西工大18秋《计算方法》在线作业辅导答案
西工大18秋《现代设计方法》在线作业辅导答案
西工大18秋《现代设计方法》在线作业
若设计空间中任意两点连成的直线上的所有点都在设计空间中,则称该设计空间为凸集。
()
A.错误
B.正确
正确答案:B
产品的平均寿命指一批类型、规格相同的产品从投入运行到发生规定可靠度的失效所经历的平均工作时间。
()
A.错误
B.正确
正确答案:B
有限元是指尺寸有限的单元。
()
A.错误
B.正确
正确答案:B
节点是单元边界上的指定点。
()
A.错误
B.正确
正确答案:B
并列系统由一系列单元并联而成,同时工作,所有单元都接受相同的输入,并与同一个输出相连。
只要有一个单元正常工作,系统即可正常工作。
()
A.错误
B.正确
正确答案:B
海森矩阵是多元函数对自变量的二阶导数矩阵。
()
A.错误
B.正确
正确答案:B。
计算方法各习题及参考答案
计算⽅法各习题及参考答案第⼆章数值分析2.1 已知多项式432()1p x x x x x =-+-+通过下列点:试构造⼀多项式()q x 通过下列点:答案:54313()()()3122q x p x r x x x x x =-=-++-+. 2.2 观测得到⼆次多项式2()p x 的值:表中2()p x 的某⼀个函数值有错误,试找出并校正它.答案:函数值表中2(1)p -错误,应有2(1)0p -=.2.3 利⽤差分的性质证明22212(1)(21)/6n n n n +++=++ .2.4 当⽤等距节点的分段⼆次插值多项式在区间[1,1]-近似函数xe 时,使⽤多少个节点能够保证误差不超过61102-?.答案:需要143个插值节点.2.5 设被插值函数4()[,]f x C a b ∈,()3()h H x 是()f x 关于等距节点01n a x x x b =<<<= 的分段三次艾尔⽶特插值多项式,步长b a h n-=.试估计()3||()()||h f x H x ∞-.答案:()443||()()||384h M f x H x h ∞-≤.第三章函数逼近3.1 求()sin ,[0,0.1]f x x x =∈在空间2{1,,}span x x Φ=上最佳平⽅逼近多项式,并给出平⽅误差.答案:()sin f x x =的⼆次最佳平⽅逼近多项式为-522sin ()0.832 440 710 1.000 999 10.024 985 1x p x x x ≈=-?+-,⼆次最佳平⽅逼近的平⽅误差为0.122-1220(sin )())0.989 310 710x p x dx δ=-=??.3.2 确定参数,a b c 和,使得积分2121(,,)[I a b c ax bx c -=++-?取最⼩值.答案:810, 0, 33a b c ππ=-== 3.3 求多项式432()251f x x x x =+++在[1,1]-上的3次最佳⼀致逼近多项式()p x .答案:()f x 的最佳⼀致逼近多项式为323()74p x x x =++. 3.4 ⽤幂级数缩合⽅法,求() (11)x f x e x =-≤≤上的3次近似多项式6,3()p x ,并估计6,3||()()||f x p x ∞-.答案:236,3()0.994 574 650.997 395 830.542 968 750.177 083 33p x x x x =+++, 6,3||()()||0.006 572 327 7f x p x ∞-≤3.5 求() (11)xf x e x =-≤≤上的关于权函数()x ρ=的三次最佳平⽅逼近多项式3()S x ,并估计误差32||()()||f x S x -和3||()()||f x S x ∞-.答案:233()0.994 5710.997 3080.542 9910.177 347S x x x x =+++,32||()()||0.006 894 83f x S x -=,3||()()||0.006 442 575f x S x ∞-≤.第四章数值积分与数值微分4.1 ⽤梯形公式、⾟浦⽣公式和柯特斯公式分别计算积分1(1,2,3,4)n x dx n =?,并与精确值⽐较.答案:计算结果如下表所⽰4.2 确定下列求积公式中的待定参数,使得求积公式的代数精度尽量⾼,并指明所确定的求积公式具有的代数精度.(1)101()()(0)()hh f x dx A f h A f A f h --≈-++?(2)11211()[(1)2()3()]3f x dx f f x f x -≈-++? (3)20()[(0)()][(0)()]2h h f x dx f f h h f f h α''≈++-?答案:(1)具有三次代数精确度(2)具有⼆次代数精确度(3)具有三次代数精确度.4.3 设10h x x =-,确定求积公式12300101()()[()()][()()][]x x x x f x dx h Af x Bf x h Cf x Df x R f ''-=++++?中的待定参数,,,A B C D ,使得该求积公式的代数精确度尽量⾼,并给出余项表达式.答案:3711,,,20203020A B C D ====-,(4)6()[]1440f R f h η=,其中01(,)x x η∈.4.4 设2()P x 是以0,,2h h 为插值点的()f x 的⼆次插值多项式,⽤2()P x 导出计算积分30()hI f x dx =?的数值积分公式h I ,并⽤台劳展开法证明:453(0)()8h I I h f O h '''-=+.答案:3203()[(0)3(2)]4h h I p x dx h f f h ==+?.4.5 给定积分10sin xI dx x =(1)运⽤复化梯形公式计算上述积分值,使其截断误差不超过31102-?.(2)取同样的求积节点,改⽤复化⾟浦⽣公式计算时,截断误差是多少?(3)要求的截断误差不超过610-,若⽤复化⾟浦⽣公式,应取多少个节点处的函数值?答案:(1)只需7.5n ≥,取9个节点,0.946I ≈(2)4(4)46111|[]||()|()0.271102880288045n b a R f h f η--=-≤=? (3)取7个节点处的函数值.4.6 ⽤变步长的复化梯形公式和变步长的复化⾟浦⽣公式计算积分10sin xI dx x =?.要求⽤事后误差估计法时,截断误不超过31102-?和61102-?.答案:使⽤复化梯形公式时,80.946I T ≈=满⾜精度要求;使⽤复化⾟浦⽣公式时,40.946 083I s ≈=满⾜精度要求.4.7(1)利⽤埃尔⽶特插值公式推导带有导数值的求积公式2()()[()()][()()][]212ba b a b a f x dx f a f b f b f a R f --''=+--+?,其中余项为 5(4)()[](), (,)4!30b a R f f a b ηη-=∈.(2)利⽤上述公式推导带修正项的复化梯形求积公式020()[()()]12Nx N N x h f x dx T f x f x ''≈--?,其中 0121[()2()2()2()()]2N N N hT f x f x f x f x f x -=+++++ ,⽽ 00, (0,1,2,,), i N x x ih i N Nh x x =+==- .4.8 ⽤龙贝格⽅法计算椭圆2214x y +=的周长,使结果具有五位有效数字.答案:49.6884l I =≈.4.9确定⾼斯型求积公式0011()()()x dx A f x A f x ≈+?的节点0x ,1x 及系数0A ,1A .答案:00.289 949x =,10.821 162x =,00.277 556A =,10.389 111A =.4.10 验证⾼斯型求积公式00110()()()x e f x dx A f x A f x +∞-≈+?的系数及节点分别为0001 2 2A A x x ===-=+第五章解线性⽅程组的直接法5.1 ⽤按列选主元的⾼斯-若当消去法求矩阵A 的逆矩阵,其中11121 0110A -?? ?= ? ?-??.答案: 1110331203321133A -?? ? ?=---5.2 ⽤矩阵的直接三⾓分解法解⽅程组1234102050101312431701037x x x x= ? ? ? ? ? ? ? ? ??答案: 42x =,32x =,21x =,11x =.5.3 ⽤平⽅根法(Cholesky 分解法)求解⽅程组12341161 4.25 2.750.51 2.75 3.5 1.25x x x -?????? ??? ?-=- ??? ? ??? ???????答案: 12x =,21x =,31x =-.5.4 ⽤追赶法求解三对⾓⽅程组123421113121112210x x x x ?????? ? ? ? ? ? ?= ? ? ? ? ? ? ? ? ?????答案:42x =,31x =-,21x =,10x =.第六章解线性代数⽅程组的迭代法6.1对⽅程1212123879897x x x x x x x -+=??-+=??--=?作简单调整,使得⽤⾼斯-赛得尔迭代法求解时对任意初始向量都收敛,并取初始向量(0)[0 0 0]T x =,⽤该⽅法求近似解(1)k x+,使(1)()3||||10k k x x +-∞-≤.答案:近似解为(4)[1.0000 1.0000 1.0000]Tx =.6.2讨论松弛因⼦ 1.25ω=时,⽤SOR ⽅法求解⽅程组121232343163420412x x x x x x x +=??+-=??-+=-? 的收敛性.若收敛,则取(0)[0 0 0]T x=迭代求解,使(1)()41||||102k k x x +-∞-<.答案:⽅程组的近似解为*1 1.50001x =,*2 3.33333x =,*3 2.16667x =-.6.3给定线性⽅程组Ax b =,其中111221112211122A ?? ? ?=,证明⽤雅可⽐迭代法解此⽅程组发散,⽽⾼斯-赛得尔迭代法收敛.6.4设有⽅程组112233302021212x b x b x b -?????? ??? ?= ??? ? ??? ?-??????,讨论⽤雅可⽐⽅法和⾼斯-赛得尔⽅法解此⽅程组的收敛性.如果收敛,⽐较哪种⽅法收敛较快.答案:雅可⽐⽅法收敛,⾼斯-赛得尔⽅法收敛,且较快.6.5设矩阵A ⾮奇异.求证:⽅程组Ax b =的解总能通过⾼斯-赛得尔⽅法得到.6.6设()ij n nA a ?=为对称正定矩阵,对⾓阵1122(,,,)nn D diag a a a = .求证:⾼斯-赛得尔⽅法求解⽅程组1122D AD x b --=时对任意初始向量都收敛.第七章⾮线性⽅程求根例7.4对⽅程230xx e -=确定迭代函数()x ?及区间[,]a b ,使对0[,]x a b ?∈,迭代过程1(), 0,1,2,k x x k ?+== 均收敛,并求解.要求51||10k k x x -+-<.答案:若取2()x x ?=,则在[1,0]-中满⾜收敛性条件,因此迭代法121, 0,1,2,k x k x k +== 在(1,0)-中有惟⼀解.取00.5x =-,*70.458960903x x ≈=-.取2()x x ?=,在[0,1上满⾜收敛性条件,迭代序列121, 0,1,2,k x k x k +== 在[0,1]中有惟⼀解.取00.5x =,*140.910001967x x ≈=- 在[3,4]上,将原⽅程改写为23xe x =,取对数得2ln(3)()x x x ?==.满⾜收敛性条件,则迭代序列21ln(3), 0,1,2,k k x x k +== 在[3,4]中有惟⼀解.取0 3.5x =, *16 3.733067511x x ≈=.例7.6对于迭代函数2()(3)x x c x ?=+-,试讨论:(1)当c 为何值时,1()k k x x ?+=产⽣的序列{}k x(2)c 取何值时收敛最快?(3)取1,2c =-()x ?51||10k k x x -+-<.答案:(1)(c ∈时迭代收敛.(2)c =时收敛最快.(3)分别取1, 2c =--,并取0 1.5x =,计算结果如下表7.7所⽰表7.7例7.13 设不动点迭代1()k x x ?+=的迭代函数()x ?具有⼆阶连续导数,*x 是()x ?的不动点,且*()1x ?'≠,证明Steffensen 迭代式21(), (), 0,1,2,()2k k k k k k k k k k k y x z x k y x x x z y x+===-?=-?-+?⼆阶收敛于*x .例7.15 设2()()()()()x x p x f x q x f x ?=--,试确定函数()p x 和()q x ,使求解()0f x =且以()x ?为迭代函数的迭代法⾄少三阶收敛.答案:1()()p x f x =',31()()2[()]f x q x f x ''=' 例7.19 设()f x 在[,]a b 上有⾼阶导数,*(,)x a b ∈是()0f x =的(2)m m ≥重根,且⽜顿法收敛,证明⽜顿迭代序列{}k x 有下列极限关系:111lim2k kk k k k x x m x x x -→∞-+-=-+.第⼋章矩阵特征值8.1 ⽤乘幂法求矩阵A 的按模最⼤的特征值与对应的特征向量,已知5500 5.51031A -?? ?=- ? ?-??,要求(1)()611||10k k λλ+--<,这⾥()1k λ表⽰1λ的第k 次近似值.答案:15λ≈,对应的特征向量为[5,0,0]T-;25λ≈-,对应的特征向量为[5,10,5]T --. 8.2 ⽤反幂法求矩阵110242012A -??=-- -的按模最⼩的特征值.知A 的按模较⼤的特征值的近似值为15λ=,⽤5p =的原点平移法计算1λ及其对应的特征向量.答案:(1) A 的按模最⼩的特征值为30.2384428λ≈(2) 1 5.1248854λ≈,对应的特征向量为(8)[0.242 4310, 1 ,0.320 011 7]T U =--.8.3 设⽅阵A 的特征值都是实数,且满⾜121, ||||n n λλλλλ>≥≥> ,为求1λ⽽作原点平移,试证:当平移量21()2n p λλ=+时,幂法收敛最快. 8.4 ⽤⼆分法求三对⾓对称⽅阵1221221221A ?? ? ?= ? ? ???的最⼩特征值,使它⾄少具有2位有效数字.答案:取5 2.234375λ≈-即有2位有效数字.8.5 ⽤平⾯旋转变换和反射变换将向量[2 3 0 5]T x =变为与1[1 0 0 0]Te =平⾏的向量.答案:203/2/00001010/0T ??- ?=--?0.324 442 8400.486 664 26200.811 107 1040.486 664 2620.812 176 04800.298 039 92200100.811 107 1040.298 039 92200.530 266 798H --??--= ? ?--8.6 若532644445A -??=- -,试把A 化为相似的上Hessenberg 阵,然后⽤QR ⽅法求A 的全部特征值.第九章微分⽅程初值问题的数值解法9.1 ⽤反复迭代(反复校正)的欧拉预估-校正法求解初值问题0, 0<0.2(0)1y y x y '+=≤??=?,要求取步长0.1h =,每步迭代误差不超过510-.答案: [4]11(0.1)0.904 762y y y ≈==,[4]22(0.2)0.818 594y y y ≈==9.2 ⽤⼆阶中点格式和⼆阶休恩格式求初值问题2, 0<0.4(0)1dy x y x dx y ?=+≤=?的数值解(取步长0.2h =,运算过程中保留五位⼩数).答案:⽤⼆阶中点格式,取初值01y =计算得0n =时,1211.000 00, 1.200 00, (0.2)=1.240 00K K y y ==≈ 1n =时,1221.737 60, 2.298 72, (0.4)=1.699 74K K y y ==≈⽤⼆阶休恩格式,取初值01y =计算得0n =时,1211.000 00, 1.266 67, (0.2)=1.240 00K K y y ==≈ 1n =时,1221.737 60, 2.499 18, (0.4)=1.701 76K K y y ==≈9.3 ⽤如下四步四阶阿达姆斯显格式1123(5559379)/24n n n n n n y y h f f f f +---=+-+-求初值问题, (0)1y x y y '=+=在[0,0.5]上的数值解.取步长0.1h =,⼩数点后保留8位.答案:4(0.4)0.583 640 216y y ≈=,5(0.5) 1.797 421 984y y ≈=. 9.4 为使⼆阶中点公式1(,(,))22n n n n n n h hy y hf x y f x y +=+++,求解初值问题 , (0)y y y aλλ'=-??=?为实常数绝对稳定,试求步长h 的⼤⼩应受到的限制条件.答案:2h λ≤.9.5 ⽤如下反复迭代的欧拉预估-校正格式(0)1(1)()111(,)[(,)(,)]2 0,1,2,; 0,1,2,nn n n k k n n n n n n y y hf x y h y y f x y f x y k n +++++?=+??=++??==,求解初值问题sin(), 01(0)1x y e xy x y '?=<≤?=?时,如何选择步长h ,使上述格式关于k 的迭代收敛.答案:2h e<时上述格式关于k 的迭代是收敛的.9.6 求系数,,,a b c d ,使求解初值问题0(,), ()y f x y y x a '==的如下隐式⼆步法221()n n n n n y ay h bf cf df +++=+++的误差阶尽可能⾼,并指出其阶数.答案:系数为142,,33a b d c ====,此时⽅法的局部截断误差阶最⾼,为五阶5()O h .9.7 试⽤欧拉预估-校正法求解初值问题, (0)=1, 0<0.2()/, (0)2dyxy z y dxx dz x y z z dx=-≤=+=,取步长0.1h =,⼩数点后⾄少保留六位.答案:由初值00(0)1, (0)2y y z z ====可计算得110.800 000z 2.050 000y =??=? , 11(0.1)0.801 500(0.1) 2.046 951y y z z ≈=??≈=? 220.604 820z 2.090 992y =??=? , 22 (0.2)0.604 659(0.2) 2.088 216y y z z ≈=??≈=?。
西工大计算方法作业答案
参考答案 第一章1 *1x =1.7; *2x =1.73; *3x =1.732 。
2.3. (1) ≤++)(*3*2*1x x x e r 0.00050; (注意:应该用相对误差的定义去求) (2) ≤)(*3*2*1x x x e r 0.50517; (3) ≤)/(*4*2x x e r 0.50002。
4.设6有n 位有效数字,由6≈2.4494……,知6的第一位有效数字1a =2。
令3)1()1(1*1021102211021)(-----⨯≤⨯⨯=⨯=n n r a x ε 可求得满足上述不等式的最小正整数n =4,即至少取四位有效数字,故满足精度要求可取6≈2.449。
5. 答:(1)*x (0>x )的相对误差约是*x 的相对误差的1/2倍;(2)nx )(* 的相对误差约是*x 的相对误差的n 倍。
6. 根据********************sin 21)(cos 21sin 21)(sin 21sin 21)(sin 21)(c b a c e c b a c b a b e c a c b a a e c b S e r ++≤=******)()()(tgcc e b b e a a e ++ 注意当20*π<<c 时,0**>>c tgc ,即1*1*)()(--<c tgc 。
则有)()()()(****c e b e a e S e r r r r ++<7.设20=y ,41.1*0=y ,δ=⨯≤--2*001021y y 由 δ1*001*111010--≤-=-y y y y ,δ2*111*221010--≤-=-y y y yMδ10*991*10101010--≤-=-y y y y即当0y 有初始误差δ时,10y 的绝对误差的绝对值将减小1010-倍。
而11010<<-δ,故计算过程稳定。
西北工业大学计算方法作业集答案及试题
2 则有 er ( S ) < er ( a * ) + er (b * ) + er (c * )
*
注意当 0 < c <
*
π
时, tgc * > c * > 0 ,即 (tgc * )
−1
< (c * ) 。
−1
7.设 y0 = 由
1 * * 2 , y0 = 1.41 , y0 − y0 ≤ × 10 − 2 = δ 2 * −1 * −1 y1 − y1 = 10 y0 − y0 ≤ 10 δ ,
η ∈ [ a, b]
1 f ′(η )(b − a ) 2 2
(2)右矩形公式 将 f(x)在 b 处展开,并积分,得 (3)中矩形公式 将 f(x)在 a + b 处展开,得
2
∫
b
a
f ( x)dx = (b − a ) f (b) −
x * ( x > 0 )的相对误差约是 x * 的相对误差的 1/2 倍; * * n (2) ( x ) 的相对误差约是 x 的相对误差的 n 倍。 1 * * 1 * 1 * b sin c *e(a * ) a sin c *e(b* ) a b cos c *e(c * ) * 2 2 2 6. 根据 er ( S ) ≤ + + 1 * * 1 * * 1 * * a b sin c * a b sin c * a b sin c * 2 2 2 * * * e(a ) e(b ) e(c ) = + * + a* b tgc *
I = 5.6308e −2.8882t
3.1781 4 3.1781 3.6092
计算方法-习题第一、二章答案.doc
第一章 误差1 问3.142,3.141,722分别作为π的近似值各具有几位有效数字?分析 利用有效数字的概念可直接得出。
解 π=3.141 592 65…记x 1=3.142,x 2=3.141,x 3=722.由π- x 1=3.141 59…-3.142=-0.000 40…知3411110||1022x π--⨯<-≤⨯ 因而x 1具有4位有效数字。
由π- x 2=3.141 59…-3.141=-0.000 59…知2231021||1021--⨯≤-<⨯x π因而x 2具有3位有效数字。
由π-722=3.141 59 …-3.142 85…=-0.001 26…知231021|722|1021--⨯≤-<⨯π因而x 3具有3位有效数字。
2 已知近似数x*有两位有效数字,试求其相对误差限。
分析 本题显然应利用有效数字与相对误差的关系。
解 利用有效数字与相对误差的关系。
这里n=2,a 1是1到9之间的数字。
%5101211021|*||*||)(|1211*=⨯⨯≤⨯≤-=+-+-n ra x x x x ε3 已知近似数的相对误差限为0.3%,问x*至少有几位有效数字?分析 本题利用有效数字与相对误差的关系。
解 a 1是1到9间的数字。
1112*10)1(2110)19(21102110003%3.0)(--⨯+≤⨯+⨯=⨯<=a x r ε 设x*具有n 位有效数字,令-n+1=-1,则n=2,从而x*至少具有2位有效数字。
4 计算sin1.2,问要取几位有效数字才能保证相对误差限不大于0.01%。
分析 本题应利用有效数字与相对误差的关系。
解 设取n 位有效数字,由sin1.2=0.93…,故a 1=9。
411*10%01.01021|*||*||)(-+-=≤⨯≤-=n ra x x x x ε解不等式411101021-+-≤⨯n a 知取n=4即可满足要求。
计算方法习题及答案
第一章 绪论一.填空题1.*x 为精确值x 的近似值;()**x f y=为一元函数()x f y =1的近似值;()**,*y x f y =为二元函数()y x f y ,2=的近似值,请写出下面的公式:**e x x =-:***rx x e x -=()()()*'1**y f x x εε≈⋅ ()()()()'***1**r r x f x y x f x εε≈⋅ ()()()()()**,**,*2**f x y f x y y x y x yεεε∂∂≈⋅+⋅∂∂()()()()()****,***,**222r f x y e x f x y e y y x y y y ε∂∂≈⋅+⋅∂∂2、 计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫 舍入误差 。
3、 分别用2.718281,2.718282作数e的近似值,则其有效数字分别有 6 位和 7 位;又取1.73≈(三位有效数字),则-211.73 10 2≤⨯。
4、设121.216, 3.654x x ==均具有3位有效数字,则12x x 的相对误差限为 0.0055 。
5、设121.216, 3.654x x ==均具有3位有效数字,则12x x +的误差限为 0.01 。
6、已知近似值 2.4560A x =是由真值T x 经四舍五入得到,则相对误差限为 0.000021 .7、递推公式,⎧⎪⎨⎪⎩0n n-1y =y =10y -1,n =1,2,如果取0 1.41y ≈作计算,则计算到10y 时,误差为8110 2⨯;这个计算公式数值稳定不稳定 不稳定 .8、精确值 14159265.3*=π,则近似值141.3*1=π和1415.3*2=π分别有 3 位和 4 位有效数字。
9、 若*2.71828x e x =≈=,则x 有 6 位有效数字,其绝对误差限为1/2*10-5。
10、 设x*的相对误差为2%,求(x*)n 的相对误差0.02n 二、计算题1. 有一个长方形水池,由测量知长为(50±0.01)米,宽为(25±0.01)米,深为(20±0.01)米,试按所给数据求出该水池的容积,并分析所得近似值的绝对误差和相对误差公式,并求出绝对误差限和相对误差限. 解:设长方形水池的长为L ,宽为W,深为H ,则该水池的面积为V=LWH当L=50,W=25,H=20时,有 V=50*25*20=25000(米3) 此时,该近似值的绝对误差可估计为()()()()()()()=V V VV L W H L W HWH L HL W LW H ∂∂∂∆≈∆+∆+∆∂∂∂∆+∆+∆ 相对误差可估计为:()()r V V V∆∆=而已知该水池的长、宽和高的数据的绝对误差满足()()()0.01,0.01,0.01L W H ∆≤∆≤∆≤故求得该水池容积的绝对误差限和相对误差限分别为()()()()()()325*20*0.0150*20*0.0150*25*0.0127.5027.501.1*1025000r V WH L HL W LW H V V V -∆≤∆+∆+∆≤++=∆∆=≤=2.已知测量某长方形场地的长a=110米,宽b=80米.若()()**0.1 0.1a a b b -≤-≤米,米试求其面积的绝对误差限和相对误差限. 解:设长方形的面积为s=ab当a=110,b=80时,有 s==110*80=8800(米2) 此时,该近似值的绝对误差可估计为()()()()()=b s ss a b a ba ab ∂∂∆≈∆+∆∂∂∆+∆ 相对误差可估计为:()()r s s s∆∆=而已知长方形长、宽的数据的绝对误差满足()()0.1,0.1a b ∆≤∆≤故求得该长方形的绝对误差限和相对误差限分别为()()()()() 80*0.1110*0.119.019.00.0021598800r s b a a b s s s ∆≤∆+∆≤+=∆∆=≤= 绝对误差限为19.0;相对误差限为0.002159。
计算方法课后习题集规范标准答案
习 题 一3.已知函数y =4, 6.25,9x x x ===处的函数值,试通过一个二次插值函解:0120124, 6.25,9;2, 2.5,3y x x x y y y =======由题意 (1) 采用Lagrange插值多项式220()()j j j y L x l x y ==≈=∑27020112012010*********()|()()()()()()()()()()()()(7 6.25)(79)(74)(79)(74)(7 6.25)2 2.532.255 2.25 2.75 2.7552.6484848x y L x x x x x x x x x x x x x y y y x x x x x x x x x x x x ==≈------=++------------=⨯+⨯+⨯⨯-⨯⨯= 其误差为(3)25(3)25(3)2[4,9]2()(7)(74)(7 6.25)(79)3!3()83max |()|40.0117281|(7)|(4.5)(0.01172)0.008796f R f x x f x R ξ--=---==<∴<=又则(2)采用Newton插值多项式2()y N x =≈ 根据题意作差商表:224(7)2(74)()(74)(7 6.25) 2.64848489495N =+⨯-+-⨯-⨯-≈4. 设()()0,1,...,k f x x k n ==,试列出()f x 关于互异节点()0,1,...,i x i n =的Lagrange 插值多项式。
注意到:若1n +个节点()0,1,...,i x i n =互异,则对任意次数n ≤的多项式()f x ,它关于节点()0,1,...,i x i n =满足条件(),0,1,...,i i P x y i n ==的插值多项式()P x 就是它本身。
可见,当k n ≤时幂函数()(0,1,...,)kf x x k n ==关于1n +个节点()0,1,...,i x i n =的插值多项式就是它本身,故依Lagrange 公式有()00(),0,1,...,nn n k kk i j j j j j i j ii jx x x l x x x k n x x ===≠-=≡=-∑∑∏特别地,当0k =时,有()0001nn n ij j j i j ii jx x l x x x ===≠-=≡-∑∑∏而当1k =时有()000nnn ij j j j j i j ii jx x x l x x x x x ===≠⎛⎫- ⎪=≡ ⎪- ⎪⎝⎭∑∑∏ 5.依据下列函数表分别建立次数不超过3的Lagrange 插值多项式和Newton 插值多项式,并验证插值多项式的唯一性。
西工大计算方法试题06-10(含答案)
一、考试内容线性方程组和非线性方程(组)的求解、矩阵特征值和特征向量的计算、微积分的计算、微分方程定解问题的求解等,都是工程、科技、统计等实际问题中大量碰到的数学问题,这些问题的精确解很难求出。
而《计算方法》则是一门适合于计算机计算求解的数值方法,它简单可行,能有效求出上述数学问题的近似解。
通过本课程的学习,要求学生能掌握利用计算机求解基本数学问题常用的数值计算方法,学会构造基本的计算格式,并能作一定的误差分析,使学生具备基本的科学计算能力。
主要有:1.了解计算方法的认务和特点;2.熟练掌握方程的的近似解法,包括二分法、迭代法、牛顿迭代法和弦割法3.熟练掌握线性代数方程组的解法,直接解法中的高斯消去法、矩阵的直接三角分解法,平方根分解法,解三对角方程组的追赶法;解线性方程组的迭代法,简单迭代法,雅可比迭代法,赛德尔迭代法,SOR方法及其收敛性4.熟练掌握矩特征值和特征向量的计算,乘幂法与反幂法,古典雅可比方法,雅可比过关法5.熟练掌握插值法,拉格朗日插值法,牛顿插值法,等距节点插值法,埃尔米特插值法,三次样条插值法6.熟练掌握最小二乘法与曲线拟合,掌握矛盾方程组与最小二乘法,数据的多项式拟合,可化为线性拟合模型的曲线拟合7.熟练掌握数值积分与数值微分,包括牛顿-柯特斯求积公式、复化求积公式、龙贝格求积算法、高斯型求积公式和数值微分;8. 熟练掌握常微分方程初值问题数值解法,包括欧拉法与梯形法、泰勒展开法与龙格-库塔法、线性多步法2006-2007第一学期一. 填空1) 近似数253.1*=x 关于真值249.1=x 有____位有效数字;2) 设有插值公式)()(111k nk k x f A dx x f ⎰∑-=≈,则∑=nk kA1=______;(只算系数)3) 设近似数0235.0*1=x ,5160.2*2=x 都是有效数,则相对误差≤)(*2*1x x e r ____; 4) 求方程x x cos =的根的牛顿迭代格式为______;5) 矛盾方程组⎪⎩⎪⎨⎧-=+=-=+1211212121x x x x x x 与⎪⎩⎪⎨⎧-=+=-=+121222212121x x x x x x 得最小二乘解是否相同______。
西北工业大学智慧树知到“计算机科学与技术”《计算方法》网课测试题答案卷3
西北工业大学智慧树知到“计算机科学与技术”《计算方
法》网课测试题答案
(图片大小可自由调整)
第1卷
一.综合考核(共10题)
1.利用待定系数法可以得出各种求积公式,而且可以具有尽可能高的代数精度。
()
A.正确
B.错误
2.判断参数值是否正确{图}。
()
A.正确
B.错误
3.牛顿迭代法的基本思想是将非线方程f(x)=0逐步转化为线性议程来求解。
()
A.正确
B.错误
4.雅可比方法的主要特点是什么()
A.精度高
B.算法稳定
C.稀疏性
D.求得的特征向量正交性好
5.议程的近似方法有()
A.迭代法
B.牛顿法
C.弦截法
D.二分法
6.{图}1
A.正确
B.错误
7.直接法是在理论上没有舍入误差的前提下经过有限步运算即可得到方程组的精确解。
() A.正确
B.错误
8.{图}1
A.D
B.C
C.B
D.A
9.列主元素消元法不是直接法中常用的方法。
()
A.正确
B.错误
10.乘幂法主要是用来求矩阵的主特征值(按模最大的特征值)及相应的特征向量。
()
A.正确
B.错误
第1卷参考答案
一.综合考核
1.参考答案:A
2.参考答案:A
3.参考答案:A
4.参考答案:ABD
5.参考答案:ABCD
6.参考答案:A
7.参考答案:A
8.参考答案:D
9.参考答案:B
10.参考答案:A。
计算方法 西北工业大学第一章答案
故arctan(x 1) arctan(x) arctan 1 1 xx1
(4)
1 cos x sin x
2sin2 x 2
2sin x cos x 22
2sin x 2
2cos x 2
(5) sin x 的 Taylor 展开为:
2sin x cos x 22
2cos x cos x 22
x3 x5 sin x x
≈
12������∗������∗ ������������������ ������∗������������(������∗) 12������∗������∗ ������������������ ������∗
+
12������∗������∗ ������������������ ������∗������������(������∗) 12������∗������∗ ������������������ ������∗
������������ (������2∗ )
=
������(������2∗) |������2∗|
=
1 2
× 10−3 0.002
=
0.25
������������ (������3∗ )
=
������(������3∗) |������3∗|
=
1 2
× 10−3 0.200
=
0.25
×
10−2
≈
|12
1 √������2∗
������2∗ ������2∗
������������ (������2∗ )|
≤
1 2
������������ (������2∗ )
计算方法_课后习题答案
L3 x 的最高次项系数是 6,试确定 y1 。
解: l0 (x)
x x1 x0 x1
x x2 x0 x2
x x3 x0 x3
x 0.5 0 0.5
x 1 0 1
x2 02
= x3
7 2
x2
7 2
x 1
l1 ( x)
x x0 x1 x0
(2 2e1 4e0.5 )x2 (4e0.5 e1 3)x 1
2)根据Lagrange余项定理,其误差为
| R2 (x) ||
f
(3) ( 3!
)
21
(
x)
||
1 6
e
x(
x
1)(
x
0.5)
|
1 max | x(x 1)(x 0.5) |, (0,1) 6 0x1
x2 02
x4= 04
x3
7x2 14x 8 8
l1 ( x)
x x0 x1 x0
x x2 x1 x2
x x3 x1 x3
x0 1 0
x2 1 2
x4 1 4
=
x3
6x2 3
8x
l2 (x)
x x0 x2 x0
i j
而当 k 1时有
n
x jl j
j0
x
n
n
j0 i0 i j
x xi x j xi
x
j
计算方法习题答案
f (0) = 1, f (1) < 0, f (ln 4) = 4 − 4 ln 4 < 0, f (2) < 0, f (3) > 0, 方程f (x) = 0存在两个根:
答
案
当x < ln 4时,f (x) < 0; 当x > ln 4时,f (x) > 0。
将方程f (x) = 0在区间[0, 1]改写成同解方程 1 x = ex , x ∈ [0, 1] 4 1 xk+1 = exk , k = 0, 1, 2, · · · 4 1 ϕ (x) = ex > 0. 4 4
设二分k 次,取xk ≈ x∗ , |xk − x∗ | = k ≥ 9.965, 所以要二分10次。
1 2k+1
(1 − 0) ≤
1 × 10−3 , 2
设二分k 次,同上题计算,需二分10次。计算机计算略, x∗ ≈ 0.921。
3. 用简单迭代法求下列方程的根,并验证收敛性条件,精确至4位有效数字。 1) x3 − x − 1 = 0; 2) ex − 4x = 0; 答 :以2)为例. 3) 4 − x = tan x, x ∈ [3, 4]; 4) ex − 3x2 = 0.
答
案
证明其相对误差限为
网
x = ±(a1 + a2 × 10−1 + · · · + an × 10−(n−1) ) × 10m ,
co
m
x1 = 4.8675,
x2 = 4.08675,
x3 = 0.08675,
x4 = 96.4ຫໍສະໝຸດ 30,1) x1 + x2 + x3 ; 答 :1). |e(x1 + x2 + x3 )| ≤
计算方法习题解答
《计算方法》习题参考答案习题一1.0.0020485⎪⎪⎪⎭⎝-⎪⎪⎪⎭ ⎝--100056151005620910001510T T )114,115,115,114(,)114,154,31,41(---=----=x y5.单位圆、过)0,1(),1,0(),1,0(),0,1(--的正方形、过)1,1(),1,1(),1,1(),1,1(----的正方形。
1. 计算1,2,1,104321====A A A A ,所以A 是正定矩阵。
分解矩阵⎪⎪⎪⎫⎛=0148.00017.00001L习题四1.用Jacobi 法计算结果如下(1)0.99999,1.99999,2.99998 (2)3.00000,1.99999,0.99999 用Seidel 法计算结果如下(1)0.99999,2.00000,3.00000 (2)3.00000,2.00000,1.000002.解得: 3.00000,4.00000,5.000003.(1)1)(1=B ρ,Jacobi 迭代法发散;A 为正定矩阵,Gauss-Seidel 法收敛。
(2)25)(1=B ρ,Jacobi 迭代法发散;21)(2=B ρ,Gauss-Seidel 法收敛。
4.交换前,A 严格对角占优,Jacobi 迭代法收敛;交换后,2)(1=B ρ,Jacobi 迭代法发6.1365518373419)(234++-+-=x x x x x N 。
7.124)(23+-+-=x x x x N 。
8.32)1(5)1(26)1(4115)(+-+++-=x x x x N9.432)2(81)2(1211)2(2445)2(12251)(+-+++-++=x x x x x N习题七1.可以2.可以3.]2,1[,27288)(];1,0[,51614)(22∈+-=∈++-=x x x x s x x x x s]36767.275.02645.22831.225.08803.0-+-+--+x x习题九1.积分表示直线b x a x ==,以及)2(ba f y +=和x 轴所围区域的面积。
计算方法课后习题答案
计算方法课后习题答案在计算方法课程中,学生通常会接触到各种数学问题的求解方法,包括但不限于数值分析、线性代数、微分方程等。
以下是一些课后习题的解答示例:习题一:求解线性方程组设线性方程组为:\[ \begin{align*}a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1, \\a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2, \\\vdots \quad \quad & \ \vdots \\a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m,\end{align*} \]解答:使用高斯消元法或矩阵分解法求解上述方程组。
首先将系数矩阵转换为行简化阶梯形式,然后回代求解未知数 \( x_1, x_2,\ldots, x_n \)。
习题二:数值积分给定函数 \( f(x) \),需要在区间 \( [a, b] \) 上进行数值积分。
解答:可以使用梯形法、辛普森法等数值积分方法。
例如,使用梯形法的公式为:\[ \int_a^b f(x)dx \approx \frac{h}{2} \left( f(a) + 2f(a+h) + 2f(a+2h) + \cdots + 2f(b-h) + f(b) \right), \]其中 \( h = \frac{b-a}{n} \) 是区间的等分宽度,\( n \) 是等分数。
习题三:常微分方程的数值解给定一个常微分方程 \( y' = f(x, y) \),初始条件为 \( y(x_0) = y_0 \)。
解答:使用欧拉法或龙格-库塔法求解。
以欧拉法为例,其迭代公式为:\[ y_{n+1} = y_n + h f(x_n, y_n), \]其中 \( h \) 是步长,\( x_{n+1} = x_n + h \)。
计算方法及答案
《计算方法》练习题一一、填空题1. 14159.3=π的近似值3.1428,准确数位是( )。
2.满足d b f c a f ==)(,)(的插值余项=)(x R ( )。
3.设)}({x P k 为勒让德多项式,则=))(),((22x P x P ( )。
4.乘幂法是求实方阵( )特征值与特征向量的迭代法。
5.欧拉法的绝对稳定实区间是( )。
6. 71828.2=e 具有3位有效数字的近似值是( )。
7.用辛卜生公式计算积分⎰≈+101x dx( )。
8.设)()1()1(--=k ij k a A第k 列主元为)1(-k pka ,则=-)1(k pk a ( )。
9.已知⎥⎦⎤⎢⎣⎡=2415A ,则=1A ( )。
10.已知迭代法:),1,0(),(1 ==+n x x n n ϕ 收敛,则)(x ϕ'满足条件( )。
二、单选题1.已知近似数,,b a 的误差限)(),(b a εε,则=)(ab ε( )。
A .)()(b a εε B.)()(b a εε+ C.)()(b b a a εε+ D.)()(a b b a εε+2.设x x x f +=2)(,则=]3,2,1[f ( )。
A.1 B.2 C.3 D.4 3.设A=⎥⎦⎤⎢⎣⎡3113,则化A为对角阵的平面旋转=θ( ). A.2π B.3π C.4π D.6π 4.若双点弦法收敛,则双点弦法具有( )敛速.A.线性 B.超线性 C.平方 D.三次 5.改进欧拉法的局部截断误差阶是( ).A .)(h o B.)(2h o C.)(3h o D.)(4h o 6.近似数21047820.0⨯=a 的误差限是( )。
A.51021-⨯ B.41021-⨯ C.31021-⨯ D.21021-⨯ 7.矩阵A满足( ),则存在三角分解A=LR 。
A .0det ≠A B. )1(0det n k A k <≤≠ C.0det >A D.0det <A8.已知T x )5,3,1(--=,则=1x ( )。
2018-2019学年第二学期期末考试《计算方法》大作业参考答案
吉林大学网络教育学院2018-2019学年第二学期期末考试《计算方法》大作业学生姓名专业层次年级学号学习中心成绩年月日一、构造次数不超过三次的多项式P3(X),使满足:(10分)P3(0)= 1;P3(1)=0;P3′(0)=P3′(1)=0。
二、设f(x i)=i(i=0,1,2),构造二次式p2(x),使满足:(10分) p2(x i)=f(x i)(i=0,1,2)三、设节点x i=i(i=0,1,2,3),f(0)=1,f(1)=0,f(2)=-7,f(3)=26,构造次数不超过3次的多项式p3(x),满足p3(x i)=f(x i),i=0,1,2,3 (10分)四、对于上题的问题,构造Newton插值多项式。
(10分)五、构造三次多项式P 3(X )满足:P 3(0)= P 3(1)=0,P 3′(0)=P 3′(1)=1。
(10分)六、利用Doolittle 分解法解方程组Ax=b 即解方程组 (15分) 12341231521917334319174262113x x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦解:用公式七、基于迭代原理证明(10分)+++=22 (22)八、构造二次多项式2()x p 满足: (10分)'010222()1;()0;()1p p p x x x ===九、构造一个收敛的迭代法求解方程3210x x --=在[1.3,1.6]内的实根。
合理选择一个初值,迭代一步,求出1x 。
(15分)作业完成要求:大作业要求学生手写,提供手写文档的清晰扫描图片,并将图片添加到word 文档内,最终word文档上传平台,不允许学生提交其他格式文件(如JPG,RAR等非word 文档格式),如有雷同、抄袭成绩按不及格处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B.正确
正确答案:B
1
A.错误
B.正确
正确答案:B
1
A.错误
B.正确
正确答案:B
列主元素消元法不是直接法中常用的方法。
A.错误
B.正确
正确答案:A
1
A.错误
B.正确
正确答案:B
利用待定系数法可以得出各种求积公式,而且可以具有尽可能高的代数精度。
A.错误
B.正确
正确答案:B
1
A.错误
B.正确
正确答案:B
一般线性方程组可以写出多种不同的等价形式,从而建立不同的简单迭代公式。
A.错误
B.正确
正确答案:B
高斯消去法是对增广矩阵(A|b)进行一系列的初等行变换
A.错误
B.正确
正确答案:B
1
A.错误
B.正确ห้องสมุดไป่ตู้
正确答案:B
总体选主元素的主元素选取范围比列主元素消去法要小。
A.错误
B.正确
正确答案:A
1
A.错误
B.正确
正确答案:B
1
A.错误
B.正确
正确答案:B
线性方程组的数值解法有:直接法和迭代法。
A.错误
B.正确
正确答案:B
1
A.错误
B.正确
正确答案:B
1
A.错误
B.正确
正确答案:A
1
A.错误
B.正确
正确答案:B
1
A.错误
B.正确
正确答案:B
1
A.错误
B.正确
正确答案:A
迭代法的优点是计算程序简单,且可计算复根。
西工大18秋《计算方法》在线作业
1
A.1
B.2
C.3
D.4
正确答案:C
1
A.1
B.2
C.3
D.4
正确答案:D
1
A.1
B.2
C.3
D.4
正确答案:A
1
A.A
B.B
C.C
D.D
正确答案:A
基于函数f(x)的连续性质,常用的根的隔离的方法有:
A.描图法
B.逐步搜索法
C.拼图法
D.逐行搜索法
正确答案:AB
雅可比方法的主要特点是什么?
正确答案:B
1
A.错误
B.正确
正确答案:B
雅可比方法是求对称矩阵全部特征值与特征向量的方法。
A.错误
B.正确
正确答案:B
1
A.错误
B.正确
正确答案:A
1
A.错误
B.正确
正确答案:B
1
A.错误
B.正确
正确答案:B
1
A.错误
B.正确
正确答案:B
1
A.错误
B.正确
正确答案:B
判断参数值是否正确?
A.错误
B.正确
A.算法稳定
B.精度高
C.求得的特征向量正交性好
D.稀疏性
正确答案:ABC
1
A.A
B.B
C.C
D.D
正确答案:ABC
议程的近似方法有
A.二分法
B.迭代法
C.牛顿法
D.弦截法
正确答案:ABCD
1
A.错误
B.正确
正确答案:B
1
A.错误
B.正确
正确答案:B
1
A.错误
B.正确
正确答案:B
牛顿迭代法的基本思想是将非线方程f(x)=0逐步转化为线性议程来求解。
A.错误
B.正确
正确答案:B
1
A.错误
B.正确
正确答案:B