应用运筹学补充练习题参考答案

合集下载

运筹学基础与应用课后习题答案(第一二章习题解答)

运筹学基础与应用课后习题答案(第一二章习题解答)

运筹学基础及应用 习题解答习题一 P46 1.1 (a)该问题有无穷多最优解,即满足210664221≤≤=+x x x 且的所有()21,x x ,此时目标函数值3=z 。

(b)用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解。

1.3 (a)4(1) 图解法最优解即为⎩⎨⎧=+=+8259432121x x x x 的解⎪⎭⎫⎝⎛=23,1x ,最大值235=z(2)单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式 ⎩⎨⎧=++=+++++=825943 ..00510 max 4213214321x x x x x x t s x x x x z则43,P P 组成一个基。

令021==x x得基可行解()8,9,0,0=x ,由此列出初始单纯形表21σσ>。

5839,58min =⎪⎭⎫⎝⎛=θ02>σ,2328,1421min =⎪⎭⎫ ⎝⎛=θ 新的单纯形表为0,21<σσ,表明已找到问题最优解0 , 0 , 231,4321====x x x x 。

最大值 235*=z (b) (1) 图解法\\最优解即为⎩⎨⎧=+=+524262121x x x x 的解⎪⎭⎫⎝⎛=23,27x ,最大值217=z(2) 单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式1234523124125max 2000515.. 62245z x x x x x x x s t x x x x x x =+++++=⎧⎪++=⎨⎪++=⎩则3P ,4P ,5P 组成一个基。

令021==x x得基可行解()0,0,15,24,5x =,由此列出初始单纯形表21=+x x 2621+x x21σσ>。

245min ,,461θ⎛⎫=-= ⎪⎝⎭02>σ,1533min ,24,522θ⎛⎫== ⎪⎝⎭新的单纯形表为0,21<σσ,表明已找到问题最优解11x =,27 2x =,3152x =,40x =,50x =。

《运筹学》试题及答案大全

《运筹学》试题及答案大全

《运筹学》试题及参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为可行解。

2、在线性规划问题中,图解法适合用于处理变量为两个的线性规划问题。

3、求解不平衡的运输问题的基本思想是设立虚供地或虚需求点,化为供求平衡的标准形式。

4、在图论中,称无圈的连通图为树。

5、运输问题中求初始基本可行解的方法通常有最小费用法、西北角法两种方法。

二、(每小题5分,共10分)用图解法求解下列线性规划问题:1)max z =6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x ,解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。

2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:可行解域为abcda ,最优解为b 点。

⑴⑵⑶⑷⑸⑹、⑺由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫⎝⎛21x x =(11,0)T∴min z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:AB C 甲94370乙46101203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解。

(10分)解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x ,2)用单纯形法求最优解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+120x 2+0x 3+0x 4+0x 5s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032006436049521421321j x x x x x x x x x x j 列表计算如下:四、(10分)用大M 法或对偶单纯形法求解如下线性规划模型:min z =5x 1+2x 2+4x 3⎪⎩⎪⎨⎧≥≥++≥++0,,10536423321321321x x x x x x x x x 解:用大M 法,先化为等效的标准模型:max z /=-5x 1-2x 2-4x 3s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,010********214321j y x x x x x x x x j增加人工变量x 6、x 7,得到:max z /=-5x 1-2x 2-4x 3-M x 6-M x 7s.t⎪⎩⎪⎨⎧=≥=+-++=+-++7,...,2,1,010*********2164321j x x x x x x x x x x x j大M 法单纯形表求解过程如下:五、(15分)给定下列运输问题:(表中数据为产地A i 到销地B j 的单位运费)B 1B 2B 3B 4s iA 1A 2A 312348765910119108015d j82212181)用最小费用法求初始运输方案,并写出相应的总运费;(5分)2)用1)得到的基本可行解,继续迭代求该问题的最优解。

运筹学》习题答案 运筹学答案

运筹学》习题答案  运筹学答案

运筹学》习题答案运筹学答案《运筹学》习题答案一、单选题1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解()BA.任意网络B.无回路有向网络C.混合网络D.容量网络2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?()BA.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量3.静态问题的动态处理最常用的方法是?BA.非线性问题的线性化技巧B.人为的引入时段C.引入虚拟产地或者销地D.网络建模4.串联系统可靠性问题动态规划模型的特点是()DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。

CA.降低的B.不增不减的C.增加的D.难以估计的6.最小枝权树算法是从已接接点出发,把( )的接点连接上CA.最远B.较远C.最近D.较近7.在箭线式网络固中,( )的说法是错误的。

DA.结点不占用时间也不消耗资源B.结点表示前接活动的完成和后续活动的开始C.箭线代表活动D.结点的最早出现时间和最迟出现时间是同一个时间8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。

CA.1200B.1400C.1300D.17009.在求最短路线问题中,已知起点到A,B,C三相邻结点的距离分别为15km,20km,25km,则()。

DA.最短路线—定通过A点B.最短路线一定通过B点C.最短路线一定通过C点D.不能判断最短路线通过哪一点10.在一棵树中,如果在某两点间加上条边,则图一定( )AA.存在一个圈B.存在两个圈C.存在三个圈D.不含圈11.网络图关键线路的长度( )工程完工期。

CA.大于B.小于C.等于D.不一定等于12.在计算最大流量时,我们选中的每一条路线( )。

CA.一定是一条最短的路线B.一定不是一条最短的路线C.是使某一条支线流量饱和的路线D.是任一条支路流量都不饱和的路线13.从甲市到乙市之间有—公路网络,为了尽快从甲市驱车赶到乙市,应借用()CA.树的逐步生成法B.求最小技校树法C.求最短路线法D.求最大流量法14.为了在各住宅之间安装一个供水管道.若要求用材料最省,则应使用( )。

运筹学习题参考答案

运筹学习题参考答案

习题参考答案第二章 习 题1.线性规划模型为:⎪⎪⎩⎪⎪⎨⎧≥≤++≤++≤++++0,,1800231200214002..453max 321321321321321x x x x x x x x x x x x t s x x x 2. 标准形式为:⎪⎪⎩⎪⎪⎨⎧≥=-++-=++=++---+-0,,,,,,1002333800120035.15.1..322min 87654328325473262543254x x x x x x x x x x x x x x x x x x x t s x x x x 3.(1)最优解为(2,2),最优值为8.(2)根据等式约束得:213--6x x x =代入规划等价于:⎪⎩⎪⎨⎧≥≥+≤+++0,3-6..62max 21212121x x x x x x t s x x 先用图解法求线性规划⎪⎩⎪⎨⎧≥≥+≤++0,3-6..2max 21212121x x x x x x t s x x 得最优解为(0,6)代入原规划可得最优解为(0,6,0)最优值为18.4.(1)以21,x x 为基变量可得基可行解(3,1,0),对应的基阵为:⎪⎪⎭⎫⎝⎛1101 以31,x x 为基变量可得基可行解(2,0,1),对应的基阵为:⎪⎪⎭⎫ ⎝⎛2111 (2)规划转化为标准形式:⎪⎩⎪⎨⎧≥=++=++--0,,,55623..34min 432142132121x x x x x x x x x x t s x x 以32,x x 为基变量可得基可行解(0,1,4,0),对应的基阵为:⎪⎪⎭⎫⎝⎛0512 5. 以432,,x x x 为基变量可得基可行解(0,2,3,9),对应的典式为:32192231412=+=+=x x x x x 非基变量1x 的检验数为21-。

6. (1) a=0,b=3,c=1,d=0;(2) 基可行解为(0,0,1,6,2) (3)最优值为3.7.(1)最优解为(1.6,0,1.2),最优值为-4.4;(2)令11-=x y ,则0≥y ,11+=y x ,在规划中用1+y 替代1x ,并化标准形式。

运筹学练习参考答案

运筹学练习参考答案

线性规划问题1、某工厂生产I 、II 、III 三种产品,分别经过A 、B 、C 三种设备加工。

已知生产单位各种产品所需的设备台时、设备的现有加工能力及每件产品的预期利润见((2) 产品III 每件的利润增加到多大时才值得安排生产;(3) 如有一种新产品,加工一件需设备A 、B 、C 的台时各为1,4,3小时,预期每件的利润为8元,是否值得安排生产。

解:(1)设x 1,x 2,x 3分别为I 、II 、III 三种产品的产量,z 表示利润。

该问题的线性规划模型为:用单纯形法求上述线性规划问题。

化为标准形式:123123123123123max 10641001045600..226300,,0z x x x x x x x x x s t x x x x x x =++++≤⎧⎪++≤⎪⎨++≤⎪⎪≥⎩123456123412351236max 1064000 1001045 600.. 226 3000,1,2,,6j z x x x x x x x x x x x x x x s t x x x x x j =++++++++=⎧⎪+++=⎪⎨+++=⎪⎪≥=所以最优解为x * =(100/3,200/3,0,0,0,100)T ,即产品I 、II 、III 的产量分别为:100/3,200/3,0;最优解目标函数值z * =2200/3(2)设产品III 每件的利润为c 3产品III 每件的利润增加到20/3时才值得安排生产。

(3)设x 7为新产品的产量。

177711028(,,0)420333B c c B P σ-⎛⎫⎪=-=-=>⇒ ⎪ ⎪⎝⎭值得投产 1775/31/60112/31/604020131P B P --⎡⎤⎛⎫⎛⎫⎪ ⎪⎢⎥'==-= ⎪ ⎪⎢⎥ ⎪ ⎪⎢⎥-⎣⎦⎝⎭⎝⎭()1333333335/66,10,01/620/3020/34B B c C B P c C P c c c σ-'=-=-⎛⎫⎪=-=-≥⇒≥ ⎪ ⎪⎝⎭所以最优解为x * =(100/3,0,0,0,0,200/3)T ,即产品I 的产量:100/3,新产品的产量:200/3;最优解目标函数值z * =2600/3 2、已知下列线性规划问题:12312312312312363336022420..33360,,0maxz x x x x x x x x x s t x x x x x x =-+++≤⎧⎪-+≤⎪⎨+-≤⎪⎪≥⎩ 求:(1)用单纯形法求解,并指出问题属于哪一类解; (2)写出该问题的对偶问题,并求出对偶问题的最优解;解:(1)将原问题划为标准形得:123456123412351236max 6330003 60224 20..333 600,1,2,,6j z x x x x x x x x x x x x x x s t x x x x x j =-+++++++=⎧⎪-++=⎪⎨+-+=⎪⎪≥=⎩最优解为x * =(15,5,0,10,0,0)T 最优解目标函数值z * =75 非基变量的检验数<0, 为唯一最优解. (2)该问题的对偶问题为:123123123123123min 6020603236233..433,,0w y y y y y y y y y s t y y y y y y =++++≥⎧⎪-+≥-⎪⎨+-≥⎪⎪≥⎩对偶问题的最优解:y* =(0,9/4,1/2)3、已知线性规划问题: 求:(1)用图解法求解; (2)写出其对偶问题;(3)根据互补松弛定理,写出对偶问题的最优解。

运筹学基础及应用课后习题答案(第一二章习题解答)

运筹学基础及应用课后习题答案(第一二章习题解答)

运筹学基础及应用课后习题答案(第一二章习题解答)第一章:线性规划一、选择题1. 线性规划问题中,目标函数可以是()A. 最大化B. 最小化C. A和B都对D. A和B都不对答案:C解析:线性规划问题中,目标函数可以是最大化也可以是最小化,关键在于问题的实际背景。

2. 在线性规划问题中,约束条件通常表示为()A. 等式B. 不等式C. A和B都对D. A和B都不对答案:C解析:线性规划问题中的约束条件通常包括等式和不等式两种形式。

二、填空题1. 线性规划问题的基本假设是______。

答案:线性性2. 线性规划问题中,若决策变量个数和约束条件个数相等,则该问题称为______。

答案:标准型线性规划问题三、计算题1. 求解以下线性规划问题:Maximize Z = 2x + 3ySubject to:x + 2y ≤ 83x + 4y ≤ 12x, y ≥ 0答案:最优解为 x = 4, y = 2,最大值为 Z = 14。

解析:画出约束条件的图形,找到可行域,再求目标函数的最大值。

具体步骤如下:1) 将约束条件化为等式,画出直线;2) 找到可行域的顶点;3) 将顶点代入目标函数,求解最大值。

第二章:非线性规划一、选择题1. 以下哪个方法适用于求解非线性规划问题()A. 单纯形法B. 拉格朗日乘数法C. 柯西-拉格朗日乘数法D. A和B都对答案:B解析:非线性规划问题通常采用拉格朗日乘数法求解,单纯形法适用于线性规划问题。

2. 非线性规划问题中,以下哪个条件不是K-T条件的必要条件()A. 梯度条件B. 正则性条件C. 互补松弛条件D. 目标函数为凸函数答案:D解析:K-T条件包括梯度条件、正则性条件和互补松弛条件,与目标函数是否为凸函数无关。

二、填空题1. 非线性规划问题中,若目标函数和约束条件都是凸函数,则该问题称为______。

答案:凸非线性规划问题2. 非线性规划问题中,K-T条件是求解______的必要条件。

运筹学课后习题答案

运筹学课后习题答案

运筹学课后习题答案运筹学课后习题答案运筹学是一门研究如何在有限资源下做出最优决策的学科。

它涉及到数学、统计学和计算机科学等多个领域,旨在解决实际问题中的优化和决策难题。

在学习运筹学的过程中,课后习题是巩固知识和理解概念的重要方式。

下面将为大家提供一些运筹学课后习题的答案,希望能对大家的学习有所帮助。

1. 线性规划问题线性规划是运筹学中最基本的问题之一。

它的目标是在给定的约束条件下,找到使目标函数达到最大或最小值的决策变量的取值。

以下是一个线性规划问题的示例及其答案:问题:某公司生产两种产品A和B,每单位产品A的利润为3万元,产品B的利润为4万元。

产品A每单位需要2个工时,产品B每单位需要3个工时。

公司总共有40个工时可用。

如果公司希望最大化利润,应该生产多少单位的产品A和产品B?答案:设产品A的生产单位为x,产品B的生产单位为y。

根据题目中的约束条件可得到以下线性规划模型:目标函数:Maximize 3x + 4y约束条件:2x + 3y ≤ 40x ≥ 0, y ≥ 0通过求解这个线性规划模型,可以得到最优解为x = 10,y = 10。

也就是说,公司应该生产10个单位的产品A和10个单位的产品B,以最大化利润。

2. 项目管理问题项目管理是运筹学的一个重要应用领域。

它涉及到如何合理安排资源、控制进度和降低风险等问题。

以下是一个项目管理问题的示例及其答案:问题:某公司需要完成一个项目,该项目包含5个任务。

每个任务的完成时间和前置任务如下表所示。

为了尽快完成项目,应该如何安排任务的执行顺序?任务完成时间(天)前置任务A 4 无B 6 无C 5 AD 3 BE 7 C, D答案:为了确定任务的执行顺序,可以使用关键路径方法。

首先,计算每个任务的最早开始时间和最晚开始时间。

然后,找到所有任务的最长路径,即关键路径。

关键路径上的任务不能延迟,否则会延误整个项目的完成时间。

根据上表中的信息,可以得到以下关键路径:A → C → E,最长时间为4 + 5 + 7 = 16天因此,任务的执行顺序应为A → C → E。

运筹学试题及详细答案

运筹学试题及详细答案

运筹学试题及详细答案
一、选择题
1、Nash均衡的定义是:
A、每位参与者的行为均达到最佳利益的状态
B、每位参与者的行为均达到得到最大胜利的状态
C、每位参与者的行为均达到合作的最佳状态
D、每位参与者的行为均达到合作的最大胜利的状态
答案:A
2、决策就是参与者用来实现选择的:
A、计划
B、机构
C、程序
D、工具
答案:D
3、运筹学可以分为:
A、组合数学
B、运动学
C、博弈论
D、概率论
答案:A、B、C、D
4、非线性规划有:
A、分支定界法
B、梯度下降法
C、基于格法的解法
D、对偶法
答案:A、B、C、D
5、关于迭代法,下列表述正确的有:
A、可以求解非凸优化问题
B、单次迭代过程简单
C、收敛性较好
D、用于非线性规划
答案:A、B、C
二、填空题:
1、博弈论是研究__参与者之间的__的科学。

答案:多,竞争。

应用运筹学补充练习题参考答案

应用运筹学补充练习题参考答案
+(333X22+335X23+317X24-325Y2)+(352X33+327X34-348Y3)
+(344X44-340Y4)
s.t:Y1≤200 000
Y1-X11-X12-X13-X14=0
X11≤100 000
X12+X13+X14+Y2≤200 000
Y2-X22-X23-X24=0
X12+X22≤140 000
X22*=,X23*=,X24*=,Y2*= ,
X33*=,X34*=,Y3*= ,
X44*=,Y4*= ,Z*=
9、对以下线性规划问题:
MinZ=2X1+3X2+5X3+2X4+3X5
s.t. X1+X2+2X3+X4+3X5≥4
2X1X2+3X3+X4+X5≥3
X1,X2,X3,X4,X5≥ 0
设按第j种截法截Xj根圆钢,则相应的线性规划模型为:
目标函数:MinZ= Xj
s.t:X1+X2≥100
X1+2X3+X4≥200
2X2+X3+2X4+4X5≥400
xj≥0且为整数(j=1,2.....,5)
EXCEL求解最优解结果:X1*=0,X2*=100,X3*=100,X4*=0 ,X5*=25, Z*=225
《应用运筹学》补充练习题参考答案
1、某商店要制定明年第一季度某种商品的进货和销售计划,已知该店的仓库容量最多可储存该种商品500件,而今年年底有200件存货。该店在每月月初进货一次。已知各个月份进货和销售该种商品的单价如下表所示:

运筹学练习及解答

运筹学练习及解答

运筹学练习:一、判断(√)1、线性规划问题中,必须有一个要实现的目标。

(×)2、在基可行解中基变量一定为非零。

(√)3、如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。

(√)4、在用单纯形法解线性规划问题时,任何一个人工变量都不应该在最优解的基变量组合中。

(×)5、如果一个线性规划问题有可行解,则它必有最优解。

(√)6、运输问题中,用闭回路法和用位势法算出的检验数是一样的。

(√)7、运输问题模型是一种特殊的线性规划模型,因而运输问题也可用单纯形法求解。

(×)8、运输问题的运价表的某一行的所有ij c 同乘以一个非零常数,其最优调运方案不变。

(√)9、运输表中给出初始基可行解后,从每一空格出发的闭回路是唯一的。

(×)10、不平衡运输问题不一定有最优解。

二、填空1、线性规划是试图合理地分配各种 资源 以最优地实现某个 目标 的规划方法。

2、标准线性规划问题的特点是:(1)要求目标函数 极大化 ,(2)约 束条件取 等式 ,(3)变量 为非负 。

3、在线性规划问题的图解法中,如果存在最优解,则这个最优解将处于 可行域的 顶点处 。

4、解总运费最小的运输问题时,确定最优解的条件是:所有非基变量的 检验数均不为 负 数。

5、解运输问题一般采用 表上作业 法,确定检验数的方法有 闭回路法和 用位势法 三、简答题1、试用图解法求解下述线性规划问题⎪⎩⎪⎨⎧≥≤+≤++=0,152315322110max 21212121x x x x x x x x z解:先在直角坐标系中作出可行域,再作目标函数的等值线,可以看出,当目标函数的等值线平移到两直线1523,15322121=+=+x x x x 的交点时,目标函数值最大。

即,最优解为:3,321==x x ,2、某商场对售货员的需求情况如下表所示,为保证售货人员充分休息,每周工作五天,休息两天,并要求休息的两天是连续的。

运筹学试题及答案

运筹学试题及答案

一、填空题:(每空格2分,共16分)1、线性规划的解有唯一最优解、无穷多最优解、 无界解 和无可行解四种。

2、在求运费最少的调度运输问题中,如果某一非基变量的检验数为4,则说明 如果在该空格中增加一个运量运费将增加4 。

3、“如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解”,这句话对还是错? 错4、如果某一整数规划: MaxZ=X 1+X 2 X 1+9/14X 2≤51/14 -2X 1+X 2≤1/3 X 1,X 2≥0且均为整数所对应的线性规划(松弛问题)的最优解为X 1=3/2,X 2=10/3,MaxZ=6/29,我们现在要对X 1进行分枝,应该分为 X1≤1 和 X1≥2 。

5、在用逆向解法求动态规划时,f k (s k )的含义是: 从第k 个阶段到第n 个阶段的最优解 。

6. 假设某线性规划的可行解的集合为D ,而其所对应的整数规划的可行解集合为B ,那么D 和B 的关系为 D 包含 B7. 已知下表是制订生产计划问题的一张LP 最优单纯形表(极大化问题,约问:(1)写出B -1=⎪⎪⎪⎭⎫ ⎝⎛---1003/20.3/1312(2)对偶问题的最优解: Y =(5,0,23,0,0)T8. 线性规划问题如果有无穷多最优解,则单纯形计算表的终表中必然有___某一个非基变量的检验数为0______;9. 极大化的线性规划问题为无界解时,则对偶问题_无解_________; 10. 若整数规划的松驰问题的最优解不符合整数要求,假设X i =b i 不符合整数要求,INT (b i )是不超过b i 的最大整数,则构造两个约束条件:Xi ≥INT (b i )+1 和 Xi ≤INT (b i ) ,分别将其并入上述松驰问题中,形成两个分支,即两个后继问题。

11. 知下表是制订生产计划问题的一张LP 最优单纯形表(极大化问题,约束问:(1)对偶问题的最优解: Y =(4,0,9,0,0,0)T (2)写出B -1=⎪⎪⎪⎭⎫ ⎝⎛611401102二、计算题(60分)1、 已知线性规划(20分) MaxZ=3X 1+4X 2 X 1+X 2≤5 2X 1+4X 2≤12 3X 1+2X 2≤8 X 1,X 2≥02) 若C 2从4变成5,最优解是否会发生改变,为什么?3) 若b 2的量从12上升到15,最优解是否会发生变化,为什么?4) 如果增加一种产品X 6,其P 6=(2,3,1)T ,C 6=4该产品是否应该投产?为什么? 解:1)对偶问题为Minw=5y1+12y2+8y3y1+2y2+3y3≥3 y1+4y2+2y3≥4 y1,y2≥02)当C 2从4变成5时, σ4=-9/8 σ5=-1/4由于非基变量的检验数仍然都是小于0的,所以最优解不变。

最全运筹学习题及答案

最全运筹学习题及答案

最全运筹学习题及答案共1 页运筹学习题答案)1.1用图解法求解下列线性规划问题,并指出问题是具有唯一最优解、无穷多最优解、无界解还是无可行解。

(1)max z?x1?x25x1+10x2?50x1+x2?1x2?4x1,x2?0(2)min z=x1+1.5x2x1+3x2?3x1+x2?2x1,x2?0(3)+2x2x1-x2?-0.5x1+x2x1,x2?0(4)max z=x1x2x1-x2?03x1-x2?-3x1,x2?0(1)(图略)有唯一可行解,max z=14(2)(图略)有唯一可行解,min z=9/4(3)(图略)无界解(4)(图略)无可行解1.2将下列线性规划问题变换成标准型,并列出初始单纯形表。

共2 页(1)min z=-3x1+4x2-2x3+5x4 4x1-x2+2x3-x4=-2x1+x2+3x3-x4?14 -2x1+3x2-x3+2x4?2x1,x2,x3?0,x4无约束(2zk?i??xk?1mxik?(1Max s. t .-4x1xx1,x2共3 页(2)解:加入人工变量x1,x2,x3,…xn,得:Max s=(1/pk)? i?1n?k?1m?ikxik-Mx1-Mx2-…..-Mxnm(1)max z=2x1+3x2+4x3+7x4 2x1+3x2-x3-4x4=8x1-2x2+6x3-7x4=-3x1,x2,x3,x4?0(2)max z=5x1-2x2+3x3-6x4共4 页x1+2x2+3x3+4x4=72x1+x2+x3+2x4=3x1x2x3x4?0(1)解:系数矩阵A是:?23?1?4??1?26?7? ??令A=(P1,P2,P3,P4)P1与P2线形无关,以(P1,P2有2x1+3x2=8+x3+4x4x1-2x2=-3-6x3+7x4令非基变量x3,x4解得:x1=1;x2=2基解0,0)T为可行解z1=8(2)同理,以(P=(45/13,0,-14/13,0)T是非可行解;3以(P1,P4X(3)=,,7/5)T是可行解,z3=117/5;(4)以(P2,P=(,45/16,7/16,0)T是可行解,z4=163/16;3以(P2,P4)为基,基解X(5)0,68/29,0,-7/29)T是非可行解;(6)TX以(P4,P)为基,基解=(0,0,-68/31,-45/31是非可行解;)3最大值为z3=117/5;最优解X(3)=(34/5,0,0,7/5)T。

运筹学课后习题及答案

运筹学课后习题及答案

运筹学课后习题及答案运筹学是一门应用数学的学科,旨在通过数学模型和方法来解决实际问题。

在学习运筹学的过程中,课后习题是非常重要的一部分,它不仅可以帮助我们巩固所学的知识,还可以提升我们的解决问题的能力。

下面,我将为大家提供一些运筹学课后习题及答案,希望对大家的学习有所帮助。

1. 线性规划问题线性规划是运筹学中的一个重要分支,它旨在寻找线性目标函数下的最优解。

以下是一个线性规划问题的例子:Max Z = 3x + 4ySubject to:2x + 3y ≤ 10x + y ≥ 5x, y ≥ 0解答:首先,我们可以画出约束条件的图形,如下所示:```y^|5 | /| /| /| /|/+-----------------10 x```通过观察图形,我们可以发现最优解点是(3, 2),此时目标函数取得最大值为Z = 3(3) + 4(2) = 17。

2. 整数规划问题整数规划是线性规划的一种扩展,它要求变量的取值必须是整数。

以下是一个整数规划问题的例子:Max Z = 2x + 3ySubject to:x + y ≤ 52x + y ≤ 8x, y ≥ 0x, y为整数解答:通过计算,我们可以得到以下整数解之一:x = 2, y = 3此时,目标函数取得最大值为Z = 2(2) + 3(3) = 13。

3. 网络流问题网络流问题是运筹学中的另一个重要分支,它研究的是在网络中物体的流动问题。

以下是一个网络流问题的例子:有一个有向图,其中有三个节点S、A、B和一个汇点T。

边的容量和费用如下所示:S -> A: 容量为2,费用为1S -> B: 容量为3,费用为2A -> T: 容量为1,费用为1B -> T: 容量为2,费用为3A -> B: 容量为1,费用为1解答:通过使用最小费用最大流算法,我们可以找到从源点S到汇点T的最小费用流量。

在该例中,最小费用为5,最大流量为3。

运筹学试题及答案

运筹学试题及答案

运筹学试题及答案运筹学试题及答案一、选择题:从下列四个选项中选择正确的答案。

1. 运筹学一词最初来自于哪个国家?A. 中国B. 美国C. 英国D. 德国答案:B. 美国2. 运筹学的主要目标是什么?A. 提高企业的生产效率B. 降低企业的成本C. 提高企业的利润D. 优化资源的利用答案:D. 优化资源的利用3. 下列哪个不是运筹学的研究方法?A. 线性规划B. 动态规划C. 模拟D. 微积分答案:D. 微积分4. 下列哪个是运筹学的一个应用领域?A. 人力资源管理B. 市场营销C. 金融投资D. 以上都是答案:D. 以上都是二、填空题:根据题目要求,在空格中填入正确的答案。

1. 线性规划是运筹学中的一种常用方法,其目标是在一定的约束条件下,______线性目标的最优解。

答案:最大化或最小化2. 动态规划是一种解决_______过程中的最优化问题的方法。

答案:多阶段决策3. 供应链管理中,______是指将不同的物流节点连接起来,实现物流流程的顺畅和高效。

答案:协调4. 在项目管理中,______图是一种重要的工具,用于展示项目活动与任务之间的依赖关系。

答案:网络三、问答题:根据题目要求,回答问题。

1. 什么是线性规划?请简要解释线性规划的基本原理。

答:线性规划是一种数学优化方法,通过建立线性数学模型,以线性目标函数和线性约束条件为基础,寻找使目标函数最大或最小的决策变量值。

其基本原理是通过确定目标函数的优化方向和约束条件,使用线性代数和数学规划理论进行求解,得出最优解。

2. 动态规划在运筹学中的应用有哪些?请举例说明。

答:动态规划在运筹学中有广泛的应用,例如在资源分配、生产计划、货物调度等方面。

举个例子就是在货物调度中,通过动态规划的方法可以确定最优的调度方案,使得货物的运输成本最小化,货物的运输时间最短化。

3. 什么是供应链管理?为什么供应链管理对企业的重要性?答:供应链管理是指协调各个物流节点,包括原材料供应、生产、仓储、运输和客户服务等环节,实现产品或服务的流动和交付。

数学:运筹学试题及答案(强化练习)

数学:运筹学试题及答案(强化练习)

数学:运筹学试题及答案(强化练习)1、单选不属一般系统,特别是人造系统特征的是()A.整体性B.集合性C.目的性D.规模性正确答案:D2、名词解释概率向量正确答案:任意一个向量u=(u1,u2,…,un),如果(江南博哥)它内部的各种元素为非负数,且总和等于1,则此向量称为概率向量。

3、填空题影子价格实际上是与原问题各约束条件相联系的()的数量表现。

正确答案:对偶变量4、单选关于线性规划和其对偶规划的叙述中,正确的是()A.极大化问题(原始规划)的任意一个可行解所对应的目标函数值是对偶问题最优目标函数值的一个下界B.极小化问题(对偶规划)的任意一个可行解所对应的目标函数值是原始问题最优目标函数值的一个下界C.若原始问题可行,则其目标函数无界的充要条件是对偶问题有可行解D.若对偶问题可行,则其目标函数无界的充要条件是原始问题可行正确答案:A5、单选为建立运输问题的改进方案,在调整路线中调整量应为()。

A.奇数格的最小运量B.奇数格的最大运量C.偶数格的最小运量D.偶数格的最大运量正确答案:A6、单选下述选项中结果一般不为0的是()。

A.关键结点的结点时差B.关键线路的线路时差C.始点的最早开始时间D.活动的专用时差正确答案:D7、填空题动态规划中,把所给问题的过程,分为若干个相互联系的()正确答案:阶段8、多选系统评价常用的理论有()A.数量化理论B.效用理论C.最优化理论D.不确定性理论E.模糊理论正确答案:A, B, C, D9、填空题常用的两种时差是工作()和工作自由时差。

正确答案:总时差10、填空题()(EOQ)是使总的存货费用达到最低的某种存货台套的最佳订货量。

正确答案:经济订货量11、填空题分枝定界法一般每次分枝数量为()正确答案:2个12、单选用单纯形法求解线性规划时,不论是极大化或是极小化问题,均用最小比值原则确定出基变量,该说法()。

A.正确B.不正确C.可能正确D.以上都不对正确答案:A13、名词解释安全库存量正确答案:也称保险库存量,是为了预防可能出现的缺货现象而保持的额外库存量14、填空题若线性规划问题有(),必在某顶点上得到。

运筹学练习参考答案

运筹学练习参考答案

线性规划问题1、某工厂生产I 、II 、III 三种产品,分别经过A 、B 、C 三种设备加工。

已知生产单位各种产品所需的设备台时、设备的现有加工能力及每件产品的预期利润见((2) 产品III 每件的利润增加到多大时才值得安排生产;(3) 如有一种新产品,加工一件需设备A 、B 、C 的台时各为1,4,3小时,预期每件的利润为8元,是否值得安排生产。

解:(1)设x 1,x 2,x 3分别为I 、II 、III 三种产品的产量,z 表示利润。

该问题的线性规划模型为:用单纯形法求上述线性规划问题。

化为标准形式:123123123123123max 10641001045600..226300,,0z x x x x x x x x x s t x x x x x x =++++≤⎧⎪++≤⎪⎨++≤⎪⎪≥⎩123456123412351236max 1064000 1001045 600.. 226 3000,1,2,,6j z x x x x x x x x x x x x x x s t x x x x x j =++++++++=⎧⎪+++=⎪⎨+++=⎪⎪≥=所以最优解为x * =(100/3,200/3,0,0,0,100)T ,即产品I 、II 、III 的产量分别为:100/3,200/3,0;最优解目标函数值z * =2200/3(2)设产品III 每件的利润为c 3产品III 每件的利润增加到20/3时才值得安排生产。

(3)设x 7为新产品的产量。

177711028(,,0)420333B c c B P σ-⎛⎫⎪=-=-=>⇒ ⎪ ⎪⎝⎭值得投产 1775/31/60112/31/604020131P B P --⎡⎤⎛⎫⎛⎫⎪ ⎪⎢⎥'==-= ⎪ ⎪⎢⎥ ⎪ ⎪⎢⎥-⎣⎦⎝⎭⎝⎭所以最优解为x * =(100/3,0,0,0,0,200/3)T ,即产品I 的产量:100/3,新产品的产量:200/3;最优解目标函数值z * =2600/3()1333333335/66,10,01/620/3020/34B B c C B P c C P c c c σ-'=-=-⎛⎫⎪=-=-≥⇒≥ ⎪ ⎪⎝⎭2、已知下列线性规划问题:12312312312312363336022420..33360,,0maxz x x x x x x x x x s t x x x x x x =-+++≤⎧⎪-+≤⎪⎨+-≤⎪⎪≥⎩ 求:(1)用单纯形法求解,并指出问题属于哪一类解; (2)写出该问题的对偶问题,并求出对偶问题的最优解;解:(1)将原问题划为标准形得:123456123412351236max 6330003 60224 20..333 600,1,2,,6j z x x x x x x x x x x x x x x s t x x x x x j =-+++++++=⎧⎪-++=⎪⎨+-+=⎪⎪≥=⎩最优解为x * =(15,5,0,10,0,0)T 最优解目标函数值z * =75 非基变量的检验数<0, 为唯一最优解.(2)该问题的对偶问题为:123123123123123min 6020603236233..433,,0w y y y y y y y y y s t y y y y y y =++++≥⎧⎪-+≥-⎪⎨+-≥⎪⎪≥⎩对偶问题的最优解:y* =(0,9/4,1/2)3、已知线性规划问题:求:(1)用图解法求解; (2)写出其对偶问题;(3)根据互补松弛定理,写出对偶问题的最优解。

应用运筹学补充练习题参考答案

应用运筹学补充练习题参考答案
X21+X22≤1.7X11(第二年年初投资额不超过第一年第一方案投资收回的本利值)
X31≤3X12+1.7X21(第三年年初投资额不超过第二年年底收回的本利值)
Xi1,Xi2≥0(i=1,2,3)
EXCEL求解最优解结果:X11*=,X12*=,X21*=,X22*=,X31*=,Z*=
4、有A,B两种产品,都需要经过前后两道化学反应过程。每一个单位的A产品需要前道过程2小时和后道过程3小时。每一个单位的B产品需要前道过程3小时和后道过程4小时。可供利用的前道过程有16小时,后道过程时间有24小时。每生产一个单位B产品的同时,会产生两个单位的副产品C,且不需要外加任何费用。副产品C最多可售出5个单位,其余的只能加以销毁,每个单位的销毁费用是2元。出售A产品每单位可获利4元,B产品每单位可获利10元,而出售副产品C每单位可获利3元。试建立为了使获得的总利润达到最大的线性规划模型。
已知其对偶问题的最优解为Y1*=4/5, Y2*=3/5, W* = 5。试求出原问题的解。
解:设原问题的两个剩余变量分别为:X6,X7
原问题的对偶问题为:
MaxW=4Y1+3Y2
s.t.Y1+2Y2≤2松弛变量 Y3
Y1-Y2≤3松弛变量 Y4
2Y1+3Y2≤5松弛变量 Y5
Y1+Y2≤2松弛变量 Y6
5X1+3X2≤100
4X1+1.5X2≤150
X1≤30
X1= +X4(B1每工时完成 件甲产品,共X3个工时,B2完成X4件)
Xj≥0, j=1,2,3,4
EXCEL求解最优解结果:X1*=,X2*=,X3*=,X4*= , Z*=
7、制造某机床需要A、B、C三种轴,其规格和需要量如下表所示。各种轴都用长5.5米长的圆钢来截毛坯。如果制造100台机床,问最少要用多少根圆钢?试建立线性规划模型。

运筹学目标规划补充题解答

运筹学目标规划补充题解答

运筹学目标规划补充题解答第一篇:运筹学目标规划补充题解答目标规划补充题解答1、设彩电及黑白电视机的产量分别为x1,x2-+--minz=P1d1+P2d2+P3(2d3+d4)⎧x1+x2+d1--d1+=40⎪-+⎪x1+x2+d2-d2=50⎪-+⎨x1+d3-d3=24 ⎪-+x+d-d=30244⎪⎪x1,x2,di-,di+≥0(i=1,2,3,4)⎩2、设x1为II级提升到I级的人数,x2为III级提升到II级的人数,x3为录用到III级的新职工人数++++--minz=P1d1+P2(d2+d3+d4)+P3(d5+d6)-+⎧2000(10-1+x1)+1500(12-x1+x2)+1000(15-x2+x3)+d1-d1= 6000⎪-+-d2=12⎪(10-1+x1)+d2⎪-+⎪(12-x1+x2)+d3-d3=15⎪-+⎨(15-x2+x3)+d4-d4=15⎪-+⎪x1+d5-d5=12⨯20%⎪-+x+d-d=15⨯20%266⎪⎪-+x,x,x≥0且为整数,d,d≥0(i=1,2,3,4,5,6)123ii⎩第二篇:运筹学习题解答3.3写出下列线性规划问题的对偶问题,再写出对偶问题的对偶,并验证其即为原问题对偶。

本题没有单纯形法。

5.3 没有答案第三篇:工商管理专业运筹学补充习题工商管理专业运筹学第一章补充习题:1、用图解法求以下线性规划问题:MinZ=3x1+2x2⎧x1+2x2≥4 ⎪s.t.⎨x1-x2≥1⎪x,x≥0⎩122、已知线性规划问题:MaxZ=30x1+15x2⎧x1+x2≥1⎪x-x≥-112⎪⎪s.t.⎨3x1+2x2≤6⎪x-2x≤12⎪1⎪⎩x1,x2≥0(1)用图解法求最优解(参考答案:X*=(7/4,3/8),Z*=58.125)(2)c2(目标函数中x2的系数)是什么值时,线性规划问题有无穷多最优解,并写出一般表达式。

第四篇:南京工业大学运筹学课件运筹学补充习题运筹学习题2,...,2.1已知一组实验数据(x)i= 1,m,试构造多项式 f( x),使i,yi i= 1,2得 y i =f ( xi ),..., m,并且次数尽可能的少。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《应用运筹学》补充练习题参考答案1、某商店要制定明年第一季度某种商品的进货和销售计划,已知该店的仓库容量最多可储存该种商品500件,而今年年底有200件存货。

该店在每月月初进货一次。

已知各个月份进货和销售该种商品的单价如下表所示:现在要确定每个月进货和销售多少件,才能使总利润最大,把这个问题表达成一个线性规划模型。

解:设X i是第i个月的进货件数,Y i是第i个月的销货件数(i=1, 2, 3),Z是总利润,于是这个问题可表达为:目标函数: Max Z=9Y1+8Y2+10Y3-8X1-5X2-9X3约束条件: 200+X1≤500200+X1-Y1+X2≤500 月初库存约束200+X1-Y1+X2-Y2+X3≤500200+X1-Y1≥ 0200+X1-Y1+X2-Y2≥ 0 月末库存约束200+X1-Y1+X2-Y2+X3-Y3≥ 0X1,X2,X3,Y1,Y2,Y3≥0EXCEL求解最优解结果:X1*=300,X2*=500,X3*=0,Y1*=500,Y2*=0,Y3*=500, Z*=41002、一种产品包含三个部件,它们是由四个车间生产的,每个车间的生产小时总数是有限的,下表中给出三个部件的生产率,目标是要确定每个车间应该把多少工时数分配到各个部件上,才能使完成的产品件数最多。

把这个问题表示成一个线性规划问题解:设X ij是车间i在制造部件j上所花的小时数,Y是完成产品的件数。

最终的目的是Y要满足条件:min{10X11+15X21+20X31+10X41,15X12+10X22+5X32+15X42,5X13+5X23+10X33+20X43}可将以上非线性条件转化为以下线性规划模型:目标函数: Max Z = Y约束条件: Y≤10X11+15X21+20X31+10X41Y≤15X12+10X22+5X32+15X42Y≤5X13+5X23+10X33+20X43X11+X12+X13≤100X21+X22+X23≤150X31+X32+X33≤80X41+X42+X43≤200X ij≥0(i=1,2,3,4;j=1,2,3), Y≥0EXCEL求解最优解结果:X11*=,X12*=,X13*=, X21*=, X22*=, X23*=X31*=,X32*=,X33*=, Y* =3、一个投资者打算把它的100000元进行投资,有两种投资方案可供选择。

第一种投资保证每1元投资一年后可赚7角钱。

第二种投资保证每1元投资两年后可赚2元。

但对第二种投资,投资的时间必须是两年的倍数才行。

假设每年年初都可投资。

为了使投资者在第三年年底赚到的钱最多,他应该怎样投资?把这个问题表示成一个线性规划问题。

解:设X i1和X i2是第一种方案和第二种方案在第i年年初的投资额(i =1, 2, 3),Z是总利润,于是这个问题的线性规划模型是:目标函数:Max Z= 2X22+(第三年年末的收益为当年第一方案和第二年第二方案的收益)约束条件:X11+X12≤100 000 (第一年年初总投资额不超过计划投资额)X21+X22≤(第二年年初投资额不超过第一年第一方案投资收回的本利值)X31≤3X12+(第三年年初投资额不超过第二年年底收回的本利值)X i1,X i2≥0(i=1,2,3)EXCEL求解最优解结果:X11*=,X12*=,X21*=, X22*=, X31*=, Z*=4、有A,B两种产品,都需要经过前后两道化学反应过程。

每一个单位的A产品需要前道过程2小时和后道过程3小时。

每一个单位的B产品需要前道过程3小时和后道过程4小时。

可供利用的前道过程有16小时,后道过程时间有24小时。

每生产一个单位B产品的同时,会产生两个单位的副产品C,且不需要外加任何费用。

副产品C最多可售出5个单位,其余的只能加以销毁,每个单位的销毁费用是2元。

出售A产品每单位可获利4元,B产品每单位可获利10元,而出售副产品C每单位可获利3元。

试建立为了使获得的总利润达到最大的线性规划模型。

解:设X1,X2分别是产品A,产品B的产量,X3是副产品C的销售量,X4是副产品C的销毁量,Z是总利润,于是这个问题的线性规划模型是:目标函数:Max Z=4X1+10X2+3X3—2X4约束条件: 2X2= X3+X4X3≤52X1+3X3≤163X1+4X2≤24X1,X2,X3,X4≥0EXCEL求解最优解结果:X1*=,X2*=,X3*=, Z*=5、考虑下面的线性规划问题:目标函数:Max Z=30X1+20X2约束条件: 2X1+ X2≤40X1+X2≤25X1,X2≥0用图解法找出最优解X1和X2。

解:图解法结果如下,最优解:X1*=15; X2=10; Z*=6506、某厂生产甲,乙两种产品,每种产品都要在A,B两道工序上加工。

其中B工序可由B1或B2设备完成,但乙产品不能用B1加工。

生产这两种产品都需要C,D,E三种原材料,有关数据如下所示。

又据市场预测,甲产品每天销售不超过30件。

问应如何安排生产才能获解:设甲、乙两种产品分别生产X1,X2件,其中,甲产品在B1设备上加工X3工时、在B2设备上加工X4工时,则获利为:Z=80X1+100X2-6(2X1+X2)-2X3-5*(X4+4X2)-2*(3X1+12X2)-1*(5X1+3X2)-4*(4X1+-26X1-29X2 化简后得到:目标函数:Max Z=15X1+12X2-2X3-5X4. 2X1+X2≤80X3≤604X2+X4≤703X1+12X2≤3005X1+3X2≤1004X1+≤150X1≤30X 1=3X 3+X 4 (B1每工时完成31件甲产品,共X 3个工时,B2完成X 4件)X j ≥0, j=1,2,3,4EXCEL 求解最优解结果:X 1*= ,X 2*= ,X 3*=, X 4*= , Z*=7、制造某机床需要A 、B 、C 三种轴,其规格和需要量如下表所示。

各种轴都用长米长的圆钢来截毛坯。

如果制造100台机床,问最少要用多少根圆钢?试建立线性规划模型。

解:用米圆钢截所需规格长度的所有各种可能性如下表所示:设按第j 种截法截X j 根圆钢,则相应的线性规划模型为: 目标函数: Min Z =∑=51j X j: X 1+X 2 ≥100X 1+ 2X 3+ X 4 ≥200 2X 2+ X 3+2X 4+4X 5≥400x j ≥0且为整数(j=1,2 (5)EXCEL 求解最优解结果:X 1*= 0 ,X 2*=100 ,X 3*= 100 , X 4*= 0 , X 5*= 25 , Z*= 225 8、某木材公司经营的木材贮存在仓库中,最大贮存量为20万米3,由于木材价格随季节变化,该公司于每季初购进木材,一部分当季出售,一部分贮存以后出售。

贮存费为a+bu ,其中a=7元/米3,b=10元/米3,u 为贮存的季度数。

由于木材久贮易损,因此当年所有库存应于秋末售完。

各季木材单价及销量如下表所示。

为获全年最大利润,该公司各季应分别购销多少木材?试建立线性规划模型。

解:设Y i (i=1,2,3,4)分别为冬,春,夏,秋四季采购的木材量(单位:m 3),X ij (i ,j=1,2,3,4)代表第i 季节采购用于第j 季节销售的木材量(m 3),因此,冬季以310元/ m3购入Y1, 当季以321元/ m3卖出X11,同时,以7+10*1的成本存储到春季出售的有X12,以7+10*2的成本存储到夏季出售的有X13, 以7+10*3的成本存储到秋季出售的有X14;同样地,春季购入 ......。

相应的线性规划模型为:目标函数:MaxZ=(321X11+316X12+325X13+307X14-310Y1)+(333X22+335X23+317X24-325Y2)+(352X33+327X34-348Y3)+(344X44-340Y4): Y1≤200 000Y1-X11-X12-X13-X14=0X11 ≤100 000X12+X13+X14+Y2≤200 000Y2-X22-X23-X24 =0X12+X22≤140 000X13+X14+X23+X24+Y3≤200 000Y3―X33―X3 4=0X13+X23+X33 ≤200 000X14+X24+X34+Y4≤200 000Y4-X44 =0X14+X24+X34+X44 ≤160 000x ij≥0,y i≥0(i,j=1,2,3,4)EXCEL求解最优解结果:X11*=,X12*=,X13*= ,X14*= Y1*= ,X22*=,X23*=,X24*= ,Y2*= ,X33*=,X34*=,Y3*= ,X44*=,Y4*= , Z*=9、对以下线性规划问题:Min Z=2X1+3X2+5X3+2X4+3X5s. t. X1+X2+2X3+X4+3X5 ≥42X1 - X2+3X3+X4+X5 ≥3X1, X2, X3, X4,X5 ≥ 0已知其对偶问题的最优解为 Y1*=4/5, Y2*=3/5, W* = 5。

试求出原问题的解。

解:设原问题的两个剩余变量分别为:X6 ,X7原问题的对偶问题为:Max W=4Y1+3Y2. Y1+2Y2≤2松弛变量 Y3Y1-Y2≤3松弛变量 Y42Y1+3Y2≤5松弛变量 Y5Y1+Y2≤2松弛变量 Y63Y1+ Y2≤3松弛变量 Y7Y1,Y2,Y3,Y4≥ 0因为Y1*=4/5, Y2*=3/5,因此,计算对偶问题松弛变量值为:Y3*=0,Y4*=14/3,Y5*=8/5,Y6*=3/5,Y7*=0根据对偶性质(互补松弛定理)则有:X2*=0,X3*=0,X4*=0,X6*=0,X7*=0进一步有: 2X1+3X5=5X1+3X5=42X1+X5=3得到:X1*=1,X5*=1原问题的解为:X1*=1, X2*=0,X3*=0,X4*=0,X5*=1,Z* = 510、某厂拟生产甲、乙、丙三种产品,都需要在A、B两种设备上加工,有关数据如下表。

利用对偶性质分析以下问题:1)如何充分发挥设备潜力,使产品的总产值最大?2)该厂如果以每台时350元的租金租外厂的A设备,是否合算?解:设生产甲、乙、丙三种产品分别为X1,X2,X3件,线性规划模型为:目标函数: Max Z = 3X1+2X2+X3约束条件: X1+2X2+X3≤400 松弛变量为X42X1+X2+2X3≤500 松弛变量为X5X1,X2,X3≥0此原问题的对偶问题为:目标函数: Min W = 400Y1+500Y2约束条件: Y1+2Y2≥3 剩余变量为Y32Y1+ Y2≥2 剩余变量为Y4Y1+2Y2≥1 剩余变量为Y5Y1,Y2≥0对偶问题可通过图解法求解,得到最优解结果为:Y1* = 1/3,Y2* = 4/3进一步可知:Y3* =0,Y4* = 0,Y5* = 2根据互补松弛定理可知:X3*=0,X4*=0,X5*=0可得到: X1+2X2=4002X1+X2=500可解得:X1*=200,X2*=100根据以上计算结果可知:1)应该生产甲产品200件,乙产品100件,丙产品不生产,此时总产值最大为800千元。

相关文档
最新文档