采用运算放大器设计正弦波振荡器
三点式正弦波振荡器(高频电子线路实验报告)
三点式正弦波振荡器(高频电子线路实验报告)摘要本实验采用三点式正弦波振荡器电路,通过实验验证了三点式正弦波振荡器的设计和实际应用,其中包括三点式正弦波振荡器的基本原理、电路结构和工作特性等。
实验结果表明,通过合理的电路设计和优化,可以得到高精度、稳定性好的正弦波振荡器,为工程应用提供了重要的参考。
关键词:三点式正弦波振荡器、电路结构、工作特性一、实验目的1.熟悉三点式正弦波振荡器的基本原理和电路结构;3.通过实验验证三点式正弦波振荡器的设计和实际应用。
二、实验原理三点式正弦波振荡器是一种常用的基本电路,它通过正反馈作用在电路中产生自激振荡现象,从而输出对称的正弦波信号。
其基本原理如下:当输出正弦信号幅度变动时,输入放大器的反相输出端和反馈电容之间的电压也会变化,导致反馈放大器的增益也会随之变化,最终导致输出正弦波的幅度稳定在一定的水平上。
同时,在电路中增加合理的RC网络,可以使三点式正弦波振荡器输出的波形更加准确、稳定。
其中,- OA1, OA2分别为运算放大器;- R1, R2, R3分别为电阻,C1, C2分别为电容,L为电感;- 输出信号可以从OA1反相输出端或者OA2非反相输出端输出。
三、实验过程本实验采用EDA软件进行电路仿真和搭建,整个实验过程分为以下几个步骤:1.根据电路原理图,使用EDAW工具将三点式正弦波振荡器的电路搭建出来;2.依据实验材料,按照电路图要求选择合适的R、C、L值;3.将搭建好的电路连接上电源(+12V),开启仿真。
4.在电路仿真过程中,通过示波器观察输出的正弦波形,并分析波形的稳定性和频率响应等特性;5.修改电路参数,观测输出波形的变化情况,并记录相应的数据;四、实验结果通过实验,在合适的电路参数和电源电压下,三点式正弦波振荡器的输出波形为一定幅值的正弦波。
图2 实验得到的三点式正弦波振荡器输出波形五、实验分析通过本实验,我们可以看出三点式正弦波振荡器具有以下特点:1.输出波形准确、稳定。
集成运算的线性应用实验报告.doc
集成运算的线性应用实验报告篇一:集成运算放大器的线性应用--实验篇集成运算放大器的线性应用一、实验名称:集成运算放大器的线性应用二、实验任务及目的1.基本实验任务用运放设计运算电路。
2.扩展实验任务用运放构成振荡频率为500Hz的RC正弦波振荡器。
3.实验目的掌握运放线性应用电路的设计和测试方法三、实验原理及电路1.实验原理运算放大器的线性应用,即将运放接入深度负反馈时,在一定范围内输入输出满足线性关系。
2.实验电路图2.15.1 U0=5Ui1+Ui2(Rf=100k)电路(注意平衡电阻的取值!)图2.15.2 U0=5Ui2-Ui1(Rf=100k)电路(注意输入端电阻的匹配!)图2.15.3 uo??(Cf=0.01?F)电路?图2.15.4 可调恒压源电路(注意电位器的额定功率!)图2.15.5 恒流源电路(注意负载电阻的取值!)图2.15.6 RC正弦波振荡器四、实验仪器及器件1.实验仪器稳压电源1台,使用正常;数字万用表1台,使用正常;示波器1台,使用正常;函数信号发生器1台,使用正常。
2.实验器件DC信号源1个,使用正常;uA741运放2个,使用正常;1kΩ电阻1个,10kΩ电阻2个,15kΩ电阻1个,17kΩ电阻1个,20kΩ电阻2个,33kΩ电阻1个,51kΩ电阻1个,100kΩ电阻4个,0.01μF电容1个,10kΩ电位器1个,使用正常。
五、实验方案与步骤1.按照图2.15.1接好电路,将输入端接地(ui1=0,ui2=0),万用表监测输出电压,接通±15V电源后,调整调零电位器,尽量使Uo接近零,若不为零,则需记录该失调电压的数值。
将DC信号源接通电源,万用表监测DC信号源输出,按照表格中要求的参数调整旋钮,测量输出电压。
2.按照图2.15.2接好电路,记录该失调电压,将DC信号源接通电源,按照表格中要求的参数调整旋钮,测量输出电压。
3.按照图 2.15.3接好电路,调节函数信号发生器输出1kHz/4V的方波信号。
运算放大器应用电路的设计与制作
运算放大器应用电路的设计与制作运算放大器1.原理运算放大器是目前应用最广泛的一种器件,当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
运算放大器一般由4个部分组成,偏置电路,输入级,中间级,输出级。
图1运算放大器的特性曲线图2运算放大器输入输出端图示图1是运算放大器的特性曲线,一般用到的只是曲线中的线性部分。
如图2所示。
U对应的端子为“-”,当输入U单独加于该端子时,输出电压与输入电压U 反相,故称它为反相输入端。
U+对应的端子为“ + ”,当输入U+单独由该端加入时,输出电压与q 同相,故称它为同相输入端。
输出:U0= A(U+-UJ ; A称为运算放大器的开环增益(开环电压放大倍数)。
在实际运用经常将运放理想化,这是由于一般说来,运放的输入电阻很大,开环增益也很大,输出电阻很小,可以将之视为理想化的,这样就能得到:开环电压增益Ad=x ;输入阻抗r i=x ;输出阻抗r o=0;带宽f BW=^;失调与漂移均为零等理想化参数。
理想运放在线性应用时的两个重要特性输出电压U与输入电压之间满足关系式:Ub= Ad (L+- L U),由于A ud=^,而U 为有限值,因此,U— UL^O o即U〜U-,称为“虚短”。
由于r i二X,故流进运放两个输入端的电流可视为零,即I IB = 0,称为“虚断”这说明运放对其前级吸取电流极小上述两个特性是分析理想运放应用电路的基本原则, 可简化运放电路的计算。
运算放大器的应用(1)比例电路所谓的比例电路就是将输入信号按比例放大的电路, 比例电路又分为反向比例电路、同相比例电路、差动比例电路。
(a) 反向比例电路反向比例电路如图3所示,输入信号加入反相输入端:对于理想运放,该电路的输出电压与输入电压之间的关系为:U 。
訓为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻 R'= R// R F 。
电子技术实验报告—实验9集成运算放大器组成的RC文氏电桥振荡器
电子技术实验报告实验名称:集成运算放大器组成的RC文氏电桥振荡器系别:班号:实验者姓名:学号:实验日期:实验报告完成日期:目录一、实验目的 (3)二、实验原理 (3)1、产生自激振荡的条件 (3)2、RC 串-并联网络的选频特性 (4)3、自动稳幅 (5)三、实验仪器 (6)四、实验内容 (7)1、电路分析及参数计算 (7)2、振荡器参数测试 (8)3、振幅平衡条件的验证 (9)4、观察自动稳幅电路作用 (10)五、误差分析 (10)六、实验心得 (11)一、实验目的1、掌握产生自激振荡的振幅平衡条件和相位平衡条件。
2、了解文氏电桥振荡器的工作原理及起振条件和稳幅原理。
二、实验原理1、产生自激振荡的条件所谓振荡器是指在接通电源后,能自动产生所需的信号的电路,如多谐振荡器、正弦波振荡器等。
当放大器引入正反馈时,电路可能产生自激振荡,因此,一般振荡器都由放大器和正反馈网络组成。
其框图如图1 所示。
振荡器产生自激震荡必须满足两个基本条件:(1)振幅平衡条件:反馈信号的振幅应该等于输入信号的振幅,即:V F = V i或|AF| = 1(2)相位平衡条件:反馈信号与输入信号应同相位,其相位差应为:Ф= ФA + ФF = ±2nπ(n = 0、1、2……)为了振荡器容易起振,要求|AF|>1,即:电源接通时,反馈信号应大于输入信号,电路才能振荡,而当振荡器起振后,电路应能自动调节使反馈信号的振幅应该等于输入信号的幅度,这种自动调节功能称为稳幅功能。
电路振荡产生的信号为矩形波信号,这种信号包含着多种谐波分量,故也称为多谐振荡器。
为了获得单一频率的正弦信号,要求在正反馈网络具有选频特性,以便从多谐信号中选取所需的正弦信号。
本实验采用RC 串-并联网络作为正反馈的选频网络,其与负反馈的稳幅电路构成一个四臂电桥,如图3 所示,故又称为文氏电桥振荡器。
2、RC 串-并联网络的选频特性RC 串-并联网络如图2(a )所示,其电压传输系数为:2()1122F +=12R1211(1)(21)122R2112R VF jwR c R c VO R j wc R jwc jwR c c wc R ++==+++++-()当R1= R2= R , C1= C2= C 时,则上式为:1()13()F j wRc wRc +=+-若令上式虚部为零,即得到谐振频率f o 为:1fo=2RC π 当f=f o 时,传输系数最大,且相移为0,即:F max =1/3,φF =0传输系数 F 的幅频特性和相频特性如图2(b )(c )所示。
实验十-基于运放的信号发生器实验(400hz-100khz)
任务书【实验名称】基于运放的信号发生器设计【设计任务】本课题要求使用集成运算放大器制作正弦波发生器,在没有外加输入信号的情况下,依靠电路自激振荡而产生正弦波输出电路。
【设计要求】1、采用经典振荡电路,产生正弦信号,频率范围400Hz~100kHz2、双电源供电3、信号经过放大、驱动电路,可在1KΩ负载条件下:(1)正弦波最大峰-峰值3V,幅值可调,谐波失真小于3%【提供元器件】1、运算放大器LM3244、二极管5、电阻电容电位器同轴电位器一设计思路与解决方法模电实验报告设计要求①:采用经典振荡电路,产生正弦信号,频率范围100Hz~100kHz 解决方案:使用运算放大器LM324,组成由基本放大电路,选频网络,正反馈网络构成的经典振荡电路,产生自激振荡的正弦波。
使用同轴电位器,对信号的频率范围进行调节,使其在100Hz~100kHz时可产生幅值不变的正弦波。
设计要求②:双电源供电解决方案:选取数电箱的两个15V电压输出,将第一组的+15V端接在LM324的4管脚(即运放器的Vcc端);第一组的-15V接在第二组的+15V端,再将第二组的+15V端接地;第二组的-15V端接在LM324的11管脚(即运放器的GND端)设计要求③:信号经过放大、驱动电路,可在1KΩ负载条件下:(1)正弦波最大峰-峰值3V,幅值可调,谐波失真 3%2.1经典振荡器部分经典振荡器部分由基本放大电路,选频网络,正反馈网络组成。
其中,基本放大电路作用:使电路获得一定幅值的输出量;选频网络作用:确定电路的振荡频率,保证电路产生正弦波振荡;正反馈网络作用:在振荡电路中,当没有输入信号的情况下,输入正反馈信号作为输入信号。
一.实验原理振荡电路有RC正弦波振荡电路、桥式振荡电路、移相式振荡电路和双T网络式振荡电路等多种形式。
其中应用最广泛的是RC桥式振荡电路,电路如图1. 电路分析RC 桥式振荡电路由RC 串并联选频网络和同相放大电路组成,图中RC 选频网络形成正反馈电路,决定振荡频率0f 、1R 、f R 形成负反馈回路,决定起振的幅值条件,该电路的振荡频率,D1、D2为稳压管。
1KHZ桥式正弦波振荡器电路的设计与制作
目录1.系统基本方案 (3)1.1 正弦波振荡电路的选择与论证 (3)1.2. 运算放大器的选择 (4)1.3最终的方案选择 (4)2正弦波发生器的工作原理 (5)2.1正弦波振荡电路的组成 (5)2.1.1 RC选频网络 (5)2.1.2放大电路 (8)2.1.3正反馈网络 (9)2.2产生正弦波振荡的条件 (9)2.3.判断电路是否可能产生正弦波的方法和步骤 (9)3.系统仿真 (10)4.结论 (11)页脚内容0 (14) (14)页脚内容1 (15)参考文献: (15)附录 (16)页脚内容2页脚内容31KHZ 桥式正弦波震荡器电路的设计与制作摘要 本设计的主要电路采用文氏电桥振荡电路。
如图1-1文氏桥振荡电路由放大电路和选频网络两部分组成,施加正反馈就产生振荡,振荡频率由RC 网络的频率特性决定。
它的起振条件为:,振荡频率为:。
运算放大器选用LM741CN,采用非线性元件(如温度系数为负的热敏电阻或JFET )来自动调节反馈的强弱以维持输出电压的恒定,进而达到自动稳幅的目的,这样便可以保证输出幅度为2Vp-p ;而频率范围的确定是根据式RCf π210=以及题目给出的频率范围来确定电阻R 或电容C 的值,进而使其满足题目的要求。
关键词:文氏电桥、振荡频率、LM741CN1.系统基本方案1.1 正弦波振荡电路的选择与论证 本设计选用文氏电桥振荡电路。
页脚内容4图1 RC 桥式振荡电路这种电路的特点是:它由放大器即运算放大器与具有频率选择性的反馈网络构成,施加正反馈就产生振荡。
振荡频率由RC 网络的频率特性决定。
它的起振条件为: 12R R f>。
它的振荡频率为:RCf π210=。
1.2. 运算放大器的选择考虑到综合性能和题目要求的关系这里我们选用LM741CN 作为运算放大。
1.3最终的方案选择文氏电桥振荡电路适用的频率范围为几赫兹到几千赫兹,可调范围宽,电路简单易调整,同时波形失真系数为千分之几。
利用运放实现正弦波振荡器
实验现象分析(续)
四、振荡频率与理论值有较大误差,原因分析:
选频电路元件理论值与实际值存在误差,有时会超过10%;
晶体管放大器的输入阻抗不满足无穷的理想条件,
影响了选频回路的参数引起误差。
五、放大器放大倍数过大或偏小,原因分析:
振荡输出观察有误,应保证在输出波形最大而不失真时 来测定放大倍数。 输出失真则放大倍数偏大,输出波形不是最大,则结果 与理论值偏小。
R2=R1 Z2
C2=C1
1.6k
0.1
Re1
Rb3
Re2
Ce2
1k
10k
1k
47
图1
RC桥式振荡器电原理图
反馈网络
放大器
实验原理—振荡条件
1 A 维持自激振荡的条件: F
放大器的传输 振荡器的反馈网络传输系数,A F 系数 1 A 振幅平衡条件: F
相位平衡条件: A F 2n,n 0, 1, 2, 3,
7、利用运放实现正弦波振荡器,重做3~6步的内容。
实验结果与分析
静态工作点测试结果:
晶体管 Q1 Q2 Uc(V) 7.64 6.31 Ue(V) 3.74 3.11 Ic(mA) 3.82 3.16 Ie(mA) 3.74 3.11
反馈电阻RF对输出波形的影响:
当RF很小时,输出端几乎没有波形,逐渐增大RF, 到某一特定的RF时,波形很快出现,并且波的振幅由 小变大非常快,然后就开始失真,所以,只有很小范 围内的RF才能得到较好的输出波形。
F Z2 jRC 1 ( 0 1 RC ) 2 2 2 Z1 Z 2 1 R C j3RC 3 j 0 0
实验七 RC正弦波振荡器
三、实验设备
1.双踪示波器 2.现代电子技术实验台
3. 示波器
四、实验内容及步骤
1.按图3.6.1接线。 2.用示波器观察输出波形。 3. 测上述电路输出频率(示波器读取)。 4.改变振荡频率。 在实验台上使文氏桥电容C1=C2=0.1μ。 思考: (1)若元件完好,接线正确,电源电压正常,而Uo=0,原 因何在?应怎么办?
实验六
一、实验目的
RC正弦波振荡器
1.掌握桥式RC正弦波振荡电路的构成及工作原理。 2.熟悉正弦波振荡电路的调整、测试方法。 3.观察RC参数对振荡频率的影响,学习振荡频率的测 定方法。
二、 实验原理
如图3.6.1由运算放大器和文氏电桥组成RC正弦 波振荡器,其中RP1 、 C1 、R2 、 C2组成正反馈网 络选频网络。
1 1 当 0 时,正反馈系数: F 3 RC 图3.6.1中,R1、 Rf 是负反馈网络,是为了改善振荡波形 和稳定振幅而引入的。其负反馈系数为:F R1
R1 R f
1 当 f f0 时,正反馈系数: F 1 2 RC 3
电路还必须满足Rf>2R1的关系,否则,会引起波形严 重失真。 调试时,适当调整负反馈的强弱,使放大器的电压放大 倍数A略大于3,振荡器就可以起振,输出正弦波信号;若A 的值远大于3,则输出的正弦波信号易产生非线性失真;若 A的值小于3,因不满足幅度平衡条件,故振荡器不起振。
47K
RP1
10K
0.2μ 2K
A1
R2
A
0.2μ
3.6.1 集成运放构成桥式RC正弦波振荡器
10K
为了分析方便起见,选择元件时使R2=Rp1=R, C1=C2=C。正反馈网络的反馈系数为:
1MHZ正弦波振荡器的设计
1MHZ正弦波振荡器设计李国建(安庆师范学院物理与电气工程学院安徽安庆 246011)指导老师:吴昭方摘要:正弦波振荡器广泛的应用于测量、遥控、通讯、自动控制、热处理和超声波电焊等加工设备之中,也作为模拟电子电路的测试信号。
本文论述了正弦波振荡器的工作原理、组成框图及种类,具体设计了采用同相比例运算放大电路的和改进的反相比例运算放放大电路的两种1MHZ的RC桥式正弦波振荡器,并将两种正弦波振荡器做了比较。
关键词:正弦波振荡器,同相比例运算放大,差分比例运算放大1、引言在实践中,广泛采用各种类型的信号产生电路,就其波形来说,可能是正弦波或非正弦波,其中正弦波振荡器的运用尤为普遍。
实际运用中,正弦波振荡电路可分为RC振荡电路、LC振荡电路及石英晶体振荡器,现今石英晶体振荡器运用的最多,但大多用于产生高频正弦波。
RC正弦波振荡器多用于产生低频正弦波,同时它也是被运用最早且最好理解的一种正弦波振荡电路,对于学习理解正弦波振荡器十分有帮助,故学习设计RC正弦波振荡器是十分有必要且重要的。
2、正弦波振荡器的工作原理2.1正弦波振荡器的组成及框图正弦波振荡器电路可分为五个部分,即直流电源、放大电路、选频网络、正反馈网络、稳幅网络,其组成框图如图1所示。
直流电源——为放大器提供正常工作(放大功能)的条件。
放大电路——保证电路能够有从起振到动态平衡的过程,使电路获得一定幅值的输出量,实现能量的控制。
选频网络——确定电路的振荡频率,使电路产生单一频率的振荡,即电路产生正弦波振荡。
正反馈网络——引入正反馈,使放大电路的输入信号等于反馈信号。
稳幅网络——也就是非线性环节,作用是使输出信号幅值稳定。
在不少实用电路中,常将选频网络和正反馈网络“合二为一”,而且对于分立元件放大电路,也不再另加稳幅网络,而依靠晶体管特性的非线性来起到稳幅作用。
U振荡建立过程的原理框图图1中虚框内的)选出并放大→对f 0信号处于正反馈回到输入端→再经过放大和反馈,如此循环下去→稳幅电路使输出电压幅度稳定在一定值。
集成rc正弦波振荡器实验报告
集成RC正弦波振荡器实验报告引言在电子技术领域中,正弦波振荡器是一种常见且重要的电路。
它能够产生稳定的正弦波信号,被广泛应用于通信、测量以及控制系统中。
本实验旨在通过集成RC电路设计和实现一个正弦波振荡器,并进行详细的探索和分析。
一、电路设计1. RC电路原理RC电路是由电阻(R)和电容(C)组成的一种基本电路。
在充电过程中,电容器会通过电阻放电,导致电压逐渐减小;在放电过程中,电容器会再次通过电阻充电,导致电压逐渐增大。
当电容器充放电周期很短而频率很高时,RC电路就能产生连续变化的电压,形成一个振荡器。
2. RC正弦波振荡器的设计要求一个RC正弦波振荡器的设计需要满足以下要求:•可以产生稳定的正弦波信号;•输出波形的频率和幅度应可调节。
3. RC正弦波振荡器的基本原理RC正弦波振荡器的基本原理是通过将一个放大器的输出信号反馈至输入端,形成一个正反馈回路。
当回路增益大于等于1时,系统会不断振荡产生正弦波信号。
二、电路实现1. 基本RC正弦波振荡器电路图为了实现RC正弦波振荡器,我们可以采用如下电路图:•在非反相输入端连接一个电阻R和电容C,形成一个低通RC滤波器;•输出通过一个放大器反馈至输入端,产生正反馈。
2. 具体电路参数的选择在设计RC正弦波振荡器时,我们需要选择合适的电阻和电容数值,以控制振荡器的频率和幅度。
这里我们选择R=10kΩ和C=1μF。
3. 搭建电路实验平台为了实现RC正弦波振荡器,我们需要搭建一个电路实验平台:•使用集成运算放大器(Op-Amp)作为放大器,例如LM741;•将电阻R和电容C按照电路图连接至Op-Amp;•使用函数发生器作为输入信号源,连接至Op-Amp的输入端;•连接示波器至Op-Amp的输出端,用于观测输出波形。
三、实验过程1. 搭建实验电路根据电路图和参数选择,通过实验器材搭建RC正弦波振荡器实验电路。
2. 设置函数发生器参数设置函数发生器的频率和幅度,以达到所需的正弦波输出。
正弦波振荡电路的实验报告
新疆大学实训(实习)设计报告所属院系:机械工程学院专业:工业设计课程名称:电工电子学设计题目:正弦波振荡电路设计(RC)班级:机械10-5班学生姓名:盛晓亮学生学号:20102001007指导老师: 玛依拉完成日期:2012.7.5RCfnπ21=;(式4)图6 RC串并联电路这说明只有符合上述频率nf的反馈电压才能与0•U相位相同。
这时的反馈系数为31==••UUF f(式5)可见,RC串、并联电路既是反馈电路又是选频电路。
ωω•υF31ωωο90ο90-fϕο图7 幅频特性图8 相频特性2.自励振荡的幅度条件:反馈电压的大小必须与放大电路所需要的输入电压的大小相等,即必须有合适的反馈量。
用公式表示即ifUU=(式6)由于iUUA0=(式7)对于图6所示振荡电路,由于101R R A F+==3,故起振时o A >3, 即12R R F >, 因而要求F R 由起振时的大于12R 逐渐减小到稳定振荡时的等于12R 。
所以F R 采用了非线性电阻。
改变R 和C 即可改变输出电压的频率。
四、设计内容与步骤1.内容(1)根据设计结果连接电路。
(2)分析和观察不同时间段输出波形由小到达的起振过程和稳定到某一幅度的全过程。
(3)参数设置,若参数不能达到设计要求,按指标要求调试电路。
2.步骤(1)在Multisim 平台上建立如图9所示的实验电路,仪器参数按图8所示设置:nF C C 1.021==;电阻4R +5R >23R ;4R >5R .调节1R (即21,R R 同时改变)使振荡稳定时满足Ω==K R R 5.521。
图9 RC 正弦波振荡仿真电路图调节直至震荡稳定时的输出信号观测示波器显示(如图10、11)a. 起震:电位器8%图10 起震时的图形b. 振幅最大且不失真:电位器55%图11 震荡稳定时输出信号的图形(2)单击仿真开关运行动态分析,观测频率计数据(如图12所示)。
RC正弦波振荡电路-报告
电子线路EDA报告专业电气工程及其自动化学生姓名 xxx x学号 xxxxxx题目 RC正弦波振荡电路指导教师 xx2016年x月x日一、任务与要求了解用集成运算放大器构成简单的正弦波的方法,掌握RC桥式正弦波振荡器的设计、仿真与调试方法。
理解RC 正弦波振荡电路的工作原理,利用Multisim 软件创建RC 桥式正弦振荡电路图,仿真分析其起振条件,稳幅特性。
掌握Multisim 软件中常用元器件的选取和参数设置,常用电子仪表的使用及电路调试的基本方法。
设计一个RC 桥式振荡电路。
其正弦波输出为: 振荡频率:500Hz振荡频率测量值与理论值的相对误差 电源电压变化时,振幅基本稳定 振荡波形对称,无明显非线性失真二、电路原理分析1、RC 桥式振荡电路由RC 串并联选频网络和同相放大电路组成,如图1所示。
图中RC 选频网络形成正反馈电路,并由它决定振荡频率,和形成负反馈回路,由它决定起振的幅值条件和调节波形的失真程度与稳幅控制。
在满足1212R R R C C C ====,的条件下,该电路的振荡频率:o 12f RC π=(①)起振幅值条件 a bvf1a3R R A R +=≥或ba2R R ≥ (②)式中b 43d R R R r =+,d r 为二极管的正向动态电阻。
2、参数确定与元件选择一般说来,设计振荡电路就是要产生满足设计要求的振荡波形。
因此振荡条件是设计振荡电路的主要依据。
设计如图1所示振荡电路,需要确定和选择的元件如下:(1)确定R 、C 值根据设计所要求的振荡频率o f ,由式(①)先确定RC 之积,即o12RC f π=(③)为了使选频网络的选频特性尽量不受集成运算放大器的输入电阻i R 和输出电阻o R 的影响,应使R 满足下列关系式:io R RR一般i R 约为几百千欧以上(如LM741型i 0.3M ΩR ≥),o R 而仅为几百欧以下,初步选定R 之后,由式(③)算出电容C 值,然后,再复算R 取值是否能满足振荡频率的要求。
集成运算放大器设计振荡电路
集成运算放大器设计振荡电路
集成运算放大器(Operational Amplifier,简称Op-Amp)在电路设计中广泛应用。
其在直流放大、交流放大、滤波、比较、反馈、振荡等方面都有着重要的应用。
振荡电路是一种特殊的电路,能够产生稳定的交流信号。
在Op-Amp中,通过适当的反馈,可以构成各种类型的振荡电路。
常见的Op-Amp振荡电路有三种:正弦波振荡器、方波振荡器和多谐振荡器。
正弦波振荡器采用了一个正反馈放大电路,输出信号经过滤波电路后再次输入到放大电路中,形成闭环。
在一定条件下,正弦波振荡器可以产生稳定的正弦波输出。
方波振荡器采用了一个Schmitt触发器作为反馈元件,利用其两个阈值来实现正反馈。
当输入信号超过上阈值时输出高电平,当输入信号低于下阈值时输出低电平,形成方波输出。
多谐振荡器是由多个共振回路组成的电路,可以产生多个频率的输出信号。
其电路结构相对复杂,需要精确设计调整各个回路的参数。
Op-Amp振荡电路的设计需要考虑电路稳定性、幅频特性、相频特性等因素,需要仔细计算和模拟,才能确保其正常工作。
同时,还需要注意反馈路径、电源等因素对振荡电路的影响。
RC正弦波振荡电路
实验7 RC 正弦波振荡电路1 实验目的:1.1 熟悉集成运算放大器构成的正弦波振荡电路的原理与设计方法。
1.2 掌握由运放构成的函数发生器。
2 预习要求:2.1分析图10-1电路工作原理,按照图中的元件参数,计算符合振荡条件的R W 值及振荡频率fo 。
2.2分析图10-4电路的工作原理,画出1o v 、2o v 的波形,推导1o v 、2o v 的波形的周期和幅度的计算公式。
2.3 按图10-4中给出的元件参数计算1o v 、2o v 的波形的周期和幅度,与实验实测值进行比较。
3 实验器材(1) 模拟实验箱 (2) 数字万用表 (3)示波器 (4) 集成运算放大器LM324/A 1片 (5)电子元件若干4 实验电路与原理及实验内容 4.1 RC 桥式正弦振荡电路RC 桥式正弦振荡电路如图10-1所示。
其中R 1、C 1、R 2、C 2是选频网络,接在集成运算放大器的输出与同相输入端之间。
构成正反馈,产生正弦自激振荡。
图中虚线框内的部分是带有负反馈的同相放大电路,其中R 3、R W 及R 4为负反馈网络,调节R W 即可改变负反馈的反馈系数,从而调节放大电路的电压增益,使之满足振荡的幅度条件。
二极管D 1、D 2起限制输出幅度,改善输出波形。
4.1.1 RC 串并联选频网络的选频特性一般取R 1=R 2=R ,C 1=C 2=C ,令R 1、C 1并联的阻抗为Z 1,R 2、C 2串联的阻抗为Z 2及ωo =RC 1,则Z 1=RC j R ω+1,Z 2=R Cj ω1+ 推出正反馈的反馈系数为)//(31211ωωωωo o o f J Z Z Z V V F -+=+==(10-1) 由此可得RC 串并联选频网络的幅频特性与相频特性分别是R 1 16K22)//(31ωωωωO O F -+=(10-2)3)//(ωωωωϕO O F arctg--= (10-3)由(10-2)、(10-3)两式可画出其幅频特性与相频特性的曲线,如图10-3所示由(10-2)、(10-3)两式可知,当ω=ωO =RC 1时,反馈系数的幅值为最大,即F=31,而相频响应的相角φF =0。
正弦波振荡器实验内容和实验步骤
正弦波振荡器实验内容和实验步骤下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!正弦波振荡器实验详解引言正弦波振荡器是电子电路中常见的一种基本元件,用于产生频率稳定的正弦波信号。
电子技术基础课件第3章 集成运算放大器及正弦波振荡电路
图中VT3组成分压式工作点稳定电路,该电路当温度发生变 化时,Ie3基本不变,且
从而阻止了Ic1、Ic2随温度升高而增大,起到抑制零漂的作用。
*3.1.4 差动放大电路的4种接法
1.单端输入、双端输出式 单端输入、双端输出式差动放大电路如图3.3所示。
2.双端输入、单端输出式 双端输入、单端输出式差动放大电路如图3.4所示。
② 中间级。其作用是提供较高的电压放大倍数,一般由共发射 极放大电路组成。
③ 输出级。输出级的作用是提供一定的电压变化,通常采用互 补对称放大电路。
④ 辅助环节。使各级放大电路有稳定的直流偏置。
2.集成运放符号
集成运放是高电压放大倍数、高输入电阻、低输出电阻的直 接耦合放大电路,由于直接耦合放大电路存在零点漂移问题,所 以对零漂影响最大的第一级电路往往采用差动放大器。
(a)新符号
(b)旧符号
图3.9 集成运放的图形符号
3.主要参数 集成运放的性能可以用各种参数来反映,为了合理正确地
选择和使用集成运放,下面介绍集成运放的主要性能指标。 ① 开环电压放大倍数Auo:指无反馈时集成运放的差模电压放大 倍数。 ② 差模输入电阻rid:指差模输入时运放无外加反馈回路时的输 入电阻。
集成电路按电路功能可分为模拟集成电路和数字集成电路, 模拟集成电路主要有集成功率放大器、集成运算放大器、集成 稳压器等。由于集成电路体积小、稳定性好,因而在各种电子 设备及仪器中得到了广泛的应用。
3.2.1 集成电路的特点
与分立元件电路相比,集成电路具有以下突出特点。 1.可靠性高、寿命长 2.体积小、重量轻 3.速度高、功耗低 4.成本低
3.抑制零点漂移的措施 ① 选用稳定性能好的高质量的硅管。
② 采用高稳定度的稳压电源可以抑制电源电压波动引起的零漂。
正弦波振荡器实验报告
正弦波振荡器实验报告引言在电子学领域中,正弦波振荡器是一种重要的电路。
它通过产生稳定且频率可调的正弦信号,在许多应用中起到关键作用。
本实验旨在设计并搭建一个正弦波振荡器电路,并详细分析其工作原理和性能。
实验装置和步骤实验中使用的装置包括:电源供应器、信号发生器、元件(如电容、电感、电阻)和示波器。
实验分为以下几个步骤:1. 搭建电路:根据给定的电路图,依次连接元件和仪器。
确保电路连接的稳定性和正确性。
2. 设置电源:将电流源供应器连接到电路,调整输出电压,并保证电源稳定。
这是实现正弦波振荡的基础。
3. 信号发生器设置:使用信号发生器提供一个直流参考电压,作为振荡器的输入信号。
逐步调整频率,找到振荡器产生最稳定的正弦波的频率。
4. 输出测量:将示波器连接到电路的输出端,通过示波器的屏幕观察输出信号的波形和频率。
调整电路中的元件数值,使输出波形尽可能接近理想的正弦波。
工作原理与分析正弦波振荡器的工作原理基于放大器和反馈网络的相互作用。
根据霍尔的理论,正弦波振荡器需要满足以下两个条件:放大环路增益大于1并且相位延迟为360度。
在本实验中,我们采用集成运算放大器作为放大器和RC网络作为反馈网络。
RC网络是由电容和电阻串联而成,起到了相位延迟的作用。
电容的充放电过程导致输出信号在反馈回路中相位延迟,满足相位延迟的要求。
此外,电容和电阻的数值也决定了输出信号的频率。
放大器的设计是整个电路中的核心部分。
通过调整放大器的增益,我们可以控制正弦波振荡器的输出信号幅度。
通过选择合适的放大器类型和元件数值,同时结合反馈网络的设计,我们可以实现一个稳定且频率可调的正弦波输出。
实验结果与讨论在实验中,我们通过调整电路中元件的数值和信号发生器的频率,成功实现了一个正弦波振荡器。
通过示波器观察到的波形可以明显地看出,输出信号接近理想的正弦波。
频率的可调范围也较广,满足了实际应用的需求。
值得注意的是,在实际电路中存在一些不理想因素,如元件本身的非线性特性、放大器的失真等。