变化率问题(公开课)教学教材

合集下载

课件1:5.1.1 变化率问题

课件1:5.1.1 变化率问题

∴ΔΔyx=-ΔΔxx++242,
∴k= lim Δx→0
ΔΔyx=Δlixm→0
-ΔxΔ+x-242=-44=-1.
又 x=2 时 y=242=1,
∴切线方程为 y-1=-1×(x-2),即 x+y-3=0.
【课堂小结】
1.函数 y=f (x)在 x=x0 处的切线斜率反映了函数在该点处的
瞬时变化率,它揭示了事物在某时刻的变化情况.即:
【学以致用】
1.一物体的运动方程是 s=3+2t,则在[2,2.1]这段时间
内的平均速度是( )
A.0.4
B.2
C.0.3
D.0.2
B [ v =s22.1.1--s22=4.02-.1 4=2.]
2.物体自由落体的运动方程为 s(t)=12gt2,g=9.8 m/s2,若 v
=lim Δt→0
率及瞬时速度的概念.(易混点) 及数学运算的核心素养.
1.平均变化率
【新知初探】
对于函数 y=f (x),从 x1 到 x2 的平均变化率:
(1)自变量的改变量:Δx=__x_2-__x_1_. (2)函数值的改变量:Δy=__f_(_x_2_)-__f_(_x_1)__.
(3)平均变化率ΔΔyx=
【例 2】 某物体的运动路程 s(单位:m)与时间 t(单位:s)的关
系可用函数 s(t)=t2+t+1 表示,求物体在 t=1 s 时的瞬时速度.
[解] ∵ΔΔst=s1+ΔΔtt-s1
=1+Δt2+1+ΔΔtt+1-12+1+1=3+Δt,
∴lim Δt→0
ΔΔst =Δlitm→0
(3+Δt)=3.
5.1.1 变化率问题
学习目标
核心素养

《变化率问题》教学设计

《变化率问题》教学设计

《变化率问题》教学设计
一、教学设计说明
1.教材分析
本课是人教版高中数学选修2-2第一章第一节的第一课时的内容,其基本内容是平均变化率的概念。

我们知道函数在高中数学有着不可忽视的地位,并且导数是研究函数的重要工具及手段,而平均变化率直观的帮助学生了解导数概念的实际背景及几何意义,进而有利于学生更好的学习瞬时变化率——导数,可以说,这一节起到了承上启下的作用。

2.学情分析
本节课的教学对象为高二年级理科生,在物理中,学生已学过平均速度、瞬时速度、加速度等概念,这些都直接或间接地涉及到平均变化率的思想,同时学生又具备了一定的函数知识与解析几何知识,这些都有利于本节课的顺利进行。

平均变化率对于学生来说既陌生又熟悉,熟悉是因为现实生活中有大量问题涉及到平均变化率,所以说它是实践性很强的内容。

但是学生没有明确的系统的学习过平均变化率,不知道他的精确定义及内涵。

由于学生通过自己的亲身体验,亲自去解释生活中的一些问题,才能体会到平均变化率的基本思想。

因此需要学生具有高度的概括能力和深刻的思维能力,对学生的思维是一次挑战,因此,平均变化率的理解与转化是本节课的难点。

二、教案。

《变化率问题教学》课件

《变化率问题教学》课件

详细描述
在变化率问题中,建立数学模型是解决问题的第一步。首先需要对问题进行抽象 和简化,然后使用数学符号和公式来表示问题中的变量、参数和关系。通过建立 数学模型,可以将实际问题转化为数学问题,便于进行定量分析和求解。
导数的计算和运用
总结词
导数在变化率问题中具有重要应用,通过计算导数可以分析函数的变化趋势和极值点。
变化率与函数图像的关系
单调性
如果一阶导数大于0,则函数在该区间内单调递增;如果一阶 导数小于0,则函数在该区间内单调递减。
凹凸性
如果二阶导数大于0,则函数在该区间内是凹的;如果二阶导 数小于0,则函数在该区间内是凸的。
04
变化率问题解决策略
建立数学模型
总结词
通过建立数学模型,将实际问题转化为数学问题,便于分析和求解。
学Байду номын сангаас参与度与反馈
分析学生在课堂上的参与 情况,以及他们对变化的 反应和反馈,以便更好地 调整教学方法和内容。
学生自我评价与反馈
学生自我评价
引导学生反思自己在本次教学中 对变化率问题的理解程度,以及 自己的学习方法和态度是否有所
改进。
学习困难与问题
鼓励学生提出自己在理解变化率问 题时遇到的困难和问题,以便教师 更好地了解学生的学习需求和困难 。
变化率的应用场景
要点一
总结词
变化率的应用场景非常广泛,包括物理、工程、经济、生 物等领域。
要点二
详细描述
在物理学中,变化率用于描述速度、加速度等物理量的动 态变化。在工程领域,变化率可以用于预测和优化系统的 性能,如机械振动、流体动力学等。在经济领域,变化率 用于分析经济增长、通货膨胀等经济指标的变化趋势。在 生物领域,变化率可以用于描述物种数量、种群动态等生 态现象的变化趋势。

《变化率问题》课件

《变化率问题》课件

℃,由此可知

变式训练3
已知函数
,分别计算 在自变量 从1变化到2和从3变化
到5时的平均变化率,并判断在哪个区间上函数值变化的较快.
答案:


1.质点运动规律s=t2 +3,则在时间(3,3+t)中
相应的平均速度为( A )
A. 6+t C.3+t
B. 6+t+ 9 t
D.9+t
2.物体按照s(t)=3t2+t+4的规律作直线运动,求在4s 附近的平均变化率.
时,函数的平均变化率为
;(2)3.
【例2】过曲线 y f (x) x3 上的两点 P(1,1) 和 Q(1 x,1 y) 作曲线 的割线,求出当 x 0.1 时割线的斜率.
解:因为 y f (1 x) f (1)

所以割线 PQ 的斜率为 y (x)3 3(x)2 3x (x)2 3x 3.
25 3t
1.函数的平均变化率
2.利用导数定义求导数三步曲:
(1)求函数的增量 Δy=f(x0+Δx)-f(x0); (2)求平均变化率ΔΔxy=fx0+ΔΔxx-fx0;
(3)取极限,得导数 f′(x0)=Δlixm→0
Δy Δx
简口记诀为一:差一,二差比、,三二趋化近.、三极限
特别提醒 ①取极限前,要注意化简ΔΔxy,保证使 Δx→0 时分
高台跳水
在高台跳水运动中,运动员相对于水面的高度h(单 位:米)与起跳后的时间t(单位秒)存在函数关系
h(t)=-4.9t2+6.5t+10
h
如何用运动员在某些时间段内的平均 速度粗略地描述其运动状态?

变化率问题(教学课件)高二数学(人教A版2019选修第二册)

变化率问题(教学课件)高二数学(人教A版2019选修第二册)

∴抛物线f ( x) x2+2x在点P(1,3)处的切线方程为
y 3 4( x 1),即4x y 1 0.
例3 求抛物线f(x)=2x2-1在x=1处的切线方程.
解1:由已知得,当x 1时,f (1) 1.
取点P(1,1),在点P附近任宋取老一点Q(1 x, f (1 x)),则
内并非静止,因此,用平均速度不能精确描述运动员在这一时间段的运动状态.
为了精确刻画运动员的运动状态,需要引入瞬时速度的概念. 我们把物体在 某一时刻的速度称为瞬时速度(instantaneous velocity).
探究 瞬时速度与平均速度有什么关系? 你能利用这种关系求运动员在t=1
s时的瞬时速度吗?
0.001 0.0001 0.00001 0.000001
∆x <0
∆x >0
k x 宋师2 老数
∆x
1.99学精
0.01
k x 2
2.01
1.999品工 宋老师0.001 宋老师1.数99学99作精室品工作数室学精0.0001
2.001 2.0001
1.99999 1.999999
品工0作.00001 室 0.000001
2.00001 2.000001
通过观察可得,当∆x无限趋近于0,即无论x从小于1的一边,还是从大 于1的一边无限趋近于1时,割线P0P的斜率k近都无限趋近于2.
切线的斜率:
事实上,由 k f (1 x) f (1) x 2 可以发现,当∆x在无限趋近于0时,
x x 2无限趋近于2,我们把2叫宋做老“当△x无限趋近于0时,k
y
P•
师数 学精
4
T
品工 宋老师
限趋我近们于发一现个,确当定点宋的P老无位师限置数趋,学作近这精室于个品点工确作数品室P定0室学工时位精作,置割的线直P线0P无 P0T称为抛物线f(x)=x2在点P0(1, 1)处的切线.

变化率问题通用课件

变化率问题通用课件

变化率问题解析方法
导数与微分解析法
总结词 详细描述
差分解析法
总结词 详细描述
近似解析法
总结词
近似解析法是通过建立近似函数来研究变化率问题的方法。
详细描述
当函数过于复杂或难以直接求解时,可以采用近似解析法,通过近似函数的性质和结论来研究原函数的变化率问 题。常用的近似解析法包括泰勒级数展开、幂级数展开等。
数值解析法
总结词
详细描述
变化率问题应用实例
经济领域应用
总结词
经济领域中变化率问题应用广泛,涉及 经济增长、通货膨胀、利率变化等方面。
VS
详细描述
在经济学中,变化率问题广泛应用于分析 经济增长、通货膨胀、利率变化等现象。 例如,研究国内生产总值的变化率可以了 解经济增速;分析通货膨胀率的变化有助 于制定货币政策和财政政策;研究利率变 化率则对投资和储蓄决策具有指导意义。
MATLAB具有友好的用户界面和图形化编程方式,使得用户可以更加便捷地进行数值计算和数据处理。
Python软件介绍
Python是一种解释型、高级编程语言,具有简单易学、语法简洁、可读 性强等特点。
Python拥有丰富的第三方库和框架,如NumPy、Pandas、SciPy等,可 以进行科学计算、数据分析、机器学习等多种任务。
工程领域应用
总结词
详细描述
生物领域应用
总结词 详细描述
物理领域应用
总结词
详细描述
变化率问题求解软件介绍
MATLAB软件介绍
MATLAB是一款由MathWorks公司开发的商业数学软件,广泛应用于算法开发、数据可视化、数据分 析以及数值计算等领域。
MATLAB提供了丰富的函数库和工具箱,支持多种编程语言和脚本语言,方便用户进行算法设计和数据 分析。

5.1.1变化率问题(教学设计)(人教A版2019选择性必修第二册)

5.1.1变化率问题(教学设计)(人教A版2019选择性必修第二册)

5.1.1变化率问题教学设计一、课时教学内容1. 通过求高台跳水运动员在具体时刻的瞬时速度,体会求瞬时速度的一般方法.2.通过求曲线处某点处切线斜率的过程,体会求切线斜率的一般方法.3.理解函数的平均变化率,瞬时变化率的概念.二、课时教学目标1.体会由平均速度过渡到瞬时速度的过程,理解平均速度、瞬时速度的区别和联系.2.掌握瞬时速度的概念,会求解瞬时速度的相关问题.3.掌握割线与切线的定义,会求其斜率.三、教学重点、难点1、教学重点瞬时速度的概念、割线与切线的定义及斜率求法.2、教学难点割线与切线的斜率.四、教学过程设计环节一创设情境,引入课题为了描述现实世界中的运动、变化现象,在数学中引入了函数.刻画静态现象的数与刻画动态现象的函数都是数学中非常重要的概念.在对函数的深入研究中,数学家创立了微积分,这是具有划时代意义的伟大创造,被誉为数学史上的里程碑.微积分的创立与处理四类科学问题直接相关.一是已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度,反之,已知物体的加速度作为时间的函数,求速度与路程;二是求曲线的切线;三是求函数的最大值与最小值;四是求长度、面积、体积和重心等,历史上科学家们对这些问题的兴趣和研究经久不衰,终于在17世纪中叶,牛顿和莱布尼茨在前人探索与研究的基础上,凭着他们敏锐的直觉和丰富的想象力,各自独立地创立了微积分.导数是微积分的核心内容之一,是现代数学的基本概念,蕴含着微积分的基本思想;导数定量地刻画了函数的局部变化,是研究函数增减、变化快慢、最大(小)值等性质的基本方法,因而也是解决诸如增长率、膨胀率、效率、密度、速度、加速度等实际问题的基本工具.在本章,我们将通过丰富的实际背景和具体实例,学习导数的概念和导数的基本运算,体会导数的内涵与思想,感悟极限的思想.通过具体实例感受导数在研究函数和解决实际问题中的作用,体会导数的意义.5.1导数的概念及其意义在必修第一册中,我们研究了函数的单调性,并利用函数单调性等知识定性地研究了一次函数、指数函数、对数函数增长速度的差异,知道“对数增长”是越来越慢的,“指数函数”比“直线上升”快得多.进一步地,能否精确定量地刻画变化速度的快慢呢?下面我们就来研究这个问题.5.1.1变化率问题问题1高台跳水运动员的速度探究:在一次高台跳水运动中,某运动员在运动过程中的重心相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系2() 4.9 4.811h t t t =-++.如何描述运动员从起跳到入水的过程中运动的快慢程度呢?直觉告诉我们,运动员从起跳到入水的过程中,在上升阶段运动得越来越慢,在下降阶段运动得越来越快.我们可以把整个运动时间段分成许多小段,用运动员在每段时间内的平均速度v 近似地描述他的运动状态. 例如,在00.5t ≤≤这段时间里,(0.5)(0)2.35(m /s)0.50h h v -==-;在12t ≤≤这段时间里,(2)(1)9.9(m /s)21h h v -==--一般地,在12t t t ≤≤这段时间里,211221()()4.9() 4.8h t h t v t t t t -==-++-.环节二 观察分析,感知概念 思考:计算运动员在48049t ≤≤这段时间里的平均速度,你发现了什么? 你认为用平均速度描述运动员的运动状态有什么问题吗? 我们发现,运动员在049t ≤≤这段时间里的平均速度为0.显然,在这段时间内,运动员并不处于静止状态.因此,用平均速度不能准确反映运动员在这一时间段里的运动状态. 为了精确刻画运动员的运动状态,需要引入瞬时速度的概念.我们把物体在某一时刻的速度称为瞬时速度(instantaneous velocity ).探究:瞬时速度与平均速度有什么关系?你能利用这种关系求运动员在1s t =s 时的瞬时速度吗?设运动员在0t 时刻附近某一时间段内的平均速度是v ,可以想象,如果不断缩短这一时间段的长度,那么v 将越来越趋近于运动员在0t 时刻的瞬时速度. 用运动变化的观点研究问题是微积分的重要思想.为了求运动员在1t =时的瞬时速度,我们在1t =之后或之前,任意取一个时刻1t +∆,t ∆是时间改变量,可以是正值,也可以是负值,但不为0.当0t ∆>时,1t +∆在1之后,当0t ∆<时,1t +∆在1之前.当0t ∆>时,把运动员在时间段[1,1]t +∆内近似看成做匀速直线运动,计算时间段[1,1]t +∆内的平均速度v ,用平均速度v 近似表示运动员在1t =时的瞬时速度.当0t ∆<时,在时间段[1,1]t +∆内可作类似处理.为了提高近似表示的精确度,我们不断缩短时间间隔,得到如下表格(表5.1-1).表5.1-1当0t ∆<时,在时间段[1,1]t +∆内当0t ∆>时,在时间段[1,1]t +∆内t ∆2(1)(1)1(1)4.9()5 4.95h h t v t t tt t-+∆=-+∆∆+∆==-∆--∆t ∆2(1)(1)(1)14.9()5 4.95h t h v t t tt t+∆-=+∆--∆-∆==-∆-∆-0.01 -4.951 0.01 -5.049 -0.001 -4.9951 0.001 -5.0049 -0.0001 -4.99951 0.0001 -5.00049 -0.00001 -4.999951 0.00001 -5.000049 -0.000001-4.9999951 0.000001-5.0000049……观察:给出t ∆更多的值,利用计算工具计算对应的平均速度v 的值.当t ∆无限趋近于0时,平均速度v 有什么变化趋势?1时,平均速度v 都无限趋近于5-.事实上,由(1)(1)4.95(1)1h t h v t t +∆-==-∆-+∆-可以发现,当t ∆无限趋近于0时, 4.9t -∆也无限趋近于0,所以v 无限趋近于5-.这与前面得到的结论一致.数学中,我们把5-叫做“当t ∆无限趋近于0时,(1)(1)h t h v t+∆-=∆的极限”,记为0(1)(1)lim5t h t h t ∆→+∆-=-∆.从物理的角度看,当时间间隔t ∆无限趋近于0时,平均速度v 就无限趋近于1t =时的瞬时速度.因此,运动员在1s t =时的瞬时速度(1)5m /s v =-. 思考:(1)求运动员在2s t =时的瞬时速度;(2)如何求运动员从起跳到入水过程中在某一时刻0t 的瞬时速度? 解:(1)运动员在2s t =时的瞬时速度2200(2)(2)[ 4.9(2) 4.8()11][ 4.92 4.8211](2)lim lim (2)2t t h t h t t t v t t ∆→∆→+∆--+∆++∆+--⨯+⨯+==+∆-∆lim( 4.914.8)14.8t t ∆→=-∆+=.(2)运动员从起跳到入水过程中在某一时刻0t 的瞬时速度2200000000000()()[ 4.9() 4.8()11][ 4.9 4.811]()lim lim()t t h t t h t t t t t t t v t t t t t∆→∆→+∆--+∆++∆+--++==+∆-∆000lim( 4.99.8 4.8)9.8 4.8t t t t ∆→=-∆-+=-+.1.求问题1中高台跳水运动员在0.5s t =时的瞬时速度.1.【解析】22(0.5)(0.5)[ 4.9(0.5) 4.8(0.5)11]( 4.90.5 4.80.511)h t h t t +∆-=-+∆++∆+--⨯+⨯+24.9()0.1t t =-∆-∆,所以,00(0.5)(0.5)(0.5)limlim(0.1 4.9)0.1(m /s)t t h t h v t t∆→∆→+∆-==--∆=-∆.所以,高台跳水运动员在0.5s t =时的瞬时速度为0.1m /s -. 2.火箭发射s t 后,其高度(单位:m )为2()0.9h t t =,求: (1)在12t ≤≤这段时间里,火箭爬高的平均速度; (2)发射后第10s 时,火箭爬高的瞬时速度. 2.【解析】(1)因为22(2)(1)0.920.91 2.7(m /s)21h h v -==⨯-⨯=-,所以在12t ≤≤这段时间里,火箭爬高的平均速度为2.7m /s ;(2)因为222000(10)(10)0.9(10)0.9100.9()18lim lim lim (10)10t t t h t h t t t t t t ∆→∆→∆→+∆-⨯+∆-⨯∆+∆==+∆-∆∆ 0lim(0.11898)t t ∆→=∆+=.所以发射后第10s 时,火箭爬高的瞬时速度18m /s .3.一个小球从5 m 的高处自由下落,其位移y (单位:m )与时间t (单位:s )之间的关系为2() 4.9y t t =-.求1s t =时小球的瞬时速度.3.【解析】由题意知:222000()() 4.9() 4.99.8 4.9()lim lim limt t t y t t y t t t t t t t t t t∆→∆→∆→+∆--+∆+-⋅∆-∆==∆∆∆ 0lim(9.8 4.9)9.8t t t t ∆→=--∆=-,当1s t =时,小球的瞬时速度为s 9.8m /-.环节四 辨析理解,深化概念 问题2抛物线的切线的斜率我们知道,如果一条直线与一个圆只有一个公共点,那么这条直线与这个圆相切.对于一般的曲线C ,如何定义它的切线呢?下面我们以抛物线2()f x x =为例进行研究. 探究:你认为应该如何定义抛物线2()f x x =在点0(1,1)P 处的切线?与研究瞬时速度类似,为了研究抛物线2()f x x =在点0(1,1)P 处的切线,我们通常在点0(1,1)P 的附近任取一点2(,)P x x ,考察抛物线2()f x x =的割线0P P 的变化情况.观察:如图5.1-1,当点2(,)P x x 沿着抛物线2()f x x =趋近于点0(1,1)P 时,割线0P P 有什么变化趋势?我们发现,当点P 无限趋近于点0P 时,割线0P P 无限趋近于一个确定的位置,这个确定位置的直线0P T 称为抛物线2()f x x =在点0(1,1)P 处的切线. 环节五 概念应用,巩固内化探究我们知道,斜率是确定直线的一个要素.如何求抛物线2()f x x =在点0(1,1)P 处的切线0P T 的斜率0k 呢?从上述切线的定义可见,抛物线2()f x x =在点0(1,1)P 处的切线0P T 的斜率与割线0P P 的斜率有内在联系.记1x x ∆=-①,则点P 的坐标是2(1,(1))x x +∆+∆.于是,割线0P P 的斜率2()(1)(1)121(1)1f x f x k x x x -+∆-===∆+-+∆-.①x ∆可以是正值,也可以是负值,但不为0.我们可以用割线0P P 的斜率k 近似地表示切线0P T 的斜率0k ,并且可以通过不断缩短横坐标间隔x ∆来提高近似表示的精确度,得到如下表格(表5.1-2).表5.1-20x ∆< 0x ∆>x ∆ 2k x =∆+ x ∆ 2k x =∆+ -0.01 1.99 0.01 2.01 -0.001 1.999 0.001 2.001 -0.00011.99990.00012.0001OxyP 0PT2()f x x =-0.00001 1.99999 0.00001 2.00001 -0.0000011.9999990.0000012.000001……观察:利用计算工具计算更多割线0P P 的斜率k 的值,当x ∆无限趋近于0时,割线0P P 的斜率k 有什么变化趋势?近于1时,割线0P P 的斜率k 都无限趋近于2.事实上,由(1)(1)2f x f k x x+∆-==∆+∆可以直接看出,当x ∆无限趋近于0时,2x ∆+无限趋近于2.我们把2叫做“当x ∆无限趋近于0时,(1)(1)f x f k x+∆-=∆的极限”,记为(1)(1)lim2x f x f x∆→+∆-=∆.从几何图形上看,当横坐标间隔x ∆无限变小时,点P 无限趋近于点0P ,于是割线0P P 无限趋近于点0P 处的切线0P T .这时,割线0P P 的斜率k 无限趋近于点0P 处的切线0P T 的斜率0k .因此,切线0P T 的斜率02k =.思考:观察问题1中的函数2() 4.9 4.811h t t t =-++的图象(图5.1-2),平均速度(1)(1)(1)1h t h v t +∆-=+∆-的几何意义是什么?瞬时速度(1)v 呢?环节六 归纳总结,反思提升问题:请同学们回顾本节课的学习内容,并回答下列问题: 1. 本节课学习的概念有哪些?2() 4.9 4.811h t t t =-++(1,(1))h (1,(1))t h t +∆+∆图5.1-2(1) 平均速度、瞬时速度的概念及其关系。

高中数学《变化率问题》公开课优秀教学设计

高中数学《变化率问题》公开课优秀教学设计

《变化率问题》教学设计教材版本:普通高中数学教材人教A版《选修2-2》“1.1.1变化率问题”,一、教学内容分析导数是微积分的核心概念之一,是研究函数增减、变化快慢、最值问题的最一般、最有效的工具。

教材按照“平均变化率—瞬时变化率—导数的概念—导数的几何意义”的顺序安排,采用“逼近”的方法,从数形结合的角度定义导数,使导数概念的建立形象、直观而又容易理解,突出了导数概念的本质。

平均变化率是导数概念建立的核心,教材通过研究学生熟悉的“气球膨胀率”、“高台跳水”这两个生活实例,归纳出它们的共同特征,总结出一般函数平均变化率概念,使学生理解平均变化率刻画了函数在某一区间上的变化情况,并掌握平均变化率解法的一般步骤。

从知识形成的先后顺序来看,平均变化率是本章内容学习的核心概念,是研究瞬时变化率及其导数概念的基础,在整个导数学习中占有极其重要的地位。

在概念的形成过程中,将进一步渗透从特殊到一般的化归思想,数形结合思想。

基于上述分析,我将本节课的教学重点确定为:理解平均变化率的概念,掌握平均变化率解法的一般步骤,了解平均变化率的几何意义。

二、学生情况分析(一)、学生已有的认知基础1、学生具备了一定的函数知识,可以通过表格、图像、关系式三种不同的函数表现形式,求解函数在某一区间内“因变量的增量与自变量的增量的比值。

并能从图像中看出函数变化的快与慢。

2、学生已在物理中学习了平均速度、瞬时速度、加速度等概念,比较容易理解可以用“平均速度”刻画物体在一段时间内的速度。

(二)可能存在的认知困难1、“吹气球”与“高台跳水”是学生非常熟悉的生活实例,如何从具体实例中抽象出共同的数学本质,能够用“平均变化率”对生活中的变化快慢现象进行合理的数学解释是本节课教学的关键,也是难点所在。

2、利用变化率的有关知识解释生活的中一些现象,需要学生具有一定抽象概括能力和应用数学数学语言表达问题的能力。

对高中生而言,抽象概括能力和应用数学语言的能力还有待进一步的提高。

5.1.1变化率问题(第二课时)优秀获奖公开课 课件-2021-2022学年高二下学期数学人教A版(

5.1.1变化率问题(第二课时)优秀获奖公开课 课件-2021-2022学年高二下学期数学人教A版(
f(1+Δx)-f(1)
lim
=2
Δx
Δx→0
记为“________________________”
• 从几何图形上看
小结
抛物线的割线及切线的斜率
1.割线的斜率
点P0(x0, f(x0))与P + ∆, ( + ∆) 两点间的斜率
f ( x0 x) f ( x0 )
k
x
x 0
x 0
x
2
0
抛物线f ( x) x 2 1在点(0,1)处的切线方程为
y 1 0
例题1(2)求抛物线 f ( x) x 2 1在点(2,5)处的切线斜率 .
2.若抛物线 y=2x2-1 的图象上一点(1,1)及其邻近一点(1+Δx,1+Δy),
则这两点所在割线的斜率为(
k0 lim
x 0
x
则v

1, v 2 的大小关系是(
)
- -
A. v 1< v 2
- -
B. v 1> v 2
- -C. v 1= 来自 2D.无法确定解析
- s(t0+Δt)-s(t0)
- s(t0)-s(t0-Δt)
v 1=
=2t0+Δt, v 2=
=2t0-Δt,
Δt
Δt
- -
而 Δt 可正可负,故 v 1, v 2 的大小关系不确定.
)
A.2+Δx
B.2-2Δx
C.4+2Δx
D.4
解析
2(1+Δx)2-1-1
这两点所在割线的斜率为 k=
=4+2Δx.
Δx
3.一质点沿直线运动,位移 s 与时间 t 之间的关系为 s(t)=t2,质点在

5.1.1变化率问题课件(人教版)

5.1.1变化率问题课件(人教版)

(1)设 P0(x0,f (x0)),P(x,f (x))是曲线 y=f (x)上任意不同两点,
则平均变化率fx-fx0=fx0+Δx-fx0为割线
x-x0
Δx
P0P
的__斜__率_.
(2)当 P 点逐渐靠近 P0 点,即Δx 逐渐变小,当Δx→0 时,瞬时变
化率
lim
Δx→0
fx0+Δx-fx0就 是 Δx
的瞬时速度,这就需要用到我们数学中的“极限”思想,意思就是让Δt无限
趋近于0.
ht0+Δt-ht0
lim
Δt→0
Δt
思考:在点P0(1,1)的附近任取一点P(x,x2),考察抛物线f(x)=x2的割线 P0P有什么变化趋势?
提示 当点P无限趋近于点P0时,割线P0P无限趋近于一个确定的位置.
曲线的切线斜率
5.1.1 变化率问题
学习目标
1.通过实例,了解平均速度与瞬时速度. 2.理解割线的斜率与切线的斜率之间的关系. 3.会求曲线在某一点处的切线方程.
情境导入 在高台跳水中, 运动员相对于水面的高度h 与起跳后的时间存在函数关 系h(t)=-4.9t2+6.5t+10, 根据上述探究,你能求该运 动员在0≤t≤0.5,1≤t≤2, 0≤t≤6459内的平均速度吗?
例 1 某物体的运动路程 s(单位:m)与时间 t(单位:s)的关系可 用函数 s(t)=t2+t+1 表示,求物体在 t=1 s 时的瞬时速度.
[解] ∵ΔΔst=s1+ΔΔtt-s1
=1+Δt2+1+ΔΔtt+1-12+1+1=3+Δt,
∴lim Δt→0
ΔΔst =Δlitm→0
(3+Δt)=3.
提示 0≤t≤0.5 时, v =h00.5.5- -h00=4.05(m/s);1≤t≤2 时, v = h22- -h11=-8.2(m/s);0≤t≤6459时, v =h46649559--h00=0(m/s);

1.1.1《变化率问题》人教a版选修省公开课金奖全国赛课一等奖微课获奖PPT课件

1.1.1《变化率问题》人教a版选修省公开课金奖全国赛课一等奖微课获奖PPT课件

14/15
小结:
y f (x2 ) f (x1)
x
x2 x1
2.求函数平均改变率步骤:
(1)求函数增量Δf=Δy=f(x2)-f(x1);
(2)计算平均改变率 y 1.函数平均改变率 x
f (x2 ) f (x1) x2 x1
15/15
1.1.1 改变率问题
1/15
问题1 气球膨胀率
在吹气球过程中, 可发觉,伴随气球内空气容量增加,
气球半径增加得越来越慢. 从数学角度, 怎样描述这种
现象呢?
气球体积V(单位:L)与半径r (单位:dm)之间函数关系是
V(r) 4 r3.
3
若将半径 r 表示为体积V函数, 那么
3
r (V) 3V .
(1) [ –3 , –1] ;
(2) [ 0 , 5 ] .
13/15
做两个题吧!
1 、已知函数f(x)=-x2+x图象上一点A(-1,-2) 及临近一点B(-1+Δx,-2+Δy),则Δy/Δx=( )
A、3
D
B、 3Δx-(Δx)2
C 、 3-(Δx)2
D 、3-Δx
2、求y=x2在x=x0附近平均改变率. 2x0+Δx
观察:3月18日到4月18日与4月18日到4月20日温度
T 改(℃变) ,用曲线图表示为: C (34, 33.4)
30
(注: 3月18日
为第一天)
20
B (32, 18.6)
10 A (1, 3.5)
2
02
10
20
30 34 t(d)
6/15
T (℃) 30 20
C (34, 33.4) B (32, 18.6)

5.1.1变化率问题课件——高二上学期数学人教A版选择性必修第二册

5.1.1变化率问题课件——高二上学期数学人教A版选择性必修第二册
为瞬时速度.
可以用这两个时间段内的平均速度
近似表示运动员在时的瞬时速度.
速度涉及时间改变量∆ = − ,
∆可以是正值,也可以是负值,
以求=1时的瞬时速度为例看瞬时
但不为0.
速度与平均速度的关系.
不妨设∆ > ,则的附近有两
− ∆ −
个时间段[ − ,]与[, + ∆], =
+ /
当 ∆ 无限趋近于0时,±. ∆无限
趋近于0,平均速度 无限趋近于−7.
7
新课知识极Biblioteka 数学中我们把−7叫做“当∆
无限趋近于0时,平均速度
+∆ −()
=
的极限”记为



当∆ → 时平均变化率


+∆ −
=
无限趋


+ ∆ −
−7
0.001
−6.995 1
−7.004 9
−7
0.000 1
−6.999 51
−7.000 49
−7
0.000 01
−6.999 951
−7.000 049
0.000 001
−6.999 995 1
−7.000 004 9
−7
−7
⋯⋯
−7

⋯⋯
⋯⋯
= . ∆ −
= −. ∆ −
. −

≤≤

/ −
=
= Τ
/ −
≤ ≤ .
. −
=
= −. Τ
. −
要精确地描述

变化率问题 课件

变化率问题 课件

平均变化率的应用
试比较正弦函数y=sinx在x=0和x=
π 2
附近的平
均变化率哪一个大?
[解题思路探究] 第一步,审题. 一审结论明确解题方向.比较函数平均变化率的大小,可以先将函数在每个自变量的附近的 平均变化率求出,然后进行大小的比较.
二审条件把握解题信息.求正弦函数的平均变化率可按三角函数知识变形,便于比较大小.
新知导学
2.高台跳水运动员当高度从h(t1)变化到h(t2)时,他的平均
ht2-ht1 速度为____t2_-__t_1 ____.
3.函数平均变化率的定义
已知函数y=f(x),当自变量x从x1变化到x2时,函数值从
fx2-fx1 f(x1)变化到f(x2),则当x1≠x2时,比值____x_2_-__x_1 _为函数f(x)从 x1到x2的平均变化率.习惯上用Δx表示x2-x1,用__x1_+__Δ_x____ 代替x2;类似地,_Δ__y_=__f(_x_2)_-__f_(x_1_)__,于是平均变化率可以表
①求函数值的增量:Δy=f(x0+Δx)-f(x0); ②计算平均变化率:ΔΔyx=fx0+ΔΔxx-fx0. 2.要注意Δx,Δy的值可正,可负,但Δx≠0,Δy可为 零,若函数f(x)为常值函数,则Δy=0.
平均变化率的几何意义和物理意义
过曲线f(x)=x3上两点P(1,1)和Q(1+Δx,1+Δy)作 曲线的割线,求出当Δx=0.1时割线的斜率.
变化率问题
新知导学
1.在气球膨胀过程中,当空气容量从V1增加到V2时,气
rV2-rV1 球的半径从r(V1)增加到r(V2),气球的平均膨胀率是___V_2-__V__1 __. 随着气球体积逐渐变大,它的平均膨胀率逐渐变__小____.

【高中数学】高中数学选修22公开课教案1.1.1变化率问题

【高中数学】高中数学选修22公开课教案1.1.1变化率问题

§1.1.1变化率问题教学目标1.理解平均变化率的概念; 2.了解平均变化率的几何意义;3.会求函数在某点处附近的平均变化率教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线;三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。

导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。

导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二.新课讲授 (一)问题提出 问题1 气球膨胀率我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?⏹ 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是334)(r r V π=⏹ 如果将半径r 表示为体积V 的函数,那么343)(πV V r = 分析: 343)(πV V r =, ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈- 气球的平均膨胀率为)/(62.001)0()1(L dm r r ≈--⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈- 气球的平均膨胀率为)/(16.012)1()2(L dm r r ≈--可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少?hto1212)()(V V V r V r --问题2 高台跳水在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2+6.5t +10.如何用运动员在某些时间段内的平均速v 度粗略地描述其运动状态?思考计算:5.00≤≤t 和21≤≤t 的平均速度v在5.00≤≤t 这段时间里,)/(05.405.0)0()5.0(s m h h v =--=;在21≤≤t 这段时间里,)/(2.812)1()2(s m h h v -=--=探究:计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题:⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h (t )= -4.9t 2+6.5t +10的图像,结合图形可知,)0()4965(h h =, 所以)/(004965)0()4965(m s h h v =--=, 虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态. (二)平均变化率概念: 1.上述问题中的变化率可用式子 1212)()(x x x f x f --表示, 称为函数f (x )从x 1到x 2的平均变化率2.若设12x x x -=∆, )()(12x f x f f -=∆ (这里x ∆看作是对于x 1的一个“增量”可用x 1+x ∆代替x 2,同样)()(12x f x f y f -=∆=∆)3. 则平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212思考:观察函数f (x )的图象 平均变化率=∆∆x f1212)()(x x x f x f --表示什么?直线AB 的斜率三.典例分析例1.已知函数f (x )=x x +-2的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则=∆∆xy. 解:)1()1(22x x y ∆+-+∆+--=∆+-,∴x xx x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2 例2. 求2x y =在0x x =附近的平均变化率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

问题2 已知函数f(x)=3x+1,g(x)= -2x,分别求f(x)及g(x)
从 -3到2的平均变化率.
探究 函数y=kx+b从m到n(m<n)的平均变化率等于多少?
思考 平均变化率:y f (x2 ) f (x1) 表示什么几何意义?
x
x2 x1
y
f (x2)
B y f (x)
A f ( x1 )
f (t2 ) f (t1) t2 t1
对应函数值的变化量 自变量的变化量
思考讨论
若函数关系为 y , 当f (x)从 增加x 到 x1时,
x2 则它的平均变化率如何表示?
f (x2 ) f (x1) x2 x1
函数值的变化量 自变量的变化量
平均变化率概念
我们把式子:f (x2) f (x1) x 2 x1
问题情境
现有武汉今年3月和4月中三天日最高气温记载表.
时间
3月18日 4月18日 4月20日
日最高气温 3.5℃ 18.6℃ 33.4℃
T(℃) 30
C (34, 33.4)
20
10 A (1, 3.5)
B (32, 18.6)
2
02
10
20
30 34 t(d)
T(℃) 30
C (34, 33.4)
5 天数
1.已知函数f ( x) x2 x的图像上的一点A(1, 2)
及附近一点B(1
x,
2
y),则
y x
3 x
.
y x
(x)2 x
(2)求函数值的增量Δy=f(x2)-f(x1)
(3)计算平均变化率 y
3.平均变化率的意义:
x
表示变量的变化快慢,刻画曲线的陡峭程度
祝高二(6)班同学们学有所成!
探究
观察函数 y f (x) 的图象,讨论:
当 x1 逼近于 x2 ,即
x逼近于 0 时,其
割线AB的斜率有什么 样的变化趋势?
y
BC段:温 差 14.8
时间差 2
温差 时间差
14.8 2
7.4(C
/
d
)
T(℃)
C f (t)
30
f (t2 )
f (t1)
2
02
f (t2 ) f (t1)
10
t1
20
t2 t1
t2
34 t(d)
问题4:如果把气温C看作时间t的函数,即C=f(t),则t1至t2这 段时间内气温的平均变化率如何表示?
从 x1 到 x2的平均变化率.
令 x x2 x1
y f (x2 ) f (x1)
平均变化率表示为:
称为函数 y f (x)
y x
f (x2) f (x1) x2 x1
f (x1 x) x
f (x1)
问题1
在高台跳水中,运动员相对于水面的高度h(单 位:m)与起跳后的时间t(单位:s)存在函数关
f ( x2 ) f ( x1)
x2 x1
Байду номын сангаас
O
x1
x2
x
AB斜率 k y2 y1 f (x2 ) f (x1)
x2 x1
x2 x1
问题3 已知函数 f(x)=x2,分别计算f(x)在下列区间
上的平均变化率:
y
(1)[1,3]; 4
(2)[1,2]; 3
(3)[1,1.1]; 2.1
(4)[1,1.001]. 2.001
变(5)[0.9,1]; 1.9
式( (67))[[00..9999,9,1]1;]. 11..99999
P
1
3
x
思考:为什么趋近于2呢? 2的几何意义是什么?
这节课我收获了什么?
1.平均变化率的定义:y x
f (x2) f (x1) x2 x1
f (x1 x) x
f (x1)
2.求平均变化率的步骤:(1)求自变量的增量Δx=x2-x1
郫 县 四 中 G2.6
PIXIAN NO.4 MIDDLE SCHOOL G2.6
3.1.1变化率问题
微积分创立者
Newton
Leibniz
微积分创立背景
微积分的创立主要与四类问题处理有关: (1)瞬时变化率 (2)切线问题 (3)函数最值 (4)几何求积
微积分的创立是人类精神文明的最高胜利—恩格斯
14.8 (C)
B (32, 18.6)
15.1(C)
2
02
10
20
30 34 t(d)
31(d )
2(d )
问问题题21::能A到不B能和说B“到温C这度两差段越时大间,哪气一温段变的化温越度快差?较”大?
AB段: 温差 =18.6 3.5 =15.1
时间差 = 32 1 = 31
BC段: 温差 =33.4 18.6=14.8 时间差 = 34 32 = 2
20
10 A (1, 3.5)
2
02
10
B (32, 18.6)
20
30 34 t(d)
问题1:A到B和B到C这两段时间哪一段的温度差较大?
问题2:能不能说“温度差越大,气温变化越快?”
问题3:如何用温度差与时间差来表示气温变化快慢程度?
T(℃)
C (34, 33.4)
30 20
10 A (1, 3.5)
在高台跳水中,运动员相对于水面的高度h(单 位:m)与起跳后的时间t(单位:s)存在函数关
系:
h(t) 4.9t 2 6.5t 10
探究 计算运动员在 0 t 65 这段时间里的
平均速度,并思考: 49
(1)运动员在这段时间内是静止的吗? (2)你认为用平均速度描述运动员的运动状态 有什么问题吗?
系:
h(t) 4.9t 2 6.5t 10
求该运动员在以下时间段内的平均速度:
(1) 0 t 0.5 (2) 1 t 2
解 (:1)v h h(0.5) h(0) 4.05(m / s) t 0.5 0
(2)v h h(2) h(1) 8.2(m / s) t 2 1
问题1
T(℃)
C (34, 33.4)
30 20
10 A (1, 3.5)
14.8 (C)
B (32, 18.6)
15.1(C)
2
02
10
20
30 34 t(d)
31(d )
2(d )
问题3:如何用温度差与时间差来表示气温变化快慢程度?
AB段温: 差 15.1
时间差 31
温差 时间差
15.1 31
0.49(C / d)
fx2 f x 1
y fx
B
A x2 x1
fx2 fx1
O
x1
x2
x
德国著名心理学家 艾宾浩斯的遗忘曲线
记忆保持量(百分数)
100
80
60
40
艾宾浩斯遗忘曲线
20
0
1
2 34
时间间隔
刚刚记忆完毕 20分钟之后 1小时之后 8-9小时之后
1天后 2天后 6天后 一个月后 ……
记忆保持量
100% 58.2% 44.2% 35.8% 33.7% 27.8% 25.4% 21.1% ……
相关文档
最新文档