b-c)的大小关系;(2)若关于x的不等式(x-1)2>[(a2x2) (a2x2)]-lg2的解集中的整数恰有2个,求实数a的取值范围;(3)已知函数f(x)=lg(x+4-2x+槡3),g(x)=(1 x) (-x),若对任意的x1∈R,总存在x2∈[-32,+∞),使得g(x1)=lg│3m-2│+f(x2),求实数m的取值范围.命题人:康杰中学 张阳朋运城中学 吕莹高二数学期末答案一、1-8 C B BA B DCC 二、9.ABC 10.AB 11.ABD 三、12.3213.59 14.63四 、15.(1)15.2{|650}{|16}A x x x x x =+->=-<<, …………1分 ){{|[(1)][(1]0}|1x x a B x x a x a =---+<>=-或1}x a >+. ………… 2分若2a =,则{|1B x x =<-或3}x >,{}31|≤≤-=x x B C R , ………… 4分{}31|)(≤<-=∴x x B C A R ………… 6分(2)若的必要而不充分条件是q p ⌝,{}a x a x B C A B C U U +≤≤-=⊆∴11 , ………… 8分∴01116a a a >⎧⎪->-⎨⎪+<⎩,解得02a <<. ………… 12分 a ∴的取值范围是(0,2). ………… 13分16.(1)当10a =-时,()()2log 410216xxf x =-⨯+,由4102160x x -⨯+>得()()22028xx-->, ………… 2分故22x <或28x >,得1x <或3x >, ………… 4分 故函数()()2log 410216xxf x =-⨯+的定义域为()(),13,-∞⋃+∞,………… 6分(2)解一:由()f x x >得()22log 4216log 2xxxa x +⋅+>=, ………… 7分得42216x x x a +⋅+>,即()041216xxa +-⋅+>, ………… 8分22116122 9所以当[)+∞∈,1x 时,()f x x >恒成立,即为()()2116g t t a t =+-⋅+在[)+∞∈,2t 上最小值大于0, ………… 10分函数()()2116g t t a t =+-⋅+的对称轴为12at -=, 当221<-a即3->a 时,函数()g t 在[)+∞,2上单调递增, 此时0218)2(>+=a g ,得9->a ,a <-∴3 ………… 12分 当221≥-a,即3-≤a 时,函数()g t 在对称轴取得最小值, 此时()21112211602g a a a a ⎪⎛⎫=⎝---⎛⎫⎛⎫ ⎪⎝⎭+-+ ⎭>⎪⎭⎝,得79a -<<,37-≤<-∴a ………… 14分 故a 的取值范围为()7,-+∞ ………… 15分 解二:由()f x x >得()22log 4216log 2xxxa x +⋅+>=, ………… 7分得42216x x x a +⋅+>,即()041216xxa +-⋅+>, ………… 8分设2x t =,因[)+∞∈,1x ,故22≥=x t , ………… 9分 所以当[)+∞∈,1x 时,()f x x >恒成立,即)(21)16(162≥++-=-+->t tt t t t a ………… 11分 令1)16()(++-=t t t g 则”成立时“当且仅当==-≤++-=4,71)16()(t tt t g ………… 14分故a 的取值范围为()7,-+∞ ………… 15分 17. (1)设男性患者人数为m ,则女性患者人数为12m ,由118002m m +=12001200600 2 21200800336004504322⨯列联表如下:疾病类型性别A 型B 型 合计男 800 400 1200 女 450 150 600 合计12505501800………… 5分(2)零假设0H :所患疾病的类型与性别无关, ………… 6分 根据列联表中的数据,经计算得到()2218008001504504001441200600125055011χ⨯⨯-⨯==⨯⨯⨯,…… 8分 由于20.00114413.09110.82811χχ=≈>=, ………… 9分 依据小概率值0.001α=的2χ独立性检验,可以认为所患疾病的类型与性别有关.… 10分 (3)接种疫苗的费用ξ可能的取值为27,54, ………… 11分223322220(27)C ()(1()33327P ξ==-+=, ………… 12分207(54)12727P ξ==-=, ………… 13分则ξ的分布列为ξ27 54P2027 727期望为()2072754342727E ξ=⨯+⨯= .………… 15分 18.解:(1)由()()0.50.841352P X P X μσμσμσ-<≤+>-=+=,………2分76.5 5.576.5 5.571 4(2)由76.5μ=得,()176.52P ξ>=, 即从所有参加笔试的学生中随机抽取1名学生,该生笔试成绩76.5以上的概率为12…5分 所以随机变量ξ服从二项分布110,2X B ⎛⎫~ ⎪⎝⎭, ………6分 所以()11052E ξ=⨯=. ………8分 (3)X 的可能取值为0,1,2,3,4. ………9分()220022111011329P X C C ⎛⎫⎛⎫==⨯-⨯⨯-= ⎪ ⎪⎝⎭⎝⎭, ………10分 ()22100122221111111111113323223P X C C C C ⎛⎫⎛⎫⎛⎫⎛⎫==⨯⨯-⨯⨯-+⨯-⨯⨯⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,…11分()22201122221111112111323322P X C C C C ⎛⎫⎛⎫⎛⎫⎛⎫==⨯⨯⨯-+⨯⨯-⨯⨯⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭220222111313236C C ⎛⎫⎛⎫+⨯-⨯⨯= ⎪ ⎪⎝⎭⎝⎭, ………12分 6121311312112131)3(2221212222=⎪⎭⎫ ⎝⎛⨯⨯⎪⎭⎫ ⎝⎛-⨯⨯+⎪⎭⎫ ⎝⎛-⨯⨯+⎪⎭⎫⎝⎛⨯==C C C C X p , ……13分()22222211143236P X C C ⎛⎫⎛⎫==⨯⨯⨯=⎪ ⎪⎝⎭⎝⎭, ………14分 X 0 1 2 3 4()P X19 13 1336 16 136………15分 ∴()11131150123493366363E X =⨯+⨯+⨯+⨯+⨯=. ………17分 19. (1) ,x y ∀∈R ,()lg 1010xyx y ⊕=+∴()()lg 1010a b a b c c ⊕-=+-, ………2分10101010101010 45(2)()()()()222222222222lg 1010lg 210lg 2a x a xa xa x a x a x⊕=+=⨯=+∴原不等式可化为:()2221x a x ->,即()221210a x x --+>, ………6分满足题意,必有210a -<,即1a <-或1a >① ………7分令()()22121h x axx =--+,由于()010h =>,()21h a =-,结合①可得:()10h <, ………8分∴()h x 的一个零点在区间()0,1,另一个零点在区间[)1,2--, ………9分从而⎩⎨⎧>-≤-0)1(0)2(h h ,即⎩⎨⎧>+-⨯--⨯-≤+-⨯--⨯-01)1(2)1(101)2(2)2(12222)()(a a ② ………10分 由①②可得:223232<≤-≤<-a a 或 ………11分 (3)()(lg 4f x x =+,()()lg 101010xxg x -=++ ………12分设4t x =+3,2x ⎡⎫∈-+∞⎪⎢⎣⎭r =,[)0,r ∈+∞,则()2132x r =-, ∴()()2221151*********t r r r r r =-+-=-+=-+≥, ………14分∴()lg 2f x ≥,()1()lg 32g x m f x =-+的值域为)lg 32lg 2,A m ⎡=-++∞⎣ ………15分1010101012x x -++≥=,∴()lg12g x ≥()g x 的值域为[)lg12,B =+∞ ………16分根据题意可知:B A ⊆,∴lg 32lg 2lg12m -+≤解之得:4833m -≤≤且23m ≠ ………17分为。

(完整版)高二数学下学期期末考试试题理(含解析)

(完整版)高二数学下学期期末考试试题理(含解析)

一、选择题(共8道小题,每道小题5分,共40分,请将正确答案填涂在答题纸上.)1.设i 是虚数单位,则1=().1-i 3C.1-i D.1+i11A.-i22【答案】A【解析】11B.+i221111-i 11====-i .3321-i 1-i ⋅i 1+i 1-i 22故选A .⎛π⎫⎛3π⎫2.在极坐标系中,点 1,⎪与点 1,⎪的距离为().⎝4⎭⎝4⎭A.1【答案】BB.2C.3D.5⎛22⎫⎛22⎫⎛π⎫⎛3⎫,1,1,π-, ⎪【解析】将极坐标中 ⎪两点⎪与 ⎪点化成直角坐标中的点坐标 22⎪与 4422⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛22⎫⎛22⎫的距离d = ++-=2.⎪ ⎪ 2⎪ ⎪2⎭⎝22⎭⎝22故选B .3.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为(). A.1【答案】B【解析】∵曲线y =ln(x +a )的斜率k =∴x =1-a ①,且两者相交于同一点,即x +1-ln(x +a )②,联立①②可得a =2.故选B .⎧⎪x =-1+2cos θ4.圆⎨,(θ为参数)被直线y =0截得的劣弧长为().y =1+2sin θ⎪⎩B.2C.-1D.-21,当k =1时,x +a A.2π2B.πC.22πD.4π【答案】A【解析】将圆的参数方程化成一般方程为(x+1)2+(y-1)2=2,圆心(-1,1)到直线y=0的距离d=1,所截得弦长l=2r2-d2=2,∴劣弧所对的圆心角θ有sin ∴θ2=12=2,2θ2=ππ,θ=,24112,即为⨯2πr=π.442∴劣弧弧长为周长的故选A.π⎫π⎫⎛⎛5.直线ρsin θ+⎪=4与圆ρ=4sin θ+⎪的位置关系是().4⎭4⎭⎝⎝A.相交但不过圆心【答案】CB.相交且过圆心C.相切D.相离π⎫⎛【解析】直线ρsin θ+⎪=4可化成y+x-42=0,4⎭⎝π⎫⎛圆ρ=4sin θ+⎪可化成(x-2)2+(y-2)2=4,4⎭⎝圆心(2,2到直线的距离d=)|2+2-42|1+122=2=r,说明圆与直线相切.故选C.6.某光学仪器厂生产的透镜,第一次落地打破的概率为0.3;第一次落地没有打破,第二次落地打破的概率为0.4;前两次落地均没打破,第三次落地打破的概率为0.9.则透镜落地3次以内(含3次)被打破的概率是().A.0.378【答案】D【解析】第一次落地打破的概率为P1=0.3,第二次落地打破的概率为P2=0.7⨯0.4=0.28,第三次落地打破的概率为P3=0.7⨯0.6⨯0.9=0.378,∴落地3次以内被打破的概率P=P1+P2+P3=0.958.故选D.B.0.3C.0.58D.0.9587.若函数f (x )=12x -ln x 在其定义域的一个子区间(k -1,k +1)上不是单调函数,则实数k 的2取值范围是(). A.(1,2)【答案】A2121x -1(x >0),【解析】∵f (x )=x -ln x ,f '(x )=x -=2x xB.[1,2)C.[0,2)D.(0,2)令f '(x )>0,有x >1,令f '(x )<0,有0<x <1,当f (x )在(k -1,k +1)上不是单调函数,则有0<k -1<1,解得1<k <2.故选A .8.几个孩子在一棵枯树上玩耍,他们均不慎失足下落.已知(1)甲在下落的过程中依次撞击到树枝A ,B ,C ;(2)乙在下落的过程中依次撞击到树枝D ,E ,F ;(3)丙在下落的过程中依次撞击到树枝G ,A ,C ;(4)丁在下落的过程中依次撞击到树枝B ,D ,H ;(5)戊在下落的过程中依次撞击到树枝I ,C ,E .倒霉和李华在下落的过程中撞到了从A 到I 的所有树枝,根据以上信息,在李华下落的过程中,和这9根树枝不同的撞击次序有()种. A.23【答案】D【解析】由题可判断出树枝部分顺序GABCEF ,还剩下D ,H ,I ,先看树枝I 在C 之前,有4种可能,而树枝D 在BE 之间,H 在D 之后,若I 在BC 之间,D 有3种可能:①若D 在BI 之间,H 有5种可能,②若D 在IC 之间,H 有4种可能,③若D 在CE 之间,H 有3种可能.若I 不在BC 之间,则I 有3种可能,此时D 有2种可能,B.24C.32D.33D 可能在BC 之间,H 有4种可能,D 可能在CE 之间,H 有3种可能,综上共有5+4+3+3(4+3)=12+21=33.故选D .二、填空题(共6道小题,每道小题5分,共30分.将正确答案填写在答题卡要求的空格中.)9.若(x -a )5的展开式中x 2项的系数是10,则实数a 的值是__________.【答案】-12(-a )3=-10a 3=10,【解析】(x -a )5展开式中x 2系数为C 5可得a =-1.10.在复平面上,一个正方形的三个项点对应的复数分别是0、1+2i 、-2+i ,则该正方形的第四个顶点对应的复数是__________.【答案】(-1,3)【解析】正方形三个顶点对应的坐标为(0,0),(1,2),(-2,1),设第4个顶点为(a ,b ),则(a -1,b -2)=(-2-0,1-0)=(-2,1),∴a =-1,b =3,即第4个顶点为(-1,3).11.设随机变量ξ~B (2,p ),η~B (4,p ),若p (ξ≥1)=【答案】5,则p (η≥2)的值为__________.91127【解析】∵随机变量ξ~B (2,p ),p (ξ≥1)=5,9502∴1-C 2p =,9∴p =2,3⎛2⎫∴η~B 4,⎪,⎝3⎭1⎛2⎫11⎛1⎫⎛2⎫4⎛2⎫⨯+C =∴p (η≥2)=C ⎪ ⎪+C 3.44 ⎪⎪3⎝3⎭27⎝3⎭⎝3⎭⎝3⎭24222312.设a >1,b >1,若ln a -2a =ln b -3b ,则a ,b 的大小关系为__________.【答案】b <a【解析】∵ln a -2a =ln b -2b -b ,令f (x )=ln x -2x (x >1),∴f (a )=f (b )-b ,∴f (b )-f (a )=b >1,∴f (b )>f (a ),1∵f '(x )=-2<0,即f (x )在(1,+∞)单调递减,x ∴b <a .13.抛物线C :x 2=4y 与经过其焦点F 的直线l 相交于A ,B 两点,若|AF |=5,则|AB |=__________,抛物线C 与直线l 围成的封闭图形的面积为__________.【答案】25125;244【解析】∵抛物线x 2=4y 的焦点为(0,1),|AF |=5,由抛物线性质可知,A 点到准线y =-1距离为5,∴A 的纵坐标y A=4,∴A (±4,4),当A 为(4,4)时,kAB =∴直线AB 为y =4-13=,4-043x +1,41⎫⎛联立直线与抛物线,解得另一交点B 坐标为 -1,⎪,4⎭⎝25⎛1⎫∴AB =(-1-4)+ -4⎪=,4⎝4⎭24⎛3125⎫12S =x +1-x d x =所围成的封闭面积.⎪⎰-1⎝4⎭4242L ,a n(n ∈N *),14.对于有n 个数的序列A 0:a 1,a 2,实施变换T 得新序列A 1:a 1+a 2,a 2+a 3,L ,an -1+a n,记作A 1=T (A 0);对A 1继续实施变换T 得新序列A 2=T (A 1)=T (T (A 0)),记作A 2=T 2(A 0);L ,An -1=T n -1(A 0).最后得到的序列An -1只有一个数,记作S (A 0).(1)若序列A 0为1,2,3,4,则序列A 2为__________.(2)若序列A 0为1,2,L ,n ,则序列S (A 0)=__________.【答案】(1)8,12(2)(n +2)⨯2n -1【解析】(1)由题意A 1:1+2,2+3,3+4,A 2:1+2+2+3,2+3+3+4,即A 2为8,12.(2)n =1时,S (A 0)=1+2=3,n =2时,S (A 0)=1+2+2+3+2+3+3+4=1+2⨯3+3⨯3+4=20,L L12n -2n -1联n -1时,S (A 0)=C 0n -1⋅1+C n -1⋅2+C n -1⋅3+L C n -1(n -1)+C n -1⋅n ,12n -1n 联n 时,S (A 0)=C 0n -1⋅1+C n -1⋅2+C n -1⋅3+L C n⋅n +C n⋅(n +1),利用倒序相加可得:S (A 0)=n +2n ⨯2=(n +2)⋅2n -1.2三、解答题(共六道小题,共80分.解答应写出必要的文字说明,证明过程或演算步骤)15.(本小题满分12分)一个口袋中有5个同样大小的球,编号为1,2,3,4,5,从中同时取出3个小球,以X 表示取出的3个球中最小的号码数,求X 的分布列和期望.【答案】【解析】16.(本小题满分12分)已知函数f (x )=ax 2+bx +c ,x ∈[0,6]的图象经过(0,0)和(6,0)两点,如图所示,且函数f (x )的值域为[0,9],过动点P (t ,f (t ))作x 轴的垂线,垂足为A ,连接OP .(1)求函数f (x )的解析式.(2)记△OAP 的面积为S ,求S 的最大值.yPxOA6【答案】见解析.【解析】(2)S△OAP=11|OA |⋅|AP |=t (6t -t 2),t ∈(0.6),221S (t )=t (6t -t 2),23S '(t )=6t -t 2,2t(0,4)+40(4,6)S '(t )-S (t )单调递增极大值单调递减12当t =4时,S (t )max=S (4)=⨯4(6⨯4-4)=16,2即△AOP 面积最大值为16.17.(本题满分14分)某保险公司开设的某险种的基本保费为1万元,今年参加该保险的人来年继续购买该险种的投保人称为续保人,续保人的下一年度的保费与其与本年度的出险次数的关联如下:本年度出险次数01234≥5下一次保费(单位:万元)0.8511.251.51.752设今年初次参保该险种的某人准备来年继续参保该险种,且该参保人一年内出险次数的概率分布列如下:一年内出险次数概率1234≥50.300.150.200.200.100.05(1)求此续保人来年的保费高于基本保费的概率.(2)若现如此续保人来年的保费高于基本保费,求其保费比基本保费高出60%的概率.(3)求该续保人来年的平均保费与基本保费的比值.【答案】(1)0.55.(2)3.(3)1.23.11【解析】(1)设出险次数为事件X ,一续保人本年度的保费为事件A ,则续保人本年度保费高于基本保费为事件C ,则P (C )=P (A >a ),P (C )=P (x =2)+P (x =3)+P (x =4)+P (x ≥5)=0.20+0.20+0.10+0.05=0.55.(2)设保费比基本保费高出60%为事件B ,P (B /C )=P (BC )P (x =4)+P (x =5)0.1+0.053===.P (C )P (C )0.5511(3)平均保费E (A )=0.85⨯0.3+0.15+0.2⨯1.25+0.2⨯1.5+0.1+1.75+2⨯0.05=1.23,∴平均保费与基本保费比值为1.23=1.23.118.(本题满分14分)设函数f(x)=(1+x)2-2ln(1+x).(1)求函数f(x)的单调区间.(2)当0<a<2时,求函数g(x)=f(x)-x2-ax-1在区间[0,3]的最小值.【答案】【解析】19.(本题满分14分)某校准备举办一次体操比赛,邀请三位评委(编号分别为1,2,3)打分,比赛采用10分制,评委的打分只能为正整数,据赛前了解,参赛选手均为中上水平,并无顶级选手参赛,已知各评委打分互不影响,并且评委i(i=1,2,3)一次打分与选手真实水平差异Xi服从分布如下:X1-101P 11p1 24X2-101P 11p2 42X3-101P 现有两个给分方案:11p3 44方案一:从三位评委给分中随机抽一个分数作为选手分数.方案二:从三位评委给分中分别去掉最高分,去掉最低分,将剩下那个分数作为选手分数.(1)p1=__________,p2=__________,p3=__________,评委__________水平最高.(2)用随机变量X表示使用方案一时选手得分与其真实水平差异,用随机变量Y表示使用方案二时选手得分与其真实水平差异,分别求出X,Y的分布列.(3)如果请你来决策,你会选哪种方案?请说明理由.【答案】【解析】20.(本题满分14分)1设函数f(x)=2x3,g(x)=x+x3.(1)令h(x)=f(x)-g(x),求证:函数h(x)只有-1,0,1三个零点.(2)若数列{an}(n∈N*)满足:a1=a,f(an+1)=g(an).求证:存在常数M,使得∀n∈N*,都有an≤M.【答案】【解析】。

河南金科新未来2024年高二下学期期末质检数学试题+答案

河南金科新未来2024年高二下学期期末质检数学试题+答案

金科·新未来2023~2024学年度下学期期末质量检测高二数学全卷满分150分,考试时间120分钟。

注意事项:1、答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置。

2、请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效。

3、选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚。

4.考试结束后,请将试卷和答题卡一并上交。

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等差数列{}n a 满足3616a a +=,且534a a −=,则首项1a =()A .1−B .0C .1D .32.已知曲线()ln 2f x ax x =+−在点()()1,1f 处的切线方程是2y x b =+,则b =()A .3−B .2−C .1D .-13.在各项为正的等比数列{}n a 中,8a 与10a 的等比中项为2,则26212log log a a +=( )A .4 B .3C .1D .24.函数()()321303f x x x x x =−−≤的最大值是( )A .53B .0C .2D .35.已知双曲线2222:1x y C a b−=的一条渐近线与圆22:(25E x y −+=相交于,A B 两点,且8AB =,则双曲线C 的离心率为( )A B C D 6.若函数()22e xf x ax =−在区间()2,1−−上单调递减,则a 的取值范围是()A .[)2e,+∞B .41,2e−+∞C .21,e−∞−D .21,0e−7.已知*211,,212nn n a b n n n∈==−+N ,数列{}n a 与数列{}n b 的公共项按从大到小的顺序排列组成一个新数列{}n c ,则数列{}n c 的前99项和为( ) A .12B .99199C .99197D .1981998.在平面坐标系xOy 中,一个质点从原点出发,每次移动一个单位长度,且上下左右四个方向移动的概率相等,若该质点移动6次后所在坐标为()2,0,则该质点移动的方法总数为( ) A .120B .135C .210D .225二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项积为n T ,则( ) A .{}n n a b +不可能为等比数列 B .{}n n a b 可能为等差数列 C .n S n是等差数列D .2n n T是等比数列 10.已知抛物线2:4C y x =的焦点为F ,准线为l ,点P 是C 上位于第一象限的动点,点M 为l 与x 轴的交点,则下列说法正确的是( ) A .F 到直线l 的距离为2B .以P 为圆心PF 为半径的圆与l 相切C .直线MP 斜率的最大值为2D .若FM FP =,则FMP △的面积为211.已知函数()()e ,ln xf x xg x x x =−=−,则下列说法正确的是( ) A .()exg 在()0,+∞上是增函数B .1x ∀>,不等式()()2ln f ax f x≥恒成立,则正实数a 的最小值为2eC .若()f x t =有两个零点12,x x ,则120x x +>D .若()()12(2)f x g x t t ==>,且210x x >>,则21ln tx x −的最大值为1e三、填空题:本题共3小题,每小题5分,共15分.12.已知变量x 和y 的统计数据如下表:x 1 2 3 4 5 y 1.5 2 m 4 4.5若由表中数据得到经验回归直线方程为 0.80.6x y =+,则m =_________.13.已知函数()2e xf x ax =−,若()f x 的图象经过第一象限,则实数a 的取值范围是_________.14.不透明的袋子中装有2个白球,3个黑球(除颜色外,质地大小均相同),学生甲先取出2个球(不放回),学生乙在剩下的3个球中随机取一个,已知甲至少取走了1个黑球,则乙取出白球的概率为_________.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.(本小题满分13分)已知数列{}n a 是公差不为零的等差数列,111a =−,且256,,a a a 成等比数列. (1)求{}n a 的通项公式;(2)设n S 为{}n a 的前n 项和,求n S 的最小值. 16.(本小题满分15分)如图,在三棱锥P ABC −中,AB ⊥平面,,PAC E F 分别为,BC PC 的中点,且22PA AC AB ===.(1)证明:PC ⊥平面ABF ;(2)若AC PA ⊥,求平面AEF 与平面PAC 的夹角的余弦值. 17.(本小题满分15分)某学校食堂提供甲、乙、丙三种套餐,每日随机供应一种,且相邻两天不重复.已知食堂今天供应套餐甲, (1)求接下来的三天中食堂均未供应套餐甲的概率;(2)用随机变量X 表示接下来的三天中食堂供应套餐乙的天数,求X 的分布列与期望. 18.(本小题满分17分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,,过F 的直线交C 于,A B 两点,O 为坐标原点,当AB OF ⊥时,AB =.(1)求C 的方程;(2)过F 的另一条直线交C 于,D E 两点,设直线AB 的斜率为()110k k ≠,直线DE 的斜率为2k ,若122k k =,求AB DE −的最大值.19.(本小题满分17分)已知函数()()()e 1,ln 1xf xg x x =−=+.(1)若()()f x kg x ≥在()0,+∞上恒成立,求k 的取值范围;(2)设()()111,0A x y x >为()y f x =图象上一点,()()222,0B x y x >为()y g x =−图象上一点,O 为坐标原点,若AOB ∠为锐角,证明:221x x >.金科·新未来2023~2024学年度下学期期末质量检·高二数学参考答案、提示及评分细则题号 1 2 3 45 6 7 891011答案 C A D A D B B D BC ABD ABD一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】C【解析】设等差数列{}n a 的公差为d ,因为3616a a +=,且534a a −=,所以36153271624a a a d a a d +=+= −== ,所以112a d ==.故选C . 2.【答案】A【解析】函数()ln 2f x ax x =+−,求导得()1f x a x′=+,依题意,()112f a +′==,得()1,ln a f x x x ==+−2,显然()11f =−,因此12b −=+,所以3b =−.故选A .3.【答案】D【解析】因为8a 与10a 的等比中项为2,所以281024a a ==,所以()()26212261228102log log log log log 42a a a a aa +=⋅=⋅==.故选D .4.【答案】A 【解析】因为()()321303f x x x x x =−−≤,所以()223f x x x =−−′,令()0f x ′>,得1x <−,令()0f x ′<,得10x −<<,所以函数()f x 在(),1−∞−上单调递增,在()1,0−上单调递减,所以()f x 的最大值是()513f −=.故选A . 5.【答案】D【解析】根据题意得,圆心E 到C 的渐近线的距离为3,=∴设渐近线方程为by x a=,则223,9,b e a =∴=,故选D . 6.【答案】B【解析】依题意,()222e0xf x ax =−≤′在()2,1−−恒成立,即2e x a x ≥恒成立,设()2e xg x x=,则()()22e 21x x g x x′−=,所以()0g x ′≤,所以()g x 在()2,1−−单调递减,所以()4122e a g ≥−=−,故选B . 7.【答案】B【解析】因为数列{}21n −是正奇数数列,对于数列{}22n n +等价于{}2(1)1n +−,当n 为奇数时,设()*21n k k =−∈N ,则22(1)141n k +−=−为奇数;当n 为偶数时,设()*2n k k =∈N ,则()22(1)1(21)141n k k k +−=+−=+为偶数,所以()()22111111,4141212122121nnc c n n n n n n====−−−−+−+,所以129911111111991123351971992199199c c c +++=×−+−++−=×−=,故选B . 8.【答案】D【解析】情形一,质点往右移动4次,往左移动2次,26C 15=,情形二,质点往右移动3次,往左移动1次,往上移动一次,往下移动一次,3363C A 120=, 情形三,质点往右移动2次,往上移动2次,往下移动2次,2264C C 90=, 所以质点移动的方法总数为225,故选D .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.【答案】BC (全部选对得6分,选对1个得3分,有选错的得0分)【解析】对于A ,当{}n a 为常数列,且0n a =时,因为{}n b 是等比数列,所以{}n n a b +为等比数列,所以A 错误.对于B ,当{}n b 为常数列时,因为{}n a 为等差数列,所以{}n n a b 为等差数列,所以B 正确. 对于C ,设{}n a 的公差为d ,则()112n n n S na d +=+,得()112nn Sa d n +=+,因为1112n n S S d n n +−=+,所以数列n S n是等差数列,所以C 正确. 对于D ,设{}n b 的公比为q ,则1111112122222n n n n n n n n n nT T b b q T T +++++⋅,当1q ≠时,112n b q 不是常数,所以2n n T 不是等比数列,所以D 错误.故选BC .10.【答案】ABD (全部选对得6分,选对1个得2分,选对2个得4分,有选错的得0分) 【解析】易知()1,0F ,准线:1l x =−,所以F 到直线l 的距离为2,A 选项正确;由抛物线的定义,点P 到准线的距离等于PF ,所以以P 为圆心PF 为半径的圆与l 相切,B 选项正确; 当直线MP 与抛物线相切时,MP 的斜率取得最大值.设直线:1MP x my =−,与抛物线24y x =联立可得:2440y my −+=,令2Δ16160m =−=得:1m =±,所以直线MP 斜率的最大值为1,C 选项错误;若2FM FP ==,设200,4y P y,则2124y +=,解得02y =,所以FMP △的面积为01222y ××=,D 选项正确,故选ABD . 11.【答案】ABD (全部选对得6分,选对1个得2分,选对2个得4分,有选错的得0分) 【解析】A 项中,令e xt =,则ln x t =,由()0,x ∈+∞知1t >,此时函数为1ln ,10y t t y t′=−=−>,所以函数ln y t t =−在()1,+∞上是单调增函数,即()exg 在()0,+∞上是增函数,所以A 项正确;B 项中,1x >时,2ln 0x >,又a 为正实数,所以0ax >,又()e 10x f x =′−>,所以()f x 单调递增,所以不等式等价于2ln ax x ≥对1x ∀>恒成立,即max2ln x a x ≥,令()2ln x x x ϕ=,知()222ln x x x ϕ−′=,所以()x ϕ在()1,e 上递增,在()e,+∞上递减,所以()()max 2()e ex ϕϕ==,所以B 项正确;C 项中,易知()e x f x x =−在(),0−∞上递减,在()0,+∞上递增,()min()01f x f ==,所以1t >,不妨设12x x <,则必有120x x <<,若12x x +> 0,则等价于210x x >−>,等价于()()21f x f x >−,等价于()()11f x f x >−,令()()()F x f x f x =−−,()()()(),0,e e 20x x x F x f x f x −′′′∈−∞=+−=+−>,即()F x 在(),0−∞上递增,所以()()00F x F <=,则()1,0x ∈−∞时,()()11f x f x <−,所以120x x +>不成立,即C 错误;D 项中,由()e xf x x =−在(),0−∞上递减,在()0,+∞上递增,()g x 在()0,1上递减,在()1,+∞上递增,易知()()f x g x =有唯一的解()00,1x ∈,又()1e 12f =−<,所以211x x >>,由()()12f x g x =,即12ln 1222e ln e ln x x x x x x −=−=−,即有()()12ln f x f x =,所以12ln x x =,即12e x x =,所以1211ln ln ln e x t t tx x x t ==−−,又2t >,所以21min ln 1e t x x =− ,所以D 正确. 三、填空题:本题共3小题,每小题5分,共15分.12.【答案】3【解析】易知3x =,经验回归直线 0.80.6x y =+过样本点的中心(),x y ,所以0.830.63y =×+=,所以524 4.3.515m ++++=×,解得3m =.13.【答案】e ,2+∞【解析】由()f x 的图象经过第一象限,得0x ∃>,使得()0f x >,即e 2xa x>,设()e (0)x g x x x =>,求导得()()2e 1x x g x x =′−,当01x <<时,()0g x ′<,当1x >时,()0g x ′>,函数()g x 在()0,1上单调递减,在()1,+∞上单调递增,则()min ()1e g x g ==,有2e a >,所以实数a 的取值范围是e ,2+∞.14.【答案】49【解析】甲取走1个黑球1个白球的方法数为1123C C 6=,取走2个黑球的方法数为23C 3=,所以乙取出白球的概率为613246336339P=×+×=++. 四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.【答案】(1)213na n =−(2)36− 【解析】(1)设{}n a 的公差为d ,则25611,114,115a d a d a d =−+=−+=−+, 依题意,2526a a a =,即()()2(114)11115d d d −+=−+−+,整理得,()1120d d −=, 解得,2d =或0d =(舍), 所以()1121213n a n n =−+−=−; (2)21112131222nn a a n S n n n n +−+−=×=×=−, 因为2212(6)3636n S n nn =−=−−≥−, 当且仅当6n =时,等号成立, 所以n S 的最小值为36−.16.【答案】(1)略(2【解析】(1)因为F 为PC 的中点,PA AC =,所以PC AF ⊥, 因为AB ⊥平面,PAC PC ⊂平面PAC ,所以AB PC ⊥,又,,AF AB A AF AB =⊂ 平面ABF ; 所以PC ⊥平面ABF ;(2)若AC PA ⊥,则,,AB AC AP 两两垂直,建立如图所示分别以,,AB AC AP 为,,x y z 轴的空间直角坐标系,()()()()10,0,0,,1,0,0,1,1,1,0,0,0,2,02A E F B C,()()()10,2,0,,1,0,0,1,1,1,0,02ACAE AF AB ====,设平面AEF 的法向量为()111,,n x y z = ,则有0,0,AE n AF n ⋅=⋅=即111110,20,x y y z +=+=令11y =,则112,1x z =−=−, 所以平面AEF 的一个法向量为()2,1,1n =−−,易知AB ⊥平面,PAC ∴平面PAC 的法向量为()1,0,0AB =,设平面AEF 与平面PAC 夹角为θ,则cos AB n AB nθ⋅==⋅, 所以平面AEF 与平面PAC. 17.【答案】(1)14 (2)98【解析】(1)记事件A =“接下来的三天中食堂都未供应套餐甲”,则()1111224P A =××=,所 以接下来的三天中食堂均未供应套餐甲的概率为14; (2)X 的所有可能取值分别为0,1,2, 则()111102228P X ==××=, ()11121224P X ==××=()11511488P X ==−−=X 的分布列为所以X 的期望为()151********E X =×+×+×=. 18.【答案】(1)2212x y +=(2【解析】(1)设焦距为2c ,当AB OF ⊥时,将x c =代入椭圆方程可得,22221c y a b +=,解得2b y a =±, 所以22b AB a==c a =,解得1a b ,所以C 的方程为2212x y +=;(2)设直线()()11112211:1,,,,AB x m y m A x y B x y k=+=, 与椭圆线方程联立1221220x m y x y =+ +−=可得,()22112210m y m y++−=, 由韦达定理,11212221121,22m y y y y m m −−+==++,所以2AB y =−=21112m − +,同理可得,22112CD m =− +,2212AB DE m −=−+,因为122k k =,所以212m m =,故21142AB DE m −=−=+1≤, 当且仅当11k =±时,等号成立,所以||AB DE −的最大值为. 19.【答案】(1)1k ≤(2)略【解析】(1)先证明()f x x >,构造函数()()e 1x F x f x x x =−=−−, 则()e 10xF x =′−>,故()F x 单调递增,从而()()00F x F >=, 即e 1xx >+,因此()ln 1x x >+, 当1k ≤时,()()ln 1ln 1e 1xk x x x +≤+<−,符合题意; 当1k >时,构造函数()()()()e 1ln 1x G x f x kg x k x −−−+, 则()()e ,1x k G x G x x ′=−+′单调递增,且()()010,ln 01ln k G k G k k k =′′−<=−>+, 故存在()00,ln x k ∈,使得()00G x ′=,且()00,x x ∈时,()0G x ′<,即()G x 单调递减, 则当()00,x x ∈时,()()00G x G <=,与题意矛盾. 综上所述,1k ≤;(2)依题意可知,cos 0AOB ∠>,则0OA OB ⋅> ,即12120x x y y +>,即()()1122e 1ln 1x x x x >−+. 因为12,0x x >,则不等式为()1212ln 1e 1x x x x +>−, 设11e 1x x =′−,则不等式为()()22ln 1ln 11x x x x +++′>′, 设()()ln 1x h x x+=,则()()2ln 11x x x h x x −+′+=, 设()()ln 11x H x x x =−++,则()22110(1)1(1)x H x x x x ′−=−=<+++, 因此()()00H x H <=,即()0h x ′<,即()h x 单调递减,因此()()12h x h x ′>,可得12x x ′<,即12e 1xx <+. 首先证明:2e 1(0)x x x >+>, 设()2e 1x t x x =−−,则()e 2x t x x =′−, 由(1)可知1e 1,e x x x x −>+∴>,从而e e 2x x x >>,故()()0,t x t x ′>单调递增, 因此()()00t x t >=,从而2e 1x x >+, 因而12211e 1x x x +>>+,故221xx >.。

2024北京丰台区高二(下)期末数学试题及答案

2024北京丰台区高二(下)期末数学试题及答案

2024北京丰台高二(下)期末数 学2024.07一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}04A x x =<≤,{}13B x x =−≤≤,则A B =( )A .(]0,3B .[]0,3C .[]1,0)(0,4−⋃D .[]1,4−2.在一般情况下,下列各组的两个变量呈正相关的是( ) A .某商品的销售价格与销售量 B .汽车匀速行驶时的路程与时间 C .气温与冷饮的销售量D .人的年龄与视力3.已知命题p :1x ∃>,210x +>,则p ⌝是( ) A .1x ∀>,210x +> B .1x ∀>,210x +≤ C .1x ∃>,210x +≤ D .1x ∃≤,210x +≤4.已知复数11iz =−,则它的共轭复数z =( ) A .11i 22+ B .11i 22− C .11i 22−+ D .11i 22−−5.下列求导运算错误的是( ) A .()32223566x x x x '−+=− B .()cos 2sin 2x x '=−C .'=D .()()e1e xxx x '=+6.已知复数i z x y =+(x ,y ∈R ),则“0x =”是“复数z 对应的点在虚轴上”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.已知函数()23cos f x x x =−,则( ) A .()()()3e πf f f −<< B .()()()πe 3f f f <<− C .()()()π3e f f f <−<D .()()()e 3πf f f <−<8.若0a >,0b >,且3ab a b =++,则ab 的最小值为( ) A .1B .3C .9D .109.在同一平面直角坐标系xOy 内,函数()f x 及其导函数()f x '的图象如图所示.已知这两个函数图象恰有一个公共点,其坐标为()0,1,则( )A .函数()exf x y =的最大值为1B .函数()exf x y =的最小值为1C .函数()e x y f x =的最大值为1D .函数()e x y f x =的最小值为110.甲、乙、丙、丁、戊共5名同学进行数学建模比赛,决出了第1名到第5名的名次(无并列情况).甲、乙、丙去询问成绩.老师对甲说:“你不是最差的.”对乙说:“很遗憾,你和甲都没有得到冠军.”对丙说:“你不是第2名.”从这三个回答分析,5名同学可能的名次排列情况种数为( ) A .44B .46C .52D .54第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分.11.612x x ⎛⎫− ⎪⎝⎭的展开式中的常数项是______.12.已知线性相关的两个变量x 和y 的取值如下表,且经验回归方程为9ˆ0.5ˆyx a =+,则ˆa =______.占总种子数的百分比)为80%,出苗率(出苗的种子数占总种子数的百分比)为70%.若该小组种植的其中一颗种子已经出芽,则它出苗的概率为______.14.能够说明“设a ,b ,c 是任意实数.若a b c >>,则a b c +>”是假命题的一组实数a ,b ,c 的值依次为______. 15.已知函数()()2e1xf x axx =−−(a ∈R ).给出下列四个结论:①当1a =时,若()f x 的图象与直线y m =恰有三个公共点,则m 的取值范围是25e,e ⎛⎫− ⎪⎝⎭; ②若()f x 在2x =−处取得极小值,则a 的取值范围是1,2⎛⎫−∞− ⎪⎝⎭; ③a ∀∈R ,曲线()y f x =总存在两条互相垂直的切线; ④若()f x 存在最小值,则a 的取值范围是()0,+∞. 其中所有正确结论的序号是______.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.(本小题共14分)2024年春节期间,全国各大影院热映《第二十条》、《飞驰人生2》、《热辣滚烫》、《熊出没.逆转时空》4部优秀的影片.现有4名同学,每人选择这4部影片中的1部观看.(Ⅰ)如果这4名同学选择观看的影片均不相同,那么共有多少种不同的选择方法?(Ⅱ)如果这4名同学中的甲、乙2名同学分别选择观看影片《第二十条》、《飞驰人生2》,那么共有多少种不同的选择方法?(Ⅲ)如果这4名同学中恰有2名同学选择观看同一部影片,那么共有多少种不同的选择方法? 17.(本小题共13分)在上个赛季的所有比赛中,某支篮球队的胜负情况及该球队甲球员的上场情况如下表:(Ⅱ)从表中该球队未获胜的所有场次中随机选取3场,记ξ为甲球员未上场的场数,求ξ的分布列和数学期望()E ξ. 18.(本小题共14分) 已知函数()2212x f x x +=+. (Ⅰ)求曲线()y f x =在点()()1,1f 处的切线方程; (Ⅱ)求()f x 的极值. 19.(本小题共14分)随着科技的不断发展,人工智能技术在人类生产生活中的应用越来越广泛.为了解用户对A ,B 两款人机交互软件(以下简称软件)的满意度,某平台随机选取了仅使用A 款软件的用户和仅使用B 款软件的用户各500人,采用打分方式进行调查,情况如下图:根据分数把用户的满意度分为三个等级,如下表:(Ⅰ)分别估计仅使用A 款软件的全体用户和仅使用B 款软件的全体用户对所使用软件的满意度为“非常满意”的概率;(Ⅱ)从仅使用A 款软件的全体用户中随机选取2人,从仅使用B 款软件的全体用户中随机选取1人,估计这3人中恰有1人对所使用软件的满意度为“非常满意”的概率;(Ⅲ)从仅使用A ,B 两款软件的全体用户中各随机选取10人进行电话回访,记X 为仅使用A 款软件的10人中对所使用软件的满意度为“不满意”的人数,Y 为仅使用B 款软件的10人中对所使用软件的满意度为“不满意”的人数,试比较X ,Y 的方差()D X ,()D Y 的大小.(结论不要求证明) 20.(本小题共15分)已知函数()()()21ln f x x x ax =+−−(a ∈R ).(Ⅰ)若()f x 在区间[)1,0−上单调递减,求a 的取值范围; (Ⅱ)当1a =−时,求证:()0f x <. 21.(本小题共15分)已知集合{}1,2,,M n =⋅⋅⋅(*n ∈N ,且4n ≥).若集合A ,B 同时满足下列两个条件,则称集合A ,B具有性质P . 条件(1):AB =∅,A B M =,且A ,B 都至少含有两个元素;条件(2):对任意不相等的1a ,2a A ∈,都有12a a A +∉,对任意不相等的1b ,2b B ∈,都有12b b B ∉.(Ⅰ)当5n =时,若集合A ,B 具有性质P ,且集合A 中恰有三个元素,试写出所有的集合B ;(Ⅱ)若集合A ,B 具有性质P ,且2B ∈,3B ∈,求证:14n <; (Ⅲ)若存在集合A ,B 具有性质P ,求n 的最大值.参考答案一、选择题共10小题,每小题4分,共40分.11.160− 12.2.6 13.7814.1−,2−,3−(答案不唯一) 15.②④ 三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.(本小题14分)解:(Ⅰ)因为4名同学观看的影片均不相同, 所以不同的选择方法共有44A 24=种.(Ⅱ)因为甲、乙2名同学选择观看的影片已确定, 所以不同的选择方法共有4416⨯=种. (Ⅲ)因为恰有2名同学选择观看同一部影片, 所以不同的选择方法共有212443C C A 646144=⨯⨯=种. 17.(本小题13分)解:(Ⅰ)设事件A =“甲球员上场参加比赛时,该球队获胜”, 则()4084059P A ==+.(Ⅱ)表中该球队未获胜的场次共有538+=场,其中甲球员上场的场次有5场,未上场的场次有3场, 则ξ的可能取值为0,1,2,3.()0335385028C C P C ξ===,()123538151,28C C P C ξ=== ()21353815256C C P C ξ===,()3035381356C C P C ξ===. 所以ξ的分布列如下:所以()0123282856568E ξ=⨯+⨯+⨯+⨯=. 18.(本小题14分)解:(Ⅰ)由已知得()()()()()2222222222122422x x x x x f x xx+−+−−+==++',所以()10f '=.因为()11f =,所以切点为()1,1,故曲线()y f x =在点()()1,1f 处的切线方程为1y =. (Ⅱ)由(Ⅰ)知,()()()()222212x x f x x+−'=−+,x ∈R .令()0f x '>,得21x −<<, 令()0f x '<,得2x <−或1x >, 所以()f x 的单调递增区间为()2,1−, 单调递减区间为(),2−∞−,()1,+∞. 所以()f x 有极小值为()122f −=−,极大值为()11f =. 19.(本小题14分)解:(Ⅰ)设事件E =“仅使用A 款软件的全体用户对所使用软件的满意度为‘非常满意’”, 事件F =“仅使用B 款软件的全体用户对所使用软件的满意度为‘非常满意’”, 则()30035005P E ==,()25015002P F ==. (Ⅱ)设事件C =“这3人中恰有1人对所使用软件的满意度为‘非常满意’”,则()2123212185525225P C C ⎛⎫=⨯⨯⨯+⨯= ⎪⎝⎭.(Ⅲ)()()D X D Y <. 20.(本小题15分)解:(Ⅰ)由已知得()()()2112ln 2ln 2x f x x a x a x x+=−+−=−++−', 设()()12ln 2g x x a x=−++−,[)1,0x ∈−, 因为()f x 在区间[)1,0−上单调递减, 所以[)1,0x ∈−时,()0g x ≤恒成立. 因为[)1,0x ∈−时,()2210g x x x =−<',所以()g x 在区间[)1,0−上单调递减,所以()g x 的最大值为()110g a −=−≤,即1a ≥. 当1a =时,符合题意. 所以1a ≥.(Ⅱ)当1a =−时,()()()21ln f x x x x =+−+,0x <, 则()()()2112ln 12ln 3x f x x x x x'+=−++=−++. 设()()12ln 3,0h x x x x=−++<,则()2210h x x x =−<',所以()h x 在区间(),0−∞上单调递减. 因为()120h −=>,112ln 202h ⎛⎫−=−< ⎪⎝⎭, 所以011,2x ⎛⎫∃∈−− ⎪⎝⎭,使得()()00012ln 30h x x x =−++=, 即()00031ln 2x x x +−=−. 当x 变化时,()h x ,()f x ',()f x 的变化如下表:所以f x 的最大值为000021ln f x x x x =+−+()()00031212x x xx ++=−+()()0004112x x x ++=−.因为011,2x ⎛⎫∈−−⎪⎝⎭,所以0410x +<,010x +>, 所以()00f x <,故()0f x <. 21.(本小题15分)解:(Ⅰ)所有的集合B 为{}2,4,{}3,4,{}3,5.(Ⅱ)记“对任意不相等的1a ,2a A ∈,都有12a a A +∉”为条件①, 记“对任意不相等的1b ,2b B ∈,都有12b b B ∉”为条件②. 由条件②得1A ∈.由2B ∈,3B ∈和条件②得236B ⨯=∉,即6A ∈. 由条件①得615A −=∉,即5B ∈. 由条件②得2510B ⨯=∉,即10A ∈. 由条件①得1064A −=∉,即4B ∈. 由条件②得248B ⨯=∉,即8A ∈. 由条件①得8614A +=∉,即14B ∈. 由条件①得817A −=∉,即7B ∈. 由条件②得2714B ⨯=∉,与14B ∈矛盾, 所以14M ∉,即14n <..............8分 (Ⅲ)n 的最大值为32.证明如下:一方面,当32n =时,可构造集合{}1,2,4,7,10,15,18,24,27,30A =,{}3,5,6,8,9,11,12,13,14,16,17,19,20,21,22,23,25,26,28,29,31,32B =具有性质P ;另一方面,当33n ≥时,可证明不存在具有性质P 的集合A ,B .证明如下: 由(Ⅱ)知,1A ∈,且当2B ∈,3B ∈时,14n <, 此时不存在具有性质P 的集合A ,B . 由条件①得2,3不能同时属于集合A .下面讨论2和3一个属于集合A ,一个属于集合B 的情况: (1)当3A ∈,2B ∈时,由条件①得134A +=∉,即4B ∈. 由条件②得248B ⨯=∉,即8A ∈.由条件①得835A −=∉,817A −=∉即5B ∈,7B ∈. 因为2B ∈,4B ∈,5B ∈,7B ∈, 由条件②得2714B ⨯=∉,4520B ⨯=∉, 即14A ∈,20A ∈.由条件①得1486A −=∉,20812A −=∉,即6B ∈,12B ∈.由条件②得2612B ⨯=∉,与12B ∈矛盾,此时不存在具有性质P 的集合A ,B . (2)当2A ∈,3B ∈时,由条件②得4,5不能同时属于集合A ,下面分三种情形: 情形一:若4A ∈,5B ∈,由条件①得246A +=∉,即6B ∈. 由条件②得3515B ⨯=∉,3618B ⨯=∉,即15A ∈,18A ∈. 由条件①得151833A +=∉,即33B ∈. 由条件①得15411A −=∉,即11B ∈.由条件②得31133B ⨯=∉,与33B ∈矛盾,此时不存在具有性质P 的集合A ,B . 情形二:若5A ∈,4B ∈,由条件①得156A +=∉,257A +=∉,即6B ∈,7B ∈. 由条件②得4728B ⨯=∉,即28A ∈. 由条件①得52833A +=∉,即33B ∈. 由条件②得3412B ⨯=∉,即12A ∈. 由条件①得12111A −=∉,即11B ∈.由条件②得31133B ⨯=∉,与33B ∈矛盾,此时不存在具有性质P 的集合A ,B . 情形三:若4B ∈,5B ∈,由条件②得4520B ⨯=∉,即20A ∈. 由条件①得20218A −=∉,即18B ∈. 由条件②得1836B ÷=∉,即6A ∈. 由条件①得167A +=∉,即7B ∈. 由条件②得3721B ⨯=∉,即21A ∈. 由条件②得3515B ⨯=∉,即15A ∈. 由条件①得61521A +=∉,与21A ∈矛盾, 此时不存在具有性质P 的集合,A B . 综上,n 的最大值为32.。

(必考题)数学高二下期末经典测试题(含答案解析)(1)

(必考题)数学高二下期末经典测试题(含答案解析)(1)

一、选择题1.函数()sin()(0,0,)2f x A x A πωφωφ=+>><的部分图象如图所示,若将()f x 图象向左平移4π个单位后得到()g x 图象,则()g x 的解析式为( )A .2()2sin(2)3g x x π=+ B .5()2sin(2)6g x x π=- C .()2sin(2)6g x x π=+D .()2sin(2)3g x x π=-2.已知A (1,0,0),B (0,﹣1,1),OA OB λ+与OB (O 为坐标原点)的夹角为30°,则λ的值为( ) A .66B .66±C .62D .62±3.已知sin cos 1sin cos 2αααα-=+,则cos2α的值为( )A .45-B .35C .35D .45 4.在边长为3的等边ABC ∆中,点M 满足BM 2MA =,则CM CA ⋅=( ) A 3B .3C .6 D .1525.非零向量a b ,满足:a b a -=,()0a a b ⋅-=,则a b -与b 夹角的大小为 A .135° B .120° C .60° D .45°6.函数()sin()A f x x ωϕ=+(0,)2πωϕ><的部分图象如图所示,则()f π=( )A .4B .23C .2D .37.设奇函数()()()()sin 3cos 0f x x x ωφωφω=+-+>在[]1,1x ∈-内有9个零点,则ω的取值范围为( )A .[)4,5ππB .[]4,5ππC .11,54ππ⎡⎤⎢⎥⎣⎦D .11,54ππ⎛⎤ ⎥⎝⎦8.已知函数()()sin 0,0,2f x A x A πωϕωϕ=+>>≤⎛⎫⎪⎝⎭的部分图象如图所示,则函数()y f x =的表达式是( )A .()2sin 12f x x π⎛⎫=+⎪⎝⎭B .()2sin 23f x x π⎛⎫=+⎪⎝⎭C .()22sin 23f x x π⎛⎫=- ⎪⎝⎭D .()2sin 23f x x π⎛⎫=- ⎪⎝⎭9.已知函数()sin 3cos f x x x =+,将函数()f x 的图象向左平移()0m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( ) A .6πB .4π C .3π D .2π 10.若()2sin sinsin777n n S n N πππ︒=+++∈,则在中,正数的个数是( ) A .16B .72C .86D .10011.已知函数2()3cos cos f x x x x =+,则( ) A .()f x 的图象关于直线6x π=对称B .()f x 的最大值为2C .()f x 的最小值为1-D .()f x 的图象关于点(,0)12π-对称12.已知向量(2,0)OB =,向量(2,2)OC =,向量(2cos ,2sin )CA αα=,则向量OA 与向量OB 的夹角的取值范围是( ).A .π0,4⎡⎤⎢⎥⎣⎦B .π5π,412⎡⎤⎢⎥⎣⎦C .5ππ,122⎡⎤⎢⎥⎣⎦ D .π5π,1212⎡⎤⎢⎥⎣⎦ 13.已知f (x )=A sin(ωx+θ)(ω>0),若两个不等的实数x 1,x 2∈()2A x f x ⎧⎫=⎨⎬⎩⎭,且|x 1-x 2|min =π,则f (x )的最小正周期是( ) A .3πB .2πC .πD .π214.若向量a ,b 满足2a b ==,a 与b 的夹角为60,则a b +等于( ) A .223+B .23C .4D .1215.已知tan 24πα⎛⎫+=- ⎪⎝⎭,则sin 2α=( )A .310B .35 C .65-D .125-二、填空题16.已知θ为钝角,1sin()43πθ+=,则cos2θ=______. 17.已知1tan 43πα⎛⎫-=- ⎪⎝⎭,则2sin sin()cos()απαπα--+的值为__________. 18.实数x ,y 满足223412x y +=,则23x y +的最大值______. 19.如图在ABC 中,AC BC =,2C π∠=,点O 是ABC 外一点,4OA =,2OB =则平面四边形OACB 面积的最大值是___________.20.已知角α的终边上一点)3,1A-,则()sin tan 2παπα⎛⎫-++= ⎪⎝⎭__________.21.已知ABC ∆中角,,A B C 满足2sin sin sin B A C =且2sin cos cos 1242C Cπ+=,则sin A =__________.22.仔细阅读下面三个函数性质:(1)对任意实数x ∈R ,存在常数(0)p p ≠,使得1()2f x p f x p ⎛⎫-=+ ⎪⎝⎭. (2)对任意实数x ∈R ,存在常数(0)M M >,使得|()|f x M ≤. (3)对任意实数x ∈R ,存在常数,使得()()0f a x f a x -++=.请写出能同时满足以上三个性质的函数(不能为常函数)的解析式__________.(写出一个即可)23.将函数e x y =的图像上所有点的横坐标变为原来的一半,再向右平移2个单位,所得函数的解析式为__________. 24.已知1tan 43πα⎛⎫-= ⎪⎝⎭,则()()2cos sin cos 2παπαπα⎛⎫+--+ ⎪⎝⎭的值为__________. 25.若()1sin 3πα-=,且2παπ≤≤,则cos α的值为__________. 三、解答题26.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且22222230a c b ac +-+=. (1)求cos B 的值; (2)求sin 24B π⎛⎫+⎪⎝⎭的值. 27.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2cos (cos cos )C a B b A c +=.(1)求C ;(2)若c =,ABC 的面积为ABC 的周长.28.在已知函数()sin(),f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象与x轴的交点中,相邻两个交点之间的距离为2π,且图象上一个最低点为2,23M π⎛⎫-⎪⎝⎭. (1)求()f x 的解析式; (2)当,122x ππ⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域. 29.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭在一个周期内的图像经过点,412π⎛⎫ ⎪⎝⎭和点5,412π⎛⎫- ⎪⎝⎭,且()f x 的图像有一条对称轴为12x π=. (1)求()f x 的解析式及最小正周期; (2)求()f x 的单调递增区间.30.已知定义在R 上的函数()()()sin 0,0f x A x x A ωϕ=+>>的图象如图所示(1)求函数()f x 的解析式; (2)写出函数()f x 的单调递增区间(3)设不相等的实数,()12,0,x x π∈,且()()122f x f x ==-,求12x x +的值.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.C 2.C 3.A 4.D 5.A 6.A 7.A 8.D 9.A 10.C11.A12.D13.A14.B15.B二、填空题16.【解析】【分析】将改写成的形式利用二倍角公式计算的值代入相关数值【详解】因为所以;因为且为钝角所以是第二象限角则故【点睛】(1)常见的二倍角公式:;(2)常用的角的配凑:;17.【解析】【分析】先根据已知求出最后化简代入的值得解【详解】由题得由题得=故答案为【点睛】本题主要考查差角的正切和同角的商数关系平方关系意在考查学生对这些知识的理解掌握水平和分析推理能力18.【解析】分析:根据题意设则有进而分析可得由三角函数的性质分析可得答案详解:根据题意实数xy满足即设则又由则即的最大值5;故答案为:5点睛:本题考查三角函数的化简求值关键是用三角函数表示xy19.【解析】分析:利用余弦定理设设AC=BC=m则由余弦定理把m表示出来利用四边形OACB面积为S=转化为三角形函数问题求解最值详解:△ABC为等腰直角三角形∵OA=2OB=4不妨设AC=BC=m则由余20.【解析】分析:先根据三角函数定义得再根据诱导公式化简求值详解:因为角的终边上一点所以因此点睛:本题考查三角函数定义以及诱导公式考查基本求解能力21.【解析】分析:先化简得到再化简得到详解:因为所以1-所以因为所以所以A+B=所以因为sinA>0所以故答案为点睛:本题主要考查三角化简和诱导公式意在考查学生对这些知识的掌握水平和基本的计算能力22.【解析】分析:由(1)得周期由(2)得最值(有界)由(3)得对称中心因此可选三角函数详解:由题目约束条件可得到的不同解析式由(1)得周期由(2)得最值(有界)由(3)得对称中心因此可选三角函数点睛:23.【解析】分析:根据图像平移规律确定函数解析式详解:点睛:三角函数的图象变换提倡先平移后伸缩但先伸缩后平移也常出现在题目中所以也必须熟练掌握无论是哪种变形切记每一个变换总是对字母而言24.【解析】分析:由可得化简即可求得其值详解:由即答案为点睛:本题考查三角函数的化简求值考查了诱导公式及同角三角函数基本关系式的应用是基础题25.【解析】由题意得三、解答题 26. 27. 28. 29. 30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.C 解析:C 【解析】 【分析】根据函数的图象求出函数()f x 的解析式,再根据图象的平移变换得到()g x 的解析式即可. 【详解】 由图象可知,A =2,541264T πππ=-=, 2T ππω∴==,2ω∴=,又当512x π=时,52sin(2)212πφ⨯+=, 即5sin()16πφ+=, 2πφ<, 3πφ∴=-,故()sin()f x x π=-223,将()f x 图象向左平移4π个单位后得到()g x , ∴ ()2sin[2()]2sin(2)436g x x x πππ=+-=+,故选:C 【点睛】本题主要考查了正弦型函数的图象与性质,图象的变换,属于中档题.2.C解析:C 【解析】 【分析】运用向量的坐标运算及夹角公式直接求解即可. 【详解】解:(1,0,0)(0,,)(1,,)OA OB λλλλλ+=+-=-,∴2||12,||2OA OB OB λλ+=+=,()2OA OB OB λλ+=,∴cos302λ︒=, ∴4λ=,则0λ>,∴2λ=. 故选:C . 【点睛】本题考查空间向量的坐标运算,考查运算求解能力,属于基础题.3.A解析:A 【解析】 ∵sin cos 1sin cos 2αααα-=+,∴tan α11tan α3tan α12-==+,.∴cos2α=222222cos sin 1tan 4cos sin 1tan 5αααααα--==-++ 故选A4.D解析:D 【解析】 【分析】结合题意线性表示向量CM ,然后计算出结果 【详解】 依题意得:121211215)333333333232CM CA CB CA CA CB CA CA CA ⋅=+⋅=⋅+⋅=⨯⨯⨯+⨯⨯=(,故选D .【点睛】本题考查了向量之间的线性表示,然后求向量点乘的结果,较为简单5.A解析:A 【解析】 【分析】先化简()0a a b ⋅-=得2=a a b ⋅,再化简a b a -=得2b a =,最后求a b -与b 的夹角. 【详解】因为()0a a b ⋅-=,所以220=a a b a a b -⋅=∴⋅,,因为a b a -=,所以2222a a a b b =-⋅+, 整理可得22b a b =⋅, 所以有2b a =,设a b -与b 的夹角为θ,则()2cos a b b a b b a b ba bθ-⋅⋅-===-222222||a a =-, 又0180θ︒≤≤︒,所以135θ=︒, 故选A . 【点睛】本题主要考查数量积的运算和向量夹角的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.A解析:A【解析】试题分析:根据题意,由于函数()sin()A f x x ωϕ=+(0,)2πωϕ><,那么根据图像可知周期为2π,w=4,然后当x=6π,y=2,代入解析式中得到22sin(4)6πϕ=⨯+,6πϕ=-,则可知()f π=4,故答案为A.考点:三角函数图像点评:主要是考查了根据图像求解析式,然后得到函数值的求解,属于基础题.7.A解析:A 【解析】f (x )=sin (ωx+φ(ωx+φ)=2[12sin (ωx+φ(ωx+φ)] =2[cos3πsin (ωx+φ)﹣sin 3πcos (ωx+φ)]=2sin (ωx+φ﹣3π) ∵函数f (x )为奇函数,∴f (0)=2sin (φ﹣3π)=0,∴φ=3π+kπ,k ∈Z ∴f (x )=2sin (ωx+kπ),f (x )=0即sin (ωx+kπ)=0,ωx+kπ=mπ,m ∈Z ,解得,x=()m k πω-,设n=m ﹣k ,则n ∈Z ,∵A ∈[﹣1,1],∴﹣1≤x≤1,[]1,1n πω∈-,∴n ωωππ-≤≤, ∵A ∈[﹣1,1]中有9个元素,4545.ωπωππ∴≤<⇒≤< 故答案为A.点睛:函数的零点或方程的根的问题,一般以含参数的三次式、分式、以e 为底的指数式或对数式及三角函数式结构的函数零点或方程根的形式出现,一般有下列两种考查形式:(1)确定函数零点、图象交点及方程根的个数问题;(2)应用函数零点、图象交点及方程解的存在情况,求参数的值或取值范围问题.研究方程根的情况,可以通过导数研究函数的单调性、最值、函数的变化趋势等,根据题目要求,通过数形结合的思想去分析问题,可以使得问题的求解有一个清晰、直观的整体展现.同时在解题过程中要注意转化与化归、函数与方程、分类讨论思想的应用.8.D解析:D 【解析】 【分析】根据函数的最值求得A ,根据函数的周期求得ω,根据函数图像上一点的坐标求得ϕ,由此求得函数的解析式.由题图可知2A =,且11522122T πππ=-=即T π=,所以222T ππωπ===, 将点5,212π⎛⎫⎪⎝⎭的坐标代入函数()()2sin 2x x f ϕ=+, 得()5262k k ππϕπ+=+∈Z ,即()23k k πϕπ=-∈Z , 因为2πϕ≤,所以3πϕ=-,所以函数()f x 的表达式为()2sin 23f x x π⎛⎫=- ⎪⎝⎭.故选D.【点睛】本小题主要考查根据三角函数图像求三角函数的解析式,属于基础题.9.A解析:A 【解析】 【分析】利用函数的平移变换得π2sin 3y x m ⎛⎫=++ ⎪⎝⎭,再根所图象关于y 轴对称,得到角的终边落在y 轴上,即π2π3πm k +=+,k Z ∈,即可得答案. 【详解】()sin 2s πin 3f x x x x ⎛⎫=+=+ ⎪⎝⎭,将函数()f x 的图象向左平移m 个单位长度后,得到函数π2sin 3y x m ⎛⎫=++⎪⎝⎭的图象, 又所得到的图象关于y 轴对称,所以π2π3πm k +=+,k Z ∈, 即ππ6m k =+,k Z ∈, 又0m >,所以当0k =时,m 的最小值为π6. 故选:A. 【点睛】本题考查三角函图象的变换、偶函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.10.C【解析】 【分析】 【详解】 令7πα=,则7n n πα=,当1≤n≤14时,画出角序列n α终边如图,其终边两两关于x 轴对称,故有均为正数,而,由周期性可知,当14k-13≤n≤14k 时,Sn>0, 而,其中k=1,2,…,7,所以在中有14个为0,其余都是正数,即正数共有100-14=86个,故选C.11.A解析:A 【解析】 【分析】利用三角函数恒等变换的公式,化简求得函数的解析式,再根据三角函数的图象与性质,逐项判定,即可求解. 【详解】 由题意,函数23111()3cos cos 2cos 2sin(2)2262f x x x x x x x π=+=++=++, 当6x π=时,113()sin(2)sin 6662222f ππππ=⨯++=+=,所以6x π=函数()f x 的对称轴,故A 正确;由sin(2)[1,1]6x π+∈-,所以函数()f x 的最大值为32,最小值为12-,所以B 、C 不正确; 又由12x π=时,131()sin(2)612622f πππ=⨯++=+,所以(,0)12π-不是函数()f x 的对称中心,故D 不正确, 故选A . 【点睛】本题主要考查了三角恒等变换的公式的应用,以及函数sin()y A wx b ϕ=++的图象与性质的应用,着重考查了推理与运算能力,属于基础题.12.D解析:D 【解析】 不妨设(0,0)O∵(2,2)OC =,(2cos ,2sin )CA αα=. ∴(2,2)C 、(22,22sin )A cos αα++. ∴点A 在以(2,2)为圆心半径为2的圆上. ∴OA 与OB 的夹角为直线OA 的倾斜角. 设:OA l y kx = ∴22121k d r k -=≤=+.即2410k k -+≤,则[23,23]k ∈-+. 又∵π23tan12-=,523tanπ12+=. ∴OA 、OB 夹角[23,23]θ∈-+.故选D .13.A解析:A 【解析】 【分析】 由题意可得123ππω⨯=,求得ω的值,可得()f x 的最小正周期是2πω的值 【详解】由题意可得()1sin 2x ωθ+=的解为两个不等的实数1x ,2x 且123ππω⨯=,求得23ω= 故()f x 的最小正周期是23ππω=故选A 【点睛】本题主要考查了的是三角函数的周期性及其图象,解题的关键根据正弦函数的图象求出ω的值,属于基础题14.B解析:B 【解析】 【分析】将a b +平方后再开方去计算模长,注意使用数量积公式. 【详解】因为2222cos 6044412a b a a b b +=+︒+=++=,所以23a b +=, 故选:B. 【点睛】本题考查向量的模长计算,难度一般.对于计算xa yb +这种形式的模长,可通过先平方再开方的方法去计算模长.15.B解析:B 【解析】 【分析】 根据tan 24πα⎛⎫+=- ⎪⎝⎭求得tan 3α=,2222sin cos 2tan sin 2sin cos tan 1ααααααα==++即可求解. 【详解】 由题:tan 24πα⎛⎫+=- ⎪⎝⎭, tan 121tan αα+=--,解得tan 3α=,2222sin cos 2tan 63sin 2sin cos tan 1105ααααααα====++. 故选:B 【点睛】此题考查三角恒等变换,涉及二倍角公式与同角三角函数的关系,合理构造齐次式可以降低解题难度.二、填空题16.【解析】【分析】将改写成的形式利用二倍角公式计算的值代入相关数值【详解】因为所以;因为且为钝角所以是第二象限角则故【点睛】(1)常见的二倍角公式:;(2)常用的角的配凑:;解析:9-【解析】 【分析】将2θ改写成2()42ππθ+-的形式,利用二倍角公式计算cos2θ的值,代入相关数值.【详解】因为cos2cos[2()]sin[2()]424πππθθθ=+-=+,所以cos 22sin()cos()44ππθθθ=++; 因为1sin()043πθ+=>且θ为钝角,所以()4πθ+是第二象限角,则cos()43πθ+==-,故cos 22sin()cos()449ππθθθ=++=-. 【点睛】(1)常见的二倍角公式:sin 22sin cos ααα=,2222cos 2cos sin 2cos 112sin ααααα=-=-=- ;(2)常用的角的配凑:()ααββ=-+,()ααββ=+-;2()()ααβαβ=++- ,2()()βαβαβ=+--.17.【解析】【分析】先根据已知求出最后化简代入的值得解【详解】由题得由题得=故答案为【点睛】本题主要考查差角的正切和同角的商数关系平方关系意在考查学生对这些知识的理解掌握水平和分析推理能力解析:35【解析】 【分析】先根据已知求出tan α,最后化简2sin sin()cos()απαπα--+,代入tan α的值得解. 【详解】 由题得tan 111,tan 1+tan 32ααα-=-∴=.由题得22222sin +sin cos sin sin()cos()=sin +sin cos =sin +cos ααααπαπαααααα--+ =2211tan tan 3421tan 1514ααα++==++. 故答案为35【点睛】本题主要考查差角的正切和同角的商数关系平方关系,意在考查学生对这些知识的理解掌握水平和分析推理能力.18.【解析】分析:根据题意设则有进而分析可得由三角函数的性质分析可得答案详解:根据题意实数xy 满足即设则又由则即的最大值5;故答案为:5点睛:本题考查三角函数的化简求值关键是用三角函数表示xy解析:【解析】分析:根据题意,设2cos x θ=,y θ=,则有24cos 3sin x θθ+=+,进而分析可得()25sin x θα+=+,由三角函数的性质分析可得答案.详解:根据题意,实数x ,y 满足223412x y +=,即22143x y +=,设2cos x θ=,y θ=,则()24cos 3sin 5sin x θθθα=+=+,3tan 4α⎛⎫= ⎪⎝⎭, 又由()15sin 1θα-≤+≤,则525x -≤≤,即2x +的最大值5; 故答案为:5.点睛:本题考查三角函数的化简求值,关键是用三角函数表示x 、y .19.【解析】分析:利用余弦定理设设AC=BC=m 则由余弦定理把m 表示出来利用四边形OACB 面积为S=转化为三角形函数问题求解最值详解:△ABC 为等腰直角三角形∵OA=2OB=4不妨设AC=BC=m 则由余解析:5+ 【解析】分析:利用余弦定理,设AOB α∠=,设AC=BC=m ,则AB =.由余弦定理把m 表示出来,利用四边形OACB 面积为S=24sin 4sin 2OACB ABC m S S αα∆∆=+=+.转化为三角形函数问题求解最值.详解:△ABC 为等腰直角三角形.∵OA=2OB=4,不妨设AC=BC=m ,则AB =.由余弦定理,42+22﹣2m 2=16cos α,∴2108cos m α∴=-.108cos 4sin 4sin 4sin 4cos 52OACB ABC S S ααααα∆∆-∴=+=+=-+)554πα=-+≤.当34απ=时取到最大值5+.故答案为5+点睛:(1)本题主要考查余弦定理和三角形的面积的求法,考查三角恒等变换和三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是设AOB α∠=,再建立三角函数的模型.20.【解析】分析:先根据三角函数定义得再根据诱导公式化简求值详解:因为角的终边上一点所以因此点睛:本题考查三角函数定义以及诱导公式考查基本求解能力【解析】分析:先根据三角函数定义得cos ,tan αα,再根据诱导公式化简求值.详解:因为角α的终边上一点)1A -,,所以cos tanαα===, 因此()sin tan 2παπα⎛⎫-++⎪⎝⎭cos tanαα=+== 点睛:本题考查三角函数定义以及诱导公式,考查基本求解能力.21.【解析】分析:先化简得到再化简得到详解:因为所以1-所以因为所以所以A+B=所以因为sinA>0所以故答案为点睛:本题主要考查三角化简和诱导公式意在考查学生对这些知识的掌握水平和基本的计算能力解析:12【解析】 分析:先化简2sincos cos 1242C C π+=得到2C π=,再化简2sin sin sin B A C =得到sin A =详解:因为2sincos cos 1242C C π+=,所以1-2cos 1222C C +=,所以cos(cos 0,cos 0(cos =222222C C C C -=∴=舍)或, 因为0C π<<,所以2C π=,所以A+B=2π.2sin sin sin B A C =因为,所以22cos sin ,sin sin 10,sin A A A A A =∴+-=∴=因为sinA>0,所以1sin 2A =.. 点睛:本题主要考查三角化简和诱导公式,意在考查学生对这些知识的掌握水平和基本的计算能力.22.【解析】分析:由(1)得周期由(2)得最值(有界)由(3)得对称中心因此可选三角函数详解:由题目约束条件可得到的不同解析式由(1)得周期由(2)得最值(有界)由(3)得对称中心因此可选三角函数点睛:解析:4()sin π3f x ⎛⎫= ⎪⎝⎭【解析】分析:由(1)得周期,由(2)得最值(有界),由(3)得对称中心,因此可选三角函数. 详解:由题目约束条件可得到()f x 的不同解析式.由(1)得周期,由(2)得最值(有界),由(3)得对称中心,因此可选三角函数()4sin π3f x ⎛⎫=⎪⎝⎭. 点睛:正余弦函数是周期有界函数,既有对称轴也有对称中心,是一类有特色得函数.23.【解析】分析:根据图像平移规律确定函数解析式详解:点睛:三角函数的图象变换提倡先平移后伸缩但先伸缩后平移也常出现在题目中所以也必须熟练掌握无论是哪种变形切记每一个变换总是对字母而言 解析:24e x y -=【解析】分析:根据图像平移规律确定函数解析式. 详解:222(2)24e ee e xxx x y y y --=→=→==横坐标变为一半右移个单位点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x 而言.24.【解析】分析:由可得化简即可求得其值详解:由即答案为点睛:本题考查三角函数的化简求值考查了诱导公式及同角三角函数基本关系式的应用是基础题 解析:65【解析】 分析:由1tan 43πα⎛⎫-= ⎪⎝⎭可得tan 2α=,化简()()2cos sin cos 2παπαπα⎛⎫+--+ ⎪⎝⎭,即可求得其值.详解:tan tantan 114tan ,tan 2,4tan 13tan tan 4παπαααπαα--⎛⎫-===∴= ⎪+⎝⎭+ 由()()22cos sin cos sin sin cos 2παπαπαααα⎛⎫+--+=+⎪⎝⎭22222sin sin cos tan tan 6.sin cos tan 15αααααααα++===++ 即答案为65. 点睛:本题考查三角函数的化简求值,考查了诱导公式及同角三角函数基本关系式的应用,是基础题.25.【解析】由题意得解析:3-【解析】由题意得()1sin sin ,[,],cos 32ππαααπα-==∈∴==三、解答题 26. (1)34-(2)16【解析】试题分析:(1)利用余弦定理表示出cosB ,将已知等式代入即可求出cosB 的值;(2)由cosB 可求出sin 2,cos 2B B 的值,然后利用两角和的余弦公式可得结果. 试题解析:(1)由22222230a c b ac +-+=,得22232a cb ac +-=-, 根据余弦定理得222332cos 224aca cb Bac ac -+-===-; (2)由3cos 4B =-,得sin B = ∴sin22sin cos BB B ==21cos22cos 18B B =-=,∴1sin 2sin2cos cos2sin 44428816B B B πππ⎫⎛⎫+=+=-+=⎪ ⎪⎪⎝⎭⎝⎭. 27.(1)3C π=(2)7+【解析】 【分析】(1)利用正弦定理,将2cos (cos cos )C a B b A c +=,转化为2cos (sin cos sin cos )sin C A B B A C +=,再利用两角和与差的三角的三角函数得到sin (2cos 1)0C C -=求解.(2)根据ABC 的面积为1sin 2ab C =12ab =,再利用余弦定理得()23a b ab =+-,求得+a b 即可. 【详解】(1)因为2cos (cos cos )C a B b A c +=, 所以2cos (sin cos sin cos )sin C A B B A C +=, 所以()2cos sin sin C A B C +=, 所以sin (2cos 1)0C C -=, 所以1cos 2C =, 又因为()0,C π∈, 所以3C π=.(2)因为ABC 的面积为所以1sin 2ab C = 所以12ab =.由余弦定理得:若2222cos c a b ab C =+-,()23a b ab =+- 所以7a b +=所以ABC 的周长7【点睛】本题主要考查正弦定理、余弦定理和两角和与差的三角函数的应用,还考查了转化化归的思想和运算求解的能力,属于中档题.28.(1)()2sin(2)6f x x π=+ (2)[-1,2] 【解析】试题分析:根据正弦型函数图象特点,先分析出函数的振幅和周期,最低点为2,23M π⎛⎫- ⎪⎝⎭,得2A =,周期T π=,则2==2T πω,又函数图象过2,23M π⎛⎫- ⎪⎝⎭,代入得42sin 23πϕ⎛⎫+=- ⎪⎝⎭,故1126k k Z πϕπ=-+∈,,又0,2πϕ⎛⎫∈ ⎪⎝⎭,从而确定6πϕ=,得到()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,再求其单调增区间. (2)分析72,636x πππ⎡⎤+∈⎢⎥⎣⎦,结合正弦函数图象,可知当262x ππ+=,即6x π=时,()f x 取得最大值2;当7266x ππ+=,即2x π=时,()f x 取得最小值1-,故()f x 的值域为[]1,2-. 试题解析:(1)依题意,由最低点为2,23M π⎛⎫-⎪⎝⎭,得2A =,又周期T π=,∴2ω=. 由点2,23M π⎛⎫-⎪⎝⎭在图象上,得42sin 23πϕ⎛⎫+=- ⎪⎝⎭, ∴4232k ππϕπ+=-+,k Z ∈,1126k k Z πϕπ∴=-+∈,. ∵0,2πϕ⎛⎫∈ ⎪⎝⎭,∴6πϕ=,∴()2sin 26f x x π⎛⎫=+ ⎪⎝⎭. 由222262k x k πππππ-≤+≤+,k Z ∈,得36k x k k Z ππππ-≤≤+∈,.∴函数()f x 的单调增区间是(),36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. (2),122x ππ⎡⎤∈⎢⎥⎣⎦,∴72,636x πππ⎡⎤+∈⎢⎥⎣⎦. 当262x ππ+=,即6x π=时,()f x 取得最大值2; 当7266x ππ+=,即2x π=时,()f x 取得最小值1-,故()f x 的值域为[]1,2-. 点睛:本题考查了三角函数的图象和性质,重点对求函数解析式,单调性,最值进行考查,属于中档题.解决正弦型函数解析式的问题,一定要熟练掌握求函数周期,半周期的方法及特殊值的应用,特别是求函数的初相时,要注意特殊点的应用及初相的条件,求函数值域要结合正弦函数图象,不要只求两个端点的函数值.29.(1)()4sin 34f x x π⎛⎫=+ ⎪⎝⎭,23π;(2)22,()43123k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z .【解析】【分析】(1)由函数的图象经过点412,π⎛⎫ ⎪⎝⎭且f (x )的图象有一条对称轴为直线12x π=, 可得最大值A ,且能得周期并求得ω,由五点法作图求出ϕ的值,可得函数的解析式.(2)利用正弦函数的单调性求得f (x )的单调递增区间.【详解】(1)函数f (x )=A sin (ωx +ϕ)(A >0,ω>0,2πϕ<)在一个周期内的图象经过点412,π⎛⎫ ⎪⎝⎭,5412π⎛⎫- ⎪⎝⎭,,且f (x )的图象有一条对称轴为直线12x π=, 故最大值A =4,且5212123T πππ=-=, ∴2T 3π=, ∴ω2Tπ==3. 所以()4sin(3)f x x ϕ=+.因为()f x 的图象经过点,412π⎛⎫⎪⎝⎭,所以44sin 312πϕ⎛⎫=⨯+ ⎪⎝⎭, 所以24k ϕπ=+π,k Z ∈. 因为||2ϕπ<,所以4πϕ=, 所以()4sin 34f x x π⎛⎫=+ ⎪⎝⎭. (2)因为()4sin 34f x x π⎛⎫=+⎪⎝⎭,所以232242k x k πππππ-+≤+≤+,k Z ∈, 所以2243123k k x ππππ-+≤≤+,k Z ∈, 即()f x 的单调递增区间为22,()43123k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z . 【点睛】本题主要考查由函数y =A sin (ωx +ϕ)的性质求解析式,通常由函数的最大值求出A ,由周期求出ω,由五点法作图求出ϕ的值,考查了正弦型函数的单调性问题,属于基础题.30.(1)()=4sin 23f x x π⎛⎫+ ⎪⎝⎭;(2)5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(3)76π; 【解析】【分析】(1)根据函数的最值可得A ,周期可得ω,代入最高点的坐标可得ϕ,从而可得解析式;(2)利用正弦函数的递增区间可解得;(3)利用()2f x =-在(0,)x π∈内的解就是1x 和2x ,即可得到结果.【详解】(1)由函数()f x 的图象可得4A =, 又因为函数的周期72()1212T πππ=-=,所以22πωπ==, 因为函数的图象经过点(,4)12P π,即4sin(2)412πϕ⨯+=, 所以2,62k k Z ππϕπ+=+∈,即2,3k k Z πϕπ=+∈, 所以()4sin(22)4sin(2)33f x x k x πππ=++=+. (2)由222,232k x k k Z πππππ-≤+≤+∈, 可得5,1212k x k k Z ππππ-≤≤+∈, 可得函数()f x 的单调递增区间为:5[,],1212k k k Z ππππ-+∈, (3)因为(0,)x π∈,所以72(,)333x πππ+∈, 又因为()2f x =-可得1sin(2)32x π+=-, 所以7236x ππ+=或11236x ππ+=, 解得512x π=或34x π=,、 因为12x x ≠且()12,0,x x π∈,12()()2f x f x ==-, 所以1253147124126x x ππππ+=+==. 【点睛】本题考查了由图象求解析式,考查了正弦函数的递增区间,考查了由函数值求角,属于中档题.。

河南省郑州市2022-2023学年高二下学期期末数学试题及答案

河南省郑州市2022-2023学年高二下学期期末数学试题及答案

郑州市2022-2023学年下期期末考试高二数学试题卷注意事项:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.考试时间120分钟,满分150分.考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效.交卷时只交答题卡.第I 卷(选择题,共60分)一、单选题:本大题共12个小题,每小题5分,共60分.在每小题所给出的四个选项中,只有一项是符合题目要求的.1.已知数列{}n a ,满足12n n a a --=,10a =,则10a =()A .18B .36C .72D .1442.2023年5月10日,第七届全球跨境电子商务大会在郑州举行,小郑同学购买了几件商品,这些商品的价格如果按美元计,则平均数为30,方差为60,如果按人民币计(汇率按1美元=7元人民币),则平均数和方差分别为()A .30,60B .30,420C .210,420D .210,29403.如图,洛书古称龟书,是阴阳五行术数之源.在古代传说中有神龟出于洛水,其甲壳上有此图像,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数.若从四个阴数和五个阳数中随机选取4个数,则选取的4个数之和为奇数的方法数为()A .60B .61C .65D .664.下列四个命题中,正确命题的个数为()①甲乙两组数据分别为:甲:28,31,39,42,45,55,57,58,66;;乙:,29,34,35,48,42,46,55,53,55,67.则甲乙的中位数分别为45和44.②相关系数0.89r =-,表明两个变量的相关性较弱.③若由一个22⨯列联表中的数据计算得2K 的观测值7.103k ≈,那么有99%的把握认为两个变量有关.④用最小二乘法求出一组数据(),i i x y ,()1,,i n = 的回归直线方程ˆy =ˆbxa + 后要进行残差分析,相应于数据(),i i x y ,()1,,i n = 的残差是指ˆi i e y =ˆi bx a ⎛⎫-+ ⎪⎝⎭.()20P K k 0.100.050.0250.0100.0050.001k 2.706 3.841 5.024 6.6357.87910.828A .1B .2C .3D .45.已知(1)nx -的二项展开式中二项式系数和为64,若2012(1)(1)(1)(1)nnn x a a x a x a x -=+++++++ ,则1a 等于()A .192B .448C .-192D .-4486.已知函数()2ln f x ax x =-的图象在点()()1,1f 处的切线与直线3y x =平行,则该切线的方程为()A .350x y -+=B .310x y --=C .310x y -+=D .310x y -+=7.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图所示的是由“杨辉三角”拓展而成的三角形数阵,图中虚线上的数1,3,6,10…构成数列{}n a ,记n a 为该数列的第n 项,则64a =()A .2016B .2080C .4032D .41608.下列说法中不正确...的是()A .若随机变量()2~1,X N σ,(4)0.79P X <=,则(2)0.21P X <-=B .若随机变量1~10,3X B ⎛⎫ ⎪⎝⎭,则期望10()3E X =C .已知随机变量X 的分布列为()(1,2,3)(1)a P X i i i i ===+,则2(2)3P X ==D .从3名男生,2名女生中选取2人,则其中至少有一名女生的概率为7109.若需要刻画预报变量Y 和解释变量x 的相关关系,且从已知数据中知道预报变量Y 随着解释变量x 的增大而减小,并且随着解释变量x 的增大,预报变量Y 大致趋于一个确定的值,为拟合Y 和x 之间的关系,应使用以下回归方程中的(0,b e >为自然对数的底数)()A .Y bx a =+B .ln Y b x a =-+C.Y a=D .x Y be a-=+10.对于三次函数()()320f x ax bx cx d a =+++≠,现给出定义:设()f x '是函数()f x 的导数,()f x ''是()f x '的导数,若方程()f x ''有实数解0x ,则称点()()00,x f x 为函数()()320f x ax bx cx d a =+++≠的“拐点”.经过探究发现:任何一个三次函数都有“拐点”,任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数()32533x g x x =-+,则123179999g g g g ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()A .173B .172C .17D .3411.已知数列{}n a 满足()*612,7N 2,7,n n a n n a n a n -⎧⎛⎫-+>⎪ ⎪=∈⎝⎭⎨⎪⎩,若对于任意*N n ∈都有1n n a a +>,则实数a 的取值范围是()A .1,12⎛⎫⎪⎝⎭B .12,23⎛⎫⎪⎝⎭C .2,13⎛⎫⎪⎝⎭D .21,3⎛⎫⎪⎝⎭12.若2ln ln b b a a a +=+,则下列式子可能成立的是()A .1a b >>B .1a b>>C .1b a>>D .1b a>>第II 卷(非选择题,共90分)二、填空题:本题共4小题,每小题5分,共20分.13.已知等比数列{}n a 满足:18a =,9132a =,230a a <则公比q =______.14.在甲,乙,丙三个地区爆发了流感,这三个地区分别有7%,6%,5%的人患了流感.若这三个地区的人口数的比为5:3:2,现从这三个地区中任意选取一个人,这个人患流感的概率是______.15.为积极践行劳动教育理念,扎实开展劳动教育活动,某学校开设三门劳动实践选修课,现有五位同学参加劳动实践选修课的学习,每位同学仅报一门,每门至少有一位同学参㕲,则不同的报名方法有______.16.2023年第57届世界乒乓球锦标赛在南非德班拉开帷幕,参赛选手甲、乙进入了半决赛,半决赛采用五局三胜制,当选手甲、乙两位中有一位赢得三局比赛时,就由该选手晋级而比赛结束.每局比赛皆须分出胜负,且每局比赛的胜负不受之前比赛结果影响.假设甲在任一局赢球的概率为()01p p ,比剉局数的期望值记为()f p ,则()f p 的最大值是______.三、解答题:共70分.解答题应写出文字说明、证明过程或验算步骤.17.(10分)一只口袋中装有形状、大小都相同的10个小球,其中有红球1个,白球4个,黑球5个.(I )若每次从袋子中随机摸出1个球,摸出的球不再放回.在第1次摸到白球的条件下,第2饮摸到白球的概率;(II )若从袋子中一次性随机摸出3个球,记黑球的个数为X ,求随机变量X 的概率分布.18.(12分)设数列{}n a 的前n 项和为n S ,已知12a =,142n n S a +=+.(I )设12n n n b a a +=-,证明:数列{}n b 是等比数列;(II )求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和n T .19.(12分)黄河是中华民族的母亲河、生命河,也是一条桀骜难驯的忧患之河.小浪底水利枢纽工程位于河南省济源市、洛阳市孟津区边界,是黄河治理开发的关键控制性工程.它控制着黄河92%的流域面积、91%的径流量和近100%的泥沙,以防洪、防淩、减淤为主,兼顾供水、灌溉、发电,不仅是中华民族治黄史上的丰碑,也是世界水利工程史上最具标志性的杰作之一,其大坝为预测渗压值和控制库水位,工程师在水库选取一支编号为并计算得102157457.98ii x==∑,102153190.77ii y ==∑,10155283.20i i i x y ==∑,272.9325319.076624=,275.8015745.791601=15.51≈.(I )求该水库HN1号渗压计管内水位与水库水位的样本相关系数(精确到0.01);(II )某天雨后工程师测量了水库水位,并得到水库的水位为76m .利用以上数据给出此时HN1号渗压计管内水位的估计值.附:相关系数()()niix x y y r --=∑()()()ˆ121nni iii ix x y y b x x ==--=-∑∑,ˆˆy b a x =+.20.(12分)已知函数()()22xx f x aea e x =+--.(I )讨论()f x 的单调性;(II )若()f x 有两个零点,求a 的取值范围.21.(12分)根据长期生产经验,某种零件的一条生产线在设备正常状态下,生产的产品正品率为0.985.为了监控该生产线生产过程,检验员每天从该生产线上随机抽取10个零件,并测量其质量,规定:抽检的10件产品中,若至少出现2件次品,则认为设备出现了异常情况,需对设备进行检测及修理.(I )假设设备正常状态,记X 表示一天内抽取的10件产品中的次品件数,求()2P X ,并说明上述监控生产过程规定的合理性;(II )该设备由甲、乙两个部件构成,若两个部件同时出现故䧐,则设备停止运转;若只有一个部件出现故障,则设备出现异常.已知设备出现异常是由甲部件故障造成的概率为p ,由乙部件故障造成的概率为1p -.若设备出现异常,需先检测其中一个部件,如果确认该部件出现故障,则进行修理,否则,继续对另一部件进行检测及修理.已知甲部件的检测费用2000元,修理费用6000元,乙部件的检测费用3000元,修理费用4000元.当设备出现异常时,仅考虑检测和修理总费用,应先检测甲部件还是乙部件,请说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. B. C. D.
第Ⅱ卷(非选择题,共100分)
二、填空题:本大题共4小题,每小题6分,共24分。将正确答案填在题中横线上
11.乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要排在第一、三、五位置,其余7名队员选2名安排在第二,四位置,那么不同的出场安排共有__________________种(用数字作答).
其中正确的命题有()
A.③④B.①③C.②④D.①②
3.5个人排成一排,若A、B、C三人左右顺序一定(不一定相邻),那么不同排法有()
A. B. C. D.
4.某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为()
解二:设巴西队已被分在某组,中国队此时面临7种可能位置,其中与巴西同组的位置有3种,故两队同组的概率为 .
答:中国队与巴西队被分在同一组的概率为 .
16.(12分)证明:(1)取PD中点E,连接NE、AE,则四边形MNEA是平行四边形,所以MN//AE,所以MN//平面PAD
(2)连接AC、BD交于O,连接OM、ON,因为ON//PA,所以ON⊥平面ABCD,因为OM⊥AB,由三垂线定理知,MN⊥AB;
9.甲、乙两人独立地解同一问题,甲解决这个问题的概率是P1,乙解决这个问题的概率是
P2,那么其中至少有1人解决这个问题的概率是()
A.P1+P2B.P1·P2C.1-P1·P2D.1-(1-P1) (1-P2)
10.袋中有6个白球,4个红球,球的大小相同,则甲从袋中取1个是白球,放入袋中,乙
再取1个是红球的概率为()
A.互斥事件B.独立事件C.对立事件D.不独立事件
7.从6种小麦品种中选出4种,分别种植在不同土质的4块土地上进行试验,已知1号、2
号小麦品种不能在试验田甲这块地上种植,则不同的种植方法有()
A.144种B.180种C.240种D.300种
8.在( )8的展开式中常数项是()
A.-28B.-7C.7D.28
(3)若平面PDC与平面ABCD所成的二面角为 ,
试确定 的值,使得直线MN是异面直线AB
与PC的公垂线.
17.(本题满分12分)某单位6个员工借助互联网开展工作,每个员工上网的概率都是0.5
(相互独立).
(1)求至少3人同时上网的概率;
(2)至少几人同时上网的概率小于0.3?
18.(本小题满分12分)某人有5把钥匙,1把是房门钥匙,但忘记了开房门的是哪一把,
(3)∵PA⊥面AC,AD是PD在面AC内的射影,CD⊥AD∴CD⊥PD∴∠PDA是二面角P-CD-B的平面角θ.当θ=45°时,AE⊥PD,AE⊥CD,∴AE⊥面PCD∵MN∥AE∴MN⊥面PCD,∵PC 面PCD,∴MN⊥PC,又由(2)知MN⊥AB,∴MN是AB与PC的公垂线.
17.(12分)解:每个人上网的概率为0.5,作为对立事件,每个人不上网的概率也为0.5,
11.252 12. 13.4 14.4
三、解答题(本大题共6题,共76分)
15.(12分)解一:记事件A为“中国队与巴西队被分在同一小组”,则事件A的对立事件; “中国队与巴西队被分在两个小组”. 8支球队分为两组共有 种方法,即基本事件总数为 ,其中中国队与巴西队被分在两个小组有 种可能,
根据对立事件的概率加法公式
在6个人需上网的条件下,r个人同时上网这个事件(记为Ar)的概率为:
P(Ar)= = = 式中r=0,1,2,…,6
第(1)问的解法一应用上述记号,至少3人同时上网即为事件A3+A4+A5+A6,因为A3、A4、A5、A6为彼此互斥事件,所以可应用概率加法公式,得至少3人同时上网的概率为P=P(A3+A4+A5+A6)= P(A3)+P(A4)+P(A5)+P(A6)
高二数学下期末测试题及答案
共150分.
第Ⅰ卷(选择题,共50分)
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.若 ,则 的值分别是()
A. B. C. D.
2.已知直线 ,直线 ,给出下列四个命题:
①若 ,则 ;②若 ,则 ;
③若 ,则 ;④若 ,则 .
(1)该三棱柱的侧面展开图的对角线长;
(2)PC和NC的长;
(3)平面NMP与平面ABC所成二面角答案
一、选择题(本大题共10小题,每小题5分,共50分)
题号
1
2
3
4
5
6
7
8
9
10
答案
A
B
C
B
B
D
C
C
D
D
二、填空题(本大题共4小题,每小题6分,共24分)
12.已知斜三棱柱 中,侧面 的面积为S,侧棱 与侧面 的距离为d,则斜三棱柱 的体积V=______________.
13.已知一个简单多面体的各个顶点都有三条棱,那么2F-V=.
14.已知 的展开式中, 的系数为 ,则常数 的值为__________________.
三、解答题:本大题共6小题,满分76分.
A. B. C. D.
5.一颗骰子的六个面上分别标有数字1、2、3、4、5、6,若以连续掷两次骰子分别得到的
点数m、n作为P点坐标,则点P落在圆 内的概率为()
A. B. C. D.
6.坛子里放有3个白球,2个黑球,从中进行不放回摸球.A1表示第一次摸得白球,A2
表示第二次摸得白球,则A1与A2是()
15.(本题满分12分)第17届世界杯足球赛小组赛在4支球队中进行.赛前,巴西队、士
耳其队、中国队等8支球队抽签分组,求中国队与巴西队被分在同一组的概率.
16.(本题满分12分)如图,ABCD为矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,
(1)求证:MN//平面PAD;(2)求证:MN⊥AB;
于是,他逐把不重复地试开,问:
(1)恰好第三次打开房门锁的概率是多少?
(2)三次内打开的概率是多少?
(3)如果5把内有2把房门钥匙,那么三次内打开的概率是多少?
19.(本题满分12分)已知 的展开式中,末三项的二项式系数的和等于121,求展开式中二项式系数的最大的项及系数最大项.
20.(本小题满分12分)如图,在正三棱柱 中, ,M为 的中点,P是BC上一点,且由P沿棱柱侧面经过棱 到M的最短路线长为 ,设这条最短路线与 的交点为N.求:
相关文档
最新文档