高中数学必修四之知识讲解_平面向量的数量积_基础
必修4平面向量数量积考点归纳
“平面向量”误区警示“平而向呈:”概念繁多容易混淆,对于初学者更是一头雾水.现将与平而向量基本概念相关的误区整理如下.①向量此是育向线段解析:向量常用一条有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.有向线段是向量的一种表示方法,不能说向疑就是有向线段.⑵若向童砸与CD相普,则有向找段AB与CD *含解析:长度相等且方向相同的向疑叫做相等向量.因此,若A B = CD,则有向线段AB与CD 长度相等且方向相同,但它们可以不重合.⑶若AB II CD ,则筑段AB//CD解析:方向相同或相反的非零向量叫做平行向量.故由忑与Cb平行,只能得到线段AB与CD方向相同或相反,它们可能平行也可能共线.购若向爻血与CD共线,则线段AB与CD共线解析:」行向量也叫做共线向量,共线向量就是方向相同或相反的非零向量.故由应与C&共线,只能得到线段AB与CD方向相同或相反,它们可能平行也可能共线.(5)若 a // b, b II 6, flja II c解析:由尹零色量与任一向量平行,故当b = 0时,向量d、2不一定平行.当且仅当亍、6、5都为非零向量时,才有丘II c.⑹若|a| = |6|,则a=6无a=-b解析:也131=1 bl,只能㊇定向的长度相等,不能确定其方向有何关系.当孑与B不共线时,a = b或d=—6都不能成立.⑺草住向董都相等解析:长度等于一个长度单位的向量叫做单位向量,由于单位向量的方向不一左相同,故单位向量也不一定相等.⑻若I 3 | =0,则3 =0解析:向量和实数是两个截然不同的概念,向量组成的集合与实数集合的交集是空集.故若la 1=0,则a = 0 ,不能够说a =0.平面向量数量积四大考点解析考点一.考査概念型问题例1.已知7、I、7是三个非零向量,则下列命题中真命题的个数( )(1)a ・ b = a - b o a lib ; (2)a,b反向o "・b = — a - bf —> f —> f —> f f f⑶么丄b o a + b = u — b ;(4) a = b <=>"・/? = b-cA. 1B.2C. 3D. 4评注:两向量同向时,夹角为0(或(T ):而反向时,夹角为n (或180°):两向量垂直时,夹角为90° ,因此当两向量共线时,夹角为0或几,反过来若两向量的夹角为0或兀,则两向量共线.考点二、考査求模问题例2•已知向虽:方=(一2,2加=(5,小,若a + b不超过5,则k的取值范用是_____________评注:本题是已知模的逆向题,运用左义即可求参数的取值范1刊。
2.4《平面向量的数量积》教案(新人教必修4)
§2.4平面向量的数量积第7课时一、 平面向量的数量积的物理背景及其含义教学目的:1.掌握平面向量的数量积及其几何意义;2.掌握平面向量数量积的重要性质及运算律;3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;4.掌握向量垂直的条件. 教学重点:平面向量的数量积定义教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用 授课类型:新授课教 具:多媒体、实物投影仪 内容分析:本节学习的关键是启发学生理解平面向量数量积的定义,理解定义之后便可引导学生推导数量积的运算律,然后通过概念辨析题加深学生对于平面向量数量积的认识.主要知识点:平面向量数量积的定义及几何意义;平面向量数量积的5个重要性质;平面向量数量积的运算律. 教学过程: 一、复习引入:1. 向量共线定理 向量b 与非零向量a共线的充要条件是:有且只有一个非零实数λ,使b =λa .2.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a=λ11e +λ22e 3.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a 把),(y x 叫做向量a 的(直角)坐标,记作),(y x a 4.平面向量的坐标运算若),(11y x a ,),(22y x b ,则b a ),(2121y y x x ,b a ),(2121y y x x ,),(y x a .若),(11y x A ,),(22y x B ,则 1212,y y x x AB5.a ∥b (b0)的充要条件是x 1y 2-x 2y 1=06.线段的定比分点及λP 1, P 2是直线l 上的两点,P 是l 上不同于P 1, P 2的任一点,存在实数λ,使 P P 1=λ2PP,λ叫做点P 分21P P 所成的比,有三种情况:λ>0(内分) (外分) λ<0 (λ<-1) ( 外分)λ<0 (-1<λ<0)7. 定比分点坐标公式:若点P 1(x 1,y 1) ,P2(x 2,y 2),λ为实数,且P P 1=λ2PP ,则点P 的坐标为(1,12121y y x x ),我们称λ为点P 分21P P 所成的比.8. 点P 的位置与λ的范围的关系:①当λ>0时,P P 1与2PP 同向共线,这时称点P 为21P P 的内分点. ②当λ<0(1 )时,P P 1与2PP 反向共线,这时称点P 为21P P 的外分点. 9.线段定比分点坐标公式的向量形式:在平面内任取一点O ,设1OP =a,2OP =b, 可得OP =b a b a1111.10.力做的功:W = |F | |s |cos ,是F 与s 的夹角.二、讲解新课:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.说明:(1)当θ=0时,a与b同向;(2)当θ=π时,a与b反向; (3)当θ=2时,a与b垂直,记a⊥b; (4)注意在两向量的夹角定义,两向量必须是同起点的.范围0 ≤ ≤1802.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos 叫a与b的数量积,记作a b ,即有a b = |a ||b |cos ,(0≤θ≤π).并规定0与任何向量的数量积为0. 探究:两个向量的数量积与向量同实数积有很大区别 (1)两个向量的数量积是一个实数,不是向量,符号由cos的符号所决定.(2)两个向量的数量积称为内积,写成a b ;今后要学到两个向量的外积a ×b ,而a b 是两个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替. (3)在实数中,若a 0,且a b =0,则b =0;但是在数量积中,若a 0,且a b =0,不能推出b =0.因为其中cos有可能为0.(4)已知实数a 、b 、c (b 0),则ab=bc a=c .但是a b = b c a = c如右图:a b = |a ||b |cos= |b ||OA|,b c = |b ||c |cos = |b ||OA|a b = b c 但ac(5)在实数中,有(a b )c = a (b c ),但是(a b )ca (bc )显然,这是因为左端是与c共线的向量,而右端是与a 共线的向量,而一般a 与c 不共线.3.“投影”的概念:作图定义:|b |cos叫做向量b 在a 方向上的投影.投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当C为直角时投影为0;当 = 0时投影为 |b |;当 = 180时投影为 |b |.4.向量的数量积的几何意义:数量积a b 等于a 的长度与b 在a 方向上投影|b |cos 的乘积.5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量. 1 e a = a e =|a |cos2 aba b = 03当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b = |a ||b |. 特别的a a = |a |2或a a a ||4 cos =||||b a ba5|a b | ≤ |a ||b |三、讲解范例:例1 已知|a |=5, |b |=4, a 与b 的夹角θ=120o ,求a ·b . 例2 已知|a |=6, |b |=4, a 与b 的夹角为60o 求(a+2b)·(a-3b).例3 已知|a |=3, |b |=4, 且a 与b 不共线,k 为何值时,向量a+kb 与a-kb 互相垂直. 例4 判断正误,并简要说明理由.①a·0=0;②0·a=0;③0-AB =BA ;④|a·b|=|a||b|;⑤若a≠0,则对任一非零b有a·b≠0;⑥a·b=0,则a与b中至少有一个为0;⑦对任意向量a,b,с都有(a·b)с=a(b·с);⑧a与b是两个单位向量,则a2=b2. 解:上述8个命题中只有③⑧正确;对于①:两个向量的数量积是一个实数,应有0·a=0;对于②:应有0·a=0; 对于④:由数量积定义有|a·b|=|a|·|b|·|cos θ|≤|a||b|,这里θ是a与b的夹角,只有θ=0或θ=π时,才有|a·b|=|a|·|b|;对于⑤:若非零向量a、b垂直,有a·b=0; 对于⑥:由a·b=0可知a⊥b可以都非零; 对于⑦:若a与с共线,记a=λс.则a·b=(λс)·b=λ(с·b)=λ(b·с), ∴(a·b)·с=λ(b·с)с=(b·с)λс=(b·с)a 若a与с不共线,则(a·b)с≠(b·с)a.评述:这一类型题,要求学生确实把握好数量积的定义、性质、运算律.例6 已知|a|=3,|b|=6,当①a∥b,②a⊥b,③a与b的夹角是60°时,分别求a·b.解:①当a∥b时,若a与b同向,则它们的夹角θ=0°,∴a·b=|a|·|b|cos0°=3×6×1=18; 若a与b反向,则它们的夹角θ=180°,∴a·b=|a||b|cos180°=3×6×(-1)=-18; ②当a⊥b时,它们的夹角θ=90°, ∴a·b=0;③当a与b的夹角是60°时,有a·b=|a||b|cos60°=3×6×21=9评述:两个向量的数量积与它们的夹角有关,其范围是[0°,180°],因此,当a∥b时,有0°或180°两种可能. 四、课堂练习:1.已知|a |=1,|b |=2,且(a -b )与a 垂直,则a 与b 的夹角是( ) A.60° B .30° C.135° D.45°2.已知|a |=2,|b |=1,a 与b 之间的夹角为3,那么向量m =a -4b 的模为( ) A.2 B .23 C.6 D.12 3.已知a 、b 是非零向量,则|a |=|b |是(a +b )与(a -b )垂直的( ) A.充分但不必要条件 B .必要但不充分条件 C.充要条件 D.既不充分也不必要条件 4.已知向量a 、b 的夹角为3,|a |=2,|b |=1,则|a +b |·|a -b |= . 5.已知a +b =2i -8j ,a -b =-8i +16j ,其中i 、j 是直角坐标系中x 轴、y 轴正方向上的单位向量,那么a ·b = . 6.已知a ⊥b 、c 与a 、b 的夹角均为60°,且|a |=1,|b |=2,|c |=3,则(a +2b -c )2=______. 7.已知|a |=1,|b |=2,(1)若a ∥b ,求a ·b ;(2)若a 、b 的夹角为60°,求|a +b |;(3)若a -b 与a 垂直,求a 与b 的夹角.8.设m 、n 是两个单位向量,其夹角为60°,求向量a =2m +n 与b =2n -3m 的夹角. 9.对于两个非零向量a 、b ,求使|a +tb |最小时的t 值,并求此时b 与a +tb 的夹角. 五、小结(略) 六、课后作业(略) 七、教学后记:第8课时二、平面向量数量积的运算律教学目的:1.掌握平面向量数量积运算规律;2.能利用数量积的5个重要性质及数量积运算规律解决有关问题;3.掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题. 教学重点:平面向量数量积及运算规律.教学难点:平面向量数量积的应用授课类型:新授课教具:多媒体、实物投影仪内容分析:启发学生在理解数量积的运算特点的基础上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质.教学过程:一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA=a,OB=b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a||b |cos叫a与b的数量积,记作a b ,即有a b = |a||b|cos,(0≤θ≤π).并规定0与任何向量的数量积为0.3.“投影”的概念:作图C定义:|b|cos叫做向量b在a方向上的投影.投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当= 0时投影为|b|;当= 180时投影为|b|.4.向量的数量积的几何意义:数量积a b等于a的长度与b在a方向上投影|b|cos的乘积.5.两个向量的数量积的性质:设a、b为两个非零向量,e是与b同向的单位向量.1 e a = a e =|a |cos ;2 a b a b = 03当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b =|a ||b |. 特别的a a = |a |2或a a a ||4cos =||||b a ba ;5|a b | ≤ |a ||b |二、讲解新课: 平面向量数量积的运算律 1.交换律:a b = b a证:设a ,b 夹角为,则a b = |a ||b |cos ,b a = |b ||a |cos∴a b = b a2.数乘结合律:( a ) b = (a b ) = a ( b ) 证:若 > 0,( a ) b = |a ||b |cos , (a b ) = |a ||b |cos,a ( b ) = |a ||b |cos , 若 < 0,( a ) b =| a ||b |cos() =|a ||b |(cos) = |a ||b |cos, (a b )= |a ||b |cos ,a (b ) =|a || b |cos() =|a ||b |(cos) = |a ||b |cos.3.分配律:(a + b ) c = a c + b c在平面内取一点O ,作OA = a , AB = b ,OC = c , ∵a + b (即OB )在c 方向上的投影等于a 、b 在c 方向上的投影和,即 |a + b | cos = |a | cos 1 + |b | cos 2∴| c | |a + b | cos =|c | |a | cos1 + |c | |b | cos2,∴c (a + b ) = c a + c b 即:(a + b ) c= a c + b c说明:(1)一般地,(a·b)с≠a(b·с)(2)a·с=b·с,с≠0a=b(3)有如下常用性质:a2=|a|2,(a+b)(с+d)=a·с+a·d+b·с+b·d (a+b)2=a2+2a·b+b2三、讲解范例:例1 已知a 、b 都是非零向量,且a + 3b 与7a 5b 垂直,a 4b 与7a2b 垂直,求a 与b 的夹角. 解:由(a + 3b )(7a 5b ) = 0 7a 2 + 16a b 15b 2 = 0 ①(a4b )(7a2b ) = 0 7a 230a b + 8b 2 = 0 ②两式相减:2a b = b 2 代入①或②得:a 2 = b 2设a 、b 的夹角为,则cos=21222 ||||||b b b a b a ∴ = 60例2 求证:平行四边形两条对角线平方和等于四条边的平方和.解:如图:平行四边形ABCD 中,DC AB ,BC AD ,AC =AD AB ∴|AC|2=AD AB AD AB AD AB 2||222而BD =AD AB , ∴|BD|2=AD AB AD AB AD AB 2||222∴|AC |2 + |BD |2 = 2222AD AB = 2222||||||||AD DC BC AB例3 四边形ABCD 中,AB =a,BC =b,CD =с,DA =d,且a·b=b·с=с·d=d·a,试问四边形ABCD 是什么图形?分析:四边形的形状由边角关系确定,关键是由题设条件演变、推算该四边形的边角量. 解:四边形ABCD 是矩形,这是因为:一方面:∵a+b+с+d=0,∴a+b=-(с+d),∴(a+b)2=(с+d)2即|a|2+2a·b+|b|2=|с|2+2с·d+|d|2由于a·b=с·d,∴|a|2+|b|2=|с|2+|d|2① 同理有|a|2+|d|2=|с|2+|b|2②由①②可得|a|=|с|,且|b|=|d|即四边形ABCD 两组对边分别相等. ∴四边形ABCD 是平行四边形另一方面,由a·b=b·с,有b(a-с)=0,而由平行四边形ABCD 可得a=-с,代入上式得b·(2a)=0,即a·b=0,∴a⊥b也即AB ⊥BC .综上所述,四边形ABCD 是矩形.评述:(1)在四边形中,AB ,BC ,CD ,DA 是顺次首尾相接向量,则其和向量是零向量,即a+b+с+d=0,应注意这一隐含条件应用;(2)由已知条件产生数量积的关键是构造数量积,因为数量积的定义式中含有边、角两种关系. 四、课堂练习:1.下列叙述不正确的是( )A.向量的数量积满足交换律 B .向量的数量积满足分配律 C.向量的数量积满足结合律 D.a ·b 是一个实数2.已知|a |=6,|b |=4,a 与b 的夹角为60°,则(a +2b )·(a -3b )等于( ) A.72 B .-72 C.36 D.-363.|a |=3,|b |=4,向量a +43b 与a -43b 的位置关系为( ) A.平行 B .垂直 C.夹角为3D.不平行也不垂直 4.已知|a |=3,|b |=4,且a 与b 的夹角为150°,则(a +b )2= . 5.已知|a |=2,|b |=5,a ·b =-3,则|a +b |=______,|a -b |= . 6.设|a |=3,|b |=5,且a +λb 与a -λb 垂直,则λ= . 五、小结(略) 六、课后作业(略) 七、板书设计(略) 八、课后记:第9课时三、平面向量数量积的坐标表示、模、夹角教学目的:⑴要求学生掌握平面向量数量积的坐标表示⑵掌握向量垂直的坐标表示的充要条件,及平面内两点间的距离公式. ⑶能用所学知识解决有关综合问题. 教学重点:平面向量数量积的坐标表示教学难点:平面向量数量积的坐标表示的综合运用 授课类型:新授课教 具:多媒体、实物投影仪 教学过程: 一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos 叫a与b的数量积,记作a b ,即有a b = |a ||b |cos ,(0≤θ≤π).并规定0与任何向量的数量积为0. 3.向量的数量积的几何意义:C数量积a b 等于a 的长度与b 在a 方向上投影|b |cos 的乘积.4.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量. 1 e a = a e =|a |cos; 2aba b = 03当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b = |a ||b |. 特别的a a = |a |2或a a a ||4 cos =||||b a ba ;5|a b | ≤ |a ||b |5.平面向量数量积的运算律 交换律:a b = b a数乘结合律:( a ) b = (a b ) = a ( b ) 分配律:(a + b ) c = a c + b c 二、讲解新课:⒈ 平面两向量数量积的坐标表示已知两个非零向量),(11y x a ,),(22y x b ,试用a 和b 的坐标表示b a .设i 是x 轴上的单位向量,j 是y 轴上的单位向量,那么j y i x a 11 ,j y i x b 22 所以))((2211j y i x j y i x b a 2211221221j y y j i y x j i y x i x x 又1 i i ,1 j j ,0 i j j i ,所以b a 2121y y x x这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即b a 2121y y x x 2. 平面内两点间的距离公式一、 设),(y x a ,则222||y x a 或22||y x a.(2)如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么221221)()(||y y x x a (平面内两点间的距离公式)二、 向量垂直的判定设),(11y x a ,),(22y x b ,则b a 02121 y y x x 三、 两向量夹角的余弦( 0)co s =||||b a ba 222221212121y x y x y y x x四、 讲解范例:五、 设a = (5, 7),b = ( 6, 4),求a ·b 及a 、b 间的夹角θ(精确到1o ) 例2 已知A (1, 2),B (2, 3),C ( 2, 5),试判断△ABC 的形状,并给出证明. 例3 已知a = (3, 1),b = (1, 2),求满足x a = 9与x b = 4的向量x . 解:设x = (t , s ), 由429349s t s t b x a x32s t ∴x = (2, 3) 例4 已知a =(1,3),b =(3+1,3-1),则a 与b 的夹角是多少? 分析:为求a 与b 夹角,需先求a ·b 及|a |·|b |,再结合夹角θ的范围确定其值. 解:由a =(1,3),b =(3+1,3-1)有a ·b =3+1+3(3-1)=4,|a |=2,|b |=22.记a 与b 的夹角为θ,则cosθ=22b a b a 又∵0≤θ≤π,∴θ=4评述:已知三角形函数值求角时,应注重角的范围的确定.例5 如图,以原点和A (5, 2)为顶点作等腰直角△OAB ,使 B = 90 ,求点B 和向量AB 的坐标.解:设B 点坐标(x , y ),则OB = (x , y ),AB = (x 5, y 2) ∵OB AB ∴x (x 5) + y (y 2) = 0即:x 2 + y 2 5x 2y = 0 又∵|OB | = |AB | ∴x 2 + y 2 = (x 5)2 + (y 2)2即:10x + 4y = 29由2723232729410025221122y x y x y x y x y x 或∴B 点坐标)23,27( 或)27,23(;AB =)27,23( 或)23,27(例6 在△ABC 中,AB =(2, 3),AC =(1, k ),且△ABC 的一个内角为直角,求k 值.解:当A = 90 时,AB AC = 0,∴2×1 +3×k = 0 ∴k =23当B = 90 时,AB BC = 0,BC =AC AB = (1 2, k 3) = ( 1, k 3) ∴2×( 1) +3×(k 3) = 0 ∴k =311 当C = 90 时,AC BC = 0,∴ 1 + k (k 3) = 0 ∴k =2133 六、 课堂练习:1.若a =(-4,3),b =(5,6),则3|a |2-4a ·b =( ) A.23 B .57 C.63 D.83 2.已知A (1,2),B (2,3),C (-2,5),则△ABC 为( )A.直角三角形 B .锐角三角形 C.钝角三角形 D.不等边三角形 3.已知a =(4,3),向量b 是垂直a 的单位向量,则b 等于( ) A.)54,53(或)53,54( B .)54,53(或)54,53( C.)54,53( 或)53,54(D.)54,53( 或)54,53(4.a =(2,3),b =(-2,4),则(a +b )·(a -b )= .5.已知A (3,2),B (-1,-1),若点P (x ,-21)在线段AB 的中垂线上,则x = . 6.已知A (1,0),B (3,1),C (2,0),且a =,b =,则a 与b 的夹角为 . 七、 小结(略) 八、 课后作业(略) 九、 板书设计(略) 十、 课后记:。
高中三年数学掌握平面向量的数量积与向量积计算方法
高中三年数学掌握平面向量的数量积与向量积计算方法在高中数学课程中,学生需要学习并掌握平面向量的数量积与向量积的计算方法。
这两个概念是向量分析中非常重要的一部分,对于解决几何和代数问题都具有广泛的应用。
本文将介绍平面向量的数量积与向量积的定义及其计算方法,并结合具体例子进行说明。
一、平面向量的数量积平面向量的数量积,又称为点积或内积,表示两个向量之间的乘积。
设有平面向量a和b,它们的数量积用记号a·b表示。
计算方法如下:\[a \cdot b = |a| \cdot |b| \cdot \cosθ\]其中,|a|和|b|分别表示向量a和b的模长,θ表示向量a与b之间的夹角。
数量积的计算结果是一个标量,即一个实数。
它可以用于判断两个向量之间的夹角关系以及计算向量在某个方向上的投影长度等。
例如,给定两个向量a=(2,3)和b=(4,1),求它们的数量积。
首先计算向量a和b的模长:\[|a| = \sqrt{2^2+3^2} = \sqrt{13}\]\[|b| = \sqrt{4^2+1^2} = \sqrt{17}\]然后计算向量a和b夹角的余弦值:\[\cosθ = \frac{a \cdot b}{|a| \cdot |b|} = \frac{2 \cdot 4 + 3 \cdot1}{\sqrt{13} \cdot \sqrt{17}} = \frac{11}{\sqrt{221}}\]所以,向量a和b的数量积为:\[a \cdot b = |a| \cdot |b| \cdot \cosθ = \sqrt{13} \cdot \sqrt{17} \cdot\frac{11}{\sqrt{221}} = \frac{11\sqrt{221}}{\sqrt{221}} = 11\]二、平面向量的向量积平面向量的向量积,又称为叉积或外积,表示两个向量之间的叉乘。
设有平面向量a和b,它们的向量积用记号a×b表示。
高中数学必修4平面向量复习4平面向量的数量积
5.4 平面向量的数量积要点透视: 1.两个向量的夹角:两个非零向量a 和b ,作 OA =a ,OB =b ,则∠AOB =θ (0°≤θ≤180°),叫做两向量a 与b 的夹角。
如果a 与b 的夹角是90°,则说a 与b 垂直,记作a ⊥b 2.两向量的数量积:已知两个非零向量a 和b ,它们的夹角为θ,则把数量|a |·|b |·cos θ叫做a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a |·|b |·cos θ,规定:零向量与任一向量的数量积为0.向量的数量积满足下列运算律: (1)a ·b =b ·a ; (2)(λa )·b =λ(a ·b )=a ·(λb ); (3)(a +b )·c =a ·c +b ·c . 3.向量数量积的坐标运算:记a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2. 4定理:两个向量a ,b 垂直的充要条件是a ·b =0.活题精析: 例1.(2001年上海卷)若非零向量以α ,β 满足|α +β |=|α -β |,则α 与β 所成角的大小是 . 要点精析:由作向量和与差的平行四边形法则可知:|α +β |,|α -β |正好是以α ,β 为邻边的平行四边形的两对角线的长度,∵ |α +β |=|α -β |.∴ 平行四边形是矩形,∴ α 与β 所成角是90°.思维延伸:作平面向量的某些题目时,应注意与平面几何知识相结合.本例还可采用两边平方,得α ·β =0. 例2.( 2003年天津卷)设a ,b ,c 是任意的非零向量,且相互不共线. (1)(a ·b )c -(c ·a )b =0 ;(2)|a |-|b |<|a -b |;(3)(b ·c )a -(c ·a )b 不与c 垂直;(4)(3a +2b )· (3a -2b )=9|a |2-4|b }2.其中是真命题的有( )A .(1)(2)B .(2)(3)C .(3)(4)D .(2)(4) 要点解析:(a ·b )c 是与向量c 平行的向量(c ·a )b 是与向量b 平行的向量,因此(a ·b )c 与(c ·a )b 不一定相等,因此(1)不正确. 因为a ,b ,c 是任意的非零向量,是相互不共线,则根据三角形两边之差小于第三边可知(2)正确. [(b ·c )a -(c ·a )b ]·c =(b ·c )(a ·c )-(c ·a )(b ·c )=0,因此(b ·c )a -(c ·a )b 与c 垂直,答案(3)不正确. (3a +2b )·(3a -2b )=9a 2-4b 2=9|a |2-4|b |2,答案(4)正确,应选D 。
高中数学知识点总结平面向量与几何应用之平面向量的数量积与向量的投影
高中数学知识点总结平面向量与几何应用之平面向量的数量积与向量的投影高中数学知识点总结:平面向量与几何应用之平面向量的数量积与向量的投影在高中数学中,平面向量是一个重要的概念,它能够用来描述空间中的位置和方向。
平面向量的数量积与向量的投影是平面向量的重要运算和应用。
本文将详细介绍平面向量的数量积和向量的投影,并探讨其在几何问题中的应用。
一、平面向量的数量积平面向量的数量积也叫点积,它是两个向量之间的一种运算。
设有两个平面向量a和b,它们的数量积表示为a·b。
1. 数量积的定义数量积的定义如下:a·b = |a| * |b| * cosθ其中,|a|和|b|分别表示向量a和b的模长,θ表示向量a和b之间的夹角。
2. 数量积的性质数量积具有以下性质:(1)a·b = b·a,即数量积满足交换律。
(2)a·a = |a|^2,即一个向量与自身的数量积等于它的模长的平方。
(3)a·b = 0,当且仅当a和b垂直。
3. 数量积的应用数量积在几何问题中有广泛的应用,包括求向量夹角、判断向量垂直和平行关系,以及求向量投影等。
(1)求向量夹角利用数量积的定义,可以得到以下结论:cosθ = (a·b) / (|a| * |b|)通过以上公式,可以求得向量a和向量b的夹角θ的余弦值,然后进一步求得夹角θ。
(2)判断向量垂直和平行关系设有两个非零向量a和b,利用数量积可以得到以下结论:(i)若a·b = 0,则向量a和向量b垂直。
(ii)若a·b = |a| * |b|,则向量a和向量b平行。
通过以上结论,可以判断两个向量之间的垂直和平行关系。
(3)求向量投影向量投影是指将一个向量投影到另一个向量上的过程。
设有非零向量a和向量b,向量a在向量b上的投影表示为proj_b a,其计算公式如下:proj_b a = (a·b) / |b|通过这个公式,可以求得向量a在向量b上的投影。
人教版高一数学必修四第二章平面向量数量积的坐标表示、模、夹角
2.4.2平面向量数量积的坐标表示、模、夹角考点学习目标核心素养向量数量积的坐标表示掌握平面向量数量积的坐标表示,会用向量的坐标形式求数量积数学运算平面向量的模与夹角的坐标表示能根据向量的坐标计算向量的模、夹角及判定两个向量垂直数学运算、逻辑推理问题导学预习教材P106-P107,并思考下列问题:1.平面向量数量积的坐标表示是什么?2.如何用坐标表示向量的模、夹角和垂直?1.两向量的数量积与两向量垂直的坐标表示设两个非零向量a=(x1,y1),b=(x2,y2).数量积两个向量的数量积等于它们对应坐标的乘积的和,即a·b=x1x2+y1y2两个向量垂直a⊥b⇔x1x2+y1y2=0公式a·b=|a||b|cos〈a,b〉与a·b=x1x2+y1y2都是用来求两向量的数量积的,没有本质区别,只是书写形式上的差异,两者可以相互推导.2.三个重要公式判断(正确的打“√”,错误的打“×”) (1)向量的模等于向量坐标的平方和.( )(2)|AB →|的计算公式与A ,B 两点间的距离公式是一致的.( ) 答案:(1)× (2)√已知a =(-3,4),b =(5,2),则a ·b 的值是( ) A .23 B .7 C .-23 D .-7 答案:D已知向量a =(1,-2),b =(x ,2),若a ⊥b ,则x =( ) A .1 B .2 C .4 D .-4答案:C已知a =(3,1),b =(-3,1),则向量a ,b 的夹角θ=______. 答案:120°数量积的坐标运算向量a =(1,-1),b =(-1,2),则(2a +b )·a =( ) A .-1 B .0 C .1D .2 【解析】 因为a =(1,-1),b =(-1,2), 所以(2a +b )·a =(1,0)·(1,-1)=1. 【答案】 C数量积坐标运算的两个途径一是先将各向量用坐标表示,直接进行数量积运算;二是先利用数量积的运算律将原式展开,再依据已知计算.1.设向量a =(1,-2),向量b =(-3,4),向量c =(3,2),则向量(a +2b )·c =( ) A .(-15,12) B .0 C .-3 D .-11 解析:选C.依题意可知,a +2b =(1,-2)+2(-3,4)=(-5,6),所以(a +2b )·c =(-5,6)·(3,2)=-5×3+6×2=-3.2.已知正方形ABCD 的边长为2,E 为CD 的中点,点F 在AD 上,AF →=2FD →,则BE →·CF →=________.解析:建立平面直角坐标系如图所示,则A (0,2),E (2,1),D (2,2),B (0,0),C (2,0),因为AF →=2FD →,所以F (43,2).所以BE →=(2,1),CF →=(43,2)-(2,0)=(-23,2),所以BE →·CF →=(2,1)·(-23,2)=2×(-23)+1×2=23.答案:23平面向量的模(1)已知点A (0,1),B (1,-2),向量AC →=(4,-1),则|BC →|=________. (2)(2019·山东枣庄三中期中检测)已知平面向量a =(2m -1,2),b =(-2,3m -2),且|a +b |=|a -b |,则5a -3b 在向量a 方向上的投影为________.【解析】 (1)设C (x ,y ),因为点A (0,1),向量AC →=(4,-1),所以AC →=(x ,y -1)=(4,-1),所以{x =4,y -1=-1,解得x =4,y =0,所以C (4,0),所以BC →=(3,2),|BC →|=9+4=13.(2)由|a +b |=|a -b |得a ·b =0,所以-2(2m -1)+2(3m -2)=0,解得m =1,所以a =(1,2),b =(-2,1),5a -3b =(11,7),由投影公式可得所求投影为a ·(5a -3b )|a |=255=5 5.【答案】 (1)13 (2)55求向量的模的两种基本策略(1)字母表示下的运算利用|a|2=a2,将向量的模的运算转化为向量与向量的数量积的问题.(2)坐标表示下的运算若a=(x,y),则a·a=a2=|a|2=x2+y2,于是有|a|=x2+y2.已知向量a=(cos θ,sin θ),向量b=(3,0),则|2a-b|的最大值和最小值分别是()A.42,0 B.4,2 2C.25,1 D.5,1解析:选D.因为2a-b=2(cos θ,sin θ)-(3,0)=(2cos θ-3,2sin θ),所以|2a-b|2=(2cos θ-3)2+(2sin θ)2=13-12cos θ,又cos θ∈[-1,1],所以|2a-b|2∈[1,25],所以|2a-b|∈[1,5],故|2a-b|的最大值和最小值分别是5,1,故选D.平面向量的夹角(垂直)已知a=(4,3),b=(-1,2).(1)求a与b夹角的余弦值;(2)若(a-λb)⊥(2a+b),求实数λ的值.【解】(1)因为a·b=4×(-1)+3×2=2,|a|=42+32=5,|b|=(-1)2+22=5,设a与b的夹角为θ,所以cos θ=a·b|a||b|=255=2525.(2)因为a-λb=(4+λ,3-2λ),2a+b=(7,8),又(a-λb)⊥(2a+b),所以7(4+λ)+8(3-2λ)=0,所以λ=529.利用数量积求两向量夹角的步骤1.已知向量a =(1,3),b =(3,m ).若向量a ,b 的夹角为π6,则实数m =( )A .23 B. 3 C .0D .- 3解析:选B.因为a =(1,3),b =(3,m ).所以|a |=2,|b |=9+m 2,a ·b =3+3m ,又a ,b 的夹角为π6,所以a ·b |a |·|b |=cos π6,即3+3m 29+m 2=32,所以3+m =9+m 2,解得m = 3.2.已知A (-2,1),B (6,-3),C (0,5),则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形D .等边三角形解析:选A.由题设知AB →=(8,-4),AC →=(2,4),BC →=(-6,8),所以AB →·AC →=2×8+(-4)×4=0,即AB →⊥AC →.所以∠BAC =90°,故△ABC 是直角三角形.规范解答平面向量的夹角和垂直问题(本题满分12分)已知三个点A (2,1),B (3,2),D (-1,4). (1)求证:AB ⊥AD ;(2)要使四边形ABCD 为矩形,求点C 的坐标,并求矩形ABCD 两条对角线所夹的锐角的余弦值.【解】 (1)证明:因为A (2,1),B (3,2),D (-1,4),所以AB →=(1,1),AD →=(-3,3).(2分)AB →·AD →=1×(-3)+1×3=0,利用数量积为0,证明向量垂直所以AB →⊥AD →,所以AB ⊥AD . (4分)(2)因为AB →⊥AD →,四边形ABCD 为矩形, 所以AB →=DC →.(5分)设点C 的坐标为(x ,y ),则DC →=(x +1,y -4).又因为AB →=(1,1),所以⎩⎪⎨⎪⎧x +1=1,y -4=1,解得⎩⎪⎨⎪⎧x =0,y =5.(7分)所以点C 的坐标为(0,5).所以AC →=(-2,4). 又BD →=(-4,2),所以|AC →|=25,|BD →|=25, AC →·BD →=8+8=16.(9分)正确求出这三个量是求两向量夹角的关键设AC →与BD →的夹角为θ,则cos θ=AC →·BD →|AC →||BD →|=1625×25=45.(11分)故矩形ABCD 的两条对角线所夹的锐角的余弦值为45.(12分)(1)解答两向量的夹角的步骤:求数量积、求模、求余弦值、求角.(2)利用cos θ=a ·b|a ||b |判断θ的值时,要注意cos θ<0时,有两种情况:一是θ是钝角,二是θ为180°;cos θ>0时,也有两种情况:一是θ是锐角,二是θ为0°.1.已知向量a =(2,0),a -b =(3,1),则下列结论正确的是( ) A .a ·b =2 B .a ∥b C .b ⊥(a +b ) D .|a |=|b |解析:选C.因为向量a =(2,0),a -b =(3,1),设b =(x ,y ),则⎩⎪⎨⎪⎧2-x =3,0-y =1,解得⎩⎪⎨⎪⎧x =-1,y =-1,所以b =(-1,-1),a +b =(1,-1),b ·(a +b )=-1×1+(-1)×(-1)=0,所以b ⊥(a +b ).2.在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB →=(1,-2),AD →=(2,1),则AD →·AC →=________.解析:由四边形ABCD 为平行四边形,知AC →=AB →+AD →=(3,-1),故AD →·AC →=(2,1)·(3,-1)=5.答案:53.已知a =(1,3),b =(2,m ). (1)当3a -2b 与a 垂直时,求m 的值; (2)当a 与b 的夹角为120°时,求m 的值. 解:(1)由题意得3a -2b =(-1,33-2m ), 由3a -2b 与a 垂直,得-1+9-23m =0, 所以m =433.(2)由题意得|a |=2,|b |=m 2+4,a ·b =2+3m ,所以cos 120°=a ·b |a |·|b |=2+3m 2m 2+4=-12,整理得2+3m +m 2+4=0,化简得m 2+23m =0, 解得m =-23或m =0(舍去). 所以m =-2 3.[A 基础达标]1.已知向量a =(2,1),b =(-1,k ),a ·(2a -b )=0,则k =( ) A .-12 B .-6 C .6D .12解析:选D.2a -b =(4,2)-(-1,k )=(5,2-k ),由a ·(2a -b )=0,得(2,1)·(5,2-k )=0,所以10+2-k =0,解得k =12.2.已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则|a |等于( ) A .0 B .1 C .-2D .2解析:选D.2a -b =(3,n ),由2a -b 与b 垂直可得(3,n )·(-1,n )=-3+n 2=0,所以n 2=3,所以|a |=2.3.已知平面向量a =(2,4),b =(-1,2),若c =a -(a ·b )b ,则|c |等于( ) A .4 2 B .2 5 C .8D .8 2解析:选D.易得a ·b =2×(-1)+4×2=6,所以c =(2,4)-6(-1,2)=(8,-8),所以|c |=82+(-8)2=8 2.4.(2019·河北衡水中学检测)设向量a =(3,1),b =(x ,-3),c =(1,-3),若b ∥c ,则a -b 与b 的夹角为( )A .30°B .60°C .120°D .150°解析:选D.因为b ∥c ,所以-3x =(-3)×1,所以x =3,所以b =(3,-3),a -b =(0,4).所以a -b 与b 的夹角的余弦值为b ·(a -b )|a -b ||b |=-124×23=-32,所以a -b 与b的夹角为150°.5.已知O 为坐标原点,向量OA →=(2,2),OB →=(4,1),在x 轴上有一点P 使得AP →·BP →有最小值,则点P 的坐标是( )A .(-3,0)B .(2,0)C .(3,0)D .(4,0)解析:选C.设点P 的坐标为(x ,0),则AP →=(x -2,-2),BP →=(x -4,-1). AP →·BP →=(x -2)(x -4)+(-2)×(-1) =x 2-6x +10=(x -3)2+1, 所以当x =3时,AP →·BP →有最小值1. 此时点P 的坐标为(3,0).6.设a =(m +1,-3),b =(1,m -1),若(a +b )⊥(a -b ),则m =________. 解析:a +b =(m +1,-3)+(1,m -1)=(m +2,m -4), a -b =(m +1,-3)-(1,m -1)=(m ,-2-m ), 因为(a +b )⊥(a -b ),所以(a +b )·(a -b )=0, 即(m +2,m -4)·(m ,-m -2)=0, 所以m 2+2m -m 2+2m +8=0,解得m =-2. 答案:-27.(2019·陕西咸阳检测)已知向量a =(-2,1),b =(λ,12),且|λa +b |=132,则λ=________.解析:由已知易得λa +b =⎝⎛⎭⎫-λ,λ+12,则(-λ)2+⎝⎛⎭⎫λ+122=134,解得λ=1或λ=-32. 答案:1或-328.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量AB →在CD →方向上的投影为________.解析:由题意得AB →=(2,1),CD →=(5,5),所以AB →·CD →=15,所以向量AB →在CD →方向上的投影为|AB →|cos 〈AB →,CD →〉=AB →·CD →|CD →|=1552=322.答案:3229.已知a =(1,2),b =(-3,2). (1)求a -b 及|a -b |;(2)若k a +b 与a -b 垂直,求实数k 的值. 解:(1)a -b =(4,0),|a -b |=42+02=4.(2)k a +b =(k -3,2k +2),a -b =(4,0), 因为k a +b 与a -b 垂直,所以(k a +b )·(a -b )=4(k -3)+(2k +2)·0=0, 解得k =3.10.(2019·重庆第一中学第一次月考)已知向量a ,b ,c 是同一平面内的三个向量,其中a =(1,-1).(1)若|c |=32,且c ∥a ,求向量c 的坐标;(2)若b 是单位向量,且a ⊥(a -2b ),求a 与b 的夹角θ.解:(1)设c =(x ,y ),由|c |=32,c ∥a 可得⎩⎪⎨⎪⎧y +x =0,x 2+y 2=18,所以⎩⎪⎨⎪⎧x =-3,y =3,或⎩⎪⎨⎪⎧x =3,y =-3,故c =(-3,3)或c =(3,-3).(2)因为|a |=2,且a ⊥(a -2b ),所以a ·(a -2b )=0,即a 2-2a ·b =0,所以a ·b =1,故cos θ=a ·b |a |·|b |=22,所以θ=π4.[B 能力提升]11.已知向量a =(1,2),b =(-2,-4),|c |=5,若(a +b )·c =52,则a 与c 的夹角大小为( )A .30°B .60°C .120°D .150°解析:选C.设a 与c 的夹角为θ,依题意,得 a +b =(-1,-2),|a |= 5.设c =(x ,y ),因为(a +b )·c =52, 所以x +2y =-52.又a ·c =x +2y , 所以cos θ=a ·c |a ||c |=x +2y 5×5=-525=-12, 所以a 与c 的夹角为120°.12.在边长为1的正方形ABCD 中,M 为BC 的中点,点E 在线段AB 上运动,则EM →·EC→的取值范围是( ) A.⎣⎡⎦⎤12,2 B.⎣⎡⎦⎤0,32 C.⎣⎡⎦⎤12,32D.[]0,1解析:选C.以A 为坐标原点建立如图所示的平面直角坐标系,设E (x ,0),0≤x ≤1.因为M ⎝⎛⎭⎫1,12,C (1,1),所以EM →=⎝⎛⎭⎫1-x ,12,EC →=(1-x ,1),所以EM →·EC →=⎝⎛⎭⎫1-x ,12·(1-x ,1) =(1-x )2+12.因为0≤x ≤1,所以12≤(1-x )2+12≤32,即EM →·EC →的取值范围是⎣⎡⎦⎤12,32. 13.已知向量a =(1,3),b =(-2,0).(1)求a -b 的坐标以及a -b 与a 之间的夹角;(2)当t ∈[-1,1]时,求|a -t b |的取值范围.解:(1)因为向量a =(1,3),b =(-2,0),所以a -b =(1,3)-(-2,0)=(3,3),所以cos 〈a -b ,a 〉=(a -b )·a |a -b |·|a |=643=32. 因为〈a -b ,a 〉∈[0,π],所以向量a -b 与a 的夹角为π6.(2)|a -t b |2=a 2-2t a ·b +t 2b 2=4t 2+4t +4=4⎝⎛⎭⎫t +122+3.易知当t ∈[-1,1]时,|a -t b |2∈[3,12],所以|a -t b |的取值范围是[3,2 3 ].14.(选做题)已知OA →=(4,0),OB →=(2,23),OC →=(1-λ)·OA →+λOB →(λ2≠λ).(1)求OA →·OB →及OA →在OB →上的投影;(2)证明A ,B ,C 三点共线,并在AB →=BC →时,求λ的值;(3)求|OC →|的最小值.解:(1)OA →·OB →=8,设OA →与OB →的夹角为θ,则cos θ=OA →·OB →|OA →||OB →|=84×4=12, 所以OA →在OB →上的投影为|OA →|cos θ=4×12=2. (2)AB →=OB →-OA →=(-2,23),BC →=OC →-OB →=(1-λ)OA →-(1-λ)OB →=(λ-1)AB →,因为AB →与BC →有公共点B ,所以A ,B ,C 三点共线.当AB →=BC →时,λ-1=1,所以λ=2.(3)|OC →|2=(1-λ)2OA →2+2λ(1-λ)OA →·OB →+λ2OB →2=16λ2-16λ+16=16⎝⎛⎭⎫λ-122+12. 所以当λ=12时,|OC →|取到最小值2 3.。
高中数学平面向量知识及注意事项
高中数学平面向量知识及注意事项一、向量基础知识1、实数与向量的积的运算律:设λ、μ为实数,那么(1)结合律:λ(μa )=(λμ) a ;(2)第一分配律:(λ+μ) a =λa +μa ;(3)第二分配律:λ(a +b)=λa +λb .2、向量的数量积的运算律:(1) a ·b = b ·a(交换律);注:c b a c b a )()(∙≠∙(2)(λa )·b = λ(a ·b )=λa ·b = a ·(λb );(3)(a +b )·c = a ·c +b ·c .3、平面向量基本定理:如果1e 、2e是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a =λ11e +λ22e .不共线的向量1e 、2e 叫做表示这一平面内所有向量的一组基底.4、投影:向量b 在向量a方向上的投影为|b |cos θ。
5、a 与b 的数量积(或内积):a ·b =|a ||b |cos θ.6、a ·b 的几何意义:数量积a ·b 等于a 的长度|a|与b 在a 的方向上的投影|b |cos θ的乘积.7、平面向量的坐标运算:(1)设a =11(,)x y ,b =22(,)x y ,则a +b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a -b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa =(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212x x y y +.8、两向量的夹角公式:121222221122cos x x y y x y x y θ+=+⋅+(a=11(,)x y ,b =22(,)x y ).9、向量的模与平面两点间的距离公式:|a |22x y =+,A B d =||AB AB AB =⋅ 222121()()x x y y =-+-(A 11(,)x y ,B 22(,)x y ).10、两个非零向量的共线与垂直的充要条件:设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a ∥b ⇔b =λa12210x y x y ⇔-=.a ⊥b (a ≠0 )⇔a ·b=012120x x y y ⇔+=.11、三角形的重心坐标公式:△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC的重心的坐标是123123(,)33x x x y y y G ++++.G G GC 0A B++= 二、向量中需要注意的问题1、向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.2、几个概念:零向量、单位向量(与AB 共线的单位向量是||ABAB ± ,平行(共线)向量(无传递性,是因为有0 )、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影(a 在b上的投影是cos ,a ba ab b⋅=<>=∈R).3、两非零向量....共线的充要条件://a b a b λ⇔= cos ,1a b ⇔<>=± 12210x y x y ⇔-=. 两个非零向量....垂直的充要条件:0||||a b a b a b a b ⊥⇔⋅=⇔+=- 12120x x y y ⇔+=. 特别:零向量和任何向量共线和垂直. b a λ=是向量平行的充分不必要条件!4、三点A B C 、、共线⇔ AB AC 、共线;向量 PA PB PC、、中三终点A B C 、、共线⇔存在实数αβ、使得:PA PB PC αβ=+且1αβ+=.5、向量的数量积:22||()a a a a ==⋅ ,1212||||cos a b a b x x y y θ⋅==+,121222221122cos ||||x x y y a b a b x y x y θ+⋅==++ ,12122222||cos ,||x x y y a b a b a a b b x y +⋅=<>==+在上的投影. 注意:,a b <> 为锐角⇔0a b ⋅> 且 a b 、不同向;,a b <>为直角⇔0a b ⋅= 且 0a b ≠ 、; ,a b <> 为钝角⇔0a b ⋅< 且 a b 、不反向,0a b ⋅< 是,a b <> 为钝角的必要非充分条件.6、一个重要的不等式:||||||||||||a b a b a b -≤±≤+注意: a b 、同向或有0⇔||||||a b a b +=+ ≥||||||||a b a b -=- ; a b 、反向或有0 ⇔||||||a b a b -=+ ≥||||||||a b a b -=+; a b、不共线⇔||||||||||||a b a b a b -<±<+ .(这些和实数集中类似)7、中点坐标公式1212,22x x y y x y ++==,122MP MP MP P +=⇔为12PP 的中点.。
平面向量的数量积
平面向量的数量积平面向量的数量积,也叫点积或内积,是向量运算中的一种重要操作。
它与向量的夹角以及向量的长度有着密切的关系。
在本文中,我们将详细介绍平面向量的数量积的概念、计算方法以及一些应用。
一、概念平面向量的数量积是指将两个向量的对应分量相乘,并将所得乘积相加而得到的数值。
设有两个平面向量A和A,它们的数量积记作A·A,计算公式为:A·A = AAAA + AAAA其中,AA和AA分别是向量A在A轴和A轴上的分量,AA和AA分别是向量A在A轴和A轴上的分量。
二、计算方法要计算平面向量的数量积,需要先求出两个向量在A轴和A轴上的分量,然后按照数量积的计算公式进行计算。
假设有两个向量A = (A, A)和A = (A, A),它们的数量积为A·A,计算步骤如下:1. 计算A和A在A轴上的分量AA和AA,分别为A和A;2. 计算A和A在A轴上的分量AA和AA,分别为A和A;3. 将AA和AA、AA和AA进行相乘得到AA和AA;4. 将AA和AA相加,得到平面向量的数量积A·A。
三、性质平面向量的数量积具有以下性质:1. 交换律:A·A = A·A2. 数乘结合律:(AA)·A = A(A·A) = A·(AA)3. 分配律:(A + A)·A = A·A + A·A其中,A为任意实数,A、A和A为任意向量。
四、夹角与数量积的关系两个非零向量A和A的数量积A·A与它们夹角A的余弦函数之间存在着如下关系:A·A = ‖A‖‖A‖cosA其中,‖A‖和‖A‖分别为向量A和A的长度。
五、应用平面向量的数量积在几何和物理学中有着广泛的应用。
以下是一些常见的应用:1. 判断两个向量是否垂直:如果两个向量的数量积为零,即A·A = 0,那么它们是垂直的。
2. 计算向量的模:根据数量积的性质,向量的模可以通过向量与自身的数量积来计算。
(完整版)高中数学平面向量知识点总结
高中数学必修4之平面向量 知识点归纳一.向量的基本概念与基本运算1、向量的概念: ①向量:既有大小又有方向的量 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量 ⑤相等向量:长度相等且方向相同的向量 2、向量加法:设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u u r u u u r =AC u u u r(1)a a a00;(2)向量加法满足交换律与结合律; AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”.3、向量的减法: ① 相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量 ②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a 可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa,它的长度与方向规定如下: (Ⅰ)a a ; (Ⅱ)当0 时,λa 的方向与a 的方向相同;当0 时,λa 的方向与a的方向相反;当0 时,0 a ,方向是任意的5、两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21, 使:2211e e a ,其中不共线的向量21,e e叫做表示这一平面内所有向量的一组基底 二.平面向量的坐标表示 1平面向量的坐标表示:平面内的任一向量a r 可表示成a xi yj r r r ,记作a r =(x,y)。
2平面向量的坐标运算:(1) 若 1122,,,a x y b x y r r ,则 1212,a b x x y y r r(2) 若 2211,,,y x B y x A ,则 2121,AB x x y y u u u r(3) 若a r =(x,y),则 a r =( x, y) (4) 若 1122,,,a x y b x y r r ,则1221//0a b x y x y r r(5) 若 1122,,,a x y b x y r r ,则1212a b x x y y r r若a b r r ,则02121 y y x x三.平面向量的数量积 1两个向量的数量积:已知两个非零向量a r 与b r ,它们的夹角为 ,则a r ·b r =︱a r ︱·︱b r ︱cos叫做a r 与b r 的数量积(或内积) 规定00a r r 2向量的投影:︱b r ︱cos =||a b a r r r ∈R ,称为向量b r 在a r 方向上的投影投影的绝对值称为射影 3数量积的几何意义: a r ·b r 等于a r 的长度与b r 在a r 方向上的投影的乘积 4向量的模与平方的关系:22||a a a a r r r r 5乘法公式成立:2222a b a b a b a b r r r r r r r r ; 2222a b a a b b r r r r r r 222a a b b r r r r 6平面向量数量积的运算律:①交换律成立:a b b a r r r r②对实数的结合律成立:a b a b a b R r r r r r r ③分配律成立: a b c a c b c r r r r r r r c a b r r r特别注意:(1)结合律不成立: a b c a b c r r r r r r ;(2)消去律不成立a b a c r r r r 不能得到b c r r (3)a b r r =0不能得到a r =0r 或b r =0r 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)a x y b x y r r ,则a r ·b r =121x x y y 8向量的夹角:已知两个非零向量a r 与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB= (001800 )叫做向量a r 与b r 的夹角 cos =cos ,a b a b a b • •r r r r r r当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r 与b r 反方向时θ=1800,同时0r 与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r ⊥b r 10两个非零向量垂直的充要条件:a ⊥b a ·b =O 2121 y y x x 平面向量数量积的性质。
专题83平面向量的数量积(精讲精析篇)-新高考高中数学核心知识点全透视
专题8.3 平面向量的数量积(精讲精析篇)一、核心素养1.与向量线性运算相结合,考查平面向量基本定理、数量积、向量的夹角、模的计算,凸显数学运算、直观想象的核心素养.2.与向量的坐标表示相结合,考查向量的数量积、向量的夹角、模的计算,凸显数学运算的核心素养.6.以平面图形为载体,考查向量数量积的应用,凸显数学运算、数学建模、直观想象的核心素养.二、考试要求1.平面向量的数量积(1)理解平面向量数量积的含义及其物理意义.(2)了解平面向量的数量积与向量投影的关系.(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算.(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.2.向量的应用(1)会用向量方法解决某些简单的平面几何问题.(2)会用向量方法解决简单的力学问题与其他一些实际问题.三、主干知识梳理(一)两个向量的夹角1.定义已知两个非零向量a和b,作OA=a,OB=b,则∠AOB=θ叫做向量a与b的夹角.2.范围向量夹角θ的范围是0°≤θ≤180°a与b同向时,夹角θ=0°;a与b反向时,夹角θ=180°.3.向量垂直如果向量a与b的夹角是90°,则a与b垂直,记作a⊥b.(二)平面向量的数量积1.已知两个非零向量a与b,则数量|a||b|·cos θ叫做a与b的数量积,记作a·b,即a·b=|a||b|cos θ,其中θ是a 与b 的夹角.规定0·a =0.当a ⊥b 时,θ=90°,这时a ·b =0.2.a ·b 的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.(三)数量积的运算律1.交换律:a ·b =b ·a .2.分配律:(a +b )·c =a ·c +b ·c .3.对λ∈R ,λ(a ·b )=(λa )·b =a ·(λb ).(四)平面向量的数量积与向量垂直的坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2).设向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ,则有下表: 设A (x 1,y 1),B (x 2,y 2),则|AB →|=x 2-x 12+y 2-y 12 1.如果e 是单位向量,则a ·e =e ·a .2.a ⊥b ⇔a ·b =0.3.a ·a =|a |2,|a 4.cos θ=||||⋅a b a b .(θ为a 与b 的夹角) 5.|a ·b |≤|a ||b |.(七)数量积的坐标运算设a =(a 1,a 2),b =(b 1,b 2),则:1.a ·b =a 1b 1+a 2b 2.2.a ⊥b ⇔a 1b 1+a 2b 2=0.3.|a |=a 21+a 22.4.cos θ=||||⋅a b a b =112222221212a b a b a a b b +++.(θ为a 与b 的夹角) (八)平面向量的应用1.向量与平面几何综合问题的解法(1)坐标法把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决.(2)基向量法适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程进行求解.2.向量在解析几何中的作用(解析几何专题中详讲)(1)载体作用:向量在解析几何问题中出现,多用于“包装”,解决此类问题时关键是利用向量的意义、运算脱去“向量外衣”,导出曲线上点的坐标之间的关系,从而解决有关距离、斜率、夹角、轨迹、最值等问题.(2)工具作用:利用a ⊥b ⇔a ·b =0;a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题,特别是向量垂直、平行的坐标表示在解决解析几何中的垂直、平行问题时经常用到. 3.向量与三角的综合应用解决这类问题的关键是应用向量知识将问题准确转化为三角问题,再利用三角知识进行求解.4.平面向量在物理中的应用一、命题规律(1)数量积、夹角及模的计算问题;(2)以平面图形为载体,借助于平面向量研究平面几何平行、垂直等问题;也易同三角函数、解析几何等知识相结合,以工具的形式出现.二、真题展示1.(2021·全国·高考真题)已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,1,0A ,则( ) A .12OP OP =B .12AP AP =C .312OA OP OP OP ⋅=⋅D .123OA OP OP OP ⋅=⋅【答案】AC【分析】A 、B 写出1OP ,2OP 、1AP ,2AP 的坐标,利用坐标公式求模,即可判断正误;C 、D 根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.【详解】A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=-,所以1||cos 1OP =,2||(cos 1OP=,故12||||OP OP =,正确;B :1(cos 1,sin )AP αα=-,2(cos 1,sin )AP ββ=--,所以1||(cos 2|sin |2AP α===,同理2||(cos 2|sin |2AP β=,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+ ()()()cos βαβcos α2β=++=+,故一般来说123OA OP OP OP ⋅≠⋅故错误;故选:AC2.(2021·天津·高考真题)在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE AB ⊥且交AB 于点E .//DF AB 且交AC 于点F ,则|2|BE DF +的值为____________;()DE DF DA +⋅的最小值为____________.【答案】11120 【分析】设BE x =,由222(2)44BE DF BE BE DF DF +=+⋅+可求出;将()DE DF DA +⋅化为关于x 的关系式即可求出最值.【详解】设BE x =,10,2x ⎛⎫∈ ⎪⎝⎭,ABC 为边长为1的等边三角形,DE AB ⊥,30,2,,12BDE BD x DE DC x ∠∴====-,//DF AB ,DFC ∴为边长为12x -的等边三角形,DE DF ⊥,22222(2)4444(12)cos0(12)1BE DF BE BE DF DF x x x x ∴+=+⋅+=+-⨯+-=,|2|1BE DF +∴=, 2()()()DE DF DA DE DF DE EA DE DF EA +⋅=+⋅+=+⋅222311(3)(12)(1)53151020x x x x x x ⎛⎫=+-⨯-=-+=-+ ⎪⎝⎭, 所以当310x =时,()DE DF DA +⋅的最小值为1120. 故答案为:1;1120.考点01 平面向量数量积的运算【典例1】(2021·浙江·高考真题)已知非零向量,,a b c ,则“a c b c ⋅=⋅”是“a b =”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 【答案】B【分析】考虑两者之间的推出关系后可得两者之间的条件关系.【详解】如图所示,,,,OA a OB b OC c BA a b ====-,当AB OC ⊥时,a b -与c 垂直,,所以成立,此时a b ≠,∴不是a b =的充分条件,当a b =时,0a b -=,∴()00a b c c -⋅=⋅=,∴成立,∴是a b =的必要条件, 综上,“”是“”的必要不充分条件故选:B.【典例2】(2019·全国高考真题(理))已知AB =(2,3),AC =(3,t ),||BC =1,则AB BC ⋅=( )A .3B .2C .2D .3【答案】C【解析】由(1,3)BC AC AB t =-=-,221(3)1BC t =+-=,得3t =,则(1,0)BC =,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .【典例3】(2021·北京·高考真题)已知向量,,a b c 在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则()a b c +⋅= ________;=a b ⋅________.【答案】0 3【分析】根据坐标求出a b +,再根据数量积的坐标运算直接计算即可.【详解】以,a b 交点为坐标原点,建立直角坐标系如图所示:则(2,1),(2,1),(0,1)a b c ==-=,()4,0a b ∴+=,()40010a b c +⋅=⨯+∴⨯=,()22113a b ∴⋅=⨯+⨯-=.故答案为:0;3.【典例4】(2020·全国高考真题(文))设向量(1,1),(1,24)a b m m =-=+-,若a b ⊥,则m =______________.【答案】5【解析】由a b ⊥可得0a b ⋅=,又因为(1,1),(1,24)a b m m =-=+-,所以1(1)(1)(24)0a b m m ⋅=⋅++-⋅-=,即5m =,故答案为:5.【典例5】(2020·天津高考真题)如图,在四边形ABCD 中,60,3B AB ︒∠==,6BC =,且3,2AD BC AD AB λ=⋅=-,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN =,则DM DN ⋅的最小值为_________.【答案】16 132 【解析】AD BC λ=,//AD BC ∴,180120BAD B ∴∠=-∠=,cos120AB AD BC AB BC AB λλ⋅=⋅=⋅1363922λλ⎛⎫=⨯⨯⨯-=-=- ⎪⎝⎭, 解得16λ=, 以点B 为坐标原点,BC 所在直线为x 轴建立如下图所示的平面直角坐标系xBy ,()66,0BC C =∴,,∵3,60AB ABC =∠=︒,∴A 的坐标为3332A ⎛ ⎝⎭, ∵又∵16AD BC =,则5332D ⎛ ⎝⎭,设(),0M x ,则()1,0N x +(其中05x ≤≤), 533,22DM x ⎛=-- ⎝⎭,333,22DN x ⎛=-- ⎝⎭,()222532113422222DM DN x x x x x ⎛⎫⎛⎫⋅=--+=-+=-+ ⎪⎪⎝⎭⎝⎭⎝⎭, 所以,当2x =时,DM DN ⋅取得最小值132. 故答案为:16;132. 【总结提升】1.计算向量数量积的三种常用方法(1)定义法:已知向量的模与夹角时,可直接使用数量积的定义求解,即a ·b =|a ||b |cos θ(θ是a 与b 的夹角).(2)基向量法:计算由基底表示的向量的数量积时,应用相应运算律,最终转化为基向量的数量积,进而求解.(3)坐标法:若向量选择坐标形式,则向量的数量积可应用坐标的运算形式进行求解.2.总结提升:(1).公式a·b =|a||b|cos<a ,b >与a·b =x 1x 2+y 1y 2都是用来求两向量的数量积的,没有本质区别,只是书写形式上的差异,两者可以相互推导.若题目中给出的是两向量的模与夹角,则可直接利用公式a·b =|a||b|cos<a ,b >求解;若已知两向量的坐标,则可选用公式a·b =x 1x 2+y 1y 2求解.(2)已知非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b 与a ⊥b 的坐标表示如下:a ∥b ⇔x 1y 2=x 2y 1,即x 1y 2-x 2y 1=0;a ⊥b ⇔x 1x 2=-y 1y 2,即x 1x 2+y 1y 2=0.两个结论不能混淆,可以对比学习,分别简记为:纵横交错积相等,横横纵纵积相反.考点02 平面向量的模、夹角【典例6】(2021·天津·南开大学附属中学高三月考)已知平面向量a ,b ,满足2a =,5b =,53a b ⋅=,则a ,b 的夹角是( )A .6πB .3πC .4πD .23π 【答案】A【分析】 直接利用向量的数量积转化求解向量的夹角即可.【详解】解:平面向量a ,b ,满足2a =,5b =,53a b ⋅=,设a ,b 的夹角是θ,可得53cos 25a b a b θ⋅===⨯[]0,θπ∈,所以a ,b 的夹角是:6π. 故选:A . 【典例7】(2020·全国高考真题(理))已知向量ab a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=a a b +( )A .3135-B .1935-C .1735D .1935【答案】D【解析】5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=. ()2222257a b a b a a b b +=+=+⋅+=-=, 因此,()1919cos ,5735a ab a a b a a b ⋅+<+>===⨯⋅+. 故选:D. 【典例8】(2019·全国高考真题(理))已知,a b 为单位向量,且a b ⋅=0,若25c a b =- ,则cos ,a c <>=___________.【答案】23. 【解析】因为25c a b =-,0a b ⋅=, 所以225a c a a b ⋅=-⋅2=,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c <>= 22133a c a c ⋅==⨯⋅. 【典例9】(2020·全国高考真题(理))设,ab 为单位向量,且||1a b +=,则||a b -=______________.【解析】因为,a b 为单位向量,所以1a b == 所以()2222221a b a b a a b b a b +=+=+⋅+=+⋅=解得:21a b ⋅=- 所以()22223a b a b a a b b -=-=-⋅+=【总结提升】1.求向量夹角问题的方法(1)当a ,b 是非坐标形式时,求a 与b 的夹角θ,需求出a ·b 及|a |,|b |或得出它们之间的关系; (2)若已知a =(x 1,y 1)与b =(x 2,y 2),则cos 〈a ,b 〉=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. 提醒:〈a ,b 〉∈[0,π].2.平面向量模问题的类型及求解方法 (1)求向量模的常用方法①若向量a 是以坐标形式出现的,求向量a 的模可直接利用公式|a |=x 2+y 2.②若向量a ,b 是以非坐标形式出现的,求向量a 的模可应用公式|a |2=a 2=a ·a ,或|a ±b |2=(a ±b )2=a 2±2a ·b +b 2,先求向量模的平方,再通过向量数量积的运算求解.(2)求向量模的最值(范围)的方法①代数法:把所求的模表示成某个变量的函数,再用求最值的方法求解.②几何法(数形结合法):弄清所求的模表示的几何意义,结合动点表示的图形求解. 3.平面向量垂直问题的类型及求解方法 (1)判断两向量垂直第一,计算出这两个向量的坐标;第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可. (2)已知两向量垂直求参数根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.考点03 平面向量的综合应用【典例10】(2020·山东海南省高考真题)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅ 的取值范用是( ) A .()2,6-B .(6,2)-C .(2,4)-D .(4,6)-【答案】A 【解析】AB 的模为2,根据正六边形的特征,可以得到AP 在AB 方向上的投影的取值范围是(1,3)-, 结合向量数量积的定义式,可知AP AB ⋅等于AB 的模与AP 在AB 方向上的投影的乘积, 所以AP AB ⋅的取值范围是()2,6-, 故选:A.【典例11】(2018·浙江高考真题)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为,向量b 满足b 2−4e·b+3=0,则|a −b|的最小值是( ) A .B .C .2D .【答案】A 【解析】 设,则由得, 由得因此的最小值为圆心到直线的距离减去半径1,为选A.【思路点拨】 先确定向量所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.【典例12】(2021·浙江·高考真题)已知平面向量,,,(0)a b c c ≠满足()1,2,0,0a b a b a b c ==⋅=-⋅=.记向量d在,a b 方向上的投影分别为x ,y ,d a -在c 方向上的投影为z ,则222x y z ++的最小值为___________. 【答案】25【分析】设(1,0),(02),(,)a b c m n ===,,由平面向量的知识可得252x y z +-=,再结合柯西不等式即可得解. 【详解】由题意,设(1,0),(02),(,)a b c m n ===,, 则()20a b c m n -⋅=-=,即2m n =,又向量d 在,a b 方向上的投影分别为x ,y ,所以(),d x y =, 所以d a -在c 方向上的投影()221()22||5m x ny d a c x yz c m n-+-⋅-+===±+, 即252x y z +=,所以()()()22222222221122152510105x y z x y z x yz⎡⎤++=++±++≥+=⎢⎥⎣⎦, 当且仅当215252x y z x y z ⎧==⎪⎨⎪+=⎩即251555x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩时,等号成立,所以222x y z ++的最小值为25.故答案为:25.【典例13】(2020·重庆高一期末)如图,正方形ABCD 的边长为6,点E ,F 分别在边AD ,BC 上,且2DE AE =,2CF BF =.若有(7,16)λ∈,则在正方形的四条边上,使得PE PF λ=成立的点P 有( )个.A .2B .4C .6D .0【答案】B 【解析】以DC 为x 轴,以DA 为y 轴建立平面直角坐标系,如图,则()()0,4,6,4E F ,(1)若P 在CD 上,设(,0),06P x x ≤≤,(,4),(6,4)PE x PF x ∴=-=-,2616PE PF x x ∴⋅=-+, [0,6],716x PE PF ∈∴≤⋅≤,∴当=7λ时有一解,当716λ<≤时有两解;(2)若P 在AD 上,设(0,),06P y y <≤,(0,4),(6,4)PE y PF y ∴=-=-, 22(4)816PE PF y y y ∴⋅=-=-+, 06,016y PE PF <≤∴⋅<,∴当=0λ或4<<16λ时有一解,当716λ<≤时有两解; (3)若P 在AB 上,设(,6),06P x x <≤,(,2),(6,2)PE x PF x =--=--,264PE PF x x ∴⋅=-+,06,54x PE PF <≤∴-≤⋅≤,∴当5λ=-或4λ=时有一解,当54λ-<<时有两解;(4)若P 在BC 上,设(6,),06P y y <<,(6,4),(0,4)PE y PF y ∴=--=-, 22(4)816PE PF y y y ∴⋅=-=-+,06y <<,016PE PF ∴⋅<,∴当0λ=或416λ≤<时有一解,当04λ<<时有两解,综上可知当(7,16)λ∈时,有且只有4个不同的点P 使得PE PF λ⋅=成立. 故选:B.【典例14】(2020·吉林长春·一模(理))长江流域内某地南北两岸平行,如图所示已知游船在静水中的航行速度1v 的大小1||10km/h v =,水流的速度2v 的大小2||4km/h v =,设1v 和2v 所成角为 (0)θθπ<<,若游船要从A 航行到正北方向上位于北岸的码头B 处,则cos θ等于( )A .215-B .25-C .35D .45-【答案】B 【解析】由题意知()2120,v v v +⋅=有2212||c ||os 0,v v v θ+=即2104cos 40,θ⨯+=所以2cos 5θ=-, 故选:B .【典例15】(2020·上海高三专题练习)用向量的方法证明:三角形ABC 中 (1)正弦定理:sin sin sin a b cA B C==; (2)余弦定理:2222cos a b c bc A =+-. 【答案】(1)证明见解析;(2)证明见解析【解析】(1)如图(a )所示,过顶点A 作对边BC 的高AH ,则0()AH BC AH AC AB =⋅=⋅-,即0AH AC AH AB ⋅-⋅=. ∴()()||||cos 90||||cos 90AH AC C AH AB B ︒︒-=-. 如图(b )所示,如果B 为钝角,有()()||||cos 90||||cos 90AH AC C AH AB B ︒︒-=-∴sin sin b C c B =.上述关系对直角三角形显然成立[图(c )] ∴sin sin sin a b cA B C==. (2)在ABC 中,BC AC AB =-.∴2222()()2BC AC AB AC AB AC AB =-=+-⋅. 即2222cos a b c bc A =+-.巩固提升1.(2020·全国高考真题(文))已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是( ) A .2a b + B .2a b +C .2a b -D .2a b -【答案】D 【解析】由已知可得:11cos 601122a b a b ︒⋅=⋅⋅=⨯⨯=. A :因为215(2)221022a b b a b b +⋅=⋅+=+⨯=≠,所以本选项不符合题意;B :因为21(2)221202a b b a b b +⋅=⋅+=⨯+=≠,所以本选项不符合题意;C :因为213(2)221022a b b a b b -⋅=⋅-=-⨯=-≠,所以本选项不符合题意; D :因为21(2)22102a b b a b b -⋅=⋅-=⨯-=,所以本选项符合题意.故选:D.2.(2020·福建省福州格致中学期末)已知两个不相等的非零向量a b ,,满足2b =,且b 与b a -的夹角为45°,则a 的取值范围是( ) A .(02⎤⎦,B .)22⎡⎣,C .(0,2]D .)2∞⎡+⎣,【答案】D 【解析】如图所示,设AB b =,AC a =,∠CAB =45°,由图可知,当BC ⊥AC 时,a 的取值最小,此时,则2a =, 而a 没有最大值,故a 的取值范围为)2,⎡+∞⎣. 故选:D.3.(2019·全国高考真题(文))已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为( ) A .π6B .π3C .2π3D .5π6【答案】B 【解析】因为()a b b -⊥,所以2()a b b a b b -⋅=⋅-=0,所以2a b b ⋅=,所以cos θ=22||12||2a b b a b b ⋅==⋅,所以a 与b 的夹角为3π,故选B .4.(2021·全国·高考真题(文))若向量,a b 满足3,5,1a a b a b =-=⋅=,则b =_________.【答案】【分析】根据题目条件,利用a b -模的平方可以得出答案 【详解】 ∵5a b -=∴222229225a b a b a b b -=+-⋅=+-= ∴32b =.故答案为:5.(2020·全国高考真题(理))已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________.【答案】2【解析】由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:20k a a b k →→→⨯-⋅==,解得:k =.故答案为:2. 6.(2020·浙江省高考真题)设1e ,2e 为单位向量,满足21|22|-≤e e ,12a e e =+,123b e e =+,设a ,b 的夹角为θ,则2cos θ的最小值为_______.【答案】2829【解析】12|2|2e e -≤, 124412e e ∴-⋅+≤,1234e e ∴⋅≥, 222121222121212(44)4(1)()cos (22)(106)53e e e e a b e e e e e e a bθ+⋅+⋅⋅∴===+⋅+⋅+⋅⋅12424228(1)(1)3332953534e e =-≥-=+⋅+⨯. 故答案为:2829. 7.(2019·江苏高考真题)如图,在ABC 中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____.【答案】3. 【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+- ()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭,得2213,22AB AC =即3,AB AC =故AB AC=8.(2019·全国高考真题(理))已知,a b 为单位向量,且a b ⋅=0,若25c a b =- ,则cos ,a c <>=___________.【答案】23. 【解析】因为25c a b =-,0a b ⋅=, 所以225a c a a b ⋅=-⋅2=,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c <>=22133a c a c ⋅==⨯⋅. 9. (2018·上海高考真题)在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且2EF =,则的AE BF ⋅最小值为____. 【答案】3 【解析】根据题意,设E (0,a ),F (0,b ); ∴2EF a b =-=; ∴a=b+2,或b=a+2;且()()12AE a BF b ==-,,,; ∴2AE BF ab ⋅=-+;当a=b+2时,()22222AE BF b b b b ⋅=-++⋅=+-;∵b 2+2b ﹣2的最小值为8434--=-; ∴AE BF ⋅的最小值为﹣3,同理求出b=a+2时,AE BF ⋅的最小值为﹣3. 故答案为:﹣3.10.(2019·天津高考真题(理)) 在四边形ABCD 中,AD BC ∥,AB =,5AD = ,30A ∠=︒ ,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅=__________.【答案】1-.【解析】建立如图所示的直角坐标系,则B,5)2D . 因为AD ∥BC ,30BAD ∠=︒,所以150CBA ∠=︒,因为AE BE =,所以30BAE ABE ∠=∠=︒,所以直线BE(3y x =-, 直线AE的斜率为-y x =.由3y x y x ⎧=-⎪⎪⎨⎪=⎪⎩得x 1y =-,所以1)E -. 所以35(,)(3,1)122BD AE =-=-.。
《平面向量的数量积》说课稿
高三数学第一轮复习《平面向量的数量积》说课稿尊敬的各位评委、各位老师:大家好!今天我说课的题目是《平面向量的数量积》—复习课。
下面我将从以下几个方面阐述我对本节课的分析和设计。
一、教材分析:向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景。
将平面向量引入高中课程,是现行数学教材的重要特色之一。
由于向量既能体现“形”的直观位置特征,又具有“数”的良好运算性质,是数形结合和转换的桥梁。
而这一切之所以能够实现,平面向量的数量积功不可没。
《平面向量的数量积》是数学必修4第二章第四节的内容。
平面向量的数量积是继向量的线性运算之后,且已具备了一定的对向量的理解和应用能力的基础上进行的又一个重要运算,同时为探索空间向量的研究奠定了理论基础,也是高中数学的一个重要概念,在数学、物理等学科中应用十分广泛。
本节内容教材共安排两课时,其中第一课时复习平面向量数量积的知识点,了解考纲和命题趋势,第二课时主要要求学生会进行平面向量数量积的运算,会运用数量积的性质解决夹角、模长等问题。
本节复习课是第二课时。
由于平面向量的数量积既有长度又有角度,既有形又有数,是代数、几何与三角的最佳结合点,不仅应用广泛,也是高考中经常考察的内容,而且很好的体现了数形结合的数学思想和类比思想,使得数量积的运算成为本节课的核心,自然也是本节课教学的重点之一。
二、教学目标的设计:1、知识与技能:(1)熟记平面向量数量积的概念及坐标表示,理解数量积的几何意义,会进行平面向量数量积的运算;(2)熟记平面向量数量积的有关性质,会运用数量积的性质解决夹角、模长等问题.2、过程与方法:(1)通过本节课的复习培养学生应用平面向量的数量积解决相关问题的能力。
(2)通过师生共同探讨培养“数形结合思想”与“类比思想”的能力。
3、情感态度与价值观:培养学生发现问题的意识和运用知识的意识,让学生参与解决相关问题的全过程,享受成功的喜悦,感受数学的魅力,激发学生学习数学的兴趣。
平面向量的数量积说课稿
平面向量的数量积说课稿说课内容:普通高中课程标准实验教科书(人教A版)《数学必修4》第二章第四节“平面向量的数量积”的第一课时---平面向量数量积的物理背景及其含义。
下面,我从背景分析、教学目标设计、课堂结构设计、教学过程设计、教学媒体设计及教学评价设计六个方面对本节课的思考进行说明。
一、背景分析1、学习任务分析平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,在数学、物理等学科中应用十分广泛。
本节内容教材共安排两课时,其中第一课时主要研究数量积的概念,第二课时主要研究数量积的坐标运算,本节课是第一课时。
本节课的主要学习任务是通过物理中“功”的事例抽象出平面向量数量积的概念,在此基础上探究数量积的性质与运算律,使学生体会类比的思想方法,进一步培养学生的抽象概括和推理论证的能力。
其中数量积的概念既是对物理背景的抽象,又是研究性质和运算律的基础。
同时也因为在这个概念中,既有长度又有角度,既有形又有数,是代数、几何与三角的最佳结合点,不仅应用广泛,而且很好的体现了数形结合的数学思想,使得数量积的概念成为本节课的核心概念,自然也是本节课教学的重点。
2、学生情况分析学生在学习本节内容之前,已熟知了实数的运算体系,掌握了向量的概念及其线性运算,具备了功等物理知识,并且初步体会了研究向量运算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再从概念出发,在与实数运算类比的基础上研究性质和运算律。
这为学生学习数量积做了很好的铺垫,使学生倍感亲切。
但也正是这些干扰了学生对数量积概念的理解,一方面,相对于线性运算而言,数量积的结果发生了本质的变化,两个有形有数的向量经过数量积运算后,形却消失了,学生对这一点是很难接受的;另一方面,由于受实数乘法运算的影响,也会造成学生对数量积理解上的偏差,特别是对性质和运算律的理解。
因而本节课教学的难点数量积的概念。
二、教学目标设计《普通高中数学课程标准(实验)》对本节课的要求有以下三条:(1)通过物理中“功”等事例,理解平面向量数量积的含义及其物理意义。
高中数学必备技巧平面向量的数量积与向量积
高中数学必备技巧平面向量的数量积与向量积高中数学必备技巧:平面向量的数量积与向量积高中的数学学习中,平面向量是一个重要而基础的概念。
平面向量的数量积和向量积在解决问题和计算过程中起着至关重要的作用。
本文将介绍平面向量的数量积和向量积以及它们的应用技巧。
一、平面向量的数量积1. 定义:对于平面内的两个向量 a 和 b,数量积(又称点积或内积)的结果是一个标量,记作 a·b。
具体计算公式为:a·b = |a| * |b| * cosθ其中,|a| 和 |b| 分别表示向量 a 和 b 的模长(即长度),θ 表示 a 和b 之间的夹角。
通过数量积,我们可以得到向量之间的夹角大小和它们的相互关系。
2. 性质:数量积具有以下几个重要的性质:(1)a·b = b·a (数量积满足交换律)(2)a·a = |a|^2 (向量的自身与自身的数量积等于它的模长的平方)(3)如果 a·b = 0,那么 a 和 b 互相垂直(数量积为零意味着两个向量垂直)(4)如果 a·b > 0,那么 a 和 b 夹角为锐角(数量积大于零意味着两个向量的夹角为锐角)(5)如果 a·b < 0,那么 a 和 b 夹角为钝角(数量积小于零意味着两个向量的夹角为钝角)这些性质可以在解决问题中起到指导作用,帮助我们判断向量之间的关系。
二、平面向量的向量积1. 定义:平面向量的向量积(又称叉积或外积)是平面内两个向量所确定的平行四边形的有向面积。
向量积的结果是一个向量,记作 a x b。
具体计算公式为:a xb = |a| * |b| * sinθ * n其中,|a| 和 |b| 分别表示向量 a 和 b 的模长,θ 表示 a 和 b 之间的夹角,n 表示与平面同一方向的单位向量。
通过向量积,我们可以得到一个新的向量,它与给定的两个向量都垂直,并符合右手定则。
人教版高中数学高一A版必修4 第二章第四节平面向量的数量积(第三课时)
第二章第四节平面向量的数量积第三课时整体设计教学分析平面向量的数量积,教材将其分为两部分.在第一部分向量的数量积中,首先研究平面向量所成的角,其次,介绍了向量数量积的定义,最后研究了向量数量积的基本运算法则和基本结论;在第二部分平面向量数量积的坐标表示中,在平面向量数量积的坐标表示的基础上,利用数量积的坐标表示研讨了平面向量所成角的计算方式,得到了两向量垂直的判定方法,本节是平面向量数量积的第二部分.前面我们学习了平面向量的数量积,以及平面向量的坐标表示.那么在有了平面向量的坐标表示以及坐标运算的经验和引进平面向量的数量积后,就顺其自然地要考虑到平面向量的数量积是否也能用坐标表示的问题.另一方面,由于平面向量数量积涉及了向量的模、夹角,因此在实现向量数量积的坐标表示后,向量的模、夹角也都可以与向量的坐标联系起来.利用平面向量的坐标表示和坐标运算,结合平面向量与平面向量数量积的关系来推导出平面向量数量积以及向量的模、夹角的坐标表示.教师应在坐标基底向量的数量积的基础上,推导向量数量积的坐标表示.通过例题分析、课堂训练,让学生总结归纳出对于向量的坐标、数量积、向量所成角及模等几个因素,知道其中一些因素,求出其他因素基本题型的求解方法.平面向量数量积的坐标表示是在学生学习了平面向量的坐标表示和平面向量数量积的基础上进一步学习的,这都为数量积的坐标表示奠定了知识和方法基础.三维目标1.通过探究平面向量的数量积的坐标运算,掌握两个向量数量积的坐标表示方法.2.掌握两个向量垂直的坐标条件以及能运用两个向量的数量积的坐标表示解决有关长度、角度、垂直等几何问题.3.通过平面向量数量积的坐标表示,进一步加深学生对平面向量数量积的认识,提高学生的运算速度,培养学生的运算能力和创新能力,提高学生的数学素质.重点难点教学重点:平面向量数量积的坐标表示.教学难点:向量数量积的坐标表示的应用.课时安排1课时教学过程导入新课思路1.平面向量的表示方法有几何法和坐标法,向量的表示形式不同,对其运算的表示方式也会改变.向量的坐标表示为我们解决有关向量的加、减、数乘运算带来了极大的方便.上一节,我们学习了平面向量的数量积,那么向量的坐标表示,对平面向量的数量积的表示方式又会带来哪些变化呢?由此直接进入主题.思路2.在平面直角坐标系中,平面向量可以用有序实数对来表示,两个平面向量共线的条件也可以用坐标运算的形式刻画出来,那么学习了平面向量的数量积之后,它能否用坐标来表示?若能,如何通过坐标来实现呢?平面向量的数量积还会是一个有序实数对吗?同时,平面向量的模、夹角又该如何用坐标来表示呢?通过回顾两个向量的数量积的定义和向量的坐标表示,在此基础上引导学生推导、探索平面向量数量积的坐标表示.推进新课新知探究提出问题①平面向量的数量积能否用坐标表示?②已知两个非零向量a =(x 1,y 1),b =(x 2,y 2),怎样用a 与b 的坐标表示a·b 呢?③怎样用向量的坐标表示两个平面向量垂直的条件?④你能否根据所学知识推导出向量的长度、距离和夹角公式?活动:教师引导学生利用前面所学知识对问题进行推导和探究.前面学习了向量的坐标可以用平面直角坐标系中的有序实数对来表示,而且我们也知道了向量的加、减以及实数与向量积的线性运算都可以用坐标来表示.两个向量共线时它们对应的坐标也具备某种关系,那么我们就自然而然地想到既然向量具有数量积的运算关系,这种运算关系能否用向量的坐标来表示呢?教师提示学生在向量坐标表示的基础上结合向量的坐标运算进行推导数量积的坐标表示.教师可以组织学生到黑板上板书推导过程,教师给予必要的提示和补充.推导过程如下:∵a =x 1i +y 1j ,b =x 2i +y 2j ,∴a·b =(x 1i +y 1j )·(x 2i +y 2j )=x 1x 2i 2+x 1y 2i·j +x 2y 1i·j +y 1y 2j 2.又∵i·i =1,j·j =1,i·j =j·i =0,∴a·b =x 1x 2+y 1y 2.教师给出结论性的总结,由此可归纳如下:1°平面向量数量积的坐标表示两个向量的数量积等于它们对应坐标的乘积的和,即a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2.2°向量模的坐标表示若a =(x ,y ),则|a |2=x 2+y 2,或|a |=x 2+y 2. 如果表示向量a 的有向线段的起点和终点的坐标分别为(x 1,y 1)、(x 2,y 2),那么 a =(x 2-x 1,y 2-y 1),|a |=(x 2-x 1)2+(y 2-y 1)2. 3°两向量垂直的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0.4°两向量夹角的坐标表示设a 、b 都是非零向量,a =(x 1,y 1),b =(x 2,y 2),θ是a 与b 的夹角,根据向量数量积的定义及坐标表示,可得cos θ=a·b |a||b|=x 1x 2+y 1y 2x 21+y 21·x 22+y 22.讨论结果:略.应用示例例1已知A (1,2),B (2,3),C (-2,5),试判断△ABC 的形状,并给出证明.活动:教师引导学生利用向量数量积的坐标运算来解决平面图形的形状问题.判断平面图形的形状,特别是三角形的形状时主要看边长是否相等,角是否为直角.可先作出草图,进行直观判定,再去证明.在证明中若平面图形中有两个边所在的向量共线或者模相等,则此平面图形与平行四边形有关;若三角形的两条边所在的向量模相等或者由两边所在向量的数量积为零,则此三角形为等腰三角形或者为直角三角形.教师可以让学生多总结几种判断平面图形形状的方法.解:在平面直角坐标系中标出A (1,2),B (2,3),C (-2,5)三点,我们发现△ABC 是直角三角形.下面给出证明.∵AB →=(2-1,3-2)=(1,1),AC →=(-2-1,5-2)=(-3,3),∴AB →·AC →=1×(-3)+1×3=0.∴AB →⊥AC →.∴△ABC 是直角三角形.点评:本题考查的是向量数量积的应用,利用向量垂直的条件和模长公式来判断三角形的形状.当给出要判定的三角形的顶点坐标时,首先要作出草图,得到直观判定,然后对你例2(1)已知三点A (2,-2),B (5,1),C (1,4),求∠BAC 的余弦值;(2)a =(3,0),b =(-5,5),求a 与b 的夹角.活动:教师让学生利用向量的坐标运算求出两向量a =(x 1,y 1)与b =(x 2,y 2)的数量积a·b =x 1x 2+y 1y 2和模|a |=x 21+y 21,|b |=x 22+y 22的积,其比值就是这两个向量夹角的余弦值,即cos θ=a·b |a||b|=x 1x 2+y 1y 2x 21+y 21·x 22+y 22.当求出两向量夹角的余弦值后再求两向量的夹角大小时,需注意两向量夹角的范围是0≤θ≤π.学生在解这方面的题目时需要把向量的坐标表示清楚,以免出现不必要的错误.解:(1)AB →=(5,1)-(2,-2)=(3,3),AC →=(1,4)-(2,-2)=(-1,6),∴AB →·AC →=3×(-1)+3×6=15.又∵|AB →|=32+32=32,|AC →|=(-1)2+62=37,∴cos ∠BAC =AB →·AC →|AB →||AC →|=1532·37=57474. (2)a·b =3×(-5)+0×5=-15,|a|=3,|b |=5 2.设a 与b 的夹角为θ,则cos θ=a·b |a||b |=-153×52=-22. 又∵0≤θ≤π,∴θ=3π4. 点评:本题考查的是利用向量的坐标表示来求两向量的夹角.利用基本公式进行运算与例3已知|a |=3,b =(2,3),试分别解答下面两个问题:(1)若a ⊥b ,求a ;(2)若a ∥b ,求a .活动:对平面中的两向量a =(x 1,y 1)与b =(x 2,y 2),要让学生在应用中深刻领悟其本质属性,向量垂直的坐标表示x 1x 2+y 1y 2=0与向量共线的坐标表示x 1y 2-x 2y 1=0很容易混淆,应仔细比较并熟记,当难以区分时,要从意义上鉴别,两向量垂直是a·b =0,而共线是方向相同或相反.教师可多加强反例练习,多给出这两种类型的变形训练.解:(1)设a =(x ,y ),由|a |=3且a ⊥b ,得⎩⎪⎨⎪⎧x 2+y 2=|a |2=9,2x +3y =0, 解得⎩⎨⎧ x =-91313,y =61313或⎩⎨⎧ x =91313,y =-61313. ∴a =(-91313,61313)或a =(91313,-61313). (2)设a =(x ,y ),由|a |=3且a ∥b ,得⎩⎪⎨⎪⎧x 2+y 2=|a |2=9,3x -2y =0, 解得⎩⎨⎧ x =61313,y =91313或⎩⎨⎧ x =-61313,y =-91313.∴a =(61313,91313)或a =(-61313,-91313). 点评:本题主要考查学生对公式的掌握情况,学生能熟练运用两向量的坐标运算来判断知能训练课本本节练习.解答:1.|a|=5,|b|=29,a·b =-7.2.a·b =8,(a +b )·(a -b )=-7,a·(a +b )=0,(a +b )2=49.3.a·b =1,|a|=13,|b|=74,θ≈88°.课堂小结1.在知识层面上,先引导学生归纳平面向量数量积的坐标表示,向量的模,两向量的夹角,向量垂直的条件.其次引导学生总结数量积的坐标运算规律,夹角和距离公式、两向量垂直的坐标表示.2.在思想方法上,教师与学生一起回顾探索过程中用到的思维方法和数学思想方法,定义法,待定系数法等.作业课本习题2.4 A组8、9、10.设计感想由于本节课是对平面向量的进一步探究与应用,是对平面向量几何意义的综合研究提高,因此教案设计流程是探究、发现、应用、提高,这符合新课程理念,符合新课标要求.我们知道平面向量的数量积是本章最重要的内容,也是高考中的重点,既有选择题、填空题,也有解答题(大多同立体几何、解析几何综合考查),故学习时要熟练掌握基本概念和性质及其综合运用.而且数量积的坐标表示又是向量运算的一个重要内容,用坐标表示直角坐标平面内点的位置,是解析几何的一个基本特征,从而以坐标为桥梁可以建立向量与解析几何的内在联系.以三角函数表示点的坐标,又可以沟通向量与三角函数的相互关系,由此就产生出一类向量与解析几何及三角函数交汇的综合性问题.平面向量数量积的坐标表示使得向量数量积的应用更为方便,也拓宽了向量应用的途径.通过学习本节的内容,要更加加深对向量数量积概念的理解,同时善于运用坐标形式运算解决数量问题,尤其是有关向量的夹角、长度、垂直等,往往可以使问题简单化.灵活使用坐标形式,综合处理向量的线性运算、数量积、平行等,综合地解决向量综合题,体现数形结合的思想.在本节的学习中可以通过对实际问题的抽象来培养学生分析问题、解决问题和应用知识解决问题的意识与能力.备课资料一、|a·b|≤|a||b|的应用若a=(x1,y1),b=(x2,y2),则平面向量的数量积的性质|a·b|≤|a||b|的坐标表示为x1x2+y1y2≤x21+y21x22+y22⇔(x1x2+y1y2)2≤(x21+y21)(x22+y22).不等式(x1x2+y1y2)2≤(x21+y21)(x22+y22)有着非常广泛的应用,由此还可以推广到一般(柯西不等式):(a1b1+a2b2+…+a n b n)2≤(a21+a22+…+a2n)(b21+b22+…+b2n).例1(1)已知实数x,y满足x+y-4=0,则x2+y2的最小值是________;(2)已知实数x,y满足(x+2)2+y2=1,则2x-y的最大值是________.解析:(1)令m=(x,y),n=(1,1).∵|m·n|≤|m||n|,∴|x+y|≤x2+y2·2,即2(x2+y2)≥(x+y)2=16.∴x2+y2≥8,故x2+y2的最小值是8.(2)令m=(x+2,y),n=(2,-1),2x-y=t.由|m·n|≤|m||n|,得|2(x+2)-y|≤(x+2)2+y2·5=5,即|t+4|≤ 5.解得-4-5≤t≤5-4.故所求的最大值是5-4.答案:(1)8 (2)5-4例2已知a,b∈R,θ∈(0,π2),试比较a2cos2θ+b2sin2θ与(a+b)2的大小.解:构造向量m=(acosθ,bsinθ),n=(cosθ,sinθ),由|m·n|≤|m||n|得(a cos θcos θ+b sin θsin θ)2≤(a 2cos 2θ+b 2sin 2θ)(cos 2θ+sin 2θ), ∴(a +b )2≤a 2cos 2θ+b 2sin 2θ. 同类变式:已知a ,b ∈R ,m ,n ∈R ,且mn ≠0,m 2n 2>a 2m 2+b 2n 2,令M =m 2+n 2,N =a +b ,比较M 、N 的大小.解:构造向量p =(a n ,b m),q =(n ,m ),由|p ·q |≤|p ||q |得 (a n ×n +b m ×m )2≤(a 2n 2+b 2m 2)(m 2+n 2)=a 2m 2+b 2n 2n 2m 2(m 2+n 2)<m 2+n 2, ∴M >N .例3设a ,b ∈R ,A ={(x ,y )|x =n ,y =na +b ,n ∈Z },B ={(x ,y )|x =m ,y =3m 2+15,m ∈Z },C ={(x ,y )|x 2+y 2≤144}是直角坐标平面xOy 内的点集,讨论是否存在a 和b ,使得A ∩B ≠∅与(a ,b )∈C 能同时成立.解:此问题等价于探求a 、b 是否存在的问题,它满足⎩⎪⎨⎪⎧na +b =3n 2+15,①a 2+b 2≤144. ② 设存在a 和b 满足①②两式,构造向量m =(a ,b ),n =(n,1).由|m ·n |2≤|m |2|n |2得(na +b )2≤(n 2+1)(a 2+b 2),∴(3n 2+15)2≤144(n 2+1)⇒n 4-6n 2+9≤0.解得n =±3,这与n ∈Z 矛盾,故不存在a 和b 满足条件.二、备用习题1.若a =(2,-3),b =(x,2x ),且a ·b =43,则x 等于( ) A .3 B.13C .-13D .-3 答案:C2.设a =(1,2),b =(1,m ),若a 与b 的夹角为钝角,则m 的取值范围是( )A .m >12B .m <12C .m >-12D .m <-12答案:D3.若a =(cos α,sin α),b =(cos β,sin β),则( )A .a ⊥bB .a ∥bC .(a +b )⊥(a -b )D .(a +b )∥(a -b )答案:C4.与a =(u ,v )垂直的单位向量是( )A .(-v u 2+v 2,u u 2+v2) B .(v u 2+v 2,-u u 2+v2) C .(v u 2+v 2,u u 2+v 2) D .(-v u 2+v 2,u u 2+v 2)或(v u 2+v 2,-u u 2+v2) 答案:D5.已知向量a =(cos23°,cos67°),b =(cos68°,cos22°),u =a +t b (t ∈R ),求u 的模的最小值.答案:解:|a |=cos 223°+cos 267°=cos 223°+sin 223°=1,同理有|b |=1.又a ·b =cos23°cos68°+cos67°cos22°=cos23°cos68°+sin23°sin68°=cos45°=22, ∴|u |2=(a +t b )2=a 2+2t a·b +t 2b 2=t 2+2t +1=(t +22)2+12≥12. 当t =-22时,|u |min =22. 6.已知△ABC 的三个顶点为A (1,1),B (3,1),C (4,5),求△ABC 的面积.答案:分析:S △ABC =12|AB →||AC →|sin ∠BAC ,而|AB →|,|AC →|易求,要求sin ∠BAC 可先求出cos ∠BAC .解:∵AB →=(2,0),AC →=(3,4),|AB →|=2,|AC →|=5,∴cos ∠BAC =AB →·AC →|AB →||AC →|=2×3+0×42×5=35. ∴sin ∠BAC =45. ∴S △ABC =12|AB →||AC →|sin ∠BAC =12×2×5×45=4. 三、新教材新教法的二十四个“化”字诀新课导入新颖化,揭示概念美丽化;纵横相联过程化,探索讨论热烈化;探究例题多变化,引导思路发散化;学生活动主体化,一石激浪点拨化;大胆猜想多样化,论证应用规律化;变式训练探究化,课堂教学艺术化;学法指导个性化,对待学生情感化;作业抛砖引玉化,选题质量层次化;学生学习研究化,知识方法思想化;抓住闪光激励化,教学相长平等化;教学意识超前化,与时俱进媒体化;灵活创新智慧化,学生素质国际化.。
平面向量的数量积
平面向量的数量积在解析几何中,平面向量的数量积是一种常见且重要的运算。
通过求取两个向量的数量积,我们可以得到向量的夹角以及向量的投影等有用信息。
本文将详细介绍平面向量的数量积的概念、计算方式以及其在几何学和物理学中的应用。
一、概念平面向量是具有方向和大小的箭头,一般用有序数对(a, b)表示,其中a表示该向量在x轴上的投影,b表示该向量在y轴上的投影。
为了方便计算,我们可以使用向量与坐标轴形成的三角形,其中向量的起点位于原点,以及向量的终点位于坐标轴上。
平面向量的数量积又称为点积或内积,通常用符号"·"表示。
对于平面向量u和v,它们的数量积定义为u·v = |u||v|cosθ,其中|u|和|v|分别表示向量u和v的模长,θ表示u和v之间的夹角。
二、计算方式计算平面向量的数量积可以使用以下公式:u·v = a₁a₂ + b₁b₂,其中u=(a₁, b₁)、v=(a₂, b₂)。
根据该公式,我们可以很容易地计算出两个向量的数量积。
另外,数量积也可以写成向量形式:u·v =|u||v|cosθ,其中u、v分别表示向量u和v,θ表示夹角。
三、性质平面向量的数量积具有以下几个重要的性质:1. 交换律:u·v = v·u2. 分配律:k(u+v) = ku + kv,其中k为任意实数3. 数量积与夹角的关系:u·v = 0,当且仅当两个向量垂直,即夹角为90度4. 数量积与模长的关系:u·v = |u||v|cosθ5. 数量积为零的性质:若u·v = 0,则u和v线性无关四、应用平面向量的数量积在几何学和物理学中有着广泛的应用,其中包括以下几个方面:1. 判断向量垂直:通过计算两个向量的数量积,若结果为0,则可以判断这两个向量垂直。
2. 计算夹角:通过计算两个向量的数量积,利用cosθ = u·v / (|u||v|),我们可以求得两个向量的夹角。
平面向量的数量积和向量积
平面向量的数量积和向量积平面向量是高中数学中的一个重要概念,它具有方向和大小,并且是可以进行运算的。
在平面向量的运算中,数量积和向量积是两个常见且重要的运算。
一、数量积1. 定义数量积又称为点积、内积或标量积,用符号"·"表示。
对于平面内两个向量A(x₁, y₁)和B(x₂, y₂),它们的数量积为:A·B = x₁x₂ + y₁y₂其中,x₁、x₂为A和B的横坐标,y₁、y₂为A和B的纵坐标。
2. 计算方法根据数量积的定义,计算方法简单直接。
对于任意两个向量A和B,只需将它们的横纵坐标带入公式即可。
例如,对于向量A(3,2)和向量B(4,-1),它们的数量积为:A·B = 3*4 + 2*(-1) = 12 - 2 = 103. 特性数量积具有以下几个重要的特性:- 结果为标量:数量积的结果是一个数,即标量,没有方向。
- 交换律:A·B = B·A,即数量积满足交换律。
若夹角为θ,则A·B = |A||B|cosθ,其中|A|和|B|为向量的长度。
二、向量积1. 定义向量积又称为叉积、外积或矢量积,用符号"×"表示。
对于平面内两个向量A(x₁, y₁)和B(x₂, y₂),它们的向量积为:A×B = (0, 0, x₁y₂ - x₂y₁)其中,向量积是一个垂直于平面的向量,其大小为由A和B所张成的平行四边形的面积。
2. 计算方法根据向量积的定义,计算方法稍微复杂一些。
对于任意两个向量A 和B,只需将它们的横纵坐标带入公式,得到一个新的向量。
例如,对于向量A(3,2)和向量B(4,-1),它们的向量积为:A×B = (0, 0, 3*(-1) - 4*2) = (0, 0, -11)3. 特性向量积具有以下几个重要的特性:- 结果为向量:向量积的结果是一个向量,具有方向和大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量的数量积【学习目标】1.理解平面向量数量积的含义及其物理意义;2.了解平面向量的数量积与向量投影的关系;3.掌握数量积的坐标表示,会进行平面向量数量积的运算;4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系; 【要点梳理】要点一: 平面向量的数量积1. 平面向量数量积(内积)的定义已知两个非零向量a 与b ,它们的夹角是θ,则数量cos a b θ叫a 与b 的数量积,记作a b ⋅,即有()cos 0a b a b θθπ⋅=≤≤.并规定0与任何向量的数量积为0.2.一向量在另一向量方向上的投影:cos b θ叫做向量b 在a 方向上的投影. 要点诠释:1. 两个向量的数量积与向量同实数积有很大区别(1)两个向量的数量积是一个实数,不是向量,符号由cos θ的符号所决定.(2)两个向量的数量积称为内积,写成a b ⋅;今后要学到两个向量的外积a b ⨯,而a b ⋅是两个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若0a ≠,且0a b ⋅=,则0b =;但是在数量积中,若0a ≠,且0a b ⋅=,不能推出0b =.因为其中cos θ有可能为0.2. 投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ=0︒时投影为b ;当θ=180︒时投影为b -.要点二:平面向量数量积的几何意义数量积a b ⋅表示a 的长度||a 与b 在a 方向上的投影cos b θ的乘积,这是a b ⋅的几何意义.图(1)(2)(3)所示分别是两向量,a b 夹角为锐角、钝角、直角时向量b 在向量a 方向上的投影的情形,其中1||cos OB b θ=,它的意义是,向量b 在向量a 方向上的投影是向量1OB 的数量,即11||aOB OB a =⋅.事实上,当θ为锐角时,由于cos 0θ>,所以10OB >;当θ为钝角时,由于cos 0θ<,所以10OB <;当090θ=时,由于cos 0θ=,所以10OB =,此时O 与1B 重合;当00θ=时,由于cos 1θ=,所以1||OB b =;当0180θ=时,由于cos 1θ=-,所以1||OB b =-.要点三:平面向量数量积的性质设a 与b 为两个非零向量,e 是与b 同向的单位向量. 1.cos e a a e a θ⋅=⋅= 2.0a b a b ⊥⇔⋅=3.当a 与b 同向时,a b a b ⋅=;当a 与b 反向时,a b a b ⋅=-. 特别的2a a a ⋅=或a a a =⋅4.cos a b a bθ⋅=5.a b a b ⋅≤要点四:向量数量积的运算律 1.交换律:a b b a ⋅=⋅2.数乘结合律:()()()a b a b a b λλλ⋅=⋅=⋅3.分配律:()a b c a c b c +⋅=⋅+⋅要点诠释:1.已知实数a 、b 、c(b≠0),则ab=bc ⇒a=c.但是a b b c ⋅=⋅⇒a c =;2.在实数中,有(a ⋅b)c=a(b ⋅c),但是()()a b c a b c ⋅≠⋅显然,这是因为左端是与c 共线的向量,而右端是与a 共线的向量,而一般a 与c 不共线.要点五:向量数量积的坐标表示1.已知两个非零向量11(,)a x y =,22(,)b x y =,1212a b x x y y ⋅=+2.设(,)a x y =,则222||a x y =+或2||a x =+3.如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么||(a x =-平面内两点间的距离公式).要点六:向量在几何中的应用(1)证明线段平行问题,包括相似问题,常用向量平行(共线)的充要条件1122//(0)(,)(,)a b a b b x y x y λλ→→→→→→⇔=≠⇔=(2)证明垂直问题,常用垂直的充要条件121200a b a b x x y y ⊥⇔⋅=⇔+=(3)求夹角问题.由向量a ,b 数量积可知,若它们的夹角为θ,则||||cos a b a b θ⋅=, 利用2cos a b a bx θ⋅==⋅+(4)求线段的长度,可以利用2a a =或12(P P x =【典型例题】类型一:平面向量数量积的概念例1.已知a 、b 、c 是三个非零向量,则下列命题中正确的个数为( )①a ·b =±|a |·|b |⇔a ∥b ;②a 、b 反向⇔a ·b =-|a |·|b |;③a ⊥b ⇔|a +b |=|a -b |;④|a |=|b |⇔|a ·c |=|b ·c |.A .1个B .2个C .3个D .4个【答案】C【解析】(1)∵a ·b =|a | |b|cos θ,∴由a ·b =±|a | |b |及a 、b 为非零向量可得cos θ=±1,∴θ=0或π,∴a ∥b ,且以上各步均可逆,故叙述①是正确的.(2)若a 、b 反向,则a 、b 的夹角为π,∴a ·b =|a | |b |cos π=―|a | |b |且以上各步均可逆,故叙述②是正确的.(3)当a ⊥b 时,将向量a 、b 的起点确定在同一点,则以向量a 、b 为邻边作平行四边形,则该平行四边形必为矩形,于是它的两条对角线长相等,即有|a +b |=|a ―b |.反过来,若|a +b |=|a ―b |,则以a 、b 为邻边的四边形为矩形,∴a ⊥b ,故叙述③是正确的.(4)当|a |=|b |,但a 与c 的夹角和b 与c 的夹角不等时,就有|a ·c |≠|b ·c |,反过来的由|a ·c |=|b ·c |也推不出|a |=|b |.故叙述④是不正确的.综上所述,在四个叙述中,前3个是正确的,而第4个是不正确的.【总结升华】需对以上四个叙述逐一判断,依据有两条,一是向量数量积的定义;二是向量加法与减法的平行四边形法则.举一反三:【变式1】如果a ·b =a ·c ,且a ≠0,那么( )A .b =cB .b =λcC .b ⊥cD .b 、c 在a 方向上的投影相等 【答案】D类型二:平面向量数量积的运算例2.已知|a |=4,|b |=5,当(1)a ∥b ,(2)a ⊥b ,(3)a 与b 的夹角为30°时,分别求a 与b 的数量积.【思路点拨】 已知向量|a |与|b |,求a ·b ,只需确定其夹角θ. 【解析】(1)当a ∥b 时,有θ=0°和θ=180°两种可能.若a 与b 同向,则θ=0°,a ·b =|a | |b|cos0°=4×5×1=20;若a 与b 反向,则θ=180°,a ·b =|a | |b |cos180°=4×5×(―1)=―20. (2)当a ⊥b 时,θ=90°,a ·b =|a | |b |cos90°=0.(3)当a 与b 的夹角为30°时,a ·b =|a | |b |cos30°=4×5= 【总结升华】(1)在表示向量的数量积时,a 与b 之间必须用实心圆“·”来连接,而不能用“×”连接,也不能省略.(2)求平面向量数量积的步骤是:①求a 与b 的夹角θ,θ∈[0°,180°].②分别求|a |和|b |.③求它们的数量积,即a ·b =|a | |b |·cos θ. 举一反三:【变式1】已知|a |=5,|b |=4,〈a ,b 〉=3π,求(a +b )·a . 【答案】35 【解析】(a +b )·a =2||||||cos3a a ab a a b π⋅+⋅=+=35例3.(1)若|a |=4,a ·b =6,求b 在a 方向上的投影;(2)已知|a |=6,e 为单位向量,当它们之间的夹角θ分别等于60°、90°、120°时,求出a 在e 方向上的正投影,并画图说明.【答案】(1)32(2)略 【解析】 (1)∵a ·b =|a | |b |cos θ=6,又|a |=4, ∴4|b |cos θ=6,∴3||cos 2b θ=. (2)a 在e 方向上的投影为|a |·cos θ.如上图所示,当θ=60°时,a 在e 方向上的正投影的数量为|a |·cos60°=3; 当θ=90°时,a 在e 方向上的投影的数量为|a |·cos90°=0; 当θ=120°时,a 在e 方向上的正投影的数量为|a |·cos120°=-3.【总结升华】 要注意a 在b 方向上的投影与b 在a 方向上的投影不是不同的. 类型三:平面向量模的问题例4.(2015春 甘肃临夏州期末)已知向量a ,b 的夹角为60°,且||2a =,||1b =, (1)求a b ⋅; (2)求||a b +.【答案】(1)1;(2)||7a b +=【解析】(1)1||||cos602112a b a b ⋅=︒=⨯⨯= (2)2222||()2a b a b a a b b +=+=+⋅+ =4+2×1+1=7 所以||7a b +=举一反三:【高清课堂:平面向量的数量积395485 例4】【变式1】已知||2,||5,3a b a b ==⋅=-,求||,||a b a b -+.【解析】222()2425635a b a ab b -=-+=++=,||35a b ∴-=同理,||23a b +=【变式2】(2016 广西钦州月考)设向量,a b 满足||||1a b ==及|32|7a b -=(1)求,a b 的夹角大小; (2)求|3|a b +的值.【答案】(1)3π;(2【解析】(1)设a 与b 夹角为θ, ∵向量,a b 满足||||1a b ==及|32|7a b -=,∴2294127a b a b +-⋅=, ∴9×1+4×1-12×1×1×cosθ=7, ∴1cos 2θ=. 又θ∈[0,π],∴a 与b 夹角为3π. (2)∵22|3|9691a b a b a b +=++⋅=⨯+=.类型四:向量垂直(或夹角)问题例5.已知,a b 是两个非零向量,同时满足a b a b ==-,求a a b +与的夹角. 【思路点拨】利用2cos a b a bx θ⋅==⋅+求出两个向量的夹角.【解析】法一:将a b a b ==-两边平方得221122a b a b ⋅==, 2223a b a a b b a ∴+=+⋅+= 则2221()32cos 3a aa ab a a b a a b a a b a a+⋅++⋅====++⋅θ, 故a a b +与的夹角为30°. 法二: 数形结合法如图,,,a b a b -构成一个等边三角形,向量a b + 是向量a 与向量b 夹角的角平分线,所以向量a 与向量a b +所成的夹角为30°.【总结升华】注意两个向量夹角共起点,灵活应用两个向量夹角的两种求法. 举一反三:【变式1】(2015 山东高密市月考)已知||4a =,||3b =,(23)(2)61a b a b -⋅+=, (1)求a 与b 的夹角θ;(2)若(1,2)c =,且a c⊥,试求a . 【答案】(1)θ=120°;(2)85()55a =-或(,)55-.【解析】(1)∵22(23)(2)443a b a b a a b b -⋅+=-⋅- 416443cos 3961θ=⨯-⨯⨯⨯-⨯=, ∴1cos 2θ=-, ∴θ=120°.(2)设(,)a x y =,则222420x y x y ⎧+=⎨+=⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩或x y ⎧=⎪⎪⎨⎪=⎪⎩.所以,85(55a =-或(55-. 例6.已知a 、b 都是非零向量,且a +3b 与7a ―5b 垂直,a ―4b 与7a ―2b 垂直.求a 与b 的夹角α.【思路点拨】由题意知,()()3750a b a b +⋅-=, ()()472a b a b -⋅-=0,解得|a |=|b |. 【解析】∵a +3b 与7a ―5b 垂直, ∴(a +3b )·(7a -5b )=0. ∵a ―4b 与7a ―2b 垂直, ∴(a ―4b )·(7a ―2b )=0.于是有2222716150 73080 a a b b a a b b ⎧+⋅-=⎪⎨⎪-⋅+=⎩①②由①-②得 2a ·b =b 2. ③ 将③代入①得 a 2=b 2, ∴|a |=|b |.∴22||1cos 2||||2||a b b a b b α⋅===. ∵0°≤α≤180°,∴α=60°.【总结升华】 正确理解和把握向量数量积性质的运用,以及向量夹角的范围,由2a ·b =b 2,不能得出2a =b ,同样由a 2=b 2,也不能得出a =b 或a =-b .举一反三:【变式1】已知a 与b 为两个不共线的单位向量,k 为实数,若向a +b 与向量k a -b 垂直,则k=________.【答案】1【变式2】设非零向量,,,a b c d ,满足()()d a c b a b c =-,求证:a d ⊥ 【证明】[()()]()()()a d a a c b a b c a c a b a b c a =-=- ()()()()0a c a b a c a b =-=a d ∴⊥类型五:平面向量数量积的坐标表示及运算例7.已知向量a 与b 同向,b =(1,2),a ·b =10. (1)求向量a 的坐标;(2)若c =(2,-1).求(b ·c )·a . 【解析】 (1)∵a 与b 同向,又b =(1,2), ∴设a =λb ,则a =(λ,2λ).又∵a ·b =10,∴1·λ+2·2λ=10,解得λ=2>0. ∵λ=2符合a 与b 同向的条件,∴a =(2,4). (2)∵b ·c =1×2+2×(-1)=0,∴(b ·c )·a =0. 【总结升华】(1)注意本题由a 与b 共线且同向的设法及验证;(2)通过本题可以看出(b ·c )·a =0,(a ·b )·c =10×(2,―1)=(20,―10),显然(b ·c )·a ≠(a ·b )·c ,即向量运算结合律一般不成立.举一反三:【变式1】已知向量(3,1)a =-和(1,3)b =,若a ·c =b ·c 的向量c 的坐标. 【解析】 设c =(x ,y ),则(3,1)(,)a c x yy ⋅=-⋅=-,(1,3)(,)b c x y x ⋅=⋅=+,由a ·c =b ·c及||2c =,得222y xx y -=+=⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩ 或x y ⎧=⎪⎪⎨⎪=⎪⎩. 所以311,22c ⎛⎫+=⎪ ⎪⎝⎭或311,22c ⎛⎫+=-- ⎪ ⎪⎝⎭.【总结升华】涉及向量数量积的坐标运算的问题,关键是熟练掌握数量积的坐标运算公式以及相关的模长公式和夹角公式,在这个过程中还要熟练运用方程的思想;值得注意的是,对于一些向量数量积坐标运算的问题,有时考虑其几何意义可使问题快速获解.例8.已知三个点A (2,1),B (3,2),D (―1,4). (1)求证:AB ⊥AD ;(2)要使四边形ABCD 为矩形,求点C 的坐标以及矩形ABCD 两对角线所夹锐角的余弦值. 【思路点拨】(1)先用坐标把两条直线用向量表示来,然后利用向量数量积等于零证明.(2)利用向量相等求出C 点的坐标,利用2cos a b a bx θ⋅==⋅+求出两条对角线的夹角.【答案】(1)略(2)45【解析】(1)∵A (2,1),B (3,2),D (-1,4), ∴(1,1)AB =,(3,3)AD =-. 又∵1(3)130AB AD ⋅=⨯-+⨯=, ∴AB AD ⊥,即AB ⊥AD .(2)∵AB AD ⊥,四边形ABCD 为矩形,∴AB DC =. 设C 点坐标为(x ,y ),则由(1,1)AB =,(1,4)DC x y =+-,得1141x y +=⎧⎨-=⎩,即05x y =⎧⎨=⎩.∴C 点坐标为(0,5).从而(2,4)AC =-,(4,2)BD =-,且||25AC =||25BD =.8816AC BD ⋅=+=,设AC 与BD 的夹角为θ,则164cos 205||||AC BD AC BD θ⋅===⋅,∴求得矩形的两条对角线所夹锐角的余弦值为45. 【总结升华】在求两向量夹角的余弦值时,要注意根据题意选取向量的方向. 举一反三:【变式1】已知a =(1,1),b =(0,―2)当k 为何值时, (1)k a ―b 与a +b 共线;(2)k a ―b 与a +b 的夹角为120°.【解析】∵a =(1,1),b =(0,―2),k a ―b =k (1,1)―(0,―2)=(k ,k+2).a +b =(1,1)+(0,―2)=(1,―1).(1)∵k a -b 与a +b 共线,∴k+2―(―k)=0.∴k=-1.(2)∵2||ka b k -=+2||1(a b +=+=,(k a ―b )·(a +b )=(k ,k+2)·(1,―1)=k ―k ―2=―2,而k a ―b 与a +b 的夹角为120°, ∴()()cos120||||ka b a b ka b a b -⋅+︒=-+,即12-=化简,整理得k 2+2k ―2=0,解之得1k =-±。