专题12四边形的几何综合问题(原卷版)【苏科版】
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年中考数学必考经典题讲练案【苏科版】
专题12四边形的几何综合问题
【方法指导】
1.平行四边形的判定与性质的作用
平行四边形对应边相等,对应角相等,对角线互相平分及它的判定,是我们证明直线的平行、线段相等、角相等的重要方法,若要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.
2.菱形的性质与判定:
菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.菱形的四条边都相等,
菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.
3.矩形的性质与判定:
关于矩形,应从平行四边形的内角的变化上认识其特殊性:一个内角是直角的平行四边形,进一步研究其特有的性质:是轴对称图形、内角都是直角、对角线相等.同时平行四边形的性质矩形也都具有.
在处理许多几何问题中,若能灵活运用矩形的这些性质,则可以简捷地解决与角、线段等有关的问题.
4.正方形:
①正方形的四条边都相等,四个角都是直角;②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;③正方形具有四边形、平行四边形、矩形、菱形的一切性质.
④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.【题型剖析】
【类型1】平行四边形的计算与证明
【例1】(2019•宿豫区模拟)如图,在▱ABCD中,对角线AC、BD相交于点O,过点O的直线分别交BC、AD于点E、F,G、H分别是OB、OD的中点.求证:
(1)OE=OF;
(2)四边形GEHF是平行四边形.
【变式1-1】(2019•亭湖区二模)已知点E、F分别是▱ABCD的边BC、AD的中点.(1)求证:四边形AECF是平行四边形;
(2)若BC=10,∠BAC=90°,求▱AECF的周长.
【变式1-2】(2019•海门市一模)如图,▱ABCD中,点E是BC边的一点,延长AD至点F,使∠DFC=∠DEC.求证:四边形DECF是平行四边形.
【变式1-3】(2019•建邺区一模)如图,四边形ABCD是平行四边形,分别以AB,CD为边向外作等边△ABE 和△CDF,连接AF,CE.求证:四边形AECF为平行四边形.
【类型2】菱形的计算与证明
【例2】(2019•海门市二模)如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,过C作CF∥AB交DE延长线于点F,连接AF、DC.
求证:
(1)DE=FE;
(2)四边形ADCF是菱形.
【变式2-1】(2019•兴化市二模)已知:如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.
(1)求证:四边形ABEF是菱形;
(2)若AE=6,BF=8,平行四边形ABCD的面积是36,求AD的长.
【变式2-2】(2019•江都区二模)如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.
(1)求证:四边形AECD是菱形;
(2)若AB=5,AC=12,求EF的长.
【变式2-3】(2019•宿迁模拟)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC.BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E.连接OE.
(1)求证:四边形ABCD是菱形;
(2)若AB.OE=2,求线段CE的长.
【类型3】矩形的计算与证明
【例3】(2019•丹阳市一模)已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE ∥BD.
(1)求证:四边形AODE是矩形;
(2)若AB=2,∠BCD=120°,求四边形AODE的面积.
【变式3-1】(2019•建湖县二模)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD 交于点O,AO=BO,DE平分∠ADC交BC于点E,连接OE.
(1)求证:四边形ABCD是矩形;
(2)若AB=2,求△OEC的面积.
【变式3-2】(2019•延边州二模)如图,在平行四边形ABCD中,过点D做DE⊥AB于E,点F在边CD上,DF=BE,连接AF、BF.
(1)求证:四边形BFDE是矩形;
(2)若CF=3,BE=5,AF平分∠DAB,求平行四边形ABCD的面积.
【类型4】四边形综合问题
【例4】.(2019•桓台县二模)已知,正方形ABCD,∠EAF=45°,
(1)如图1,当点E,F分别在边BC,CD上,连接EF,求证:EF=BE+DF;
(2)如图2,点M,N分别在边AB,CD上,且BN=DM,当点E,F分别在BM,DN上,连接EF,请探究线段EF,BE,DF之间满足的数量关系,并加以证明;
(3)如图3,当点E,F分别在对角线BD,边CD上,若FC=2,则BE的长为.
【变式4-1】(2019•灌南县二模)正方形ABCD的边长为1,点O是BC边上的一个动点(与B,C不重合),以O为顶点在BC所在直线的上方作∠MON=90°
(1)当OM经过点A时,
①请直接填空:ON(可能,不可能)过D点:(图1仅供分析)
②如图2,在ON上截取OE=OA,过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,求证:
四边形EFCH为正方形;
③如图2,将②中的已知与结论互换,即在ON上取点E(E点在正方形ABCD外部),过E点作EF垂
直于直线BC,垂足为点F,作EH⊥CD于H,若四边形EFCH为正方形,那么OE与OA是否相等?请说明理由;
(2)当点O在射线BC上且OM不过点A时,设OM交边BA的延长线于G,且OG=2.在ON上存在点P,过P点作PK垂直于直线BC,垂足为点K,使得S△PKO S△OBG,连接GP,则当BO为何值时,四边形PKBG的面积最大?最大面积为多少?