波谱四种谱图的综合解析
波谱学综合解析
![波谱学综合解析](https://img.taocdn.com/s3/m/a774c85f1711cc7931b7168d.png)
基本相同。
A中1380cm-1峰裂分为等强度双峰,是异丙基的特征, n=3,因而A的结构为2-甲基己烷。
1170和1155cm-1来自异丙基的骨架振动,ρCH2728cm-1,
•
B中1380cm-1峰裂分为1:2的双峰,是叔丁基的特征, 其骨架振动在1250cm-1,ρCH2740cm-1,n=2,因此B结构 为2,2-二甲基戊烷。 C中1380cm-1为单峰,ρCH2723cm-1,n=4,结构为 正庚烷。利用1380cm-1峰的裂分判断烷烃异构体时,需 注意分子中其他端甲基的干扰,有时裂分峰的形状不容 易判断。 NMR谱可以准确地判断烷烃异构体,往往比红外 光谱更直观可靠。图是三种辛烷异构体的 1H NMR谱。 A为正辛烷,-CH3,δ0.90,与CH2 相连,裂分为三重 峰;(CH2)6, δ1.1~1.6。甲基与乙基的积分面积之比为 1:2。
1H
•
• 2.核磁共振波谱 • •
•
( B) 为2-甲基庚烷,异丙基中的两个甲基与CH相连,裂分为
双重峰。7-CH3 的化学位移仍为0.90,与异丙基中甲基双重峰
重叠。
CH (CH2)4
吸收在δ1.0~1.8、δ0.6~1.0与δ1.0~1.8
两个区域积分面积之比为1.0:1.0。 • (C) 2,2-二甲基己烷,叔丁基中3个CH3为单峰,端甲基仍 为三重峰,化学位移均为δ0.90。3个CH2δ1.20。甲基与(CH2)3积 分面积比为2:1。
综合解析
• 紫外光谱、红外光谱、核磁共振和质谱法均在 食品、化工、环保、医药等科研、生产中有广泛 应用,但各有其缺点和局限性。 • 紫外光谱可用于含有发色团的有机物分析,如 芳烃、共轭烯烃、酮和醛等,尤其在定量分析中 具有灵敏度高、准确和快速方便的优点。其应用 的局限性也很明显,如分子不含有发色团,就不 能用紫外光谱检测;通常紫外光谱吸收带少,谱 带宽,难于进行未知物的结构鉴定。 • 红外光谱能够明显地揭示未知物的结构特征, 未知物含有什么或不含有什么官能团和化学键, • 从谱带位置和强度可以进行判断。
有机化学的四谱综合解析
![有机化学的四谱综合解析](https://img.taocdn.com/s3/m/699c4afec8d376eeaeaa31a9.png)
O H H3C C N CH3
最后再对有关结构进行验证,最终确定该化合物的结构无误。
例5、试根据下列谱图解析该化合物的结构
元素分析结果: C: 78.6%, H: 8.3%
解析步骤: 确定分子式: 从红外谱图知结构中可能含-OH,所以可能含氧原子;
从质谱图中知道分子离子峰为122,所以分子量为122。
常规碳谱的化学位移值在220ppm以内 吸收峰的归属是基于参照化合物作出的 通常碳谱能分辨芳香环的取代
R R R R R R
影响碳原子化学位移的因素
1、碳原子的杂化状态: 三种不同的碳原子杂化轨道 SP、SP2、 SP3 体现在化学位移值完全不同: SP3杂化: CH3— 20~100 SP2杂化: —CH=CH2 100~200 SP2杂化: C=O 150~220 SP杂化: —C≡CH 70~130
各类1H的化学位移值
饱和碳上的氢:0~2 相邻有电负性基团的饱和碳上的氢:2~4.5 炔氢:2~3 烯氢:4.5~6.5 芳氢:6~8 具体还查阅相应的 醛氢:9~10 表格中的数据 羧基上的氢:10~13 烯醇中的氢:11~16
各类活泼氢的化学位移
常见的活泼氢有 –OH、-NH2、-SH等,由于它们在溶剂中质 子交换速度很快,并受氢键等因素影响所以大致范围如下:
2、碳核周围的电子云密度: (1)诱导效应、共轭效应和立体效 应都能影响化学位移的变化。 (2)碳正离子出现在低场,碳负离 子出现在高场
核磁共振碳谱的解析
1、鉴别谱图中真实谱峰
2、计算不饱和度
3、掌握影响化学位移的因素
4、分子对称性分析:
若谱线数目等于元素组成式中碳原子数目, 说明分子无对称性;若谱线数目小于元素组 成中的碳原子数目,说明分子有一定的对称 性,这在推测结构时应予以重视。如果化合 物中碳原子数目较多时,应考虑到不同碳原 子的值可能偶合重合。
天然药物化学的波谱分析会考四种谱的
![天然药物化学的波谱分析会考四种谱的](https://img.taocdn.com/s3/m/5a069c0b5acfa1c7aa00ccb8.png)
天然药物化学的波谱分析会考四种谱的,黄酮的紫外和核磁共振氢谱;甾体和三萜的核磁共振碳谱;这两种是容易出大题的。
红外会考醌类(选择),两种甾烷(鉴别);综合的会在鉴别题的三萜鉴别里有,这就考察能力了。
糖在甾体和三萜里会附加考察,再非主流只有大牛能过考试了。
下面分别来说下做题技巧三萜皂苷和甾体皂苷考察核磁共振碳谱第一步:看下备选结构是甾体皂苷还是三萜皂苷,记下大概其的碳位第二步:标记出碳谱数据中,苷元的所有60~80;109~160;170~220的部分,糖中苷化位移3~9的,或者化学位移95~96的。
第三步:根据数据来跟备选结构比对:连续出现两个碳位109~160,双键;出现170~220的碳位,酮或者羧基;出现60~80的碳位,醇羟基。
之后选择出来正确的结构,写出原因。
第四步:甾体皂苷是3位羟基成苷,所以要关注下3位碳的苷化位移是否是+810,甾体皂苷一般连有两个糖,所以还要关注下糖和糖的连接位置,糖连接处的碳苷化位移是+38(出现9的也可以),大家可以看下半乳糖,一般在那里;三萜皂苷是28位碳的羧基成苷,所以要关注下28位碳的苷化位移是否是-28;三萜皂苷只有一个糖,糖的一位碳的化学位移是95~96。
第五步:确定糖的构型,看耦合常数,如果6~8是ß构型;如果2~4是á构型。
第六步:画图,一定会画葡萄糖和半乳糖的式,有个口诀是葡萄糖上下上下,半乳糖是上上上下。
其他需要注意的问题:(会出现的问题)1.反应呈阳性说明该物质是苷类2.反应阳性说明是三萜或者甾体皂苷3.红外光谱在3500左右的是羟基,1737,1714的是酮羰基。
黄酮类化合物考察核磁共振氢谱和紫外光谱诊断试剂一般考察黄酮和黄酮醇,其他的难度有些大,考的可能性也不大。
我比较喜欢先解析氢谱后解紫外(大家随意)步骤:第一步:画出2-苯基色原酮的结构,标号;第二步:将核磁共振氢谱信息进行分类,将含2.5,且位移小于7的,以及9的,分到A环里;含2.5,且位移大于7的,以及8.5的,分到B环里;将含s的,分到C环里。
(完整版)四大波谱基本概念以及解析
![(完整版)四大波谱基本概念以及解析](https://img.taocdn.com/s3/m/8b2748aa55270722192ef7e5.png)
四大谱图基本原理及图谱解析一质谱1. 基本原理:用来测量质谱的仪器称为质谱仪,可以分成三个部分:离子化器、质量分析器与侦测器。
其基本原理是使试样中的成分在离子化器中发生电离,生成不同荷质比的带正电荷离子,经加速电场的作用,形成离子束,进入质量分析器。
在质量分析器中,再利用电场或磁场使不同质荷比的离子在空间上或时间上分离,或是透过过滤的方式,将它们分别聚焦到侦测器而得到质谱图,从而获得质量与浓度(或分压)相关的图谱。
在质谱计的离子源中有机化合物的分子被离子化。
丢失一个电子形成带一个正电荷的奇电子离子(M+J叫分子离子。
它还会发生一些化学键的断裂生成各种r =£碎片离子。
带正电荷离子的运动轨迹:经整理可写成:m _ rjH2电"2比2式中:口/e为质荷比是离子质量与所带电荷数之比;近年来常用m/z 表示质荷比;z表示带一个至多个电荷。
由于大多数离子只带一个电荷,故m/z就可以看作离子的质量数。
质谱的基本公式表明:(1)当磁场强度(H)和加速电压(V)一定时,离子的质荷比与其在磁场中运动半径的平方成正比(m/z x r2m),质荷比(m/z)越大的离子在磁场中运动的轨道半径(rm)也越大。
这就是磁场的重要作用,即对不同质荷比离子的色散作用。
(2)当加速电压(V) 一定以及离子运动的轨道半径(即收集器的位置)一定时,离子的质荷比(m/z)与磁场强度的平方成正比(m/z x H2)改变H即所谓的磁场扫描,磁场由小到大改变,则由小质荷比到大质荷比的离子依次通过收集狭缝,分别被收集、检出和记录下来。
(3)若磁场强度(H)和离子的轨道半径(rm)一定时,离子的质荷比(m/z)与加速电压(V)成反比(m/z x 1/V),表明加速电压越高,仪器所能测量的质量范围越小。
就测量的质量范围而言,希望质量范围大一些,这就必须降低加速电压。
从提高灵敏度和分辨率来讲,需要提高加速电压。
这是一对矛盾,解决的办法是在质量范围够用的情况下尽量提高加速电压,高分辨质谱计加速电压为8kV,中分辨为4〜3kV。
色谱、光谱、质谱、波谱
![色谱、光谱、质谱、波谱](https://img.taocdn.com/s3/m/ac84020fa2161479171128d2.png)
四大名谱在检测领域,有四大名谱,也是检测领域的“四大天王”分别为色谱、光谱、质谱、波谱,在检测特色和适用范围上各有不同,但总有一款适合你!质谱分析分子、原子、或原子团的质量的,可以推测物质的组成,一般用于定性分析较多,也可定量。
色谱是一种兼顾分离与定量分析的手段,可分辨样品中的不同物质。
光谱定性分析,确定样品中主要基团,确定物质类别。
从红外到X射线,都是光谱,其应用范围差别很大,是对分子或原子的光谱性质进行分析解析的。
波谱通常指四大波谱,核磁共振(NMR),物质粒子的质量谱-质谱(MS),振动光谱-红外/拉曼(IR/Raman),电子跃迁-紫外(UV)。
01光谱分析法光谱分析由于每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定它的化学组成和相对含量。
光谱分析时,可利用发射光谱,也可以利用吸收光谱。
这种方法的优点是非常灵敏而且迅速。
某种元素在物质中的含量达10皮克,就可以从光谱中发现它的特征谱线,因而能够把它检查出来。
光谱的分类按波长区域不同,光谱可分为红外光谱、可见光谱和紫外光谱。
按产生的本质不同,可分为原子光谱和分子光谱。
按产生的方式不同,可分为发射光谱、吸收光谱和散射光谱。
按光谱表现形态不同,可分为线光谱、带光谱和连续光谱。
分光光谱技术可用于:通过测定某种物质吸收或发射光谱来确定该物质的组成;通过测量适当波长的信号强度确定某种单独存在或其他物质混合存在的一种物质的含量;通过测量某一种底物消失或产物出现的量同时间的关系,示踪反应过程。
鉴定分子式、结构式的方法紫外光谱:反应分子中共轭体系状况;红外光谱:光能团鉴定、分子中环、双键数目。
光谱法的优缺点(1)分析速度较快原子发射光谱用于炼钢炉前的分析,可在l~2分钟内,同时给出二十多种元素的分析结果。
(2)操作简便有些样品不经任何化学处理,即可直接进行光谱分析,采用计算机技术,有时只需按一下键盘即可自动进行分析、数据处理和打印出分析结果。
综合谱图解析
![综合谱图解析](https://img.taocdn.com/s3/m/c6f2637af46527d3240ce02b.png)
二、不同化合物的谱图特征
1. 取代苯环
氢谱:6.5~8.0ppm有峰,除对位取代外,峰形复杂 碳谱: 110~165ppm有峰,一般有取代的碳原子化 学位移明显移向低场 质谱: 存在39,51,65,77序列;常可见91,92, 分子离 子峰强 红外: ~3030,~1600,~1500cm-1, 苯环取代区 670910cm-1有峰 紫外: 吸收波长大于250nm
16:27
3
三、 IR
判断各种官能团
1. 含O: 2. 含N: 3. 芳环--取代 4. 炔、烯--类型
四、 UV
1. 共轭体系、发色团 2. 从B带精细结构--苯环的存在
16:27 4
综合解析谱图的一般程序
一、波谱综合分析的步骤:
波谱分析的目的在于推断化合物的结构式,即结构鉴定。其主要 步骤:
序号 δc(ppm) 碳原子个数 序号 δc(ppm) 碳原子个数
1
204.0 119.0 78.0 54.5
1 1 1 1
5
32.0 21.7 12.0
1 1 1
2
6
3
7
4
16:27
20
16:27
21
(1)分子式的推导 • MS:分子离子峰为 m/z 125,根据氮律,未知物分子中含有 奇数个氮原子; •
1. 纯度检查:
可用熔点、折光率和各种色谱法判断样品的纯度。如果样品不是 纯物质,必须进行分离提纯。
2.确定分子式。确定分子式的方法有:
(1) 质谱法或冰点下降法等测定未知物的分子量,结合元素分析 结果可以计算出化合物的分子式。 (2) 根据高分辨质谱给出的分子离子的精确质量数,查贝农表或 莱德伯格表计算得出,也可根据低分辨质谱中的分子离子峰和 M+1,M+2同位素峰的相对丰度比,查贝农表来推算分子式。
(完整版)四大波谱基本概念以及解析
![(完整版)四大波谱基本概念以及解析](https://img.taocdn.com/s3/m/d7cf4f5c76a20029bd642dd9.png)
四大谱图基本原理及图谱解析一.质谱1.基本原理:用来测量质谱的仪器称为质谱仪,可以分成三个部分:离子化器、质量分析器与侦测器。
其基本原理是使试样中的成分在离子化器中发生电离,生成不同荷质比的带正电荷离子,经加速电场的作用,形成离子束,进入质量分析器。
在质量分析器中,再利用电场或磁场使不同质荷比的离子在空间上或时间上分离,或是透过过滤的方式,将它们分别聚焦到侦测器而得到质谱图,从而获得质量与浓度(或分压)相关的图谱。
在质谱计的离子源中有机化合物的分子被离子化。
丢失一个电子形成带一个正电荷的奇电子离子(M+·)叫分子离子。
它还会发生一些化学键的断裂生成各种碎片离子。
带正电荷离子的运动轨迹:经整理可写成:式中:m/e为质荷比是离子质量与所带电荷数之比;近年来常用m/z表示质荷比;z表示带一个至多个电荷。
由于大多数离子只带一个电荷,故m/z就可以看作离子的质量数。
质谱的基本公式表明:(1)当磁场强度(H)和加速电压(V)一定时,离子的质荷比与其在磁场中运动半径的平方成正比(m/z ∝r2m),质荷比(m/z)越大的离子在磁场中运动的轨道半径(rm)也越大。
这就是磁场的重要作用,即对不同质荷比离子的色散作用。
(2)当加速电压(V)一定以及离子运动的轨道半径(即收集器的位置)一定时,离子的质荷比(m/z)与磁场强度的平方成正比(m/z∝H2)改变H即所谓的磁场扫描,磁场由小到大改变,则由小质荷比到大质荷比的离子依次通过收集狭缝,分别被收集、检出和记录下来。
(3)若磁场强度(H)和离子的轨道半径(rm)一定时,离子的质荷比(m/z)与加速电压(V)成反比(m/z∝1/V),表明加速电压越高,仪器所能测量的质量范围越小。
就测量的质量范围而言,希望质量范围大一些,这就必须降低加速电压。
从提高灵敏度和分辨率来讲,需要提高加速电压。
这是一对矛盾,解决的办法是在质量范围够用的情况下尽量提高加速电压,高分辨质谱计加速电压为8kV,中分辨为4~3kV。
波谱解析综合解析解读
![波谱解析综合解析解读](https://img.taocdn.com/s3/m/e9de0a8e3c1ec5da51e270a9.png)
不大有效。
Br: 79Br: 81Br=1:1
5.结构式的推定 总结所有的官能团和结构片段,并找出各结构单元的关
系,提出一种或几种可能结构式
6.用全部光谱材料核对推定的结构式
① 用IR核对官能团。
② 用13C-NMR核对碳的类型和对称性。
③ 用1H-NMR核对氢核的化学位移和它们相互偶合关系, 必要时与计算值对照。
的组成,进而得到可能的分子式。
(3)结合核磁共振氢谱、碳谱推测简单烃类等分子的分 子式。
(4)综合光谱材料与元素分析确定分子式
(a)确定碳原子数:
从13C-NMR 宽带去偶谱的吸收峰数,得出碳原子的类 型数。在分子无对称因素的条件下,一条谱线即为一个 碳。
如用反转门控去偶法得到的谱图,峰高才与碳数成比 例。算出峰高总和,即可求出碳原子数。
(c) 确定氧原子数 由IR确定有无 υOH、υC=O和υC-O-C的特征吸收谱带以及
前面提到的由 13C-NMR和1H-NMR求得的氢原子数之间有 无差别,或从有无 C=O或C-O峰来确定含氧原子的可能性, 并可进一步用 13C-NMR,1H-NMR 和MS等有关峰数确定。
若MS中的分子离子峰是奇数时,此时含 N原子,研究是 否含硝基或亚硝基。
利用 IR检查是否含有相应的官能团,以确定是否含有硫、 磷。
由于有关重键、完全不含有与氢相连结的 C-S-C键及CS-S-C键等,在 IR中并不显示强的吸收带,从其它图谱也 只能得到间接的信息,所以应从整体综合判断确定硫和磷 原子,当然从 MS中也可以得到是否含硫原子的信息。
3.计算不饱和度 分子式确定后,可方便的按下式计算出不饱和度来: U=n4+1+(n 3-n1)/2
4.各部分结构的确定。
波谱四种谱图的综合解析
![波谱四种谱图的综合解析](https://img.taocdn.com/s3/m/3a6dd44ba5e9856a561260bb.png)
• 目的:
• 鉴定有机化合物、 新合成的有机化合 物、中间体、天然 产物的提取物、违 禁药物的鉴定、精 细化工产品配方的 剖析
荷 兰 人 华 士·胡 博用他 的两幅 慈禧油 画肖像 ,为我 们留下 了一个 百年谜题。这
两 幅 画 , 容 貌的细 节不同 ,精神 气质更 是迥异 ,这是 什么原 因呢? 哪幅画 更接近 晚 年 慈 禧 的 真实面 貌呢? 如 果 慈 禧 知道这 位画家 还另外 为她画 了一幅 肖像, 她 还 会 对 他 说“Good”吗 ? 当 一 位 荷 兰画 家把他 绘制的 肖像小 样交给 慈禧审 阅 的 时 候 , 太后出 人意料 地用英 语评价 道——“Good! ” 这 是 1905年 曾 经真
• 其它辅助参考: • 物理常数的测定:熔点、沸点、比重、
折射率… … • 元素分析:C、H、N、S、O、P、F、
Cl、Br、I … … • 物理状态的观察:液、固、气味、灼烧-
--特证火焰颜色… …
四种谱图的综合解析
例1:由如下四种谱图解析C5H10O的结 构 (UV谱的浓度为0.31克/100毫升)
从IR谱中的1600和1500 cm-1 处后者比前者强的双 峰是苯环的骨架伸缩振动,1380cm-1 处是-CHCH3的弯曲振动,860-800 cm-1 处强峰是苯环对 位二取代的特征峰;
从估计分子式:C9H9ClO3中减去—Cl、—C6H4-、 >CH-CH3、—COOH基团,只剩下—O—基团, 因此,可拼出以下结构:
从NMR谱可直接看到烷 基联在羰基碳上, δ=2.4ppm处有一个质 子多重峰,2.05ppm处 为三个质子的单峰,中 心为δ=1.08ppm处有6 个质子的双峰
(J•=27.H0z5)p,pm处三个质子的单峰为CH3(C=O)-, 2.4ppm处一质子多重峰 与1.08ppm 处6个质子的双峰偶合,是 (CH3)2-CH- 基团的典型共振吸收峰, 从而得出该化合物可能为(CH3)2-CH(C=O)-CH3 。
天然药物化学的波谱分析会考四种谱的
![天然药物化学的波谱分析会考四种谱的](https://img.taocdn.com/s3/m/f1264a429e3143323868930e.png)
天然药物化学的波谱分析会考四种谱的,黄酮的紫外与核磁共振氢谱;甾体与三萜的核磁共振碳谱;这两种就是容易出大题的。
红外会考醌类(选择),两种甾烷(鉴别);综合的会在鉴别题的三萜鉴别里有,这就考察能力了。
糖在甾体与三萜里会附加考察,再非主流只有大牛能过考试了。
下面分别来说下做题技巧三萜皂苷与甾体皂苷考察核磁共振碳谱第一步:瞧下备选结构就是甾体皂苷还就是三萜皂苷,记下大概其的碳位第二步:标记出碳谱数据中,苷元的所有60~80;109~160;170~220的部分,糖中苷化位移3~9的,或者化学位移95~96的。
第三步:根据数据来跟备选结构比对:连续出现两个碳位109~160,双键;出现170~220的碳位,酮或者羧基;出现60~80的碳位,醇羟基。
之后选择出来正确的结构,写出原因。
第四步:甾体皂苷就是3位羟基成苷,所以要关注下3位碳的苷化位移就是否就是+8~+10,甾体皂苷一般连有两个糖,所以还要关注下糖与糖的连接位置,糖连接处的碳苷化位移就是+3~+8(出现9的也可以),大家可以瞧下Gal半乳糖,一般在那里;三萜皂苷就是28位碳的羧基成苷,所以要关注下28位碳的苷化位移就是否就是-2~-8;三萜皂苷只有一个糖,糖的一位碳的化学位移就是95~96。
第五步:确定糖的构型,瞧耦合常数,如果J=6~8Hz就是?构型;如果J=2~4Hz就是á构型。
第六步:画图,一定会画葡萄糖与半乳糖的Haworth式,有个口诀就是葡萄糖上下上下,半乳糖就是上上上下。
其她需要注意的问题:(会出现的问题)1. Molish反应呈阳性说明该物质就是苷类2. Liebermann-Burchard反应阳性说明就是三萜或者甾体皂苷3. 红外光谱在3500左右的就是羟基,1737,1714的就是酮羰基。
黄酮类化合物考察核磁共振氢谱与紫外光谱诊断试剂一般考察黄酮与黄酮醇,其她的难度有些大,考的可能性也不大。
我比较喜欢先解析氢谱后解紫外(大家随意)步骤:第一步:画出2-苯基色原酮的结构,标号;第二步:将核磁共振氢谱信息进行分类,将含J=2、5Hz,且位移小于7的,以及J=9Hz的,分到A环里;含J=2、5Hz,且位移大于7的,以及J=8、5Hz的,分到B环里;将含s的,分到C环里。
四大波谱基本概念以及解析综述
![四大波谱基本概念以及解析综述](https://img.taocdn.com/s3/m/6f1d46c5ba0d4a7303763a21.png)
四大谱图基本原理及图谱解析一.质谱1.基本原理:用来测量质谱的仪器称为质谱仪,可以分成三个部分:离子化器、质量分析器与侦测器。
其基本原理是使试样中的成分在离子化器中发生电离,生成不同荷质比的带正电荷离子,经加速电场的作用,形成离子束,进入质量分析器。
在质量分析器中,再利用电场或磁场使不同质荷比的离子在空间上或时间上分离,或是透过过滤的方式,将它们分别聚焦到侦测器而得到质谱图,从而获得质量与浓度(或分压)相关的图谱。
在质谱计的离子源中有机化合物的分子被离子化。
丢失一个电子形成带一个正电荷的奇电子离子(M+·)叫分子离子。
它还会发生一些化学键的断裂生成各种碎片离子。
带正电荷离子的运动轨迹:经整理可写成:式中:m/e为质荷比是离子质量与所带电荷数之比;近年来常用m/z表示质荷比;z表示带一个至多个电荷。
由于大多数离子只带一个电荷,故m/z就可以看作离子的质量数。
质谱的基本公式表明:(1)当磁场强度(H)和加速电压(V)一定时,离子的质荷比与其在磁场中运动半径的平方成正比(m/z ∝r2m),质荷比(m/z)越大的离子在磁场中运动的轨道半径(rm)也越大。
这就是磁场的重要作用,即对不同质荷比离子的色散作用。
(2)当加速电压(V)一定以及离子运动的轨道半径(即收集器的位置)一定时,离子的质荷比(m/z)与磁场强度的平方成正比(m/z∝H2)改变H即所谓的磁场扫描,磁场由小到大改变,则由小质荷比到大质荷比的离子依次通过收集狭缝,分别被收集、检出和记录下来。
(3)若磁场强度(H)和离子的轨道半径(rm)一定时,离子的质荷比(m/z)与加速电压(V)成反比(m/z∝1/V),表明加速电压越高,仪器所能测量的质量范围越小。
就测量的质量范围而言,希望质量范围大一些,这就必须降低加速电压。
从提高灵敏度和分辨率来讲,需要提高加速电压。
这是一对矛盾,解决的办法是在质量范围够用的情况下尽量提高加速电压,高分辨质谱计加速电压为8kV,中分辨为4~3kV。
有机四大谱
![有机四大谱](https://img.taocdn.com/s3/m/bc12f96da45177232f60a23b.png)
(4)已知物的鉴定:若被测物的IR与已知物的谱 峰位置和相对强度完全一致,则可确认为一种物 质(注意仪器的灵敏度及H2O的干扰)。 (5)未知物的鉴定:可推断简单化合物的结构 。对复杂的化合物,需要UV、NMR、MS的数据
5、红外光谱图(IR)
官能团区:40001400cm-1,伸缩振动引起,谱带比较简单, 特征性强。 3700-2500cm-1 2500-1900 cm-1 1900-1400 cm-1 C=C C=O
核
1H
天然丰度(%) 99.98
1.108 0.365 100 100
在同一磁场中的相对灵敏度 1.00
0.016 0.00104 0.834 0.066
13C
15N
19F
31P
核磁共振波谱仪:连续波扫描NMR和FT-NMR
二、质子的化学位移
1、 化学位移的起
因 化学位移源于核外电子在磁场中运动产生的感应磁场的屏蔽 或去屏蔽效应。质子发生核磁共振的真正条件应为: 射 = H有效/ 2 其中:H有效= H0(1-s) = H0 - H感应
有机四大谱:紫外吸收光谱、红外吸收光谱 、 核磁共振谱、质谱 UV 0.01-5mg(与天平精度有关) IR 0.1-1mg 样品用量少 优点 NMR 1-5mg 准确快速 MS 0.001-0.1mg
UV IR NMR MS
2-10万
说明
(Ⅴ) 特 羰基伸 征 缩振动 频 区 率 区 (Ⅵ) 两键伸 缩振动 区 (Ⅶ) 饱合 C-H 面 内弯曲 振动区
1900~1630
C=O 伸缩
酸酐两峰相距 60cm-1
C=C 伸缩 1675~1500 1475~1300 C=N 伸缩 N=N 伸缩 C-H 面 内 弯曲
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CH
C
O+
m/e71
C
O+
m/e43
H3C m/e43
• (CH3)2CH+ 的 存 在 由 中 等 强 度 的 m/e=41 与 m/e=39.2 亚 稳 峰 的 存 在 而确认: • (CH3)2CH+ → C3H5+ m/e=43 m/e=41
• m*=m22/m1=412/43= • =39.1≈39.2
• 由 IR 谱在 32002500 cm-1 的宽 峰 和 接 近 1700 cm-1 的 强 峰 可 推测分子中可 能含有 -COOH , 在 1200-1250 附 近的强峰可推 测分子中可能 含 有 醚 键 (C-O-C);
• 从 1H-NMR 谱的高场到低场各峰的积分曲线高度比 为3:1:2:2:1,估计分子中可能是9个H,再估计 C 数 为 ( 200-9-16×3-35 ) /12=9 , 估 计 分 子 式 : C9H9ClO3 • 不饱和度=1+n4+1/2×(n3-n1) =1+9+1/2×(0-9-1)=5;
从估计分子式:C9H9ClO3中减去—Cl、—C6H4-、 >CH-CH3、—COOH基团,只剩下—O—基团, 因此,可拼出以下结构:
H3CHC
O
Cl
H3CHC Cl
COOH
COOH
A
B
检查 MS 谱, m/e=155 、 128 、 111 均含有 C1 原子, 说明 C1 原子与苯环直接相连,因此 C1 原子上的 孤对电子与苯环发生 p-π 共轭,所以不易被丢失, 上述三个离子的裂解可有下图得到合理的解释, 所以未知物的结构应是A:
四种谱图的综合解析
• 目的: • 鉴定有机化合物、 新合成的有机化合 物、中间体、天然 产物的提取物、违 禁药物的鉴定、精 细化工产品配方的 剖析
四种谱图的综合解析
•有机化合物结构分析的一般程序 : 1. 纯度检查;2. 测定分子量;3. 确定分子 式; 4. 计算不饱和度; 5. 推测结构单元、 计算剩余基团、拼出结构式;6. 验证。 • 混合物的分离方法:萃取、蒸馏、制备色谱、 薄层色谱…… • • 四种谱图从那一步入手?看着瞧!
三张谱图中都有苯环存在的证据,加上-COOH基 团,不饱和度与计算相附; 由1H-NMR谱看出:δ=1.7ppm处的二重峰与 δ=4.7ppm处的四重峰组合应是>CH-CH3基团, δ=7ppm附近的两个变形的二重峰为苯环的对位二取 代, δ=11ppm附近处的峰为-COOH上的H;
从IR谱中的1600和1500 cm-1 处后者比前者强的双 峰是苯环的骨架伸缩振动,1380cm-1 处是-CHCH3的弯曲振动,860-800 cm-1 处强峰是苯环对 位二取代的特征峰;
从IR谱中的1385和1375 cm-1 的双峰也可证明其是 (CH3)2-CH- 基团的CH3的1380 cm-1裂分的双峰;
• 从 MS 谱 m/e=71 、 m/e=43 峰可以认为 是由下述裂解所致:
H3C O H3C H3C H3C CH C CH 3 阿尔法开裂 H3C H3C H3C H3C H3C CH C O+ CH+ + CO
最后对其推导的结构再进一步确认。
(CH3)2CHCOCH3
• 推导成功!你已经初步掌握了解谱方法,要多练!
例2:由MS、IR、1H-NMR谱 图推测化合物的结构
解:
• 由 MS 可看出该化 合物的分子量为 200 ,并且由 M 和 M+2 离 子 峰 的 相 对 丰 度 近 似 为 3:1 可知分子中含有 一个氯原子;
A: CH3 - CH (COOH) - O-Ph-Cl
最后对其推导的结构再进一步确认
• 推导成功!你将得到鲜花和掌声!
四种谱图的综合解析
• 其它辅助参考: • 物理常数的测定:熔点、沸点、比重、 折射率… … • 元素分析:C、H、N、S、O、P、F、Cl、 Br、I … … • 物理状态的观察:液、固、气味、灼烧--特证火焰颜色… …
四种谱图的综合解析
例1:由如下四种谱图解析C5H10O的结构
(UV谱的浓度为0.31克/100毫升)
IR谱图
NMR谱图
解:=A/(C*l)= =0.77/(0.31*1000/86/100*1)=21.4
• UN=1+n4+1/2(n3-n1)=1+5+1/2* • *(0-10)=1 • 一个双键(或一个环),分子量86, • 由 UV 谱 max=285nm max=21.4,表明为一饱和羰基化合 物,与丙酮的 max=270nm ≈15 相比,此化合物的max红移15nm, 表明羰基相邻碳原子上带有烷基;
• IR 谱在 3100-3000 cm-1 、接近 1600 cm-1 处和 低于 900 cm-1 处无明显吸收峰,故为脂肪族化 合物, 1717 cm-1 处的强峰和 3435 cm-1 处的倍 频峰表明是典型的醛、酮、或酸的羰基吸收, 但从NMR谱看不出醛或酸的官能团,所以C5H10O 必是酮:C4H10 C= O;
从NMR谱可直接看到烷基 联在羰基碳上, δ=2.4ppm处有一个质子 多重峰,2.05ppm处为三 个质子的单峰,中心为 δ=1.08ppm处有6个质子 的双峰(J=7Hz),
• 2.05ppm处三个质子的单峰为CH3-(C=O) -, 2.4ppm处一质子多重峰与1.08ppm 处6个质子的双峰偶合,是(CH3)2-CH基团的典型共振吸收峰,从而得出该化 合物可能为(CH3)2-CH-(C=O)-CH3 。