三角形内角和练习

合集下载

(完整版)三角形内角和练习题

(完整版)三角形内角和练习题

三角形的内角和练习例题分析】例1. 在△ABC 中,已知∠ A=1∠B=1∠C,请你判断三角形的形状。

23 分析:三角形的形状按边分和按角分两类,本题由于不可能按边分,因此只有计算各角的度数,按角来确定形状,由于在该题中∠ C 是最大的角,因此只需求出∠ C 的度数即可判断三角形的形状。

例2. 如图,已知DF⊥AB 于点F,且∠ A=45°,∠ D=30°,求∠ ACB 的度数。

例3. 如图,在△ ABC 中,∠ 1=∠ 2,∠ 3=∠ 4,∠ BAC =54°,求∠ DAC 的度数例4. 已知在△ ABC 中,∠A=62°,BO、CO 分别是∠ ABC 、∠ ACB 的平分线,且BO、CO 相交于O,求∠ BOC 的度数。

〖拓展与延伸〗(1)已知△ AB 中C,BO、CO分别是∠ ABC 、∠ ACB 的平分线,且BO、CO相交于点O,试探索∠ BOC 与∠A 之间是否有固定不变的数量关系。

(2)已知BO、CO分别是△ ABC 的∠ ABC 、∠ ACB 的外角角平分线,BO、CO相交于O,试探索∠ BOC 与∠A 之间是否有固定不变的数量关系。

(3)已知:BD为△ABC 的角平分线,CO为△ABC 的外角平分线,它与BO的延长线交于点O,试探索∠ BOC 与∠A 的数量关系由前面的探索同学们可以发现三角形三个角(或外角)的平分线所夹的角与第三个内角之间存在着一定的数量关系。

例5. 已知多边形的每一个内角都等于135°,求这个多边形的边数。

例6. 一个零件的形状如图,按规定∠ A=90°,∠B 和∠C 应分别是32°和21°,检验工人量得∠ BDC=149°,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由。

分析:验证的关键是求出∠ A 的度数,即把∠ A 用已知的角∠ B、∠ C、∠BDC 联系起来,利用三角形关于角的性质就可以发现它们之间的关系CE随堂检测】A组1、在△ ABC 中,∠A=40°,∠ B=∠C,则∠ C=。

三角形内角和综合习题精选(含答案)

三角形内角和综合习题精选(含答案)

三角形内角和综合习题精选一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?2.如图,DB是△ABC的高,AE是角平分线,∠BAE=26°,求∠BFE的度数.3.如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?4.如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数;(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,写出结论无需证明.5.(1)如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB=_________,∠XBC+∠XCB=_________.(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ 的两条直角边XY、XZ仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.6.如图1,△ABC中,∠A=50°,点P是∠ABC与∠ACB平分线的交点.(1)求∠P的度数;(2)猜想∠P与∠A有怎样的大小关系?(3)若点P是∠CBD与∠BCE平分线的交点,∠P与∠A又有怎样的大小关系?(4)若点P是∠ABC与∠ACF平分线的交点,∠P与∠A又有怎样的大小关系?【(2)、(3)、(4)小题只需写出结论,不需要证明】8.如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动.(1)若|x+2y﹣5|+|2x﹣y|=0,试分别求出1秒钟后A、B两点的坐标;(2)设∠BAO的邻补角和∠ABO的邻补角的平分线相交于点P,问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC、∠FCA、∠ABC的平分线相交于点G,过点G作BE的垂线,垂足为H,试问∠AGH和∠BGC的大小关系如何?请写出你的结论并说明理由.9.如图所示,点E在AB上,CE,DE分别平分∠BCD,∠ADC,∠1+∠2=90°,∠B=75°,求∠A的度数.10.如图,∠AOB=90°,点C、D分别在射线OA、OB上,CE是∠ACD的平分线,CE的反向延长线与∠CDO的平分线交于点F.(1)当∠OCD=50°(图1),试求∠F.(2)当C、D在射线OA、OB上任意移动时(不与点O重合)(图2),∠F的大小是否变化?若变化,请说明理由;若不变化,求出∠F.11.如图,△ABC中,AE、BF是角平分线,它们相交于点O.(∠ABC>∠C),(1)试说明∠BOA=90°+∠C;(2)当AD是高,判断∠DAE与∠C、∠ABC的关系,并说明理由.12.已知△ABC中,∠BAC=100°.(1)若∠ABC和∠ACB的角平分线交于点O,如图1所示,试求∠BOC的大小;(2)若∠ABC和∠ACB的三等分线(即将一个角平均分成三等分的射线)相交于O,O1,如图2所示,试求∠BOC的大小;(3)如此类推,若∠ABC和∠ACB的n等分线自下而上依次相交于O,O1,O2…,如图3所示,试探求∠BOC的大小与n的关系,并判断当∠BOC=170°时,是几等分线的交线所成的角.答案与评分标准一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?考点:三角形的角平分线、中线和高;角平分线的定义;垂线;三角形内角和定理。

(完整版)三角形内角和外角练习题

(完整版)三角形内角和外角练习题

规律方法指导1.三角形内角和为180°,三角形三个外角的和是360°,这是在做题时题设不用加以说明的已知条件;在三个角中已知其中两个角的度数便能求第三个角的大小。

2.在一个三角形中最多只能有一个钝角或者一个直角,最少有两个锐角。

3.三角形内角和定理和三角形外角的性质是求角度数及有关的推理论证时经常使用的理论依据.外角的性质应用:①证明一个角等于另两个角的和;②作为中间关系式证明两角相等;③证明角的不等关系。

4.利用作辅助线求解问题,会使问题变得简便。

经典例题透析类型一:三角形内角和定理的应用1.已知一个三角形三个内角度数的比是1:5:6,则其最大内角的度数为( )A.60° B.75° C.90° D.120°举一反三:【变式1】在△ABC中,∠A=55°,∠B比∠C大25°,则∠B的度数为( )A.50° B.75°C.100° D.125°【变式2】三角形中至少有一个角不小于________度。

类型二:利用三角形外角性质证明角不等2.如图所示,已知CE是△ABC外角∠ACD的平分线,CE交BA延长线于点E。

求证:∠BAC >∠B。

举一反三:【变式】如图所示,用“<”把∠1、∠2、∠A联系起来________。

类型三:三角形内角和定理与外角性质的综合应用3.如图,求∠A+∠B+∠C+∠D+∠E的度数.举一反三:【变式】如图所示,五角星ABCDE中,试说明∠A+∠B+∠C+∠D+∠E=180°。

类型四:与角平分线相关的综合问题4.如图9,△ABC中,∠ABC、∠ACB的平分线相交于点D.(1)若∠ABC=70°,∠ACB=50°,则∠BDC=________;(2)若∠ABC+∠ACB=120°,则∠BDC=________;(3)若∠A=60°,则∠BDC=________;(4)若∠A=100°,则∠BDC=________;(5)若∠A=n°,则∠BDC=________.举一反三:【变式1】如图10,BE是∠ABD的平分线,CF是∠ACD的平分线,BE与CF交于G,若∠BDC= 140°,∠BGC=110°,求∠A的大小.80【变式2】如图11, △ABC的两个外角的平分线相交于点D,如果∠A=50°,求∠D.【变式3】如图12,在△ABC中,AE是角平分线,且∠B=52°,∠C=78°,则∠AEB的度数是_____.【变式4】(2009北京四中期末)如图所示,△ABC的外角∠CBD、∠BCE的平分线相交于点F,若∠A=68°,求∠F的度数。

三角形的内角和 练习题

三角形的内角和 练习题

三角形的内角和练习题1.一个三角形中,有1个角是44°,另外两个角可能是()A.96°,50° B.80°,56° C.90°,36°2.用10倍的放大镜看一个三角形,这个三角形三内角和是()。

A.108° B.180° C.1800° D.1080°3.三角形中最大的一个角一定()A.不小于60° B.大于90° C.小于90° D.大于60°而小于90°4.两个不相等的三角形,它们的内角和()。

A.相等 B.面积大的三角形内角和大C.面积小的三角形内角和小 D.不能比较5.一个三角形最小的内角是50度,这是一个()A.锐角三角形B.直角三角形C.钝角三角形D.以上都不对6.一个三角形中,有两个角都是锐角,另一个角()A.一定是钝角 B.一定是锐角C.可能是钝角、锐角或直角7.下面能组成一个三角形的三个角是()A.∠1= 80度,∠2= 70度,∠3 =15度B.∠1= 50度,∠2= 85度,∠3 =63度C.∠1= 60度,∠2= 60度,∠3 =70度D.∠1= 74度,∠2= 16度,∠3 =90度8.把一个等边三角形从顶点起用一条直线分成两个同样大小的三角形,其中一个三角形的内角和是()A.30 B.60° C.90° D.180°9.一个三角形中,如图所示,∠1=70度,∠3=35度,∠2=()A.45度 B.180度 C.75度 D.90度10.在一个等腰直角三角形中,它的一个底角是()A.30° B.45° C.60°11.下列图形中,内角和不是180度的图形是()A.等腰三角形 B.平行四边形 C.锐角三角形12.一个等腰三角形的顶角是60度,它的底角和是()A.70° B.120° C.140°13.下面每组三个角,不可能在同一个三角形内的是()A.15度、87度、78度B.120度、55度、5度C.80度、50度、50度D.90度、16度、104度14.一个直角三角形中的一个锐角是另一个锐角的2倍,则这个三角形中最小锐角是()A.450° B.30° C.25°15.一个等腰三角形的底角为a度,顶角可表示为()度。

初一数学三角形的内角和试题

初一数学三角形的内角和试题

初一数学三角形的内角和试题1.一个三角形的三个内角中,至少有()A.一个锐角B.两个锐角C.一个钝角D.一个直角【答案】B【解析】根据三角形的内角和定理判断即可.三角形的三个内角中至少有两个锐角,不可能有两个钝角或两个直角,故选B.【考点】本题考查的是三角形的内角和定理点评:解答本题的关键是熟练掌握三角形的三个内角和是180°.2.已知一个多边形的外角和等于它的内角和,则这多边形是()A.三角形B.四边形C.五边形D.六边形【答案】B【解析】根据多边形的外角和以及四边形的内角和定理即可解决问题.∵多边形的外角和是360度,多边形的内角和等于它的外角和,则内角和是360度,∴这个多边形是四边形,故选B.【考点】本题考查的是多边形的外角和点评:解答本题的关键是熟练掌握任意多边形的外角和均是360度,与边数无关。

3.若一个多边形的内角和等于1080°,则这个多边形的边数是( )A.9B.8C.7D.6【答案】B【解析】根设这个多边形的边数是n,据多边形的内角和公式即可得到结果。

设这个多边形的边数是n,由题意得,解得,故选B.【考点】本题考查的是多边形的内角和公式点评:解答本题的关键是熟练掌握多边形的内角和公式:4.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是( )A.十三边形B.十二边形C.十一边形D.十边形【答案】A【解析】根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n-3)条对角线,由此可得到答案.设这个多边形是n边形.依题意,得n-3=10,∴n=13,故选A.【考点】本题考查的是多边形的对角线点评:多边形有n条边,则经过多边形的一个顶点所有的对角线有(n-3)条,经过多边形的一个顶点的所有对角线把多边形分成(n-2)个三角形.5.一个多边形边数增加1,则这个多边形内角增加,外角增加 .【答案】180度,0度【解析】根据多边形的内角和公式,多边形的外角和为360度即可得到结果。

八年级数学:三角形内角和定理练习(含解析)

八年级数学:三角形内角和定理练习(含解析)

八年级数学:三角形内角和定理练习(含解析)学校:___________姓名:___________班级:___________一.选择题(共12小题)1.如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44°B.40°C.39°D.38°2.在下列条件中:①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=90°﹣∠B;④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A.①②B.③④C.①③④D.①②③3.已知,在△ABC中,∠A=60°,∠C=80°,则∠B=()A.60°B.30°C.20°D.40°4.有一个外角等于120°,且有两个内角相等的三角形是()A.不等边三角形B.等腰三角形 C.等边三角形 D.不能确定5.三角形三个内角的度数分别是(x+y)°,(x﹣y)°,x°,且x>y>0,则该三角形有一个内角为()A.30°B.45°C.90°D.60°6.在△ABC中,∠A=25°,∠B=63°,则△ABC的形状是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形7.如图,将△ABC纸片沿DE折叠,使点A落在四边形BCDE外点A'的位置,则下列结论正确的是()A.∠1+∠2=∠A B.∠1+∠2=2∠A C.∠1﹣∠2=∠A D.∠1﹣∠2=2∠A8.在下列条件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A:∠B:∠C=1:2:3,能确定△ABC 为直角三角形的条件有()A.1个B.2个C.3个D.0个9.如图,△ABC中,∠A=60°,将△ABC沿DE翻折后,点A落在BC上的点A′处,如果∠A′EC=70°,则∠A′DE的度数为()A.50°B.60°C.75°D.65°10.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形 B.钝角三角形C.直角三角形 D.钝角或直角三角形11.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD,若∠B=30°,∠C=40°,则∠DAC的度数是()A.25°B.35°C.45°D.75°12.一个缺角的三角形ABC残片如图所示,量得∠A=45°,∠B=60°,则这个三角形残缺前的∠C 的度数为()A.75°B.65°C.55°D.45°二.填空题(共8小题)13.在△ABC中,若∠A=78°,∠B=57°,则∠C= .14.已知三角形的三个内角的度数比为2:3:4,则这个三角形三个内角的度数为.15.一个三角形的三个内角中最多有个钝角(或直角).16.在△ABC中,∠C=60°,∠A=2∠B,则∠A= .17.如图,在△ABC中,AD是角平分线,AE是高,已知∠BAC=2∠B,∠B=2∠DAE,那么∠ACB= (度).18.在直角△ABC中,∠C=90°,沿图中虚线剪去∠C,则∠1+∠2= .19.如图,是一个不规则的五角星,则∠A+∠B+∠C+∠D+∠E= .(用度数表示)20.如图,在△ABC中,∠ABC和∠ACB的平分线交于点O,若∠A=80°,则∠BOC= .三.解答题(共4小题)21.如图,已知DF⊥AB于点F,且∠A=45°,∠D=30°,求∠ACB的度数.22.如图,在△ABC中,∠A=50°,过点C作CD∥AB,若CB平分∠ACD,求∠B的度数.23.如图,在△ABC中,∠B=30°,∠C=50°,AE是∠BAC的平分线,AD是高.(1)求∠BAE的度数;(2)求∠EAD的度数;(3)△ABC中,若∠B=α,∠C=β(α<β),请你根据(1)问的结果大胆猜想∠DAE与α,β间的等量关系,并说明理由.24.如图,△ABC中AD是BC边上的高,AE是∠BAC的平分线,∠B=50°,∠C=70°.(1)∠BAC= °;(2)求∠DAE的度数.参考答案与试题解析一.选择题(共12小题)1.解:∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,∵CD平分∠ACB交AB于点D,∴∠DCB=78°=39°,∵DE∥BC,∴∠CDE=∠DCB=39°,故选:C.2.解:①因为∠A+∠B=∠C,则2∠C=180°,∠C=90°,所以△ABC是直角三角形;②因为∠A:∠B:∠C=1:2:3,设∠A=x,则x+2x+3x=180,x=30°,∠C=30°×3=90°,所以△ABC是直角三角形;③因为∠A=90°﹣∠B,所以∠A+∠B=90°,则∠C=180°﹣90°=90°,所以△ABC是直角三角形;④因为∠A=∠B=∠C,所以三角形为等边三角形.所以能确定△ABC是直角三角形的有①②③共3个.故选:D.3.解:∵在△ABC中,∠A=60°,∠C=80°,∴∠B=180°﹣60°﹣80°=40°.故选:D.4.解:当∠BAC的外角是120°时,则∠BAC=60°,∠B=∠C=(180°﹣∠BAC)=60°,即∠BAC=∠B=∠C,所以△ABC是等边三角形;当∠ABC的外角是120°时,∠ABC=60°,即∠C=∠ABC=60°,∵∠BAC+∠ABC+∠C=180°,∴∠BAC=60°,∴∠BAC=∠B=∠C,∴△ABC是等边三角形;同样当∠ACB的外角是120°,也能推出△ABC是等边三角形;故选:C.5.解:∵三个内角的度数分别是(x+y)°,(x﹣y)°,x°,三角形内角和为180°, ∴x+y+x﹣y+x=180,∴3x=180,x=60,故选:D.6.解:∵△ABC中,∠A=25°,∠B=63°,∴∠C=180°﹣25°﹣63°=92°,∴△ABC是钝角三角形.故选:C.7.解:∵△A′DE是△ADE沿DE折叠得到,∴∠A′=∠A,∵∠1=∠A+∠3,∠3=∠A′+∠2,∴∠1=∠A+∠A′+∠2,∴∠1﹣∠2=2∠A,故选:D.8.解:∵∠A+∠B+∠C=180°,∴若①∠A+∠B=∠C,则∠C=90°.三角形为直角三角形;②∠A=∠B=2∠C,则∠A=∠B=72°,∠C=36°.三角形不是直角三角形;③∠A﹕∠B﹕∠C=1﹕2﹕3,则∠A=30°,∠B=60°,∠C=90°.三角形为直角三角形;故选B.9.解:∵∠AEA′=180°﹣∠A′EC=180°﹣70°=110°,又∵∠A′ED=∠AED=∠AEA′=55°,∠DA′E=∠A=60°,∴∠A′DE=180°﹣∠A′ED﹣∠DA′E=180°﹣55°﹣60°=65°.故选:D.10.解:设三个内角分别为2k、3k、4k,则2k+3k+4k=180°,解得k=20°,所以,最大的角为4×20°=80°,所以,三角形是锐角三角形.故选:A.11.解:∵AB=BD,∠B=30°,∴∠ADB=75°,∵∠C=40°,∴∠DAC=∠ADB﹣∠C=75°﹣40°=35°.故选:B.12.解:∵∠A+∠B+∠C=180°,∴∠C=180°﹣(∠A+∠B)=180°﹣(45°+60°)=75°,故选:A.二.填空题(共8小题)13.解:由题可得,∠C=180﹣∠A﹣∠B=180°﹣78°﹣57°=45°,故答案为:45°.14.解:根据三角形的内角和定理,得三个内角分别是180°×=40°,180°×=60°,180°×=80°.15.解:假设三角形中,出现2个或3个钝角,那么三角形的内角和就大于180°,不符合三角形内角和是180°,因而假设不成立,所以一个三角形中最多有一个钝角.故答案为:1.16.解:设∠A=2x,则∠B=x,由三角形内角和等于180°,得:2x+x+60°=180°,解得x=40°.∴∠A=2x=2×40°=80°.故答案为:80°.17.解:由题意可得∠DAE=∠BAC﹣(90°﹣∠C),又∠BAC=2∠B,∠B=2∠DAE,∴90°﹣2∠B=∠B,则∠B=36°,∴∠BAC=2∠B=72°,∴∠ACB=180°﹣36°﹣72°=72°.故答案为7218.解:∵∠A+∠B+∠C=180°,∴∠A+∠B=180°﹣∠C=90°,∵∠1+∠2+∠A+∠B=360°,∴∠1+∠2=360°﹣90°=270°.故答案是:270°.19.解:如右图所示,∵∠1=∠C+∠2,∠2=∠A+∠D,∴∠1=∠C+∠A+∠D,又∵∠1+∠B+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°.故答案是:180°.20.解:∵在△ABC中,∠A=80°,∴∠ABC+∠ACB=180°﹣80°=100°,∵∠ABC和∠ACB的平分线交于O点,∴∠OBC+∠OCB=(∠ABC+∠ACB)=×100°=50°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣50°=130°.故答案为:130°.三.解答题(共4小题)21.解:∵DF⊥AB于点F,∴∠AFE=90°,∵∠A=45°,∴∠AEF=45°,∴∠CED=∠AEF=45°.∴∠ACB=∠D+∠C ED=30°+45°=75°.22.解:∵∠A+∠B+∠ACB=180°,∠A=50°,∴∠B+∠ACB=130°.∵CD∥AB,∴∠DCB=∠B.∵CB平分∠ACD,∴∠DCB=∠ACB,∴∠ACB=∠B,∴2∠B=130°,∴∠B=65°.23.解:(1)∵∠B=30°,∠C=50°,∴∠BAC=180°﹣30°﹣50°=100°.又∵AE是∠BAC的平分线,∴∠BAE=∠BAC=×100°=50°.(2)∵∠B=30°,AD⊥BC,∴∠BAD=90°﹣30°=60°,∴∠EAD=∠BAD﹣∠BAE=60°﹣50°=10°.(3)∠DAE=(β﹣α),理由如下:∵∠B=α,∠C=β,∴∠BAC=180°﹣α﹣β.又∵AE是∠BAC的平分线,∴∠BAE=∠BAC=90°﹣(α+β).∵∠BAD=90°﹣∠B=90°﹣α,∴∠DAE=∠BAD﹣∠BAE=90°﹣α﹣[90°﹣(α+β)]=(β﹣α).24.解:(1)∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=60°故答案为:60°(2)∵AE是∠BAC的平分线,∠BAC=60°∴∠BAE=30°∴∠AEB=180°﹣∠B﹣∠BAE=100°∵AD是BC边上的高,∴∠ADE=90°∴∠DAE=∠AEB﹣∠ADE=100°﹣90°=10°答:∠DAE的度数是10°.。

三角形的内角和的试题

三角形的内角和的试题

三角形的内角和的试题三角形是中学数学中的一个基本几何概念,其内角和是一个重要的数学知识点。

下面给出关于三角形内角和的相关试题。

一、基础题目1. 若三角形的一个内角为60度,另外两个内角之和是120度,这个三角形的内角和是多少度?2. 已知三角形的三个内角分别为30度、60度和90度,那么这个三角形的内角和是多少度?3. 若三角形的一个内角为80度,另外一个内角为30度,那么第三个内角是多少度?这个三角形的内角和是多少度?二、进阶题目1. 某个三角形的三个内角依次为x、y和z度(x<y<z),且这个三角形的内角和是180度,求这个三角形的每个内角的度数。

2. 一个四边形的内角和是360度,其中一个角为120度,另外三个角之和是200度,这个四边形的另外三个角分别是多少度?3. 若三边形ABC的角A、B、C的大小分别为α、β、γ,且满足sin α:sin β:sin γ=3:4:5,则角A、B、C中最大的一个是多少度?这个三角形的内角和是多少度?三、高阶题目1. 在平面直角坐标系中,顶点为(0,0)的等腰三角形ABC的两个顶点坐标分别为(-a,b)和(a,b),角B的顶点坐标为(0,h),其中a、b、h均为正实数,且满足a^2+b^2=h^2,此时,三角形ABC的内角和是多少度?2. 已知等腰三角形ABC的底边AB的长度为2a,且角C为60度,点P在边AB上,且满足PA=PB=a,则三角形PCB的内角和是多少度?(提示:利用三角形内角和与外角和的关系)以上是部分关于三角形内角和的试题,适合不同难度和水平的学生进行练习和考查。

对于学生们来说,掌握三角形内角和的计算方法和理论知识,能够在数学学习中更好地理解和应用。

(完整word)三角形内角和定理练习题

(完整word)三角形内角和定理练习题

三角形内角和定理练习题1.在△ABC中,∠A=∠B=∠C,则△ABC是三角形。

2.如图,在△ABC中,BE、CF分别是∠ABC和∠ACB的角平分线,它们相交于点I,已知∠A=56°,则∠BIC =。

3。

如图,在△ABC中,∠B=25°,延长BC至E,过点E作AC的垂线ED,垂足为O,且∠E=40°,则∠A=。

4.如图,若AB=AC,BG=BH,AK=KG,则∠BAC的度数为.5.若等腰三角形一腰上的高和另一腰上的高的夹角为58°,则这个等腰三角形顶角的度数是。

6.如图,将三角形纸片ABC的一角折叠,折痕为EF,若∠A=80°,∠B=68°,∠CFB=22°,则∠CEA =。

7.在一个三角形中,三个内角中至少有个锐角,最多有个直角或钝角.8.如图,AB∥CD,若∠ABE=135°,∠CDE=110°,则∠DEF=。

9。

如图,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°,则∠EDF等于( )A.64°B.65°C.67°D。

68°10。

如图,已知AB∥CD,BE平分∠ABD,DE平分∠BDC,则∠E是( )A.锐角B.直角C。

钝角 D.无法确定11。

如图,已知在△ABC中,AD平分外角∠EAC,AD∥BC,则△ABC的形状是() A。

等边三角形 B.直角三角形C。

等腰三角形 D.任意三角形12.如图,在△ABC中,∠ABC和∠ACB的外角平分线交于点D,设∠BAC=∠α,则∠D等于()A。

180°—2∠α B。

180°—∠αC。

90°—∠α D.90°-2∠α13.如果三角形的一个外角等于与它相邻的内角,那么这个三角形的形状是( )A.锐角三角形B。

直角三角形 C.钝角三角形 D.任意三角形14。

如图,∠1=20°,∠2=25°,∠A=35°,则∠BDC的度数等于()A。

四年级三角形内角和专项训练

四年级三角形内角和专项训练

四年级三角形内角和专项训练题目一:已知一个三角形的两个内角分别是45°和60°,求第三个内角的度数。

解析:三角形内角和为180°,已知两个内角分别是45°和60°,那么第三个内角的度数为180° - 45° - 60° = 75°。

题目二:一个三角形中,∠A = 30°,∠B = 70°,求∠C 的度数。

解析:因为三角形内角和是180°,所以∠C = 180° - ∠A - ∠B = 180° - 30° - 70° = 80°。

题目三:在一个直角三角形中,一个锐角是40°,求另一个锐角的度数。

解析:直角三角形有一个角是90°,已知一个锐角是40°,那么另一个锐角的度数为180° - 90° - 40° = 50°。

题目四:三角形的三个内角的度数比是2:3:4,求三个内角分别是多少度。

解析:首先,三角形内角和为180°。

设三个内角分别为2x°、3x°、4x°,则2x + 3x + 4x = 180,9x = 180,解得x = 20。

所以三个内角分别是2×20 = 40°,3×20 = 60°,4×20 = 80°。

题目五:一个等腰三角形,顶角是80°,求底角的度数。

解析:等腰三角形两底角相等。

三角形内角和为180°,所以底角的度数为(180° - 80°)÷2 = 50°。

题目六:一个三角形的两个内角之和是110°,第三个内角是多少度?解析:因为三角形内角和是180°,已知两个内角之和是110°,那么第三个内角的度数为180° - 110° = 70°。

三角形内角和综合习题精选(含答案)

三角形内角和综合习题精选(含答案)

...三角形内角和综合习题精选一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?2.如图,DB是△ABC的高,AE是角平分线,∠BAE=26°,求∠BFE的度数.3.如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?4.如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数;(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,写出结论无需证明.5.(1)如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB= _________ ,∠XBC+∠XCB= _________ .(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.6.如图1,△ABC中,∠A=50°,点P是∠ABC与∠ACB平分线的交点.(1)求∠P的度数;(2)猜想∠P与∠A有怎样的大小关系?(3)若点P是∠CBD与∠BCE平分线的交点,∠P与∠A又有怎样的大小关系?(4)若点P是∠ABC与∠ACF平分线的交点,∠P与∠A又有怎样的大小关系?【(2)、(3)、(4)小题只需写出结论,不需要证明】8.如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动.(1)若|x+2y﹣5|+|2x﹣y|=0,试分别求出1秒钟后A、B两点的坐标;(2)设∠BAO的邻补角和∠ABO的邻补角的平分线相交于点P,问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC、∠FCA、∠ABC的平分线相交于点G,过点G作BE的垂线,垂足为H,试问∠AGH和∠BGC的大小关系如何?请写出你的结论并说明理由.9.如图所示,点E 在AB 上,CE ,DE 分别平分∠BCD ,∠ADC ,∠1+∠2=90°,∠B=75°,求∠A 的度数.10.如图,∠AOB=90°,点C 、D 分别在射线OA 、OB 上,CE 是∠ACD 的平分线,CE 的反向延长线与∠CDO 的平分线交于点F. (1)当∠OCD=50°(图1),试求∠F .(2)当C 、D 在射线OA 、OB 上任意移动时(不与点O 重合)(图2),∠F 的大小是否变化?若变化,请说明理由;若不变化,求出∠F .11.如图,△ABC 中,AE 、BF 是角平分线,它们相交于点O .(∠ABC >∠C ), (1)试说明∠BOA=90°+∠C;(2)当AD 是高,判断∠DAE 与∠C 、∠ABC 的关系,并说明理由.12.已知△ABC 中,∠BAC=100°.(1)若∠ABC 和∠ACB 的角平分线交于点O ,如图1所示,试求∠BOC 的大小;(2)若∠ABC 和∠ACB 的三等分线(即将一个角平均分成三等分的射线)相交于O ,O 1,如图2所示,试求∠BOC 的大小;(3)如此类推,若∠ABC 和∠ACB 的n 等分线自下而上依次相交于O ,O 1,O 2…,如图3所示,试探求∠BOC 的大小与n 的关系,并判断当∠BOC=170°时,是几等分线的交线所成的角.答案与评分标准一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?考点:三角形的角平分线、中线和高;角平分线的定义;垂线;三角形内角和定理。

三角形的内角和练习

三角形的内角和练习

2.判断。
(1)小三角形的内角和小于大三角形的
内角和。( )
(2)三角形中任意两个内角的度数和一定
大于第三个内角的度数 (

(3)任何三角形的内角和都是180°。( )
(1)三角形越大,它的内角和就越大。
() ×
(2)一个三角形的三个内角度数是:70°,64°,45°。( ) ×
(3)一个三角形至少有两个角是锐角。
6、
• 求下面三角形中∠3的度数,并指出是什么三角形。 • 1.∠1=30°, ∠2=108°,∠3= ( ),它是
( )三角形。 • 2.∠1=90°, ∠2=45°, ∠3=( ),它是
( )三角形。 • 3.∠1=70°, ∠2=70°, ∠3=( )。它是
( )三角形。
360 720
四、拓展延伸
“×”)
1、一个三角形最多有1个钝角(或1个直角),最少有两个
锐角。( √ ) 2、钝角三角形的内角和大于锐角三角形的内角和。( × )
3、把一个等腰三角形分成两个完全一样的小三角形,每个
三角形的内角和都是90度。( × )
4、直角三角形的两个锐角和是90度。( √ )
5、任何一个三角形的内角和都是180度。( √ )
() √
(4)钝角三角形的内角和大于锐角三角形的内角和。 ( ×)
4、选择正确的答案
• 1.一个等腰三角形,其中一个底角是750,顶角 是( )

A.750 B.450 C.300 D.600
• 2.三角形越大,内角和( )

A.越大 B.不变 C.越小
5、在正确的答案后面打√
• 在能组成三角形的三条线段后面画“√”。 • 1.2厘米 3厘米 4厘米 ( ) • 2.10厘米 20厘米 40厘米米 ( )

三角形的内角和练习题

三角形的内角和练习题

三角形的内角和练习题一、基础练习1、判断下列说法是否正确,并说明理由。

(1)一个三角形的内角和是180度。

(2)一个三角形的内角和等于3个直角。

(3)一个等边三角形的内角和等于一个等腰三角形的内角和。

2、一个三角形的三个内角分别为A、B、C,已知A=30度,B=80度,求C的度数。

二、提升练习1、一个三角形的三个内角分别为A、B、C,已知A=70度,B=90度,求C的度数。

2、一个等边三角形的三个内角分别为A、B、C,已知A=60度,求B 和C的度数。

3、一个等腰三角形的两个内角分别为A、B,已知A=80度,求B的度数(该三角形是等腰三角形,有两边长度相等)。

三、拓展练习1、一个四边形由两个等边三角形组成,它的四个内角分别为A、B、C、D,求A+B+C+D的度数。

2、一个五边形由三个等边三角形组成,它的五个内角分别为A、B、C、D、E,求A+B+C+D+E的度数。

3、一个n边形(n≥3)的所有内角之和是多少?在解答上述问题的过程中,我们可以使用三角形内角和定理以及多边形的内角和公式来进行计算。

我们还需要了解等边三角形和等腰三角形的性质,以便解决相关问题。

三角形的内角和教学设计一、教材分析三角形的内角和是义务教育课程标准实验教科书(人教版)四年级下册第8单元数学广角里的内容,本节课是在学生已经学习了三角形的概念及分类的基础上进一步研究三角形的有关知识,教材中安排了三部分内容:第一部分是例1通过测量计算三个内角的度数和,第二部分是例2通过撕拼、旋转、翻转等不同的方法验证三角形的内角和等于180度,第三部分是例3用已知的两个角度求出第三个角的度数。

通过这些活动,培养学生动手操作能力和数学思维能力。

同时,还体现了数学来源于生活,又应用于生活这一理念。

二、学情分析作为四年级的学生,他们已经具备了一定的观察、猜测、动手操作、积极思考的能力,因此他们可以根据自己的实际情况选择喜欢的方法来研究验证三角形的内角和。

【七年级奥数】第11讲 三角形内角和(例题练习)

【七年级奥数】第11讲  三角形内角和(例题练习)

第11讲三角形内角和——例题一、第11讲三角形内角和1.如图,四边形ABCD为任意的四边形,求它的内角和.【答案】解:连结AC,四边形ABCD就划分成两个三角形,即ABC与ACD,∴四边形ABCD的内角和就等于两个三角形内角和;∵一个三角形的内角和为180°,∴四边形的内角和为180°×2=360°.【解析】【分析】本题通过连结AC,把一个四边形划分成两个三角形,这种方法可以推广,即一般地,要求n边形的内角和,可从它的一个顶点A1出发,连结A1A3,A1A4,…,A1A n,将这个n边形划分成n-2个三角形.因此n边形的内角和为:180°×(n-2)(如图).这个式子可以作为一个公式来用.如求100边形的内角和,则由上面的公式,得出它的内角和为:180°×(100-2)=17640°.2.求证:三角形的外角和等于360°.一般地,n边形的外角和等于360°【答案】证明:如图,△ ABC中,∠1、∠2 ∠3为三个内角,∠4、∠5、∠6为三个外角,我们有,∠1+∠4=180°,∠2+∠5=180°,∠3+∠6=180°.所以∠4+∠5+∠6=3×180°-( ∠1+∠2+∠3)=3×180°-180°=360°.同理,若∠α1,∠α2… ∠αn°是n边形的n个内角,∠β1,∠β2,…, ∠βn是它们所对应的n个外角,则有,∠α1+∠β1 =180°,∠α2+∠β2 =180°,……∠αn +∠βn =180°.所以∠β1+∠β2+…+∠βn =n×180°-( ∠α1+∠α2+…+∠αn )=n×180°-(n-2)×180°=360°.【解析】【分析】三角形有三个内角,根据其对应的外角是其邻补角,可知其外角和=3×180°-三角形的内角和;此方法可以推广,即一般地,要求n边形的外角和,可知由n对邻补角,而这个n边形的内角和为(n-2)×180°.因此n边形的外角和为:n×180°-180°×(n-2)=360°.3.已知一个四边形的第二个内角是第一个内角的3倍,第三个内角是第二个内角的一半,第四个内角比第三个内角大10°.求它的第一个内角.【答案】解:设它的第一个内角为x,则它的第二个内角为3x,第三个内角为x,第四个内角为x +10°.由四边形的内角和为360°,知x+3x+x+(x+10°)=360°,解得x=50°.答:它的第一个内角为50°.【解析】【分析】设第一个内角为x,根据题意分别表示出其他三个内角:3x;x;x+10°;再由四边形的内角和为360°列出方程,解之即可得第一个内角的度数.4.如果一个三角形中最大角是最小角的4倍,求它的最小角的取值范围.【答案】解:设∠A是它的最小角,∠C是最大角,∠B是中间的角,则∠A≤∠B≤∠C,又∠C=4∠A.由可得∠A+∠A+4∠A≤180°,即么A≤30°.可得∠A+4∠A+4∠A≥180°,即∠A≥20°.所以最小角的取值范围为20°≤4≤30°.【解析】【分析】设∠A≤∠B≤∠C,根据题意知∠C=4 ∠A,再由三角形内角和为180°,即∠A+∠B+∠C=180°,列出方程组,代入可得:∠A+∠A+4∠A≤180°,或∠A+4∠A+4∠A≥180°,解之即可得出最小角的取值范围.5.如图,在△ ABC中,BD是∠ABC的平分线,CD是外角∠ACE的平分线.求证:∠D= ∠A.【答案】证明:根据三角形外角性质有∠3+∠4=∠1+∠2+∠A.因为BD、CD是∠ABC和∠ACE的平分线,所以∠1=∠2,∠3=∠4.从而2∠4=2∠1+∠A,即∠4=∠1+ ∠A ①在△BCD中,∠4是一个外角,所以∠ 4=∠1+∠D,②由①、②即得∠D=∠A.【解析】【分析】根据角平分线的性质可得∠1=∠2,∠3=∠4,再由三角形外角性质可得2∠4=2∠1+∠A,∠4=∠1+∠D, 等量代换即可得证.6.如图,在七星形ABCDEFG中,求∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数.【答案】解:由三角形的外角性质,得,∠1=∠C+∠F,∠2=∠B+∠E,∠4=∠D+∠G,∠3=∠4+∠A=∠D+∠G+∠A.从而∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠1+∠2+∠3=180°.【解析】【分析】本题中,所求的7个角很分散,直接求它们的和很困难.因此,我们利用三角形的外角性质,把它们集中到一个三角形中,从而解决问题.7.如图,D为△ABC中一点.证明:∠BDC=∠A+∠ABD+∠ACD.【答案】证明:如图,延长BD,交AC于点E.因为∠BDC是△CDE的外角,所以∠BDC=∠DEC+∠ACD.又因为∠DEC是△AEB的外角,所以∠DEC=∠A+∠ABD.由以上二式得∠BDC=∠A+∠ABD+∠ACD.【解析】【分析】延长BD交AC于点E;利用三角形外角的性质可得∠BDC= ∠DEC+∠ACD,∠DEC=∠A+∠ABD,等量代换即可得证.本题的结论常常用到,有人称之为“飞镖定理”.注意D必须在△ABC内(即四边形ABDC是一个在D点凹进去的凹四边形).否则,结论不成立.8.如图,BE平分∠ABD,CF平分∠ACD,BE与CF相交于点G.若∠BDC=140°∠BGC=100°,求∠A的度数.【答案】解:由上例得,∠BGC=∠A+∠2+∠4,①∠BDC=∠A+( ∠1+∠2)+( ∠3+∠4).②又因为BE平分∠ABD,CF平分∠ACD,所以∠1=∠2,∠3=∠4.所以②即∠BDC=∠A+2( ∠2+∠4).③由①×1- ③得∠A=2∠BGC-∠BDC=2×100°-140°=60°.【解析】【分析】根据“飞镖定理”可知∠BGC=∠A+∠2+∠4 ①,∠BDC=∠A+( ∠1+∠2)+( ∠3+∠4)②,再根据角平分线性质得∠1=∠2,∠3=∠4;代入②式变形为∠BDC=∠A+2( ∠2+∠4) ③,再由由①×1- ③得即可求得∠A度数.9.如图,已知在△ABC中,AD是∠BAC的平分线,CE垂直AD于E.求证:∠ACE>∠B.【答案】证明:延长CE交AB于点F.因为AD是∠BAC的平分线,所以∠1=∠2.又因为CE垂直AD,所以∠AEC=∠AEF=90°,在△AEF中,∠AFC=180°-(∠1+∠AEF),在△AEC中,∠ACE=180°-(∠2+ ∠AEC),所以∠ACE=∠AFC.因为∠AFC是△BCF的一个外角,所以∠AFC=∠B+∠BCF>∠B.从而∠ACE>∠B.【解析】【分析】延长CE交AB于点F.利用已知条件,构造∠AFC作为桥梁.一方面它等于∠ACE.另一方面,它又是△BFC的一个外角,它应大于不相邻的任一内角,从而解决问题.10.如图,在△ABC中,D、E是BC边上的点,∠BDA=∠BAD,∠CEA=∠CAE,∠DAE=∠BAC.求∠BAC的度数.【答案】解:设∠BAE、∠EAD、∠DAC分别为α,β,γ ,则β=即2β=γ+α①又∠BDA=∠BAD=α+β ,②∠CEA=∠CAE=β+γ .③在△AED中,内角和为180°,所以由②、③得,(α+β)+(β+γ)+β =180°,④结合①得,5β=180°,β=36°,所以∠BAC=3β =3×36°=108°.【解析】【分析】本题通过设未知数,利用已知条件与三角形的内角和等于180°,建立方程解决问题.。

三角形内角和定理练习题

三角形内角和定理练习题

书山有路勤为径;学海无涯苦作舟今天的努力是为了明天的幸福三角形内角和定理练习题1.在△ABC 中,&ang;A=&ang;B= &ang;C,则△ABC 是三角形.2.如图,在△ABC 中,BE、CF 分别是&ang;ABC 和&ang;ACB 的角平分线,它们相交于点I,已知&ang;A=56 度,则&ang;BIC=.3.如图,在△ABC 中,&ang;B=25 度,延长BC 至E,过点E 作AC 的垂线ED,垂足为O,且&ang;E=40 度,则&ang;A=.4.如图,若AB=AC,BG=BH,AK=KG,则&ang;BAC 的度数为.5.若等腰三角形一腰上的高和另一腰上的高的夹角为58 度,则这个等腰三角形顶角的度数是.6.如图,将三角形纸片ABC 的一角折叠,折痕为EF,若&ang;A=80 度,&ang;B=68 度,&ang;CFB=22 度,则&ang;CEA=.7.在一个三角形中,三个内角中至少有个锐角,最多有个直角或钝角.8.如图,AB∥CD,若&ang;ABE=135 度,&ang;CDE=110 度,则&ang;DEF=.9.如图,在△ABC 中,&ang;B=&ang;C,FD&perp;BC,DE&perp;AB,&ang;AFD=158 度,则&ang;EDF 等于()A.64 度B.65 度C.67 度D.68 度10.如图,已知AB∥CD,BE 平分&ang;ABD,DE 平分&ang;BDC,则&ang;E 是()A.锐角B.直角C.钝角D.无法确定一、选择题(本大题共12 小题, 每小题3 分, 共36 分, 在每小题给出的四个。

三角形内角的和练习题

三角形内角的和练习题

三角形内角的和练习题一、选择题1. 一个三角形的三个内角之和是多少度?A. 90度B. 180度C. 270度D. 360度2. 如果一个三角形的一个内角是70度,另一个内角是60度,那么第三个内角是多少度?A. 40度B. 50度C. 60度D. 70度3. 直角三角形的两个锐角之和是多少度?A. 45度B. 90度C. 180度D. 270度4. 等边三角形的每个内角是多少度?A. 30度B. 45度C. 60度D. 90度5. 如果一个三角形的两个内角分别是50度和70度,那么这个三角形是什么类型的三角形?A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定二、填空题6. 在一个三角形中,如果一个内角是x度,另一个内角是y度,且x+y=100度,那么第三个内角是________度。

7. 已知三角形ABC中,∠A=45度,∠B=60度,那么∠C=________度。

8. 如果一个三角形的三个内角分别为a度、b度和c度,且a+b+c=180度,那么a=________度,b=________度,c=________度(答案不唯一)。

9. 等腰三角形的两个底角相等,如果底角为40度,那么顶角是________度。

10. 一个三角形的三个内角之和是180度,如果其中一个角是锐角,另一个角是钝角,那么第三个角一定是________角。

三、简答题11. 请解释为什么三角形的内角和总是180度。

12. 如果一个三角形的内角和不是180度,那么它可能是什么形状?13. 描述如何使用三角形内角和的性质来解决实际问题。

14. 为什么直角三角形的两个锐角之和总是90度?15. 等边三角形的每个内角相等,为什么它们都是60度?四、计算题16. 已知三角形ABC中,∠A=30度,∠B=45度,求∠C的度数。

17. 如果一个三角形的两个内角之和为120度,且这两个角相等,求第三个角的度数。

18. 在一个等腰三角形中,如果底角为50度,求顶角的度数。

人教版四年级数学“三角形的内角和”练习题

人教版四年级数学“三角形的内角和”练习题

人教版四年级数学“三角形的内角和”练习题
一、填空.
1、三角形的内角和是().
2、在直角三角形中.两个锐角的和是().
3、在一个三角形中.有两个角分别是110°和40°.那么第三个角是()度.
4、在一个等腰三角形中.顶角是60°.它的一个底角是().
二、判断.(对的画“√”.错的画“×”)
1.直角三角形中只能有一个角是直角.( )
2.等边三角形一定是锐角三角形.( )
3.三角形共有一条高.( )
4.两个底角都是28°的三角形.一定是钝角三角形.( )
三、选择.
1.一个等腰三角形.其中一个底角是750.顶角是( )
A.750 B.450 C.300 D.600
2.三角形越大.内角和( )
A.越大 B.不变 C.越小
四、求下面三角形中∠3的度数.并指出是什么三角形.
1.∠1=300. ∠2=1080.∠3= ( ).它是( )三角形.
2.∠1=900. ∠2=450. ∠3=( ).它是( )三角形.
3.∠1=700. ∠2=700. ∠3=( ).它是( )三角形.
五、(辨析题)在能组成的三角形的三个角后面画“√”.
1. 900 500 400 ( )
2. 500 500 500 ( )
六、(开放题).在能组成三角形的三条线段后面画“√”.
1.2厘米 3厘米 4厘米 ( )
2.10厘米 20厘米 40堙米 ( )
1 / 1。

三角形内角和解答题专项练习60题(有答案)

三角形内角和解答题专项练习60题(有答案)

三角形内角和解答题专项练习60题(有答案)1.如图,在△ABC中,∠BAC=60°,∠B=45°,AD是△ABC的一条角平分线,求∠ADC的度数?2.如图△ABC中,AD,AE分别是△ABC的高和角平分线,∠B=36°,∠DAE=16°.求∠CAD的度数.3.如图,已知∠CBE=96°,∠A=27°,∠C=30°,试求∠ADE的度数.4.如图,△ABC中,BD、CD分别是∠ABC和∠ACB的角平分线,BD、CD相交于点D,求证:∠D=90°+∠A.5.如图,在△ABC中,∠A=3x°,∠ABC=4x°,∠ACB=5x°,BD,CE分别是边AC,AB上的高,且BD,CE相交于点H,求∠BHC的度数.2013年10月1581698636的初中数学组卷6.如图,D是△ABC的BC边上一点,∠ABC=40°,∠BAC=80°.求:(1)∠C的度数;(2)如果AD是△ABC的BC边上的角平分线,求∠ADC的度数.7.如图,在△ABC中,点D是∠ACB与∠ABC的角平分线的交点,BD的延长线交AC于E,且∠EDC=60°.求∠A的度数.8.如图,∠A=50°∠ABC=60°.(1)若BD为∠ABC平分线,求∠BDC.(2)若CE为∠ACB平分线且交BD于E,求∠BEC.9.如图,在△ABC中,∠B和∠C的平分线相交于O点.(1)若∠A=60°,求∠BOC的度数.(只需写出结果)(2)若∠A=α,求∠BOC的度数.10.如图,已知∠ABC=∠ACB,∠1=∠2,∠3=∠F,(1)试判断EC与DF是否平行,并说明理由;(2)若∠ACF=110°,求∠A的度数.11.在三角形中,每两条边所组成的角叫三角形的内角,如图1,在三角形ABC中,∠B,∠BAC和∠C是它的三个内角.其实,在学习了平行线的性质以后,我们可以用几何推理的方法去证明“三角形的内角的和等于180°”.请在以下给出的证明过程中填空或填写理由.证明:如图2,延长BA,过点A作AE∥BC.∵AE∥BC(已作)∴∠1=∠(_________ ),(_________ )又∵AE∥BC(已作)∴∠2=∠(_________ ),(_________ )∵∠1+∠2+∠BAC=180°(平角定义)∴∠B+∠C+∠BAC=180°(_________ ),即,三角形的内角的和等于180°.12.如图,已知△ABC中,∠B=40°,∠C=62°,AD是BC边上的高,AE是∠BAC的平分线.求:∠DAE的度数.(写出推导过程)13.如图,已知,D、E分别是△ABC的边AB、AC上的点,DE交BC的延长线于F,∠B=67°,∠ACB=74°,∠AED=48°,求∠F和∠BDF的度数.14.如图,已知三角形ABC,∠ACB=90°,∠BCD+∠B=90°,∠A与∠BCD有怎样的大小关系?说明你的理由.15.如图,△ABC中,∠C=70°,AD、BD是△ABC的外角平分线,AD与BD交于点D,(1)求∠D的度数;(2)若去掉∠C=70°这个条件,试写出∠C与∠D之间的数量关系.16.(1)如图1,在△ABC中,∠C=90°,∠BAC=45°,∠BAC的平分线与外角∠CBE的平分线相交于点D,则∠D= _________ 度.(2)如图2,将(1)中的条件“∠BAC=45°”去掉,其他条件不变,求∠D的度数.17.已知:如图,AC∥DE,∠ABC=70°,∠E=50°,∠D=75°.求:∠A和∠ABD的度数.18.△ABC中,(1)若∠A=70°,BO、CO分别平分∠ABC和∠ACB,求∠BOC的度数;(2)若∠OBC=∠ABC,∠OCB=∠ACB,∠A=n°,请直接写出用n°表示∠BOC的关系式.19.已知,如图,在△ABC中,BD⊥AC于D,若∠A:∠ABC:∠ACB=3:4:5,试求∠ABD的度数.20.如图,把△ABC纸片沿DE折叠,使点C落在四边形BADE内部点F的位置.(1)已知∠CDE=50°,求∠ADF的大小;(2)已知∠C=60°,求∠1+∠2的大小.21.已知△ABC中,∠A=∠B=∠C,判断三角形的形状?22.如图,在△ABC中,BA平分∠DBC,∠BAC=124°,BD⊥AC于D,求∠C的度数.23.如图,AD是△ABC的BC边上的高,AE是∠BAC的角平分线,若∠B=47°,∠C=73°,求∠DAE的度数.24.如图,已知△ABC中,∠A=40°,角平分线BE、CF相交于O,求∠BOC的度数.25.如图,在△ABC中,CF⊥AB于F,ED⊥AB于D,∠1=∠2.(1)求证:FG∥BC;(2)若∠A=60°,∠AFG=40°,求∠ACB的度数.26.已知△ABC中,∠BAC=90°,∠C=30°,点D为BC边上一点,连接AD,作DE⊥AB于点E,DF⊥AC于点F.(1)若AD为△ABC的角平分线(如图1),图中∠1、∠2有何数量关系?为什么?(2)若AD为△ABC的高(如图2),求图中∠1、∠2的度数.27.如图:证明“三角形的内角和是180°”已知:_________求证:_________证明:过B点作直线EF∥AC.28.如图,BD平分∠ABC,CD平分∠ACE,请写出∠A和∠D的关系式,并说明理由.29.已知△ABC.(1)若∠BAC=40°,画∠BAC和外角∠ACD的角平分线相交于O1点(如图①),求∠BO1C的度数;(2)在(1)的条件下,再画∠O1BC和∠O1CD的角平分线相交于O2点(如图②),求∠BO2C的度数;(3)若∠BAC=n°,按上述规律继续画下去,请直接写出∠BO2012C的度数.30.(1)如图(1),在△ABC中,∠ABC、∠ACB的平分线相交于点O,∠A=40°,求∠BOC的度数.(2)如图(2),△DEF两个外角的平分线相交于点G,∠D=40°,求∠EGF的度数.(3)由(1)、(2)可以发现∠BOC与∠EGF有怎样的数量关系?设∠A=∠D=n°,∠BOC与∠EGF是否还具有这样的数量关系?为什么?31.在△ABC中,已知∠ABC=66°,∠ACB=54°,BE,CF分别是AC和AB边上的高,H是BE和CF的交点,求∠BHC 的度数.32.如图,△ABC中,∠ACB=∠B=2∠A,CD是AB边上的高,求∠BCD.33.如图,已知DM平分∠ADC,BM平分∠ABC,∠A=36°,∠M=44°,求∠C的度数.34.如图,在△ABC中,∠A=40°,∠B=72°,CD是AB边上的高;CE是∠ACB的平分线,DF⊥CE于F,求∠BCE 和∠CDF的度数.35.已知:点D是△ABC的BC边的延长线上的一点,DF⊥AB交AB于F,交AC于E,∠A=30°,∠D=20°,求∠ACB 的度数.36.已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=30°,∠C=50°,求∠DAE的度数.37.如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,垂足分别为D,E,∠AFD=158°,求∠EDF的度数.38.如图,CD是∠ACB的平分线,DE∥BC,∠B=70°,∠ACB=50°,求∠EDC,∠BDC的度数.39.已知:如图,在△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°;求∠DAE的度数.40.如图,△ABC中,AD是BC边上的高,AE是三角形∠BAC的角平分线,若∠B=40°,∠C=70°,则∠DAE为多少度?41.如图所示,已知DF⊥AB于F,∠A=40°,∠D=50°,求∠ACB的度数.42.在△ABC中,∠B=∠A+10°,∠C=∠B+10°,求△ABC各内角的度数.43.已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=30°,∠C=50°.(1)求∠DAE的度数;(2)试写出∠DAE与∠C﹣∠B有何关系?(不必证明)44.如图,△ABC中,D在BC的延长线上,过D作DE⊥AB于E,交AC于F.已知∠A=30°,∠FCD=80°,求∠D.45.如图,已知△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数.46.如图:在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=34度.求∠DAE的度数.47.如图,若AB∥CD,EF与AB、CD分别相交于E、F,EP⊥EF,∠EFD的平分线与EP相交于点P,且∠BEP=40°,求∠P的度数.48.如图已知△ABC中,∠B和∠C外角平分线相交于点P.(1)若∠ABC=30°,∠ACB=70°,求∠BPC度数.(2)若∠ABC=α,∠BPC=β,求∠ACB度数.49.如图,∠B=42°,∠A+10°=∠1,∠ACD=64°,求证:AB∥CD.50.如图:AB∥CD,直线l交AB、CD分别于点E、F,点M在EF上,N是直线CD上的一个动点(点N不与F重合)(1)当点N在射线FC上运动时,∠FMN+∠FNM=∠AEF,说明理由;(2)当点N在射线FD上运动时,∠FMN+∠FNM与∠AEF有什么关系并说明理由.51.如图,△ABC中,∠B=40°,∠C=70°,AD为∠BAC的平分线,AE为BC边上的高,求∠DAE的度数.52.如图,在△ABC中,∠ABC=60°,∠ACB=50°,BD平分∠ABC,CD平分∠ACB.求∠D的度数.53.如图,已知∠A=20°,∠B=27°,AC⊥DE,求∠1,∠D的度数.54.已知:图中,∠B=40°,∠C=60°,AD、AF分别是△ABC的角平分线和高.(1)∠BAC等于多少度?(2)∠DAF等于多少度?55.△ABC中,BE平分∠ABC,AD为BC上的高,且∠ABC=60°,∠BEC=75°,求∠DAC的度数.56.如图,在△ABC中,∠ABC=80°,∠ACB=50°,BP平分∠ABC,CP平分∠ACB,求∠BPC的度数.57.如图,BE∥AO,∠1=∠2,OE⊥OA于点O,EH⊥CO于点H,那么∠5=∠6,为什么?58.如图,已知△ABC中,∠ABC和∠ACB的平分线BD、CE相交于点O,且∠A=60°,求∠BOC的度数.259.已知:如图,在△ABC中,∠C>∠B,AD⊥BC交于点D,AE平分∠BAC,试说明:∠EAD=(∠C﹣∠B).60.如图(1),△ABC中,AB=AC,∠B=2∠A.(1)求∠A和∠B的度数;(2)如图(2),BD是△ABC中∠ABC的平分线:①写出图中与BD相等的线段,并说明理由;②直线BC上是否存在其它的点P,使△BDP为等腰三角形,如果存在,请在图(3)中画出满足条件的所有的点P,并直接写出相应的∠BDP的度数;如果不存在,请说明理由.三角形内角和解答题60题参考答案:1.∵AD是△ABC的一条角平分线,∴∠BAD=∠BAC=×60°=30°,∴∠ADC=∠BAD+∠B=30°+45°=75°2.∵AD⊥BC,∴∠ADB=90°,∴∠B+∠BAD=90°,∵∠B=36°,∴∠BAD=90°﹣36°=54°,∵∠DAE=16°,∴∠BAE=54°﹣16°=38°,∵AE平分∠BAC,∴∠CAE=∠BAE=38°,∴∠CAD=38°﹣16°=22°3.∵∠A=27°,∠C=30°,∴∠DFC=∠A+∠C=57°,∵∠DBF=∠CBE=96°,∴∠ADE=180°﹣∠DFC﹣∠FBD=180°﹣57°﹣96°=27°.4.在△ABC中,∠ABC+∠ACB=180°﹣∠A,∵BD、CD分别是∠ABC和∠ACB的角平分线,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣∠A,在△BCD中,∠D=180°﹣(∠DBC+∠DCB)=180°﹣(90°﹣∠A)=90°+∠A,即:∠D=90°+∠A.5.在△ABC中,∵∠A=3x°,∠ABC=4x°,∠ACB=5x°.又∵∠A+∠ABC+∠ACB=180°.∴3x°+4x°+5x°=180°,解得x=15,∠A=3x°=45°,∵BD,CE分别是边AC,AB上的高,∴∠ADB=90°,∠BEC=90°,∵在△ABD中,∠ABD=180°﹣∠ADB﹣∠A=180°﹣90°﹣45°=45°,∴∠BHC=∠ABD+∠BEC=45°+90°=135°6.(1)∵∠ABC=40°,∠BAC=80°,∴∠C=180°﹣∠ABC﹣∠BAC=180°﹣40°﹣80°=60°;(2)∵∠BAC=80°,AD是△ABC的BC边上的角平分线,∴∠DAC=∠BAC=40°,∵∠C=60°,∴∠ADC=180°﹣∠CAD﹣∠C=180°﹣40°﹣60°=80°7.∵BD平分∠ABC,CD平分∠ACB,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°﹣∠A),∵∠EDC=∠DBC+∠DCB=60°,∴(180°﹣∠A)=60°,∴∠A=60°8.(1)∵BD为∠ABC平分线,∴∠ABD=∠ABC=×60°=30°,∴∠BDC=∠A+∠ABD=50°+30°=80°.(2)∵∠ACB=180°﹣∠A﹣∠ABC=180°﹣50°﹣60°=70°,又∵CE为∠ACB平分线,∴∠DCE=∠ACB=×70°=35°,∴∠BEC=∠DCE+∠BDC=35°+80°=115°9.(1)∵∠A=60°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣60°=120°,∵∠B和∠C的平分线相交于O点,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB)=×120°=60°,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣60°=120°;(2))∵∠A=α,∴∠ABC+∠ACB=180°﹣∠A=180°﹣α,∵∠B和∠C的平分线相交于O点,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB)=(180°﹣α)=90°﹣α,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(90°﹣α)=90°+α10.(1)BC∥DF,理由:∵∠ABC=∠ACB,∠1=∠2,∴∠ABC﹣∠1=∠ACB﹣∠2,即∠3=∠ECB,∵∠3=∠F,∴∠ECB=∠F,∴EC∥DF(同位角相等,两直线平行);(2)∵∠ACF=110°,∴∠ACB=70°,∵∠ABC=∠ACB,∴∠ABC=70°,∴∠A=∠ACF﹣∠ABC=110°﹣70°=40°11.证明:如图2,延长BA,过点A作AE∥BC.∵AE∥BC(已作)∴∠1=∠(∠B ),(两直线平行,同位角相等)又∵AE∥BC(已作)∴∠2=∠(∠C ),(两直线平行,内错角相等)∵∠1+∠2+∠BAC=180°(平角定义)∴∠B+∠C+∠BAC=180°(等量代换),即,三角形的内角的和等于180°.12.∵△ABC中,∠B=40°,∠C=62°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣40°﹣62°=78°,∵AE是∠BAC的平分线,∴∠EAC=∠BAC=39°,∵AD是BC边上的高,∴在直角△ADC中,∠DAC=90°﹣∠C=90°﹣62°=28°,∴∠DAE=∠EAC﹣∠DAC=39°﹣28°=11°13.∵∠CEF=∠AED=48°,∠ACB=∠CEF+∠F,∴∠F=∠ACB﹣∠CEF=74°﹣48°=26°;∵∠BDF+∠B+∠F=180°,∴∠BDF=180°﹣∠B﹣∠F=180°﹣67°﹣26°=87°14.∠A=∠BCD,理由是:∵∠ACB=90°,∴∠A+∠B=90°,∵∠BCD+∠B=90°,∴∠A=∠BCD15.(1)∵∠C=70°,∴∠CAB+∠CBA=180°﹣70°=110°,∴∠EAB+∠FBA=360°﹣110°=250°,∵AD、BD是△ABC的外角平分线,∴∠DAB+∠DBA=(∠EAB+∠FBA)=125°,∴∠D=180°﹣125°=55°;(2)由题意可得,∠CAB+∠CBA=180°﹣∠C,∴∠EAB+∠FBA=360°﹣(∠CAB+∠CBA),=360°﹣(180°﹣∠C),=180°+∠C,∵AD、BD是△ABC的外角平分线,∴∠DAB+∠DBA=(∠EAB+∠FBA),=(180°+∠C),=90°+∠C,∴∠D=180°﹣(90°+∠C),=90°﹣∠C.16.(1)∵∠CBE 是△ABC的外角,∴∠CBE=∠CAB+∠C,∴∠C=∠CBE﹣∠CAB,∵∠BAC的平分线与外角∠CBE的平分线相交于点D,∴∠1=∠CAB,∠2=∠CBE,∵∠2是△ABD的外角,∴∠2=∠1+∠D,∴∠D=∠2﹣∠1=(∠CBE﹣∠CAB)=∠C=×90°=45°;故答案为:45;(2)∵∠CBE 是△ABC的外角,∴∠CBE=∠CAB+∠C,∴∠C=∠CBE﹣∠CAB,∵∠BAC的平分线与外角∠CBE的平分线相交于点D,∴∠1=∠CAB,∠2=∠CBE,∵∠2是△ABD的外角,∴∠2=∠1+∠D,∴∠D=∠2﹣∠1=(∠CBE﹣∠CAB)=∠C=×90°=45°.17.∵AC∥DE,∠E=50°,∠D=75°,∴∠ACB=∠E=50°…(1分)∠1=∠D=75°(3分)又∵∠ABC=70°,∴∠A=180°﹣∠ABC﹣∠ACB=180°﹣70°﹣50°=60°…(6分)∠ABD=∠1﹣∠A=75°﹣60°=15°…(9分)∴∠A=60°,∠ABD=15°.18.(1)∵BO、CO分别平分∠ABC和∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∵∠A=70°,∴∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣(180°﹣70°)=125°.故∠BOC的度数为:125°.(2)∵∠OBC=∠ABC,∠OCB=∠ACB,∠A=n°,∵∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣(∠OBC+∠OCB)=180°﹣(180°﹣n°)=120°+n°.故∠BOC=120°+n°19.设∠A、∠ABC、的度数分别为3x、4x、5x.则3x+4x+5x=180°,解得x=15°.∴∠A=45°,∠ACB=75°.又∵∠A+∠ABD=90°,∴∠ABD=90°﹣45°=45°20.(1)由折叠的过程可知:∠3=∠CDE,∵∠CDE=50°,∴∠3=50°,∴∠1=180°﹣∠3﹣∠CDE=80°,即∠ADF=80°;(2)∵∠C=60°,∴∠CDE+∠CED=120°,∵由折叠的过程可知∠CDE+∠CED=∠3+∠4=180°﹣∠C=120°,∴∠CDE+∠CED+∠3+∠4=240°,∵∠1+∠3+∠CDE+∠2+∠4+∠CED=360°,∴∠1+∠2+∠3+∠4+∠CDE+∠CED=360°,∴∠1+∠2=120°21.∵∠ABC+∠ACB+∠BAC=180°,∠A=∠B=∠C,∴∠A+2∠A+3∠A=180°.∴∠A=30°,∠B=60°,∠C=90°.所以△ABC是直角三角形22.在△ABD中,∠BAC=∠D+∠DBA,∵BD⊥AC,∴∠D=90°.又∵∠BAC=124°,∴∠DBA=34°.∵BA平分∠DBC,∴∠DBC=2∠DBA=68°,在△CBD中,∠C=180°﹣(∠D+∠DBC)=22°.23.∵∠B=30°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=60°,∵AE是角平分线,∴∠EAC=∠BAC=30°.∵AD是高,∠C=73°,∴∠DAC=90°﹣∠C=17°,∴∠EAD=∠EAC﹣∠DAC=30°﹣17°=13°24.如图,∵角平分线BE、CF相交于O,∴∠ABC=2∠1,∠ACB=2∠2,又∵∠A+∠ABC+∠ACB=180°,∴∠A+2∠1+2∠2=180°,∴∠1+∠2=90°﹣∠A,又∵∠1+∠2+∠BOC=180°,∴∠1+∠2=180°﹣∠BOC,∴180°﹣∠BOC=90°﹣∠A,∴∠BOC=90°+∠A,而∠A=40°,∴∠BOC=90°+×40°=11025.(1)证明:如图,∵CF⊥AB,ED⊥AB,∴DE∥FC,∴∠1=∠3.又∵∠1=∠2,∴∠2=∠3,∴FG∥BC;(2)解:如图,在△AFG中,∠A=60°,∠AFG=40°,∴∠AGF=180°﹣∠A﹣∠AFG=100°.又由(1)知,FG∥BC,∴∠ACB=∠AGF=80°,即∠ACB的度数是80°.26.(1)∠1=∠2,理由如下:∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=∠BAC=90°,∴DE∥AC,DF∥AB,∴∠1=∠DAC,∠2=∠DAB,∵AD平分∠BAC,∴∠DAC=∠DAB,∴∠1=∠2;(2)∵DE⊥AB,DF⊥AC,AD⊥BC,∴∠ADB=∠ADC=∠DEB=∠DFC=∠BAC=90°,∴DE∥AC,∴∠BDE=∠C=30°,∴∠1=∠ADB﹣∠BDE=30°,∵∠FDC=180°﹣∠DFC﹣∠C=60°,∴∠2=∠ADC﹣∠FDC=60°27.过点B作EF∥AC,∴∠EBA=∠A,∠FBC=∠C,∵∠EBA+∠ABC+∠FBC=180°,∴∠A+∠C+∠ABC=180°,∴三角形的内角和等于180°.故答案为△ABC,∠A+∠B+∠C=180°28.∠A=2∠D.理由如下:∵BD平分∠ABC,CD平分∠ACE,∴∠DBC=∠ABC,∠DCE=∠ACE,∴∠A=∠ACE﹣∠ABC,∠D=∠DCE﹣∠DBC=(∠ACE﹣∠ABC),∴∠A=2∠D29.∵O1B、O1C分别平分∠ABC和∠ACD,∴∠ACD=2∠O1CD,∠ABC=2∠O1BC,而∠O1CD=∠O1+∠O1BC,∠ACD=∠ABC+∠A,∴∠A=2∠01=40°,∴∠O1=20°,同理可得∠O1=2∠O2,即∠A=22∠02=40°,∴∠O2=10°,∴∠A=2n∠A n,∴∠A n=n °×()n.则∠BO2012C=0.30.(1)∵∠A=40°,∴∠ABC+∠ACB=180°﹣40°=140°.∵BO、CO分别是∠ABC、∠ACB的角平分线,∴∠OBC+∠OCB=(∠ABC+∠ACB)=×140°=70°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣70°=110°;(2)设△ABC的两个外角为α、β.则∠G=180°﹣(α+β)(三角形的内角和定理),利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.可知α+β=∠D+∠DFE+∠D+∠DEF=180°+40°=220°,∴∠G=180°﹣(α+β)=70°;(3)∠A=∠D=n°,∠BOC与∠EGF互补.证明:当∠A=n°时,∠BOC=180°﹣[(180°﹣n°)÷2]=90°+,∵∠D=n°,∠EGF=180°﹣[360°﹣(180°﹣n°)]÷2=90°﹣,∴∠A+∠D=90°++90°﹣=180°,∴∠BOC与∠EGF互补.31.如图,在△ABC中,∵∠ABC=66°,∠ACB=54°,∴∠A=180°﹣∠ABC﹣∠ACB180°﹣66°﹣54°=60°,∵BE和CF分别为AC和AB边上的高,∴∠AEB=∠BFC=90°,在Rt△ABE中,∠1=180°﹣∠A﹣∠AEB=180°﹣90°﹣60°=30°,在△BHC中,∠BHC=∠1+∠BFC=30°+90°=120°32.∵∠ACB=∠B=2∠A,∴∠A+∠B+∠ACB=∠A+2∠A+2∠A=180°,解得∠A=36°,∴∠B=2∠A=2×36°=72°,∵CD是AB边上的高,∴∠BCD=90°﹣∠B=90°﹣72°=18°33.∵DM平分∠CDA,∴∠CDM=∠MDA,又∵BM平分∠ABC,∴∠CBM=∠ABM,又∵∠MDA+44°=∠CBM+36°,∴∠CBM﹣∠MDA=8°,∴2∠CBM﹣2∠MDA=16°,即∠ABC﹣∠ADC=16°,又∵∠ADC+∠C=∠ABC+∠A,∴∠C=36°+16°=52°34.∵∠A+∠B+∠ACB=180°,∠A=40°,∠B=72°,∴∠ACB=68°,∵CE平分∠ACB,∴∠BCE=∠ACB=×68°=34°,∵CD⊥AB,∴∠CDB=90°,∵∠B=72°,∴∠BCD=90°﹣72°=18°,∴∠FCD=∠BCE﹣∠BCD=16°,∵DF⊥CE,∴∠CFD=90°,∴∠CDF=90°﹣∠FCD=74°,即∠BCE=34°,∠CDF=74°35.在△BFD中,∵DF⊥AB,∠D=20°,∴∠B=90°﹣∠D=90°﹣20°=70°,在△ABC中,∵∠B=70°,∠A=30°,∴∠ACB=180°﹣∠A﹣∠B=180°﹣30°﹣70°=80°.答:∠ACB度数是80°36.∵∠BAC+∠B+∠C=180°,而∠B=30°,∠C=50°,∴∠BAC=180°﹣30°﹣50°=100°,∵AE是△ABC的角平分线,∴∠EAC=∠BAC=50°又∵AD为高线,∴∠ADC=90°,而∠C=50°,∴∠DAC=180°﹣90°﹣50°=40°,∴∠DAE=∠EAC﹣∠DAC=50°﹣40°=10°37.∵FD⊥BC,所以∠FDC=90°,∵∠AFD=∠C+∠FDC,∴∠C=∠AFD﹣∠FDC=158°﹣90°=68°,∴∠B=∠C=68°.∵DE⊥AB,∵∠DEB=90°,∴∠BDE=90°﹣∠B=22°.又∵∠BDE+∠EDF+∠FDC=180°,∴∠EDF=180°﹣∠BDE﹣∠FDC=180°﹣22°﹣90°=68°38.∵CD是∠ACB的平分线,∴∠BCD=25°.∵DE∥BC,∴∠EDC=∠BCD=25°,∴在△BDC中,∠BDC=180°﹣∠B﹣∠BCD=180°﹣70°﹣25°=85°.39.∵AD⊥BC,∴∠BDA=90°.∵∠B=60°,∴∠BAD=180°﹣90°﹣60°=30°∵∠BAC=80°∴∠DAC=∠BAC﹣∠BAD=80°﹣30°=50°.∵AE平分∠DAC,∴∠DAE=0.5∠DAC=25°140.∵∠B=40°,∠C=70°,∴在△ABC中,∠BAC=180°﹣40°﹣70°=70°,又∵AE是∠BAC的角平分线,∴∠EAC=∠BAC=35°,又∵AD是BC边上的高,∴AD⊥BC,∴∠ADC=90°,∴在△ADC中,∠DAC=180°﹣∠ADC﹣∠C=20°,∴∠DAE=∠EAC﹣∠DAC=35°﹣20°=15°41.在△BDF中,∠B=180﹣∠BFD﹣∠D=180°﹣90°﹣50°=40°,在△ACB中,∠A=40°,故∠ACB=180°﹣∠A﹣∠B=180°﹣40°﹣40°=100°42.∵∠B=∠A+10°,∠C=∠B+10°,又∵∠A+∠B+∠C=180°,∴∠A+(∠A+10°)+(∠A+10°+10°)=180°,3∠A+30°=180°,3∠A=150°,∠A=50°.∴∠B=60°,∠C=70°.43.(1)∵∠B=30°,∠C=50°,∴∠BAC=180°﹣30°﹣50°=100°.∵AE是∠BAC的平分线,∴∠BAE=50°.在Rt△ABD中,∠BAD=90°﹣∠B=60°,∴∠DAE=∠BAD﹣∠BAE=60°﹣50=10°;(2)∠C﹣∠B=2∠DAE44.∵DE⊥AB(已知),∴∠FEA=90°(垂直定义).∵在△AEF中,∠FEA=90°,∠A=30°(已知),∴∠AFE=180°﹣∠FEA﹣∠A(三角形内角和是180)=180°﹣90°﹣30°=60°.又∵∠CFD=∠AFE(对顶角相等),∴∠CFD=60°.∴在△CDF中,∠CFD=60°∠FCD=80°(已知)∠D=180°﹣∠CFD﹣∠FCD=180°﹣60°﹣80°=40°45.在△ABC中,∵∠BAC=180°﹣∠B﹣∠C=70°,∵AE是∠BAC的平分线,∴∠BAE=∠CAE=35°.又∵AD是BC边上的高,∴∠ADB=90°,∵在△ABD中∠BAD=90°﹣∠B=25°,∴∠DAE=∠BAE﹣∠BAD=10°46.在△ABC中∠BAC=180﹣∠B﹣∠C=76°,又∵AE平分∠BAC,∴∠EAC=38°,在直角△ACD中,∠DAC=90﹣∠C=56°,∴∠DAE=∠DAC﹣∠EAC=18°47.∵EP⊥EF,∴∠PEM=90°,∠PEF=90°.∵∠BEP=40°,∴∠BEM=∠PEM﹣∠BEP=90°﹣40°=50°.∵AB∥CD,∴∠BEM=∠EFD=50°.∵FP平分∠EFD,∴∠EFP=∠EFD=25°,∴∠P=90°﹣25°=65°.48.(1)∠BPC =180°﹣(∠EBC+∠BCF)=180°﹣(∠EBC+∠BCF)=180°﹣(180°﹣∠ABC+180°﹣∠ACB)=180°﹣(180°﹣30°+180°﹣70°)=50°;(2)∠BPC=180°﹣(180°﹣∠ABC+180°﹣∠ACB)=(∠ABC+∠ACB),∵∠BPC=β,∠ABC=α,∴β=(α+∠ACB).故∠ACB=2β﹣α49.在△ABC中,∠A+∠B+∠1=180°,∠B=42°,∴∠A+∠1=138°,又∵∠A+10°=∠1,∴∠A+∠A+10°=138°,解得:∠A=64°.∴∠A=∠ACD=64°,∴AB∥CD(内错角相等,两直线平行)50.(1)∵AB∥CD,∴∠AEF+∠MFN=180°.∵∠MFN+∠FMN+∠FNM=180°,∴∠FMN+∠FNM=∠AEF.(2)∠FMN+∠FNM+∠AEF=180°.理由:∵AB∥CD,∴∠AEF=∠MFN.∵∠MFN+∠FMN+∠FNM=180°,∴∠FMN+∠FNM+∠AEF=180°.51.∵∠B=40°,∠C=70°,∴∠BAC=180°﹣40°﹣70°=70°,又AD为平分线,∴∠DAC=35°.∵AE⊥BC,∴∠EAC=90°﹣∠C=20°,∴∠DAE=35°﹣20°=15°252.∵BD平分∠ABC,CD平分∠ACB,∴∠DBC=∠ABC=30°,∠DCB=∠ACB=25°,又∵∠DBC+∠DCB+∠D=180°,∴∠D=180°﹣∠DBC﹣∠DCB=180°﹣30°﹣25°=125°53.∵AC⊥DE,∴∠APE=90°.∵∠1是△AEP的外角,∴∠1=∠A+∠APE.∵∠A=20°,∴∠1=20°+90°=110°.在△BDE中,∠1+∠D+∠B=180°,∵∠B=27°,∴∠D=180°﹣110°﹣27°=43°54.(1)根据三角形的内角和定理,得:∠BAC=180°﹣∠B﹣∠C=80°;(2)∵AD是△ABC的角平分线,∴∠BAD=∠BAC=40°,∴∠ADF=∠B+∠BAD=80°,又∵AF是△ABC的高,∴∠DAF=10°55.∵BE平分∠ABC,且∠ABC=60°,∴∠ABE=∠EBC=30°,∴∠C=180°﹣∠EBC﹣∠BEC=180°﹣30°﹣75°=75°.又∵∠C+∠DAC=90°,∴∠DAC=90°﹣∠C=90°﹣75°=15°56.在△ABC中,∵∠ABC=80°,BP平分∠ABC,∴∠CBP=∠ABC=40°.∵∠ACB=50°,CP平分∠ACB,∴∠BCP=∠ACB=25°.在△BCP中∠BPC=180°﹣(∠CBP+∠BCP)=115°57.由OE⊥OA,得∠2+∠3=90°,又∵∠1=∠2,∠1+∠2+∠3+∠4=180°,∴∠3=∠4,∵EH⊥CO,∴∠5=90°﹣∠3=90°﹣∠4,∴∠5=∠2,∵BE∥AO,∴∠2=∠6,∴∠5=∠658.∵∠ABC和∠ACB的平分线BD、CE相交于点O,∴∠1=∠2,∠3=∠4,∴∠2+∠4=(180°﹣∠A)=(180°﹣60°)=60°,故∠BOC=180°﹣(∠2+∠4)=180°﹣60°=120°.59.∵AE平分∠BAC,∴∠BAE=∠CAE=∠BAC∵∠BAC=180°﹣(∠B+∠C)∴∠EAC=[180°﹣(∠B+∠C)]∵AD⊥BC,∴∠ADC=90°,∴∠DAC=180°﹣∠ADC﹣∠C=90°﹣∠C,∵∠EAD=∠EAC﹣∠DAC∴∠EAD=[180°﹣(∠B+∠C)]﹣(90°﹣∠C)=(∠C﹣∠B)60.(1)∵AB=AC,∠B=2∠A∴AB=AC,∠C=∠B=2∠A又∵∠C+∠B+∠A=180°∴5∠A=180°,∠A=36°∴∠B=72°;(2)①∵BD是△ABC中∠ABC的平分线∴∠ABD=∠CBD=36°∴∠BDC=72°∴BD=AD=BC;②当BD是腰时,以B为圆心,以BD为半径画弧,交直线BC于点P1(点C除外)此时∠BDP=∠DBC=18°.以D为圆心,以BD为半径画弧,交直线BC于点P3(点C除外)此时∠BDP=108°.当BD是底时,则作BD的垂直平分线和BC的交点即是点P2的一个位置.此时∠BDP=∠PBD=36°。

(完整版)三角形内角和综合习题精选(含答案)

(完整版)三角形内角和综合习题精选(含答案)

三角形内角和综合习题精选一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?2.如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?3.如图,DB是△ABC的高,AE是角平分线,∠BAE=26°,求∠BFE的度数.4.如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数;(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,写出结论无需证明.5.(1)如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB=_________ ,∠XBC+∠XCB=_________ .(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.6.如图1,△ABC中,∠A=50°,点P是∠ABC与∠ACB平分线的交点.(1)求∠P的度数;(2)猜想∠P与∠A有怎样的大小关系?(3)若点P是∠CBD与∠BCE平分线的交点,∠P与∠A又有怎样的大小关系?(4)若点P是∠ABC与∠ACF平分线的交点,∠P与∠A又有怎样的大小关系?【(2)、(3)、(4)小题只需写出结论,不需要证明】7.如图,已知△ABC中,∠B=∠E=40°,∠BAE=60°,且AD平分∠BAE.(1)求证:BD=DE;(2)若AB=CD,求∠ACD的大小.8.如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动.(1)若|x+2y﹣5|+|2x﹣y|=0,试分别求出1秒钟后A、B两点的坐标;(2)设∠BAO的邻补角和∠ABO的邻补角的平分线相交于点P,问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC、∠FCA、∠ABC的平分线相交于点G,过点G作BE的垂线,垂足为H,试问∠AGH和∠BGC的大小关系如何?请写出你的结论并说明理由.9.如图所示,点E在AB上,CE,DE分别平分∠BCD,∠ADC,∠1+∠2=90°,∠B=75°,求∠A的度数.10.如图,∠AOB=90°,点C、D分别在射线OA、OB上,CE是∠ACD的平分线,CE的反向延长线与∠CDO的平分线交于点F.(1)当∠OCD=50°(图1),试求∠F.(2)当C、D在射线OA、OB上任意移动时(不与点O重合)(图2),∠F的大小是否变化?若变化,请说明理由;若不变化,求出∠F.11.如图,△ABC中,AE、BF是角平分线,它们相交于点O.(∠ABC>∠C),(1)试说明∠BOA=90°+∠C;(2)当AD是高,判断∠DAE与∠C、∠ABC的关系,并说明理由.12.已知△ABC中,∠BAC=100°.(1)若∠ABC和∠ACB的角平分线交于点O,如图1所示,试求∠BOC的大小;(2)若∠ABC和∠ACB的三等分线(即将一个角平均分成三等分的射线)相交于O,O1,如图2所示,试求∠BOC 的大小;(3)如此类推,若∠ABC和∠ACB的n等分线自下而上依次相交于O,O1,O2…,如图3所示,试探求∠BOC的大小与n的关系,并判断当∠BOC=170°时,是几等分线的交线所成的角.答案与评分标准一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?考点:三角形的角平分线、中线和高;角平分线的定义;垂线;三角形内角和定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形内角和
一、先估一估下图中各角的度数,然后量一量。

二、量出下图中∠1、∠2、∠3、∠4的度数,你有什么发现
三、在下面的三角形中,∠A的度数是多少
四、填空题。

1、一个三角形具有()条边,()个角,()个顶点。

2、锐角三角形的三个角都是()角。

3、等腰三角形的两腰(),两个底角()。

4、()条边都相等的三角形叫等边三角形,又叫()三角形。

5、一个三角形的两个内角分别是45°和90°,另一个内角是(),这是一个
()三角形。

五、判断题。

(对的在括号里打“√”,错的打“×”。


1、钝角三角形的内角和大于锐角三角形的内角和。

()
2、所有的三角形都是轴对称图形。

()
3、直角三角形中的两个锐角和正好等于90°。

()
4、所有的等边三角形都是等腰三角形。

()
5、将一个三角形剪成两个三角形,那么这两个三角形的内角和都是90°。

()
六、我们学过的图形中哪些是轴对称图形你能画出它们的对称轴吗
七、求下面各图中∠1的度数。

八、如下图,∠1 = 55°,求∠2、∠3、∠4的度数。

九、∠1、∠2、∠3分别是一个三角形的三个内角,已知∠3比一个周角少300度,∠3
的度数是∠2的3倍,求∠1的度数。

(提示:一个周角是360°。


十、如下图,已知∠1 = 90°,∠4 = 75°,求∠3的度数。

部分答案:
三、∠A = 56°∠A = 25°∠A = 69°
四、1、3 3 3
2、锐
3、相等相等
4、三正
5、45°等腰直角
五、1、× 2、× 3、√ 4、√ 5、×
六、长方形、正方形、等腰三角形、等边三角形、等腰梯形、角、圆
七、110° 110°
八、∠2 = 90°- 55°= 35°∠3 = 180°- 35°= 145°∠4 = 35°
九、∠3 :360°- 300°= 60°
∠2 :60°÷3 = 20°
∠1 :180°-60°-20°= 100°
十、∠2 = 90°- 75°= 15°
∠3 = 180°-90°- 15°= 75°。

相关文档
最新文档