运用导数解决含参问题
导数应用中对含参问题的分类讨论
导数应用中对含参问题的分类讨论作者:张艳来源:《考试·高考数学版》2012年第02期导数是解决函数单调性、最值等问题十分有利的工具,但学生在运用导数解决含参的问题时,往往会束手无措,特别是对其中的分类讨论感到无从下手。
其实联想到含参的二次函数求最值中,主要有两类:动轴定区间和定轴动区间,不论哪一类,我们通常是按照轴在区间左侧、轴在区间内和轴在区间右侧分三类来讨论。
类比上述方法,就可以轻松解决导数应用中对含参问题的分类讨论。
举例说明如下:一、动点定区间例1 已知函数f(x)=lnx-ax,若f(x)在[1,e]上的最小值为32,求a的值.分析:先假设函数f(x)的定义域为R,由f(x)=lnx-ax,得f′(x)=1x+ax2=x+ax2,由f′(x)=0,解得x=-a.令f′(x)>0,解得x>-a;令f′(x)<0,解得x<-a.所以f(x)在(-∞,-a)上是减函数,在(-a,+∞)上是增函数,若仅考虑函数的单调性,那么f(x)图像的增减情况大致为图1,则f(x)在[1,e]上的图像应为图1在[1,e]上的部分。
考虑到极值点-a是动点,[1,e]是定区间,即动点定区间,联想到二次函数动轴定区间求最值的方法,将问题分为极值点在区间左侧,内部,右侧三类来讨论。
解:由f(x)=lnx-ax,得f′(x)=1x+ax2=x+ax2,(1)(若极值点在区间左侧)如图11.当-a≤1即a≥-1时,∵ 1≤x≤e,∴ x+a≥0,即f′(x)≥0对x∈[1,e]恒成立,当且仅当x=-a 时,f′(x)=0.所以f(x)在[1,e]上是增函数。
当x=1时,f(x)min=f(1)=ln1-a1=-a=32,解得a=-32,不满足a≥-1,故舍去;(2)(若极值点在区间内)如图12.当1<-a<e即-e<a<-1时,当x变化时,f′(x)、f(x)的变化情况如下表:x=-a是f(x)在[1,e]上的唯一极小值点,也是最小值点.当x=-a时,f(x)min=f(-a)=ln(-a)-a-a=ln(-a)+1=32,解得a=-e∈(-e,-1),符合题意;(3)(若极值点在区间右侧)如图13.当-a≥e即a≤-e时,∵ 1≤x≤e,∴ x+a≤0,即f′(x)≤0对x∈[1,e]恒成立,当且仅当x=-a时,f′(x)=0.所以f(x)在[1,e]上是减函数。
利用导数研究含参函数单调性
利用导数研究含参函数单调性函数的单调性是指函数随着自变量的变化,函数值的增减规律。
利用导数可以研究含参函数的单调性。
考虑含参函数$f(x;a)$,其中$a$是函数的参数。
我们希望研究函数$f$相对于自变量$x$和参数$a$的单调性。
首先,我们来研究函数相对于自变量$x$的单调性。
要研究函数$f(x;a)$的单调性,我们需要计算其导数。
记$f'(x;a)$为函数$f(x;a)$的导数。
根据导数的定义,我们有$$f'(x;a) = \lim_{\Delta x \to 0} \frac{f(x+\Delta x;a) - f(x;a)}{\Delta x}$$这表示了函数$f(x;a)$在$x$处的切线的斜率。
我们可以通过计算导数来研究函数的单调性。
具体来说,当导数$f'(x;a)$在一些区间内始终大于零时,函数$f(x;a)$在该区间内是递增的;当导数$f'(x;a)$在一些区间内始终小于零时,函数$f(x;a)$在该区间内是递减的。
例如,考虑函数$f(x;a) = ax^2 + bx + c$,其中$a,b,c$是参数。
我们可以计算其导数$f'(x;a) = 2ax + b$。
当$a>0$时,$f'(x;a)$在整个实数域上大于零,这表示函数$f(x;a)$是递增的;当$a<0$时,$f'(x;a)$在整个实数域上小于零,这表示函数$f(x;a)$是递减的。
接下来,我们来研究函数相对于参数$a$的单调性。
要研究函数$f(x;a)$相对于参数$a$的单调性,我们需要计算其偏导数。
记$\frac{\partial f}{\partial a}(x;a)$为函数$f(x;a)$相对于参数$a$的偏导数。
根据偏导数的定义,我们有$$\frac{\partial f}{\partial a}(x;a) = \lim_{\Delta a \to 0} \frac{f(x;a+\Delta a) - f(x;a)}{\Delta a}$$类似地,我们可以通过计算偏导数来研究函数相对于参数的单调性。
如何运用导数解决含参函数问题的研究
如何运用导数解决含参函数问题的研究作者:黄清鹏来源:《中学课程辅导·教师通讯》2018年第02期【内容摘要】导数的学习和解决方法的掌握,不仅是高中数学重要的组成部分,在高考中也是作为考试的考查重点。
含参函数问题主要是以函数为载体,运用导数工具来解决这一类问题,这是一种方法,主要是考查函数性质,促进学生深入研究和分析导数和更好地应用导数。
因此,运用导数解决含参函数问题,必须把握好最近几年函数命题的规律,深入了解和分析导数的性质和应用,结合试题特点和命题趋向的同时,要充分运用导数来解决含参函数问题。
要把握好导数的性质,根据导数来求出含参数函数问题中参数的取值范围,这种求存在性问题是常考的范围,也是常规的解题思路,通过等价转化将复杂的数学思想进行简单转化,有利于将学生不熟悉、复杂的问题简单化,进而变为他们熟悉、规范和简单的含参函数问题。
运用导数解决含参函数问题,对提高学生对导数性质认识和创新方法与思路去解决含参函数问题具有极强的指导意义。
【关键词】含参函数问题导数数学历年高考试题中常常出现含参函数问题,这考察的不仅是学生对含参函数问题的解决能力,也是学生解题思路的一种培养。
常用的解题方法就是导数求解法。
实际上,学生对这类含参函数问题比较头疼和恐惧,因为此类问题涉及的数学知识内容多、面广,具有极强的综合性。
学生面对这类问题时,不知道如何确定参数范围,也不知道所包括的函数关系或不等关系是怎么来的。
含参函数问题以函数为载体,对学生函数性质及导数应用的考察要求较为严格,也是近些年高考数学命题的趋向。
实际上,运用导数解决含参数函数问题,求参数取值范围,作为探索性问题对于数学解题来说非常常见,通过等价转化来把握住数学思想,就可以将这些复杂的数学问题转化成为学生熟悉的、规范的和简单的问题。
运用导数解决含参函数问题,就是基于不等式的结构特征,把握好含参数不等式的存在性,适当构造函数,来探讨含参函数的最值,利用导数就可以求出范围。
用导数解决含参数的函数的单调性
用导数解决含参数的函数的单调性单调性是数学中一个重要的概念,用于描述函数在特定区间内的增减性质。
在解决含参数的函数的单调性时,我们可以利用导数的概念和性质进行分析和推导。
本文将介绍如何使用导数解决含参数的函数的单调性,并给出相应的示例。
首先,我们来回顾一下导数的定义。
对于函数$f(x)$在点$x=a$处可导,其导数$f'(a)$表示函数曲线在该点处的斜率,可以通过以下公式计算:$$f'(a)=\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}$$其中,$h$为一个无限趋近于0的值。
导数可以帮助我们研究函数的变化趋势、最值以及单调性等性质。
接下来,我们将探讨含参数的函数的单调性。
含参数的函数形式可以表示为$f(x;a)$,其中$a$为参数。
我们的目标是找到使函数单调的参数范围。
解决这个问题的关键是求导。
首先,我们需要计算函数的一阶导数$f'(x;a)$和二阶导数$f''(x;a)$。
一阶导数反映了函数的变化趋势,二阶导数揭示了函数的曲率性质。
接下来,我们需要找出函数的临界点和在其定义域内的驻点。
临界点是导数为0或不存在的点,驻点是导数在该点处为0的点。
当我们求出一阶导数$f'(x;a)$后,我们可以通过求解方程$f'(x;a)=0$来计算临界点和驻点。
这些点将给出函数的极值或拐点。
通过对导数方程进行求解,我们可以找到参数$a$满足$f'(x;a)=0$,从而得到临界点和驻点。
接下来,我们需要进行符号分析,确定函数的区间性质。
具体来说,当一阶导数$f'(x;a)$在一些区间内大于0时,函数$f(x;a)$是递增的;当一阶导数在一些区间内小于0时,函数是递减的;当一阶导数的正负性在一些点发生改变时,该点可能是函数的拐点。
当我们确定函数的单调性时,还应该考虑到函数的定义域。
特别是当参数$a$对函数的定义域有影响时,我们需要对不同的参数范围进行分析,以确定函数的单调性。
使用导数来解决含参函数单调性的讨论方法的总结
155使用导数来解决含参函数单调性的讨论方法的总结蓝荣升作者发现,使用导数来解决函数的单调性,它在高中数学试卷中占有相当大的份额。
函数的单调性是求解函数极值,最值(范围)以及零点个数问题的基础,它经常出现在压轴题的第一问,并且存在一定的困难。
求函数单调性的最困难的部分是含参函数的分类讨论,而分类讨论的思想又是高中阶段着重培养的思想方法。
因此,利用分类讨论来解决带参数的函数单调性问题已成为近年来高考的重点和热点。
这类问题的难点在于学生不懂得如何讨论,或者讨论不全面,这里总结了带参函数单调性的分类讨论的一般步骤,在学会之后,没有不知道如何讨论或讨论不全面的情况。
以下是对单调性一般步骤的讨论(解决了讨论的大部分单调性问题):第一步:求定义域,单调区间是定义域的子集,因此求单调区间必须先求定义域,定义域有三种常见的情况需要讨论。
(1)偶次根式,根号下整体不小于0。
(2)分式,分母不等于0。
(3)对数,真数大于0。
第二步:求函数导数,令0)('=x f ,求出它的根21,x x ,根的个数一般有三种情况:无根、一个根,两个根。
导函数是分式一般先通分,并且还要考虑能不能因式分解。
第三步:如果方程有两根,则要考虑4种情况;如果只有一根则只需考虑第一种情况;如果根不能被求解,并且导数不能被判断出正的或负的,那么我们就需要求函数的二阶导数,利用二阶导数的正负来确定一阶导数的单调性,然后利用最值得到一阶导数的正负,进而判断出原函数的单调性。
(1)是否存在根(判断根是否在定义域中),得到参数的讨论点。
(2)21x x =,得到参数的讨论点。
(3)21x x >,得到参数的讨论点。
(4)21x x <,得到参数的讨论点。
第四步:判断21,x x 分定义域的每个区间的导数的正负情况,如果导数大于0,则函数单调递增,如果导数小于0,则函数单调递减。
以下三种常见方法可用来判断导数的正负:(1)数轴穿根法:(2)函数图像法:(3)区域判断法:只需要判断每个因式的正负。
(完整版)用导数求函数的单调区间含参问题
用导数求函数的单调区间——含参问题一、问题的提出应用导数研究函数的性质:单调性、极值、最值等,最关键的是求函数的单调区间,这是每年高考的重点,这也是学生学习和复习的一个难点。
其中,学生用导数求单调区间最困难的是对参数分类讨论。
尽管学生有分类讨论的意识,但是找不到分类讨论的标准,不能全面、准确分类二、课堂简介请学生求解一下问题,写出每一题求单调区间的分类讨论的特点。
例1、 求函数R a a x x x f ∈-=),()(的单调区间。
解:定义域为),0[+∞ ,23)('x ax x f -=令,0)('=x f 得,3a x = (1) 0≤a ,0)('≥x f 恒成立,)(x f 在),0[+∞上单调递增;(2) 0>a ,令0)('>x f 得∴>3a x )(x f 在)3,0[a 上单调递减,在),3[+∞a 上单调递增。
所以,当0≤a 时,)(x f 在),0[+∞上单调递增;当0>a 时,)(x f 在)3,0[a 上单调递减,在),3[+∞a 上单调递增。
分类讨论特点:一次型,根3a 和区间端点0比较 例2、 求函数R a x a ax x x f ∈+-+-=,1)1(2131)(23的单调区间。
解:定义域R),1)](1([1)('2---=-+-=x a x a ax x x f令,0)('=x f 得1,121=-=x a x(1) 211>>-a a 即,令0)('>x f 得∴<->11x a x 或)(x f 在)1,(-∞上单调递增,)1,1(-a 上单调递减,),1(+∞-a 上单调递增。
(2) 211==-a a 即,0)('≥x f 恒成立,所以)(x f 在R 上单调递增。
(3) 211<<-a a 即,令0)('>x f 得∴>-<11x a x 或)(x f 在)1,(--∞a 上单调递增,)1,1(-a 上单调递减,),1(+∞上单调递增。
使用导数来解决含参函数单调性的讨论方法的总结
使用导数来解决含参函数单调性的讨论方法的总结
利用导数来解决含参函数单调性问题,是一个经典的数学问题,也是高数学习者常遇到的一大难题。
要想确定一个参数函数的单调性,就要考虑它的导数变化,这就引出了利用导数来解决含参函数单调性的讨论方法。
首先,我们必须了解如何计算函数的导数。
对于一元函数,可以从原函数中求得导数的定义,即求偏导;也可以使用分部法及牛顿法,直接求出导数;而多元函数的导数一般由偏导方程式求得,其中可利用梯度、相对极值等概念计算函数的偏导数及其导数大小。
之后,可以利用导数把单调性转化为数学上的一种判断,即若一函数的导数大小符合特定条件,则该函数的单调性也得到确定,不断更新函数的参数就可以实现单调性。
如果在更新函数参数的过程中,函数的导数量一直大于0,则函数具有上升的单调性,反之,如果函数的导数量一直小于0,则函数具有下降的单调性。
此外,利用导数来解决含参函数单调性的另一个方面就是,可以根据该函数的导数表达式,计算其函数值的变化与自变量的变化。
当自变量变化时,就可以求取函数的导数值,从而归结出函数某个确定点处的单调性。
总之,利用导数来解决含参函数单调性,总结起来就是这样:首先,计算函数导数,然后根据函数的导数表达式近似计算函数某一确定点处的单调性;最后,根据函数的导数大小,可以判断该函数的单调性,并利用不断更新函数参数的过程来最大程度地实现单调性。
运用导数解决含参函数问题的策略
() 3 当一P <一1 令 厂( ) 得 z ≤口 时, L 一0 z 一一n 于 ,
是:
解题 方 法与技巧 0GU I xE CNA Z N XE J 0 I A KO H A J
面广 , 综合性强 , 不少考生在处理这类 问题时 , 不知道 确 定参数范围的函数关系或不等关系从何 而来. 本文通过
一
②当a >O时 ,t ) ( +√ )z , 0 g ( 一n z ( 一√ )若 <√ ≤2 即 O ≤ 4时 , ) [ , 上 为递 减 函数 , , <a g( 在 0√ ] 在
【 1 已知函数 厂 z 一去z+lx 若存在 3 E 例 】 () n, 7 o
[ ,] 1 使不等式 f x ) ( 。≤m, 求实数 m的取值范 围.
解: )() .+n(>0, z一 +{, ( -z一 1。 l x )厂() 1厂 z x 由
x 1P, >o E[ , /() 得函数 厂 在区间∈[ , 为增函 ] () 1P ]
,
2 上为递增 函数 . () , ( ) 一 ] g o 一0 g 一
<
些实例介绍这类问题相应 的解法 , 期望 对考生 的备 考 含参 函数中的存在性 问题
有所 帮 助 .
一
0(一 a2 ≤≤. , ) - 22 n1 g 号 a 1 2 ≥
善 >2 即 口 时 , <O 函数 g z 在[ ,] , >4 g ( ) , ( ) O 2
和另 一 已知 变量分 离 , 得到 函数关 系 , 而使这种具 有 从 函数背景的范围问题迎刃而解 , 由已知变量 的范围求 再 出函数的值域 , 为所求 变量 的范 围. 型有 : 1 双参 即 类 ()
利用导数研究含参函数单调性
利用导数研究含参函数单调性导数是研究函数的一个重要工具,可以用来研究函数的单调性。
含参函数即包含一个或多个参数的函数,我们可以通过对导数的研究来研究含参函数的单调性,下面我们就来详细介绍。
首先,我们先回顾一下导数的定义。
对于含有一个自变量的函数y=f(x),我们可以通过求导来得到函数在其中一点的斜率。
导数的定义为:f'(x) = lim(h->0) {f(x+h)-f(x)} / h其中,f'(x)表示函数f(x)在点x处的导数。
如果函数在其中一点的导数大于0,我们可以认为该点函数是递增的;如果导数小于0,则是递减的。
如果导数恒大于0,则函数是严格递增的;如果导数恒小于0,则函数是严格递减的。
对于含参函数y=f(x,a,b,c...),其中a,b,c...为参数,我们也可以研究其单调性。
我们可以首先将含参函数看作一个关于自变量x的函数,然后求导。
求导后的函数中不再含有参数,其导数的正负号和零点即可以用来研究函数在不同参数取值情况下的单调性。
接下来,我们通过一个具体的例子来说明。
考虑函数y=f(x,a)=ax^2,其中a为参数。
我们可以先固定a的值,然后研究函数关于x的变化情况,再通过参数a的取值来研究函数的单调性。
首先,我们分别求导得到函数关于自变量x的导数:f'(x,a) = 2ax现在我们可以根据导数的正负号来研究函数的单调性。
当a>0时,f'(x,a)恒大于0,即导数恒大于0,说明函数递增;当a<0时,f'(x,a)恒小于0,即导数恒小于0,说明函数递减。
接下来,我们可以通过研究参数a的取值来研究函数的单调性。
当a>0时,函数为开口向上的抛物线,随着a的增大,函数的正值部分会更接近x轴,说明函数递减的速度会更快,即单调性变强;当a<0时,函数为开口向下的抛物线,随着a的减小,函数的负值部分会更接近x轴,说明函数递减的速度会更快,即单调性变强。
导数分类讨论解决含参问题(三种常见类型)
导数中分类讨论的三种常见类型高中数学中,分类讨论思想是解决含有参数的复杂数学问题的重要途径,而所谓分类讨论,就是当问题所给的研究对象不能进行统一的研究处理时,对研究对象按照某种标准进行分类,然后对每一类的对象进行分别的研究并得出结论,最后综合各类的研究结果对问题进行整体的解释.几乎所有的高中生都对分类讨论思想有所了解,而能正确运用分类讨论思想解决问题的不到一半,不能运用分类讨论思想解决具体问题的主要原因是对于一个复杂的数学问题不知道该不该去分类以及如何进行合理的分类,下面根据导数中3种比较常见的分类讨论类型谈谈导数中如何把握对参数的分类讨论.类型一:导函数根的大小比较实例1:求函数()321132a f x x x ax a -=+--,x R ∈的单调区间.分析:对于三次或三次以上的函数求单调区间,基本上都是用求导法,所以对函数()321132a f x x x ax a -=+--进行求导可以得到导函数()()'21f x x a x a =+--,观察可知导函数可以因式分解为()()()()'211f x x a x a x a x =+--=-+,由此可知方程()'0f x =有两个实根1x a =,21x =-,由于a 的范围未知,要讨论函数()321132a f x x x ax a -=+--的单调性,需要讨论两个根的大小,所以这里分1a <-,1a =-,1a >-三种情况进行讨论:当1a <-时,()f x ,()'f x 随x 的变化情况如下:x (),a -∞a(),1a --1()1,-+∞()'f x +0_0+()f x 单调递增极大值单调递减极小值单调递增所以,函数()f x 的单调递增区间为(),a -∞和()1,-+∞,单调递减区间为(),1a -.当1a =-时,()'0f x ≥在R 上恒成立,所以函数()f x 的单调递增区间为(),-∞+∞,没有单调递减区间.当1a >-时,()f x ,()'f x 随x 的变化情况如下:x (),1-∞--1()1,a -a(),a +∞()'f x +0_0+()f x 单调递增极大值单调递减极小值单调递增所以,函数()f x 的单调递增区间为(),1-∞-和(),a +∞,单调递减区间为()1,a -.综上所述,当1a <-时,函数()f x 的单调递增区间为(),a -∞和()1,-+∞,单调递减区间为(),1a -;当1a =-时,函数()f x 的单调递增区间为(),-∞+∞,没有单调递减区间;当1a >-时,函数()f x 的单调递增区间为(),1-∞-和(),a +∞,单调递减区间为()1,a -.点评:这道题之所以要分情况讨论,是因为导函数两个根的大小不确定,而两根的大小又会影响到原函数的单调区间,而由于a R ∈,所以要分1a <-,1a =-,1a >-三种情况,这里注意不能漏了1a =-的情况.类型二:导函数的根的存在性讨论实例2:求函数()32f x x ax x =++的单调区间分析:这道题跟实例1一样,可以用求导法讨论单调区间,对函数()32f x x ax x =++进行求导可以得到导函数()'2321f x x ax =++,观察可以发现,该导函数无法因式分解,故无法确定方程23210x ax ++=是否有实根,因此首先得考虑一下方程是否有解,所以我们可以求出根判别式2412a ∆=-,若24120a ∆=-<即a <<23210x ax ++=没有实根,即()'0f x >在R 上恒成立,所以()f x 在R 上单调递增;若24120a ∆=-=即a =,方程23210x ax ++=有两个相等的实根123ax x ==-,即()'0f x ≥在R 上恒成立,所以()f x 在R 上单调递增;若24120a ∆=->即a a <>,则方程23210x ax ++=有两个不同实根,由求根公式可解得13a x --=,23a x -+=,显然12x x <此时()f x ,()'f x 随x 的变化情况如下:x ()1,x -∞1x ()12,x x 2x ()2,x +∞()'f x +0_0+()f x 单调递增极大值单调递减极小值单调递增综上所述,当a ≤≤时,()f x 的单调递增区间为(),-∞+∞,没有单调递减区间;当a a <>时,()f x 的单调递增区间为,3a ⎛---∞ ⎪⎝⎭和,3a ⎛⎫-++∞ ⎪ ⎪⎝⎭,单调递减区间为,33a a ⎛---+ ⎝⎭点评:实例2和实例1都是求三次函数的单调区间,但是两道题分类讨论的情况不一样,实例2主要是因为导函数所对应的方程根的情况未知,所以需要讨论根的存在性问题,而实例1是因为导函数所对应的方程可以因式分解,所以可以确定方程的根肯定是存在的,因此不用再讨论,而需要讨论的是求出来两个根的大小关系,实例2则相反,实例2在方程有两个不同实根的情况下求出来的两根大小已知,所以不用再讨论。
利用导数求解参数问题(恒成立问题)经典题目
用导数解参数问题已知函数的单调性,求参变量的取值范围,实质上是含参不等式恒成立的一种重要题型。
本文将举例说明此类问题的求解策略。
结论一、 不等式()()f x g a ≥恒成立⇔[]min()()f x g a ≥(求解()f x 的最小值);不等式()()f x g a ≤恒成立⇔[]max()()f x g a ≤(求解()f x 的最大值).结论二、 不等式()()f x g a ≥存在解⇔[]max()()f x g a ≥(求解()f x 的最大值);不等式()()f x g a ≤存在解⇔[]min()()f x g a ≤(即求解()f x 的最小值).一、(2008湖北卷)若21()ln(2)2f x x b x =-++∞在(-1,+)上是减函数,则b 的取值范围是( )A. [1,)-+∞B. (1,)-+∞C. (,1]-∞-D. (,1)-∞- 二、若不等式()2211x m x ->-对满足2m ≤的所有m 都成立,求x 的取值范围。
解:设()()()2121f m m x x =---,对满足2m ≤的m ,()0f m <恒成立,()()()()()()2221210202021210x x f f x x ⎧----<-<⎧⎪⎪∴∴⎨⎨<---<⎪⎪⎩⎩解得:1122x -++<<三、(2009浙江)已知函数32()(1)(2)f x x a x a a x b =+--++ (,)a b ∈R . (I )若函数()f x 的图象过原点,且在原点处的切线斜率是3-,求,a b 的值; (II )若函数()f x 在区间(1,1)-上不单调...,求a 的取值范围. 解析:(Ⅰ)略(Ⅱ))2()1(23)(2+--+='a a x a x x f函数)(x f 在区间)1,1(-不单调,等价于导函数)(x f '在)1,1(-既能取到大于0的实数,又能取到小于0的实数 即函数)(x f '在)1,1(-上存在零点,根据零点存在定理,有0)1()1(<'-'f f , 即:0)]2()1(23)][2()1(23[<+---+--+a a a a a a 整理得:0)1)(1)(5(2<-++a a a ,解得15-<<-a 四、(新课程卷 )若函数y =31x 3-21ax 2+(a -1)x +1在区间(1,4)内为减函数,在区间(6,+∞)内为增函数,试求实数a 的取值范围.解:[])1()1()1()(2---=-+-='a x x a ax x x f令0)(='x f ,解得x=1或x=a-1,并且 a≠2,否则f (x)在整个定义域内单调。
导数应用之含参函数单调性的讨论(含答案)
1
导数应用之含参函数单调性的讨论
一.预备知识:
(一)二次方程根的分布:
1.已知方程4x 2+2(m-1)x+(2m+3)=0(m ∈R )有两个正根,求实数m 的取值范围。
2.已知方程2x 2-(m+1)x+m=0有一正根和一负根,求实数m 的取值范围。
(二)穿根法拓展:
1.
02
2
2>--+x x x 2.(e x -1)(x-1)>0 3.(e x -1)(x-1)2>0
4.(e -x -1)(x-1)>0 5.(1-lnx)(x-1)>0
二.导后“一次”型:
1.已知函数f(x)=ax-(a+1)·ln(x+1),a ≥-1,求函数f(x)的单调区间。
2.已知函数f(x)=e x -ax ,讨论函数f(x)的单调性。
三.导后“二次型”:
3.已知函数f(x)=lnx+x 2-ax(a ∈R),求函数f(x)的单调区间。
2
4.已知函数f(x)=m ·ln(x+2)+2
1x 2
+1,讨论函数f(x)的单调性。
5.求函数f(x)=(1-a)lnx-x+2
2
ax 的单调区间。
6.已知函数f(x)=(ax 2-x)·lnx-2
1ax 2
+x ,讨论f(x)的单调性。
四.导后求导型
7.已知函数f(x)=e x -x 2,求函数f(x)的单调区间。
8.已知函数f(x)=
x
e
x 1
ln ,求函数f(x)的单调区间。
9.已知函数f(x)=e mx +x 2-mx ,讨论函数f(x)的单调性。
3
4。
利用导数解决含参不等式参数取值范围问题的策略_李文东
利用导数解决含参不等式参数取值范围问题的策略广东省中山市中山纪念中学(528454) 李文东含参不等式恒成立问题,特别是利用导数解决含参关系式恒成立求参数的取值范围这一问题经常出现在高考试题中,是高考的重点也是难点.解决这一类问题需要用到函数与方程思想、转化与化归思想、数形结合思想和分类讨论等数学思想,能够很好的反映学生的数学素养.下面结合例题具体谈谈此类问题的求解策略.策略一 不等式(,)0f x a …恒成立⇔min (,)0f x a …,合理分类讨论求最值. 例1 (2010年高考新课标卷理科)设函数2()1x f x e x ax =---,a R ∈.若当0x ≥时,()0f x ≥恒成立,求a 的取值范围.解 因为()12xf x e ax '=--,它比较复杂,考虑进一步求导:()"2f x ex a =-,显然()"f x 递增,故当0x ≥时,()"12min f x a =-.于是(1)当21a ≤,即12a ≤时,()"0f x ≥,所以()'f x 在[)0,+∞单调递增,所以()'f x ≥ ()00f '=,即() '0f x ≥,所以()f x 在[)0,+∞单调递增,所以()()00f x f ≥=.(2)当21a >,即12a >时,令''()20x f x e a =-=,解之得ln 2x a =.当()0,ln 2x a ∈时,()"0f x <,()'f x 为单调递减函数;又因为()'00f =,所以()0,ln 2x a ∈时,()'0f x <,所以()f x 在区间()0,ln 2a 是单调递减函数.又()00f =,所以()0,ln 2x a ∈时,()0f x <不符合题意要求.综上所述,实数a 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦. 评注 (1)分类讨论的难点在于分类标准的确定,目标就是确定导函数的符号,一般要结合导函数的具体形式来确定.如果导函数的符号能等价转化为一个二次函数的符号,则常见的讨论标准如下:1.讨论是否是二次函数;2.讨论零点的存在与否;3.讨论零点是否在定义域之内;4.讨论零点的大小关系;5.讨论二次函数的开口方向.(2)本例中()12x f x e ax '=--比较复杂,为了研究其符号,关键还是弄清楚其单调性,故继续对其求导后根据()""2f x e a =-的符号来确定讨论标准.策略二 分离参数避免分类讨论,快速求解.例2 (2013年高考全国新课标卷)已知函数2()f x x ax b =++,()()xg x e cx d =+,若曲线()y f x =和曲线()y g x =都过点()0,2P ,且在点P 处有相同的切线42y x =+.(1)求a ,b ,c ,d 的值;(2)若2x ≥-时,()()f x kg x ≤,求k 的取值范围.解 (1)4a =,2b c d ===.(2)2x ≥-时,()()f x kg x ≤,即242(22)xx x ke x ++≤+. 故当1x >-时,220x >+,于是分离参数后有2422(1)x x x k e x +++…,令242()(1)x x x h x e x ++=+,则22(2)'()(1)x x x h x e x +=-+,可知当,0()1x ∈-时,()0h x '>,()h x 递增;,()0x ∈+∞时,()0h x '<,()h x 递减;于是()()max 2021k h x h k ≥==⇒≥;而当21x -≤<-时,220x +<,于是有2422(1)x x x k e x +++≤,可知当)2(1x ∈--,时,()0h x '>,()h x 递增;于是22min 2()(2)2k h x h e k e ≤==⇒-≤.综上,k 的取值范围为21k e ≤≤.评注 本题是一个典型的利用分离参数法求解参数取值范围的例子,分离中需要注意分母函数()g x 的符号,分离参数的目的就是避免复杂的分类讨论而达到快速求解!策略三 利用必要条件或端点效应缩小参数的范围.例3 (2014年高考全国新课标卷)已知函数()2x x f x e e x -=--.(1)讨论()f x 的单调性;(2)设()()()24g x f x bf x =-,当0x >时,()0g x >,求b 的最大值.解 (1)略.(2)注意到()00g =,要使当0x >时,()0g x >,则必存在00x >,当0()0x x ∈,时,()g x 递增,也即有:当0()0x x ∈,时,()0g x '≥,从而必有:()'00g ≥.而22'()2'(2)4'()2(2)4(2)x x x x g x f x bf x e e b e e --=-=+--+-.注意到()'00g =,从而同理必有()"00g ≥.而22)''()4()4(x x x x g x ee b e e --=---,注意到()"00g =,从而同理必有()"'00g ≥.而 22'''())8()4(x x x x g x e e b e e --=+-+,于是()()'''08202g b b =-≥⇒≤.而当2b ≤时,()()()24g x f x bf x =-()()()28f x f x h x ≥-=,222()2()8()122(2)'0x x x x x x h x e e e e e e ---=+-++=+->,故()h x 递增,又()00h =,于是()0h x >,也即有()0g x >成立.综上,b 的最大值为2.评注 端点效应是指:对于[]x a b ∀∈,,()0f x ≥,且()0f a =.则必然0()x a b ∃∈,,当0,[]x a x ∈时()f x 递增,从而有0,[]x a x ∈时,()'0f x ≥成立,特别有()'0f a ≥这一必要条件得出参数的范围,然后说明这一范围的充分性即可,这样既避免了分类讨论,也可避免了分离参数后函数很复杂且有时需要用到罗必塔法则的情形.实际操作中,若不满足这一条件,我们也可以在自变量的范围内取一特定值,缩小参数的取值范围,减少分类讨论的种类!策略四 分离函数,数形结合,转化为两函数图像的关系.例4 若不等式()2ln 2ax x a x x -≥-对1[)x ∀∈+∞,恒成立,求a 的取值范围.解 方法一 因为不等式2ln (2)ax x a x x -≥-对1[)x ∀∈+∞,恒成立,所以2()a x x lnx -≥对1[)x ∀∈+∞,恒成立.当1x =时,不等式显然成立,当1x >时,20x x ->,ln 0x >,故0a >.2()()g x a x x =-,()ln f x x =作出两函数的图像,如图1.图1当()f x 与()g x 在1x =处相切时,()()1g x x >图像恰好位于()()1f x x >图像的上方,此时()()'11f g =',即1a =,结合图像可知,所求a 的取值范围为1a ≥.评注 本法是转化为两曲线的情况.顺着这个思路,本题还有以下两种解法.方法二 因为不等式2ln (2)ax x a x x -≥-对1[)x ∀∈+∞,恒成立,所以2()a x x lnx -≥对1[)x ∀∈+∞,恒成立,也即(1)ln x a x x-≥对1[)x ∀∈+∞,恒成立.令x (n )l f x x =,则21ln '()x f x x -=,可知()f x 在(1)e ,上递增,()e +∞,上递减.如图2,故当直线()1y a x =-位于()f x 在1x =处的切线及其上方时,不等式恒成立,从而 ()'11a f ≥=.图2图3 方法三 因为不等式2ln (2)ax x a x x -≥-对1[)x ∀∈+∞,恒成立,所以ln 1ax x x ≥-对1()x ∀∈+∞,恒成立. 令ln ()1f x x x =-,则211ln '()(1)x x f x x --=-.令1()1ln g x x x =--,则211'()g x x x=- 210(1)x x x-=≤≥,故()g x 递减,于是()()10g x g ≤=,进一步有()'0f x ≤,从而()f x 在(1)+∞,上递减,由于()f x 在1x =处没有意义,因此需要用到洛必达法则,1111l lim ()lim lim 111n x x x f x x x x →→→===-.如图3,当直线y ax =过点(1)1,时恰好满足题意,所求a 的取值范围为1a ≥.例5 已知函数()()ln 1f x x a x =-+,若对任意的]2[1x ∈,,2()f x x ≥恒成立,求实数a 的取值范围.解 2()f x x ≥,即22ln(1)ln(1)x a x x x x x a ⇒-≥-+≥+对任意的]2[1x ∈,恒成立.因为]2[1x ∈,时,20x x -≤,()ln 10x +>,故0a ≤,从而函数()ln 1y a x =+和函数2y x x =-都在[1]2,上递减,且它们的凹凸性相反.在同一坐标系下作出两函数的图像,如图4,可知当函数()ln 1y a x =+满足在2x =时,2y ≤-即可,即2ln 32ln 3a a ≤-⇒-….图4评注 分离函数可看作分离参数法的推广,分离函数时,可以尽量从多个角度尝试不同的分离方式,只要分离后的函数比较简单即可.策略五 等价变换,巧妙转化.例6 (广东省2019届高三六校联考)已知函数ln 2()x f x x+=. (1)求函数()f x 在[1,)+∞上的值域;(2)若1,[)x ∀∈+∞,()ln ln 424x x ax +≤+恒成立,求实数a 的取值范围.解 (I)略.(2)令ln x t =,则()0tx e t =≥,不等式()ln ln 424x x ax +≤+等价于2442tt t ae ≤+-,分离参数后得:2442()t t t a g t e +-=…,(2)(4)'()t t t g t e -+=,可知函数()g t 在[0,2]上递增,在[2,)+∞上递减,于是max 282()g a t e =≥,故实数a 的取值范围为2[4),e +∞. 例7 若对任意0x >,1(1)2()ln ax a e x x x +≥+恒成立,求实数a 的取值范围.解 不等式1(1)2()ln ax a e x x x +≥+两边同乘以x 得:2(1)2(1)ln a x ax ex x +≥+,进一步有22(1)ln (1)ln a x a x e e x x +≥+.令()()l 1n f x x x =+,则原不等式等价于:2()()ax f e f x ≥.又易知()f x 在(0,)+∞上递增,故2a x e x ≥,分离参数可得:ln 2a x x ≥⋅.令n (l )g x x x =,易知()g x 在(0,)e 上递增,在(),e +∞上递减,故max 22()a g x e ≥⋅=. 评注 当函数()f x 比较复杂时,我们可以对其进行等价变换,比如换元法,同构法等,使得问题达到简化的目的!以上是导数解决函数恒成立求参数取值范围问题的一般策略.一般来说,从解题的复杂程度来说选择的步骤是:数形结合,分离函数→分离参数→端点效应→合理转化→分类讨论.当然以上顺序也不是一成不变的,还是要具体情况具体分析.最后结合分离函数法来简单谈一下作为一个教师怎么编制出恒成立问题的试题.我们可以利用一些常见的曲线和直线来构造恒成立问题,特别是直线过曲线上的定点或者直线就是曲线在某点处的切线时.比如我们可以编制如下问题:(1)函数()ln f x x =在1x =处的切线方程为1y x =-,于是我们可以这样出题:当1x >时,()ln 1x a x <-恒成立,求a 的取值范围(答案:1a ≥);(2)函数()()()ln 11f x x x =-+在0x =处的切线方程为y x =,于是我们可以这样出题:当0x >时,()()1ln 1x x ax -+<恒成立,求a 的取值范围(答案:1a ≥).我们还可以将本文中的例4稍加改编得到如下比较有趣的一道题:(3)若不等式2ln (2)ax x a x x -≥-对0,()x ∀∈+∞恒成立,求a 的取值范围.结合文章中的解法,不难知道所求a 的取值范围为1a =,它只有一个值满足要求!。
利用导数解决含参的问题(word版含答案和详细解析)
利用导数解决含参的问题(word版含答案和详细解析)高考理科复专题练利用导数解决含参的问题考纲要求:1.了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次)。
2.了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次),会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次)。
命题规律:利用导数探求参数的范围问题每年必考,有时出现在大题,有时出现在小题中,变化比较多。
不等式的恒成立问题和有解问题、无解问题是联系函数、方程、不等式的纽带和桥梁,也是高考的重点和热点问题,往往用到的方法是依据不等式的特点,等价变形,构造函数,借助图象观察,或参变分离,转化为求函数的最值问题来处理。
这也是2018年考试的热点问题。
高考题讲解及变式:利用单调性求参数的范围例1.【2016全国1卷(文)】若函数f(x)=x-sin2x+asinx在(-∞,+∞)上单调递增,则a的取值范围是()。
A。
[-1,1]B。
(-1,1)C。
(-∞,-1]∪[1,+∞)D。
(-∞,-1)∪(1,+∞)答案】C解析】因为f(x)在(-∞,+∞)上单调递增,所以f'(x)>0.将f(x)代入f'(x)得f'(x)=1-2sinx+acosx。
要使f'(x)>0,即要使1-2sinx+acosx>0.因为-1≤sinx≤1,所以1-2sinx≥-1.所以acosx>-1,即a>-1/cosx。
因为cosx=1时,a不等于-1;cosx=-1时,a不等于1.所以a∈(-∞,-1]∪[1,+∞),选C。
变式1.【2018XXX高三实验班第一次月考(理)】若函数f(x)=kx-lnx在区间(1,+∞)上为单调函数,则k的取值范围是_______。
答案】k≥1或k≤-1解析】在区间(1,+∞)上,f'(x)=k-1/x。
利用导数研究含参函数的单调性
利用导数研究含参函数的单调性导数是研究函数的重要工具之一,通过对函数的导数进行研究,可以得到函数的单调性信息。
含参函数是指函数中包含一个或多个参数,通过改变参数的取值可以得到一组函数。
接下来,我们将讨论如何利用导数研究含参函数的单调性。
首先,我们先来回顾一下单调性的概念。
若函数在其定义域上单调递增,则函数的值随自变量的增加而增加;若函数在其定义域上单调递减,则函数的值随自变量的增加而减小。
简而言之,单调性描述了函数随自变量变化的趋势。
对于含参函数,我们首先可以将参数视为常数,通过对函数关于自变量的导数进行研究,来探究函数的单调性。
然后,我们再考虑参数的变化对函数单调性的影响。
以一元含参函数为例,设函数为f(x;a),其中x为自变量,a为参数。
我们首先对自变量x求导,得到导函数f'(x;a)。
然后,通过研究导函数的单调性来推导出原函数f(x;a)的单调性。
在研究导函数的单调性时,我们可以采用以下几种方法:1.部分导数法:对于多元含参函数,我们可以先固定参数a,然后对自变量中的一些变量求导,得到该变量的偏导数。
通过研究偏导数的单调性,可以推导出原函数的部分单调性。
然后,再逐个固定其他变量,对其他变量求导,从而得到更完整的原函数的单调性。
2.极值点法:对于导函数f'(x;a),我们可以求出其零点,即f'(x;a)=0的解,也就是导函数的临界点。
通过研究导函数在临界点附近的变化情况,可以推导出原函数的单调性。
具体而言,如果导函数在临界点附近从正变负,那么原函数在临界点左边单调递增,在临界点右边单调递减;反之,如果导函数在临界点附近从负变正,那么原函数在临界点左边单调递减,在临界点右边单调递增。
3.导数符号法:对于导函数f'(x;a),如果在整个定义域上恒大于0或者恒小于0,则可以推导出原函数在整个定义域上单调递增或者单调递减。
具体而言,如果f'(x;a)>0,那么原函数单调递增;如果f'(x;a)<0,那么原函数单调递减。
导数专题:含参函数单调性讨论问题(解析版)
导数专题:含参函数单调性讨论问题一、导数与函数的单调性1、用导数求函数的单调性的概念:在某个区间(,)a b 内,如果()0f x '≥,那么函数()y f x =在这个区间内单调递增;如果()0f x '≤,那么函数()y f x =在这个区间内单调递减.【注意】(1)在某区间内()0(()0)f x f x ''><是函数()f x 在此区间上为增(减)函数的充分不必要条件.(2)可导函数()f x 在(,)a b 上是增(减)函数的充要条件是对(,)x a b ∀∈,都有()0(()0)f x f x ''><且()f x '在(,)a b 上的任何子区间内都不恒为零.2、确定函数单调区间的求法(1)确定函数()f x 的定义域;(2)求()f x ';(3)解不等式()0f x '>,解集在定义域内的部分为单调递增区间;(4)解不等式()0f x '<,解集在定义域内的部分为单调递减区间.二、含参函数单调性讨论依据讨论含参函数的单调性,其本质是导函数符号的变化情况,所以讨论的关键是抓住导函数解析式中的符号变化部分,即导数的主要部分,简称导主。
讨论时要考虑参数所在的位置及参数取值对导函数符号的影响,一般需要分四个层次来分类:(1)最高次幂的系数是否为0,即“是不是”;(2)导函数是都有变号零点,即“有没有”;(3)导函数的变号零点是否在定义域或指定区间内,即“在不在”;(4)导函数有多个零点时大小关系,即“大不大”。
三、两大类含参导函数的具体方法1、含参一次函数单调性讨论(1)讨论最高次项是否为0,正负情况;(2)求解导函数的根;(3)定义域划分为若干个单调区间,分别讨论每个区间上导函数的正负值.2、含参二次函数单调性的讨论(1)确定函数的定义域;(2)讨论最高次项是否为0,正负情况;(3)可因式分解型,解得12,x x (注意讨论12x x =);不可因式分解型,讨论0∆≤及0∆>;(4)讨论1x 和2x 的大小,能因式分解的,注意讨论12x x =;(5)12,x x 将定义域划分为若干个单调区间,分别讨论每个区间上导函数的正负值,判断根和区间端点位置关系的方法有3种:端点函数值+对称轴;韦达定理;求根公式。
利用导数讨论含参函数的单调性
利用导数讨论含参函数的单调性讨论函数的单调性是研究函数问题的基础,对于函数的最值、极值、零点等性质的研究,都是以函数的单调性为基础展开的。
在此,主要讨论含参函数单调性的讨论方法。
函数的单调性由导函数的正负决定,讨论函数的单调性关键在于研究导函数的正负。
含参函数导函数正负的确定最大的困难在于参数的影响,如何对参数进行分类讨论是问题的关键。
在此,我们将提出三种方法。
一.分离参数、数形结合函数求导后,导函数中的参数可以分离,形如:m x g x f -=)()('的形式,若)(x g 有最小值,则分min )(x g m ≤,min )(x g m >两种情况进行分类讨论。
(1)当min )(x g m ≤时,0)()('≥-=m x g x f ;(2)当min )(x g m >时,若0)()('=-=m x g x f 有一个解,且)(x g 单调,设解为0x ,则0x 将定义域分为两个区间,讨论函数的单调性。
若)(x g 有最大值,则分max )(x g m ≥,max )(x g m <两种情况进行分类讨论。
1.(2012年全国卷文科21题) 设函数2)(--=ax e x f x . (1)求)(x f 的单调区间;解:函数)(x f 的定义域为()+∞∞-,,a e x f x -=)(',①若0≤a ,则0)('>x f ,)(x f 在()+∞∞-,单调递增; ②若0>a ,则由0)('=x f 得a x ln =,当()a x ln ,∞-∈时,0)('<x f ,当()+∞∈,ln a x 时,0)('>x f ; 所以)(x f 的单调减区间是()a ln ,∞-,单调增区间是()+∞,ln a ; 2.(2016年山东文科20题)设x a ax x x x f )12(ln )(2-+-=,R a ∈. (1)令)()('x f x g =,求)(x g 的单调区间. 解:函数)(x f 的定义域为()+∞,0,1221ln )()('-+-+==a ax x x f x g ,a xx g 21)('-=(1)若0≤a ,则0)('>x g ,)(x g 在()+∞,0单调递增;(2)若0>a ,则由0)('=x g 得ax 21=,当⎪⎭⎫ ⎝⎛∈a x 21,0时,0)('>x g ,当⎪⎭⎫ ⎝⎛+∞∈,21a x 时,0)('<x g ,所以)(x f 在⎪⎭⎫ ⎝⎛a 21,0单调递增,在⎪⎭⎫ ⎝⎛+∞,21a 单调递减.3.(2015年北京卷文科19题)设函数x k x x f ln 2)(2-=.(1)求)(x f 的单调区间和极值;解:函数)(x f 的定义域为()+∞,0,xkx x k x x f -=-=2')(,①若0≤k ,则0)('>x f ,)(x f 在()+∞,0单调递增; ②若0>k ,则由0)('=x f 得k x =,当()k x ,0∈时,0)('<x f ,当()+∞∈,k x 时,0)('>x f所以)(x f 的单调减区间是()k ,0,单调增区间是()+∞,k .4.(2015年全国二卷文科21题) 已知函数)1(ln )(x a x x f -+=. (1)讨论)(x f 的单调性;解:函数)(x f 的定义域为()+∞,0,xaxa x x f -=-=11)(', ①若0≤a ,则0)('>x f ,)(x f 在()+∞,0单调递增;②若0>a ,则由0)('=x f 得ax 1=,当⎪⎭⎫ ⎝⎛∈a x 1,0时,0)('>x f ,当⎪⎭⎫ ⎝⎛∈0,1a x 时,0)('<x f ;所以)(x f 在⎪⎭⎫ ⎝⎛a 1,0单调递增,在⎪⎭⎫ ⎝⎛0,1a单调递减; 5.(2016年四川卷文科21题) 设函数x a ax x f ln )(2--=. (1)讨论)(x f 的单调性; 解:函数)(x f 的定义域为()+∞,0,⎪⎭⎫⎝⎛-=-=-=22'121212)(x a x x ax x ax x f ,①若0≤a ,则0)('<x f ,)(x f 在()+∞,0单调递减;②若0>a ,则由0)('=x f 得ax 21=,当⎪⎪⎭⎫ ⎝⎛∈a x 21,0时,0)('<x f ,当⎪⎪⎭⎫ ⎝⎛+∞∈,21a x 时,0)('>x f ;所以)(x f 在⎪⎪⎭⎫ ⎝⎛a 21,0单调递减,在⎪⎪⎭⎫ ⎝⎛+∞,21a 单调递增; 若0)()('=-=m x g x f 有两个解,则可以将定义域分为三个区域进行讨论。
运用导数解决含参函数问题
运用导数解决含参函数问题摘要:导数不仅是高中数学的重要内容之一,也是高考的考查重点。
本文从五个方面对含参函数问题进行了分析与研究,着重介绍利用导数解决这些问题的相应方法,以期对学生的备考有所帮助。
关键词:高考;导数;含参函数作者简介:廖助会,任教于云南腾冲县第一中学。
运用导数解决含参函数问题既是高中教学的重点和难点,又是历年高考的热点。
这类问题既能全面地考查学生对导数及其运算的运用能力,又能综合地考查学生对函数与方程思想、分类与化归思想、构造思想、数形结合思想、等价变换思想等以及综合运用知识解决新情境、新问题的能力。
这既体现了新的课程理念,又强调了数学的实际应用,有利于考查学生的实践能力。
由于含参函数问题本身具有复杂性,大多数学生在解决这类问题时往往感到束手无策。
本文结合近几年高考试题中出现的“含参函数”问题,从“已知函数的切线,利用导数求出参数的值”、“已知函数的单调性,利用导数求出参数范围”、“已知函数的最值,利用导数求出参数范围”、“已知函数的极值,利用导数求出参数范围”及“利用导数解决含参函数中的恒成立问题”五个方面对高考中出现的含参函数问题进行分析与研究,着重介绍利用导数解决这些问题的相应方法,以期对学生的备考有所帮助。
一、已知函数的切线,利用导数求出参数的值已知函数的切线方程或切线斜率,可利用导数的方法求出切点坐标或求出曲线中的有关参数,进而可以研究曲线的其他性质。
例1(2009年高考全国理科卷Ⅰ)已知直线y=x+1与曲线相切,则α的值为.评注本题根据导数的几何意义:函数在某点处的导数就是函数在该点处的切线的斜率,列出方程求得切点坐标,进而求出参数的值。
二、已知函数的单调性,利用导数求出参数范围三、已知函数的最值,利用导数求出参数范围函数的最值是指函数在某个区间上的最大(小)值。
导数的引入拓展了高考数学命题的范围,摆脱了对二次函数的依赖,借助导数求高次函数、指数函数、对数函数、三角函数等的最值。
导数巧解含参问题
导数巧解含参问题【摘要】新课程中导数是分析和解决问题的有效工具。
可解决判断或论证函数的单调性,求函数的极值和最值,已知单调区间求参数的范围,利用单调性证明不等式,利用最值求不等式恒成立问题,证明不等式,判断方程的根等问题。
【关键词】导数参数单调性极值和最值新课程增加了导数的内容,随着课改的不断深入,导数知识考查的要求逐渐加强,导数已成为分析和解决问题时的不可缺少的工具。
近年好多省的高考题中都出现以函数为载体,通过研究其图像性质,来考查学生的创新能力和探究能力的试题。
有关导数在函数中的应用主要类型有:已知单调区间求参数的范围,利用单调性证明不等式,利用最值求解不等式恒成立问题,判断方程的根等问题。
这些类型成为近两年最闪亮的热点,是高中数学学习的重点之一,仅2010年全国卷(ⅰ)卷中,用导数解函数问题的考题有三道,共有分数29分,约占全试卷分数的20%,有关专家认为:由于导数在工农业生产中的广泛应用,已成为大学各专业课程的不可缺少的基础课内容,所以今后的高考也将作为学生必须加强的考试内容。
本人结合教学实践,就导数在含参问题中的应用进行了一些探究。
类型一,已知单调区间求参数的范围。
讨论函数的单调区间的解题步骤通常有三步:首先是对函数求导、其次是求>0或<0的区间,再判断函数的增减性。
而求函数参变量的取值范围的解题方法是:利用f,(x)≥0或f,(x)≤0建立导函数不等式或不等式组来求解。
例1,已知函数,.(ⅰ)讨论函数的单调区间;(ⅱ)设函数在区间内是减函数,求的取值范围.解:(1)求导:∴当时,得,在上递增而当时,求得两根为即在递增,递减,递增(2)又∵在区间内是减函数,∴∴,且解得:法二:令≤0∴a≥∵x∈令g(x)=当x=- 时,g(x)大= ,则注:此法也是恒成立问题常用的,具体可参看下一例。
类型二,利用最值求解不等式恒成立问题求解恒成立时,可以使用分离参数法也就是将参数与未知量分离于表达式的两边,然后根据未知量的取值范围情况决定参数的范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运用导数解决含参问题
运用导数解决含参函数问题的策略
以函数为载体,以导数为工具,考查函数性质及导数应用为目标,是最近几年函数与导数交汇试题的显著特点和命题趋向。
运用导数确定含参数函数的参数取值范围是一类常见的探索性问题,主要是求存在性问题或恒成立问题中的参数的范围。
解决这类问题,主要是运用等价转化的数学思想,通过不断地转化,把不熟悉、不规范、
复杂的问题转化为熟悉、规范甚至模式化、简单的问题。
解决的主要途径:是将含参数不等式的存在性或恒成立问题根据其不等式的结构特
征,恰当地构造函数,等价转化为:含参函数的最值讨论。
一、含参函数中的存在性问题
利用题设条件能沟通所求参数之间的联系,建立方程或不等式(组)求解。
这是求存在性范围问题最显然的一个方法。
例题讲解
例1:已知函数x x x f ln 2
1)(2+=
,若存在],1[0e x ∈使不等式
m
x f ≤)(0,求实数m 的取值范围
二、含参函数中的恒成立问题
可先利用题设条件建立变量的关系式,将所求变量和另一已知变量分离,得到函数关系,从而使这种具有函数背景的范围问题迎
刃而解,再由已知变量的范围求出函数的值域,即为所求变量的范围。
类型有:(1)双参数
中知道其中一个参数的范围;(2)双参数中的范围均未知。
一、选择题
1 .(2013年课标Ⅱ)已知函数32()f x x ax bx c =+++,下列结论中错误的是( )
A .0x ∃∈R,0()0
f x =
B.函数()y f x =的图像是中心对称图形
C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞上单调递减
D .若0x 是()f x 的极值点,则0'()0
f x =
2 .(2013年大纲)已知曲线()4
2
1-128=y x ax a a =+++在点,处切线的斜率为,() A .9 B .6 C .-9 D .-6 3 .(2013年湖北)已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是( )
A .(,0)-∞
B .1
(0,)2
C .(0,1)
D .(0,)+∞
4.若函数3
2
()1f x x x mx =+++是R 上的单调函数,则实数m 的取值范围是: ( )
A. 1(,)3+∞
B. 1(,)3-∞
C. 1[,)3+∞
D. 1(,]3
-∞ 5.函数2
()f x ax b =-在区间(,0)-∞内是减函数,则,a b 应满足: ( ) A.0a <且0b = B.0a >且b R ∈
C.0a <且0b ≠ D.0a <且b R ∈
6. 函数y =a x 2
+1的图象与直线y =x 相切,则a = ( )
A . 18
B .41
C .2
1
D .1
7.函数,93)(23-++=x ax x x f 已知3)(-=x x f 在时取得极值,则a = ( )
A .2
B .3
C .4
D .5
二、填空题
8 .(2013年广东卷(文))若曲线2
ln y ax x =-在点(1,)a 处的切线平行于x 轴,则a =____.
9.(2013年江西卷(文))若曲线1y x α
=+(α∈R)在点(1,2)处的切线经过坐标原点,则
α=_________。
10.设f ( x ) = x 3-2
1x 2
-2x +5,当]2,1[-∈x 时,f ( x ) < m 恒成立,则
实数m 的取值范围为 .
11.已知函数32()33(2)1f x x ax a x =++++ 既有极大值又有极小值,则实数a 的取值范围是
三、解答题
11.若函数cx bx x y 2
3
++=在区间)0,(-∞及)[2,+∞是增函数,在)2,0(是减函数, 求此函数在4][-1,上的值域。
12.已知函数323
()(2)632
f x ax a x x =-++-
(1)当2a >时,求函数()f x 极小值;(2)试讨论曲线()y f x =与x 轴公共点的个数。
13 .(2013年浙江卷(文))已知a∈R,函数f(x)=2x 3-3(a+1)x 2
+6ax
(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程; (Ⅱ)若|a|>1,求f(x)在闭区间[0,|2a|]上的最小值. 14.(2013年大纲卷(文))已知函数()32=33 1.f x x ax x +++
(I)求()f ;a x =的单调性;
(II)若[)()2,0,.x f x a ∈+∞≥时,求的取值范围
15.[2014·江西卷] 已知函数f (x )=(x 2+bx +b )1-2x (b ∈R ).
(1)当b =4时,求f (x )的极值;
(2)若f (x )在区间⎝⎛⎭
⎫0,1
3上单调递增,求b 的取值范围.
16.[2014·陕西卷] 设函数f (x )=ln(1+x ),g (x )=xf ′(x ),x ≥0,其中f ′(x )是f (x )的导函数.
(1)令g 1(x )=g (x ),g n +1(x )=g (g n (x )),n ∈N +,求g n (x )的表达式; (2)若f (x )≥ag (x )恒成立,求实数a 的取值范围;
17.[2014·四川卷] 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.
(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,求a 的取值范围.。