七年级数学有理数加减法同步练习题

合集下载

七年级有理数的加减法计算题练习

七年级有理数的加减法计算题练习

七年级有理数的加减法计算题练习1、加法计算(1) (-6)+(-8)= (2) (-4)+= (3) (-7)+(+7)= (4) (-7)+(+4)=(5) (++(-= (6) 0+(-2)= (7) -3+2= (8)(+3)+(+2)= (9)-7-4= (10) (-4)+6= (11) ()31-+= (12)()a a +-=2、减法计算(1) (-3)-(-4)= (2) (-5)-10= (3) 9-(-21)= (4) -(-=(5) -(-= (6)--= (7) 13-(-17)= (8)(-13)-(-17)= (9) (-13)-17= (10) 0-6= (11) 0-(-3)= (12) -4-2=(13) (--(+= (14) 1143⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭= (15) 1( 6.25)34⎛⎫--- ⎪⎝⎭=3、加减混合计算题(1) 4+5-11; (2) 24-(-16)+(-25)-15 (3) -+-+12(4) -3-5+7 (5) -26+43-34+17-48 (6) -293++191(7) 12-(-18)+(-7)-15 (8) )15()41()26()83(++-+++-(9) )2.0(3.1)9.0()7.0()8.1(-++-+++- (10) (-40)-(+28)-(-19)+(-24)(11) (+-(--(++(-6) (12) -6-8-2+-+-4、加减混合计算题:(1)53141553266767⎛⎫⎛⎫⎛⎫⎛⎫-+-++--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(2) (-+134⎛⎫+ ⎪⎝⎭+(++142⎛⎫- ⎪⎝⎭(3)()⎪⎭⎫ ⎝⎛--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-41153141325 (4) 222348312131355⎛⎫⎛⎫⎛⎫+-++-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(5) )75.1(321432323+-⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛- (6) 711145438248⎛⎫⎛⎫⎛⎫⎛⎫---+--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(7) ⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-411433212411211 (8) 151.225 3.4( 1.2)66⎛⎫⎛⎫-+------ ⎪ ⎪⎝⎭⎝⎭(9)1111122389910++++⨯⨯⨯⨯ (10) 11111335979999101++++⨯⨯⨯⨯一、选择题:1、若m 是有理数,则||m m +的值( )A 、可能是正数 B 、一定是正数 C 、不可能是负数 D 、可能是正数,也可能是负数2、若m m m <-0,则||的值为( ) A 、正数 B 、负数 C 、0 D 、非正数3、如果0m n -=,m n 则与的关系是 ( )A 、互为相反数 B 、 m =±n ,且n ≥0 C 、相等且都不小于0 D 、m 是n 的绝对值4、下列等式成立的是( )A 、0=-+a aB 、a a --=0C 、0=--a aD 、a --a =05、若230a b -++=,则a b +的值是( )A 、5 B 、1 C 、-1 D 、-56、在数轴上,a 表示的点在b 表示的点的右边,且6,3a b ==,则a b -的值为( )A.-3 B.-9 C.-3或-9 D.3或97、两个数的差为负数,这两个数 ( )A 、都是负数B 、两个数一正一负C 、减数大于被减数D 、减数小于被减数6、负数a 与它相反数的差的绝对值等于( )A 、 0B 、a 的2倍C 、-a 的2倍D 、不能确定8、下列语句中,正确的是( )A 、两个有理数的差一定小于被减数B 、两个有理数的和一定比这两个有理数的差大C 、绝对值相等的两数之差为零D 、零减去一个有理数等于这个有理数的相反数 9、对于下列说法中正确的个数( )①两个有理数的和为正数时,这两个数都是正数②两个有理数的和为负数时,这两个数都是负数③两个有理数的和,可能是其中的一个加数 ④两个有理数的和可能等于0 A 、1 B 、2 C 、3 D 、410、有理数a ,b 在数轴上的对应点的位置如图所示,则( )A 、a +-b >011、用式子 表示引入相反数后,加减混合运算可以统一为加法运算,正确的是( )A 、a +b -c =a +b +c B 、a -b +c =a +b +cC 、a +b -c =a +(-b )=(-c )D 、a +b -c =a +b +(-c )12、若0a b c d <<<<,则以下四个结论中,正确的是( )A 、a b c d +++一定是正数B 、c d a b +--可能是负数C 、d c a b ---一定是正数D 、c d a b ---一定是正数13、若a 、b 为有理数,a 与b 的差为正数,且a 与b 两数均不为0,那么( )A 、被减数a 为正数,减数b 为负数B 、a 与b 均为正数,切被减数a 大于减数bC 、a 与b 两数均为负数,且减数 b 的绝对值大D 、以上答案都可能14、若a 、b 表示有理数,且a >0,b <0,a +b <0,则下列各式正确的是( ) A 、-b <-a <b <a B 、-a <b <a <-b C 、b <-a <-b <a D 、b <-a <a <-b 15、下列结论不正确的是( ) A 、若0a <,0b >,则0a b -< B 、若0a >,0b <,则0a b -> C 、若0a <,0b <,则()0a b --> D 、若0a <,0b <,且a b >,则0a b -<16、若0x <,0y >时,x ,x y +,y ,x y -中,最大的是( )A 、xB 、x y +C 、x y -D 、y17、数m 和n ,满足m 为正数,n 为负数,则m ,m -n ,m +n 的大小关系是 ( ) A 、m >m -n >m +n B 、m +n >m >m -n C 、m -n >m +n >m D 、m -n >m >m +n18、若a b >>00,,则下列各式中正确的是( )A 、a b ->0B 、a b -<0C 、a b -=0D 、--<a b 019、如果 a 、b 是有理数,则下列各式子成立的是( )A 、如果a <0,b <0,那么a +b >0B 、如果a >0,b <0,那么a +b >0C 、如果a >0,b <0,那么a +b <0D 、如果a <0,b >0,且︱a ︱>︱b ︱,那么a +b<0二、填空题:20、已知的值是那么y x y x +==,213,6 .21、 三个连续整数,中间一个数是a ,则这三个数的和是___________. 22、若8a =,3b =,且0a >,0b <,则a b -=________. 23、当0b <时,a 、a b -、a b +中最大的是_______,最小的是_______. 24、若0a <,那么()a a --等于___________.25、若数轴上,A点对应的数为-5,B 点对应的数是7,则A 、B 两点之间的距离是 . 26、有若干个数,第一个数记为a 1,第二个数记为a 2,第3个数记为a 3,…,第n 个数记为a n ,若a 1=-,从第二个数起,每个数都等于“1”与它前面的那个数的差的倒数。

2022-2023学年人教版七年级数学上册《1-3有理数的加减法》同步达标测试题(附答案)

2022-2023学年人教版七年级数学上册《1-3有理数的加减法》同步达标测试题(附答案)

2022-2023学年人教版七年级数学上册《1.3有理数的加减法》同步达标测试题(附答案)一.选择题(共8小题,满分40分)1.计算﹣3﹣2的结果是()A.﹣1B.1C.﹣5D.52.若|m|=2,|n|=3,且m>n,则m+n的值是()A.﹣1B.﹣5C.1或﹣5D.﹣1或﹣53.若两个数的和为负数,则这两个数满足()A.都是负数B.都是正数C.至少一个是负数D.恰好一正一负4.某地一天早晨的气温是﹣2℃,中午温度上升了6℃,半夜比中午又下降了8℃,则半夜的气温是()A.﹣2℃B.﹣4℃C.﹣6℃D.﹣8℃5.若|m|=5,|n|=3且m+n的绝对值等于它的相反数,则m﹣n的值是()A.﹣2或﹣8B.2或﹣8C.2或8D.﹣2或86.下面说法中正确的有()(1)一个数与它的绝对值的和一定不是负数.(2)一个数减去它的相反数,它们的差是原数的2倍.(3)零减去一个数一定是负数.(4)正数减负数一定是负数.(5)数轴上原点两侧的数互为相反数.A.2个B.3个C.4个D.5个7.设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a+b+c等于()A.﹣1B.0C.1D.28.下列运算中正确的是()A.8+[14+(﹣9)]=15B.(﹣2.5)+[5+(﹣2.5)]=5C.[3+(﹣3)]+(﹣2)=﹣2D.3.14+[(﹣8)+3.14]=﹣8二.填空题(共8小题,满分40分)9.矿井下A,B,C三处的高度分别是﹣37m,﹣129m,﹣71.3m,那么最高处比最低处高m.10.计算:﹣26﹣(﹣15)=.11.小明在计算1﹣3+5﹣7+9﹣11+13﹣15+17时,不小心把一个运算符号写错了(“+”错写成“﹣”或“﹣”错写成“+”),结果算成了﹣17,则原式从左往右数,第个运算符号写错了.12.厂家检测10个足球的质量,每个足球的标准质量为265克,将每个足球超过克数记为正数,不足克数记为负数,这10个足球称重后的记录为:+1,+1,﹣1.3,+1.5,﹣1,+1.2,+1.3,﹣1.2,+1.4,+1.1.这十个足球的质量共是克.13.计算=.14.已知|x|=2,|y|=1,且|x﹣y|=y﹣x,则x﹣y=.15.若a的相反数等于它本身,b是到原点的距离等于2的负数,c是最大的负整数,则a ﹣b+c的值为.16.计算:1﹣2﹣3+4+5﹣6﹣7+8+......+2020+2021=.三.解答题(共6小题,满分40分)17.计算:20+(﹣14)﹣(﹣18)+13.18.计算:﹣﹣|﹣|﹣(﹣)+1.19.计算:1.5﹣(﹣4)+3.75﹣(+8).20.计算.(1)(﹣4)﹣(+13)+(﹣5)﹣(﹣9)+7;(2)0﹣+(+)+(﹣)+2;(3)﹣|﹣1|﹣(+2)﹣(﹣2.75);(4)(﹣3.125)+(+4.75)+(﹣9)+(+5)+(﹣4).21.阅读下面文字:对于(﹣5)+(﹣9)+17+(﹣3)可以如下计算:原式=[(﹣5)+(﹣)]+[(﹣9)+(﹣)]+(17+)+[(﹣3)+(﹣)]=[(﹣5)+(﹣9)+17+(﹣3)]+[(﹣)+(﹣)++(﹣)]=0+(﹣1)=﹣1上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,计算:.22.某领导慰问高速公路养护小组,乘车从服务区出发,沿东西向公路巡视,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,﹣9,+7,﹣15,﹣3,+11,(1)求该领导乘车最后到达的地方?(2)行驶1千米耗油0.5升,则这次巡视共耗油多少升?(3)若领导在这6个巡视点发放苹果慰问品,以50kg为标准,超过的记为正数,不足的记为负数,这6个巡视点的苹果重量记为5,﹣6,﹣4,9,﹣8,3(单位:kg),求发放苹果的总重量.参考答案一.选择题(共8小题,满分40分)1.解:﹣3﹣2=﹣5.故选:C.2.解:∵|m|=2,|n|=3,∴m=±2,n=±3,∵m>n,∴当m=2,n=﹣3时,m+n=2﹣3=﹣1;当m=﹣2,n=﹣3时,m+n=﹣2﹣3=﹣5;故选:D.3.解:两个数的和为负数,这两个数都是负数或有一个是负数且负数的绝对值比另一个数的绝对值大;故选:C.4.解:﹣2+6﹣8=4﹣8=﹣4(℃).答:半夜的气温是﹣4℃.故选:B.5.解:∵|m|=5,|n|=3,∴m=±5,n=±3,∵m+n的绝对值等于它的相反数,∴m+n<0,∴①m=﹣5,n=﹣3,②m=﹣5,n=3,当m=﹣5,n=﹣3时,m﹣n=﹣5﹣(﹣3)=﹣2;当m=﹣5,n=3时,m﹣n=﹣5﹣3=﹣8,综上所述:m﹣n=﹣8或﹣2,故选:A.6.解:(1)一个数与它的绝对值的和一定不是负数.正确,(2)一个数减去它的相反数,它们的差是原数的2倍,正确,(3)零减去一个数不一定是负数,如0﹣(﹣3)=3,故不正确,(4)正数减负数一定是正数.如3﹣(﹣4)=7,故不正确,(5)数轴上原点两侧的数不一定互为相反数,如5和﹣4,不是互为相反数.不正确.故选:A.7.解:依题意得:a=1,b=﹣1,c=0,∴a+b+c=1+(﹣1)+0=0.故选:B.8.解:A、原式=8+5=13,故A不符合题意.B、原式=﹣2.5+2.5=0,故B不符合题意.C、原式=0+(﹣2)=﹣2,故C符合题意.D、原式=3.14+3.14+(﹣8)=﹣1.72,故D不符合题意.故选:C.二.填空题(共8小题,满分40分)9.解:∵最高处:﹣37米,最低处:﹣129米,最高处比最低处高:﹣37﹣(﹣129)=92(米),故答案为:92.10.解:原式=﹣26+15=﹣11.故答案为:﹣11.11.解:∵1﹣3+5﹣7+9﹣11+13﹣15+17=9,9>﹣17,∴小明不小心把“+”写成“﹣”,∵9﹣(﹣17)=26,26÷2=13,∴小明将+13写错为﹣13,故答案为:6.12.解:+1+1﹣1.3+1.5﹣1+1.2+1.3﹣1.2+1.4+1.1=5(克),265×10+5=2655(克),所以这十个足球的质量一共是2655克,故答案为:2655.13.解:原式=1=1=1.故答案为:1.14.解:∵|x|=2,|y|=1,且|x﹣y|=y﹣x,∴x=﹣2,y=1或y=﹣1,∴x﹣y=﹣2﹣1=﹣3或x﹣y=﹣2+1=﹣1.故答案为:﹣3或﹣1.15.解:∵a是相反数等于它本身的数,b是到原点的距离等于2的负数,c是最大的负整数,∴a=0,b=﹣2,c=﹣1,∴a﹣b+c=0+2﹣1=1.故答案为:1.16.解:∵1﹣2﹣3+4=0,5﹣6﹣7+8=0,•,∴算式中从第一个数字开始,依次每四个数的代数和为0,∵2020÷4=505,∴前2020个数字的代数和为0.∴1﹣2﹣3+4+5﹣6﹣7+8+......+2020+2021=2021.故答案为:2021.三.解答题(共6小题,满分40分)17.解:20+(﹣14)﹣(﹣18)+13,=20﹣14+18+13,=6+31,=37.18.解:﹣﹣|﹣|﹣(﹣)+1=﹣﹣++1=(﹣)+(﹣+)+1=+(﹣2)+1=﹣.19.解:原式=1++4++3+﹣8﹣=﹣7+8=1.20.解:(1)原式=(﹣4)+(﹣13)+(﹣5)+9+7=[(﹣4)+(﹣13)+(﹣5)]+(9+7)=(﹣22)+16=﹣6;(2)原式=0+(﹣)++(﹣)+2=[(﹣)+(﹣)]++2=(﹣1)+3=2;(3)原式=﹣1+(﹣2)+2=﹣1+(﹣2+2)=+(﹣1+)=+(﹣1)=﹣;(4)原式=(﹣3)+4+(﹣9)+5﹣4=[(﹣3)+(﹣9)]+(4+5)﹣4=(﹣13)+10﹣4=﹣3﹣4=﹣7.21.解:原式=﹣2020﹣+2019+﹣2018﹣+2017+=﹣2020+2019﹣2018+2017﹣+﹣+=﹣1﹣1+﹣=﹣2﹣=.22.解:(1)17+(﹣9)+7+(﹣15)+(﹣3)+11=8(千米),答:该领导乘车最后到达的地方在东边8千米处;(2)|+17|+|﹣9|+|+7|+|﹣15|+|﹣3|+|+11|=62(千米),0.5×62=31(升),答:这次巡视共耗油31升;(3)5+(﹣6)+(﹣4)+9+(﹣8)+3=﹣1(千克),50×6+(﹣1)=299(千克),答:发放苹果的总重量为299千克.。

有理数的加减法 同步练习(含答案)

有理数的加减法 同步练习(含答案)

有理数的加减法同步练习一.选择题1.下列算式中:①2-(-2)=0;①(-3)-(+3)=0;①(-3)-|-3|=0;①0-(-1)=1.其中正确的有()A.1个B.2个C.3个D.4个2.计算43+(-77)+27+(-43)的结果是()A.50B.-104C.-50D.1043.下列各式中正确的是()A.+5-(-6)=11B.-7-|-7|=0C.-5+(+3)=2D.(-2)+(-5)=7 4.如图,显示的是新冠肺炎全国(含港澳台)截至4月27日20时30分,现存确诊人数数据统计结果,则昨日现存确诊人数是()A.990B.1090C.1246D.11465.已知a是最大的负整数,b是绝对值最小的数,c是最小的正整数,则a+b+c等于()A.2B.-2C.0D.-66.计算1+(-2)+3+(-4)+5+(-6)+…+19+(-20)得()A.10B.-10C.20D.-207.已知a,b,c,d都是正整数,将它们两两相加,所得的和都是7,8,9,10中的一个,并且7,8,9,10这4个数都能取到,那么a,b,c,d这四个正整数()A.各不相等B.有且仅有2个数相等C.有且仅有3个数相等D.全部相等8.已知|a|=1,b是2的相反数,则a+b的值为()A.-3B.-1C.-1或-3D.1或-39.如果a<2,那么|-1.5|+|a-2|等于()A.1.5-a B.a-3.5C.a-0.5D.3.5-a10.如图,从左到右在每个小格子中填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.若前m个格子中所填整数之和是1684,则m的值可以是()A.1015B.1010C.1012D.101811.小学时候大家喜欢玩的幻方游戏,老师稍加创新改成了“幻圆”游戏,现在将-1、2、-3、4、-5、6、-7、8分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则图中a+b的值为()A.-6或-3B.-8或1C.-1或-4D.1或-112.将九个数分别填在3×3 (3行3列)的方格中,如果满足每个横行,每个竖列和每条对角线上的三个数之和都等于m,则将这样的图称为“和m幻方”.如图①为“和15幻方”,图①为“和0幻方”,图①为“和39幻方”,若图①为“和m幻方”,则m的值等于()A.6B.3C.-6D.-9二.填空题13.计算:20-(-7)+|-2|= .14.某地某天早晨的气温是-2①.到中午升高了6①.那么中午的温度是①.15.已知|x|=3,|y|=7,且x+y>0,则x-y的值等于.16.我市某天上午的气温为-2①,中午上升了7①,下午下降了2①,到了夜间又下降了8①,则夜间的气温为.17.我们知道,在三阶幻方中每行、每列、每条对角线上的三个数之和都是相等的,在如图的三阶幻方中已经填入了两个数13和19,则图中最左上角的数n应该是.三.解答题18.计算:(1)(-21)-(-9)+(-8)-(-12)(2)19.在班级元旦联欢会上,主持人邀李强、张华两位向学参加一个游戏.游戏规则是每人每次抽取四张卡片.如果抽到白色卡片,那么加上卡片上的数字;如果抽到黑色卡片,那么减去卡片上的数字,比较两人所抽4张卡片的计算结果,结果较小的为同学们唱歌,李强同学抽到如图(1)所示的四张卡片,张华同学抽到如图(2)所示的四张卡片.李强、张华谁会为同学们唱歌?20.小李靠勤工俭学的收入支付上大学的费用,下面是小李某周的收支情况表,记收入为正,支出为负(单位:元).(1)到这个周末,小李有多少节余?(2)按以上的支出水平,估计小李一个月(按30天计算)至少有多少收入才能维持正常开支?21.淘宝网是购物综合网站,淘宝网的金币可以抵扣购物、抽奖活动、玩游戏等.获得金币的其中一个途径就是到淘金币网页去签到,规则如下:首日签到领5个金币,连续签到每日再递增5个,每日可领取的金币数量最高为30个,若中断,则下次签到作首日签到,金币个数从5个重新开始领取.(1)按淘金币规则,第1天签到领取5个,连续签到,则第2天领取10个,第3天领取15个,第6天领取个,第7天领取个;连续签到6天,一共领取金币个.(2)从1月1日开始签到,以后连续签到不中断,结果一共领取了255个,问连续签到了几天?(3)张阿姨从1月1日开始坚持每天签到,达到可以每天领取30个金币,后来因故有2天(不定连续)忘记签到,到1月16日签到完成时,发现自己一共领取了215个金币,请直接写出她没有签到日期的所有可能结果.参考答案1-5:ACACC 6-10:BBCDB 11-12:AD13、2914、415、-4或-1016、-5°C17、1618、:(1)-8;(2)619、张华为同学们唱歌.20、:(1)(+65+68+50+66+50+75+74)+(-60-64-63-58-60-64-65)=14(元)答:到这个周末,小李有14元的节余.(2)(|-60|+|-64|+|-63|+|-58|+|-60|+|-64|+|-65|)=62(元)62×30=1860(元)答:小李一个月(按30天计算)至少要有1860元的收入才能维持正常开支.21、:(1)∵第1天签到领取5个,连续签到,则第2天领取10个,第3天领取15个,第4天领取20个,第5天领取25个,∴第6天领取30个;∵每日可领取的金币数量最高为30个,∴第7天领取30个;连续签到6天,一共领取金币5+10+15+20+25+30=105(个);故答案为:30,30,105;(2)根据题意得:(255-105)÷30=5,5+6=11(天),答:连续签到了11天;(3)根据题意可得,所有可能结果是8号与12号,8号与13号未签。

2023-2024学年七年级数学上册《第一章-有理数的加减法》同步练习题有答案(人教版)

2023-2024学年七年级数学上册《第一章-有理数的加减法》同步练习题有答案(人教版)

2023-2024学年七年级数学上册《第一章有理数的加减法》同步练习题有答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.式子-4-2-1+2的正确读法是()A.减4减2减1加2 ;B.负4减2减1加2;C.-4,-2,-1加2 ;D.4,2,1,2的和.2.对于代数式−2+k的值,下列说法正确的是()A.比−1大B.比−1小C.比k小D.比k大3.若|m|=3,|n|=2,且mn<0,则m﹣n的值是()A.﹣1或1 B.5 C.﹣5或5 D.﹣14.用[x]表示不大于x的整数中最大的整数,如[2.4]=2,[﹣3.1]=﹣4,请计算[5.5]+[﹣4 1]=()2A.﹣1 B.0 C.1 D.25.下列计算中,正确的是()A.(﹣6)+(﹣4)=﹣2 B.﹣9+(﹣4)=﹣13C.|﹣9|+9=0 D.﹣9+4=﹣136.不改变原式的值,将6−(+3)−(−7)+(−2)中的减法改成加法,并写成省略加号的形式的是()A.−6−3+7+2B.6−3−7−2C.6−3+7−2D.6+3−7−27.如图,若各行、各列、各条斜线上的三个数之和相等,则图中a处应填的可能值为()。

A.4 B.5 C.6 D.78.某商店出售三种不同品牌的面粉,面粉袋上分别标有质量,如下表:面粉种类A品牌面粉B品牌面粉C品牌面粉质量标示(20±0.4)kg (20±0.3)kg (20±0.2)kg现从中任意拿出两袋不同品牌的面粉,这两袋面粉的质量最多相差()A.0.4kg B.0.6kg C.0.7kg D.0.8kg二、填空题9.﹣9,6,﹣3三个数的和比它们绝对值的和小.10.弥阳镇某天早晨的气温是18℃,中午上升6℃,半夜又下降5℃,则半夜的气温是℃.11.若数轴上表示3的点为M,那么在点M右边,相距2个单位的点所对应的数是.12.某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是星期.星期一二三四最高气温10℃12℃11℃9℃最低气温3℃0℃﹣2℃﹣3℃13.输入-1,按图所示的程序运算,则输出的结果是.三、解答题14.计算下列各题(1)6+(−14)−(−39)(2)−7−(−11)+(−9)−(+2)(3)20.36+(−1.4)+(−13.36)+1.4(4)(+325)+(−278)−(−535)+(−18)15.如图:(1)在数轴上标出表示-a、-b的点;(2)a 0;b 0;│a││b│; a-b 0(3)用“<”号把a、b、0、-a、-b连接起来.(4)、化简:|a|+|b|−|a−b|−|a+b|16.体育课上,全班男同学进行了100米测验,达标成绩为15秒,下表是某小组8名男生的成绩测试记录,其中“+”表示成绩大于15秒.问:﹣0.8 +1 ﹣1.2 0 ﹣0.7 +0.6 ﹣0.4 ﹣0.1(1)这个小组男生的达标率为多少?(达标率=达标人数总人数)(2)这个小组男生的平均成绩是多少秒?17.某日上午,司机老苏在东西走向的中山路上运营,如果规定向东为正,向西为负,出租车的行车里程如下(单位:km):+8, -6, -5, +10, -5, +3, -2, +6, +2, -5(1)最后一名乘客送到目的地时,老苏离出车地点的距离是多少千米?在出车地点的什么方向?(2)若每千米耗油0.2升,这天上午出租车共耗油多少升?18.甲、乙两商场上半年经营情况如下(“+”表示盈利,“﹣”表示亏本,以百万为单位)月份一二三四五六甲商场+0.8 +0.6 ﹣0.4 ﹣0.1 +0.1 +0.2乙商场+1.3 +1.5 ﹣0.6 ﹣0.1 +0.4 ﹣0.1(1)三月份乙商场比甲商场多亏损多少元?;(2)六月份甲商场比乙商场多盈利多少元?(3)甲、乙两商场上半年平均每月分别盈利或亏损多少元?参考答案1.B2.C3.C4.B5.B6.C7.D8.C9.2410.1911.512.三13.114.(1)6+(−14)−(−39)=−8+39=31;(2)−7−(−11)+(−9)−(+2)=−7+11−9−2=−7;(3)20.36+(−1.4)+(−13.36)+1.4=20.36+(−13.36)+(−1.4)+1.4=7;(4)(+325)+(−278)−(−535)+(−1)=(+325)−(−535)+(−278)+(−18)=9−3=6 .15.(1)解:画数轴如下:(2)>;<;<;>(3)解:由数轴得:b<−a<0<a<−b;(4)解:|a|+|b|−|a−b|−|a+b|=a−b−(a−b)+(a+b)=a+b.16.(1)解:成绩记为正数的不达标,只有2人不达标,6人达标.这个小组男生的达标率=6÷8=75%(2)解:﹣0.8+1﹣1.2+0﹣0.7+0.6﹣0.4﹣0.1=﹣1.615﹣1.6÷8=14.8秒17.(1)解: +8+( -6)+ (-5)+ ( +10)+ ( -5)+ ( +3)+ ( -2)+ (+6)+ ( +2)+ ( -5 )=6(千米)。

千山区一中七年级数学上册 有理数的加减法同步练习含解析新人教版

千山区一中七年级数学上册 有理数的加减法同步练习含解析新人教版

【答案】C
【解析】根据题意用最高气温 12℃减去最低气温-2℃,根据减去一个数等于加上这个数的相反数即可得到
答案.
【详解】12-(-2)=14(℃).故选:C.
【点睛】本题考查了有理数的减法运算,关键在于理解题意的列式计算.
3.在 2、﹣4、0、﹣3 四个数中,最大的数比最小的数大
A.﹣6 B.﹣2 C. D.
②被减数一定大于减数;错误,例如 2-3=-1;
③0 是最小的有理数;错误,例如-2 是有理数,-2 ;
④一个数的倒数一定小于它本身;错误,例如:1 的倒数是 1 等于它本身;
故选:A.
【点睛】本题考查了有理数的加法、减法,倒数的定义,以及有理数大小的比较,熟练掌握相关知识点是
解题的关键。
二、填空题 11.如果|a|=5,|b|=4,且 a+b<0,则 a-b 的值是________. 【答案】-1 或 -9 【解析】根据题意,利用绝对值的代数意义求出 a 与 b 的值,即可确定出 ab 的值. 【详解】∵|a|=5,|b|=4,且 a+b<0, ∴a=−5,b=−4;a=−5,b=4, 则 a−b=-1 或−9. 故答案为:-1 或−9.
【详解】算式 8-7+3-6 正确的读法是正 8、负 7、正 3、负 6 的和. 故答案为:正 8、负 7、正 3、负 6 的和. 【点睛】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键. 三、解答题 16.小虫从某点 A 出发在一条直线上来回爬行,规定向右爬行的路程记为正数,向左爬行的路程记为负 数.爬行的各段路程依次记为(单位:cm):﹣11、+8、+10、﹣3、﹣6、+12、﹣10 (1)小虫最后是否回到出发点,请判断并且说明理由 (2)在爬行的过程中,如果每爬行一个单位长度奖励一粒芝麻,则整个运动过程中小虫一共得到多少粒 芝麻? 【答案】(1)小虫最后回到出发点(2)一共得到 60 粒芝麻 【解析】(1)把记录数据相加,结果为 1,说明小虫最后回到距离点 O 右侧 1cm 的地方; (2)小虫一共得到的芝麻数,与它爬行的方向无关,只与爬行的距离有关,所以应把绝对值相加,再求 得到的芝麻粒数. 【详解】解:(1)﹣11+8+10﹣3﹣6+12﹣10=0. 所以小虫最后回到出发点; (2)|﹣11|+|+8|+|+10|+|﹣3|+|﹣6|+|+12|+|﹣10| =11+8+10+3+6+12+10 =60(cm), 60×1=60(粒). 所以整个运动过程中小虫一共得到 60 粒芝麻. 【点睛】此题考查了有理数的加减混合运算,以及正数与负数,弄清题意是解本题的关键. 17. 【答案】-15 【解析】根据有理数的加减混合运算法则计算即可. 【详解】原式=16-29-11+9, =25-40, =-15. 故答案为:-15. 【点睛】本题考查了有理数的加减混合运算,解题的关键是熟练的掌握有理数的加减混合运算法则.

七年级数学有理数加减法同步练习和答案

七年级数学有理数加减法同步练习和答案

七年级数学有理数加减法同步练习题1.某天上午的温度是5℃,中午又上升了3℃,下午由于冷空气南下,到夜间又下降了9℃,则这天夜间的温度是 ℃。

2.直接写出答案(1)(-2.8)+(+1.9)= ,(2)10.75(3)4--= , (3)0(12.19)--= ,(4)3(2)---= 3. 已知两个数556和283-,这两个数的相反数的和是 。

4. 将()()()6372-+--+-中的减法改成加法并写成省略加号的代数和的形式应是 。

5. 已知m 是6的相反数,n 比m 的相反数小2,则m n -等于 。

6.在-13与23之间插入三个数,使这5个数中每相邻两个数之间的距离相等,则这三个数的和是 。

7. 小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是 .–6 –4 –3 –2 1 0 1 2 4 5 6二.选择:8.下列交换加数的位置的变形中,正确的是( )A 、14541445-+-=-+-B 、1311131134644436-+--=+-- C 、 12342143-+-=-+- D 、4.5 1.7 2.5 1.8 4.5 2.5 1.8 1.7--+=-+-9. 下列计算结果中等于3的是( )A. 74-++B. ()()74-++C. 74++-D. ()()74+--10. 下列说法正确的是( )A. 两个数之差一定小于被减数B. 减去一个负数,差一定大于被减数C. 减去一个正数,差一定大于被减数D. 0减去任何数,差都是负数11.校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在A. 在家B. 在学校C. 在书店D. 不在上述地方12、火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京,根据以上规定,杭州开往北京的某一直快列车的车次号可能是( )(A) 20 (B) 119 (C) 120 (D) 31913. 计算:①-57+(+101) ②90-(-3) ③-0.5-(-341)+2.75-(+721) ④712143269696⎛⎫⎛⎫⎛⎫⎛⎫----++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ⑤ ()34187.5213772⎛⎫⎛⎫⎛⎫-+-+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⑥ ()232321 1.75343⎛⎫⎛⎫⎛⎫------+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭14. 某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自O 地出发到收工时所走路线(单位:千米)为:+10、-3、+4、+2、-8、+13、-2、+12、+8、+5(1)问收工时距O 地多远?(2)若每千米耗油0.2升,从O 地出发到收工时共耗油多少升?15、某商场老板对今年上半年每月的利润作了如下记录:1、2、5、6月盈利分别是13万元、12万元、12.5万元、10万元,3、4月亏损分别是0.7万元和0.8万元。

初一有理数加减法30道

初一有理数加减法30道

初一有理数加减法30道1. 加法1.计算(3+5)+(−7)。

2.计算(−4)+(−6)+2。

3.计算(−8)+(−3)+(−10)+7。

4.计算(2.5)+(−1.8)+(−2.7)。

5.计算(−9)+6.7+(−2.5)+(−3.5)。

2. 减法1.计算(−8)−3。

2.计算(5)−6−(−2)。

3.计算(−4)−(−9)−(−7)。

4.计算(12.5)−(−3.6)−(−2.5)。

5.计算(−5)−2.7−(−3.8)−(−1.3)。

3. 综合加减法1.计算(5)+(−2)−(−6)。

2.计算(6)+(−4)−(−8)+3。

3.计算(−9)−3+5−(−4)。

4.计算(−2)−(−7)+4−(−5)+(−3)。

5.计算(3)+(−2)−(−5)+7−(−9)。

4. 混合计算1.计算 $(6 \\times 2) + 9 - (-4)$。

2.计算 $(-7 \\times 3) - 5 + (-2)$。

3.计算 $(8 \\div 2) - 6 - (-3)$。

4.计算 $(-9 \\div 3) + (-5) \\times (-2)$。

5.计算 $(-3 \\times 4) + (-2) - (-6) \\div (-3)$。

5. 拓展题1.一个积极数加一个负数是否一定是负数?请举例说明。

2.两个负数相加,结果的符号一定是负数吗?请说明理由。

3.两个正数相减的结果一定是正数吗?请举例说明。

4.一个正数减去一个负数,结果的符号是什么?为什么?5.两个负数相乘,结果是正数还是负数?请说明理由。

以上为初一有理数加减法的30道题目,希望对您的学习有帮助!。

人教版数学七年级上册《有理数加减法》练习题(3套)(附答案)

人教版数学七年级上册《有理数加减法》练习题(3套)(附答案)

人教版数学七年级上册《有理数加减法》练习题(一)一、单选题:1. 计算:13-12正确的结果是( )A.15 B .-15 C.16 D .-162.计算|-13|-23的结果是( )A .-13 B.13 C .-1 D .13.下列计算正确的是( )A .(-15)-(+5)=-10B .0-(+3)=3C .(-9)-(-9)=-18D .0-(-6)=64. 比-5小-2的数是( )A .-7B .7C .-3D .35.在(-5)- =-6中的方框里应填( )A .-1B .+1C .-11D .+116.下列运算结果为1是( )A .|+3|-|+4|B .|(-3)-(-4)|C .|-2|-|-4|D .|+3|-|-4|7.下列说法正确的是( )A .减去一个数等于加上这个数的相反数B .互为相反数的两数之差为0C .零减任何有理数,差为负数D .减去一个正数,差大于被减数8. 若x 是2的相反数,|y|=3,则x -y 的值是( )A.-5 B.1 C.-1或5 D.1或-59.a,b在数轴上的位置如图,下列结论不正确的是( )A.a+b<0 B.a-b<0 C.-a-b>0 D.-a+b<0二、填空题:10. 计算:(-5)-(-3)=-5+____11. 计算: (-6)-4=-6+________12. 计算: 0-(+5)=0+_________13. 计算:8-(+2 016)=8+________14. 下列说法中:①一个数减去零仍得这个数;②零减去一个数等于这个数的相反数;③一个数减去它的相反数得零;④两个有理数之差不一定小于这两数之和.其中正确的是___________.(填序号)15. 扬州市某天最高气温是6 ℃,最低气温是-2 ℃,那么当日的温差是____℃.16.数轴上表示-3的点与表示-7的点之间的距离是____.17.某粮店出售的3种品牌的面粉袋上,分别标有质量为(25±0.2) kg,(25±0.3) kg,(25±0.4) kg的字样,从中任意拿出两袋,它们的质量最多相差______kg.18.-8与3的差的绝对值是_______.19.在数5,-2,7,-6中,任意两个数相减差最大是______,最小是_________.20.数字解密:第一个数是3=2-(-1);第2个数是5=3-(-2);第三个数是9=5-(-4);第四个数是17=9-(-8)……第六个数是___________________.21.小亮做这样一道计算题:|(-3)+|,其中“”表示被污染看不清的一个数,他翻开答案,知道该题的结果是6,那么“”表示的数是__________.22.已知x是5的相反数,y比x小-7,则x与-y的差是______.三、计算题:23. 计算:(1)(-5)-(-23);(2)(-9.25)-(-414 ).24.已知|a|=5,|b|=4,且a+b<0,求a-b的值.四、解答题:25. 世界上最高的山峰是珠穆朗玛峰,其海拔高度是8 844 m,吐鲁番盆地的海拔是-155 m,两处的海拔高度相差多少米?26. 符号“f”表示一种运算,它的一些运算结果如下:①f(1)=0,f(2)=1,f(3)=2,f(4)=3…②f(12)=2,f(13)=3,f(14)=4,f(15)=5…利用上述规律求:(1)f(10)-[-f(110 )];(2)f(2 015)-f(12 016).人教版数学七年级上册《有理数加减法》练习题(一)答案:一、单选题1-9. DADCB BADB10. 311. (-4)12. (-5)13. (-2016)14. ①②④15. 816. 417. 0.818. 1119. 13 -1320. 65=33-(-32)21. 9或-322. -323. (1)解:原式=18(2)解:原式=-524. 解:a-b的值为-9或-125. 解:8 999米26. (1)解:原式=19(2)解:原式=-2人教版数学七年级上册《有理数加减法》练习题(二)一、单选题1. 某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高( )A.10℃B.6℃C.﹣6℃D.﹣10℃2. 在-2,0,1,3这四个数中,最大的数和最小的数的和是( )A.1B.0C.2D.33. 5的相反数与-2的差是( )A.3B.-3C. 7D.-74. 下列表示某地区早晨、中午和午夜的温度(单位:℃),则下列说法正确的是( )A.午夜与早晨的温差是11℃B.中午与午夜的温差是0℃C.中午与早晨的温差是11℃D.中午与早晨的温差是3℃5. 若|a|=2,|b|=3,且0>a>b,则a+b=( )A.5B.﹣5C.﹣1D.﹣36. 比-6的一半大2的数是( )A.2B.0C.﹣1D.﹣37. 温度由﹣4℃上升7℃是( )A.3℃B.﹣3℃C.11℃D.﹣11℃8. 绝对值大于1且小于5的所有的整数的和是( )A.9B.-9C.6D.09. 计算:-2+3=( )A.1B.-1C.-5D.-610. 已知3x=,2y=,且0xy>,则x y-的值等于( )A.5或-5B.1或-1C.5或1D.-5或-111. 下面说法中正确的是( )A.-2-1-3可以说是-2,-1,-3的和B.-2-1-3可以说是2,-1,-3的和C.-2-1-3是连减运算不能说成和D.-2-1-3=-2+3-112. 计算﹣(﹣1)+|﹣1|,其结果为( )A.﹣2B.2C.0D.﹣113. 若x的相反数是5,|y|=8,且x+y<0,那么x-y的值是( )A.3B.3或-13C.-3或-13D.-13二、填空题14. 比最大的负整数大2的数是_____.15. 比-5大-6的数是____.16. 小怡家的冰箱冷藏室温度是4℃,冷冻室的温度是-2℃,则冷藏室温度比冷冻室温度______℃。

初一数学第一学期第一章第3节:有理数的加减法练习题

初一数学第一学期第一章第3节:有理数的加减法练习题

一、以考查知识为主试题【容易题】1.计算:(1)(-3)+(-9);(2)(-4.7)+3.9答案:(1)(-3)+(-9)=-(3+9)=-12(2)(-4.7)+3.9= -(4.7-3.9)=-0.82.下列运算中,正确的个数有()①(-5)+5=0 ②(-10)+(+7)=-3 ③0+(-4)=-4 ④(-3)+2=-1 ⑤(-1)+(+2)=-1.A.1个 B.2个 C.3个 D.4答案:D.3.如果2010个不都相等的有理数的和为0,那么下列说法中,正确的是()A.其中至少有一个是负数B.其中正数与负数各占一半C.其中正数不能少于1005个D.其中必须有一个数是0答案:A.【中等题】答案:∵比5的相反数小7为-5-7=-12,∴其中的一个数为-12,∵两个数的和是-25,∴另一个数是-13,故答案为-13.5.某仓库第一天运进+100箱水果,第二天运进-70箱,第三天运进+55箱,第四天运进64箱,四天共运进仓库多少箱水果?答案:100+(-70)+55+64=149(箱),答:四天共运进仓库149箱水果.6. 计算下列各题:(1)(+3)+(-12)=________;(2)(+20)+(+32)=________;(3)(-312)+(-23)=_______;(4)(-20072006)+0=________.答案:根据有理数的加法法则进行. (1)(+3)+(-12)=-(12-3)=-9;(2)(+20)+(+32)=+(20+32)=52;(3)(-312)+(-23)=-(312+23)=-416;(4)(-20072006)+0=-20072006.7. 判断题:(1)两个有理数的和为正数时,这两个数都是正数;()(2)两个数的和的绝对值一定等于这两个数绝对值的和;()(3)如果两个数的和为负,那么这两个加数中至少有一个是负数;()(4)两数之和必大于任何一个加数;()(5)如果两个有理数的和比其中任何一个加数都大,那么这两个数都是正数. ()答案:(1)×(2)×(3)√(4)×(5)√8. 计算:(1)(-718)+(-16);(2)(-1.13)+(+1.12);(3)(-237)+237;(4)0+(-4).答案:利用有理数的加法法则进行有理数的加法的基本步骤:第一步要判断是同号两数相加还是异号两数相加;第二步要判断结果是正号还是负号;第三步要判断用绝对值的和算还是用绝对值的差算(1)-5/9 (2)-0.01 (3)0 (4)-49. 8袋大米,以每袋50千克为准,超过的千克数记作正数,分别为-2,+1,+5,+6,-3,-5,+5,-3.问8袋大米总共重多少千克.若每千克大米1.9元,这8袋大米值多少元?答案:注意这里以每袋50千克为准,故共重:50×8+(-2)+1+5+6+(-3)+(-5)+5+(-3)=404(千克),价值为404×1.9=767.6(元).10. 某产粮专业户出售余粮20袋,每袋重量如下:(单位千克)199、201、197、203、200、195、197、199、202、196、203、198、201、200、197、196、204、199、201、198.用简便方法计算出售的余粮总共多少千克?答案:以200(千克)为基准,超过的千克数记作正数,不足的千克数记作负数,则这20个数的差的累计是:(-1)+(+1)+(-3)+(+3)+0+(-5)+(-3)+(-1)+(+2)+(-4)+(+3)+(-2)+(+1)+0+(-3)+(-4)+(+4)+ (-1)+(+1)+(-2)=-14.200×20+(-14)=4 000-14=3 986(千克)答:余粮总共有3 986千克.二、以考查技能为主试题【中等题】11.若x的相反数是3,y的绝对值是4,则x+y的值是()A.-1 B.7 C.7或-1 D.-7或1答案:D.12.绝对值大于3且小于4的所有的整数的和是()A.7 B.-7 C.3 D.0答案:D.13.小于2011大于-2012的所有整数的和是()A.-1 B.-2011 C.-2010 D.2010答案:B.14.已知|a|=3,|b|=4,求:答案:∵a|=3,|b|=4∴a=3,或a=-3,b=4,或b=-4,(1)a,b异号时:a=3,b=-4,a-b=3-(-4)=7,a=-3,b=4时,a-b=-3-4=-7;(2)a,b同号时:a=3,b=4时,a+b=3+4=7,a=-3,b=-4时,a+b=-3+(-4)=-7.15.规定扑克牌中的黑色数字为正数,红色数字为负数,且J为11,Q为12,K为13,A为1,如图计算下列各组两张牌面数字之和.答案:根据题意得,四张扑克的数字为:-11,-13,-13,+5,故-11-13=-24-13+5=-8,故各组两张牌面数字之和分别为-24和-8.16.设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,a,b,c三个数的和为()A.-1 B.0 C.1 D.不存在答案:A.【较难题】17.小红和小丽做游戏,每人抽4张扑克牌,红色为正,黑色为负,结果大则胜.小红抽到的是:红桃4,方块5,梅花3,黑桃7.小丽抽到的是:方块6,梅花J,黑桃A.红桃9.问:小红和小丽谁获胜?(说明:J为11,A为1)答案:小红:+4+(+5)+(-3)+(-7)=-1,小丽:(+6)+(-11)+(-1)+(+9)=3,3>-1,∴小丽获胜.18.请把1-8个数字分别填入正方体顶点处的圆圈内,如图,使各个面上的四个数字之和相等,并求出这个和.答案:如图所示19. 下表为某公司股票在本周内每日的涨跌情况(股价上涨记为“+”,下跌记为“-”):星期一二三四五每股涨跌+4.35 -3.20 -0.35 -2.75 +1.15 计算本周内该公司股票总的变化是上涨还是下降,上涨或下降的值是多少元?答案:把每日涨跌值相加即可,注意若和为正,则为上涨,反之为下跌,本周该公司股票下跌0.80元.20.一位同学沿着一条东西向的跑道,先走了20米,又走了30米,能否确定他现在位于原来位置的哪个方向,相距多少米?答案:(1)若两次都是向东走,则一共向东走了50米,表示:(+20)+(+30)=+50;(2)若两次都是向西走,则一共向西走了50米,表示:(-20)+(-30)= -50;(3)若第一次向东走20米,第二次向西走30米,则最后位于原来位置的西方10米,表示:(+20)+(-30)= -10;(4)若第一次向西走20米,第二次向东走30米,则最后位于原来位置的东方10米,表示:(- 20)+(+30)= +10有理数的减法一、以考查知识为主试题【容易题】11-3-524=-3+5=2)11113 -3-5=-3+-5=-8 242442. 已知x=4,|y|=5且x>y,则2x-y的值为()A.13 B.3 C.13或3 D.-13或-3答案:A.3.北京与巴黎两地的时差是-7小时(带正号的数表示同一时间比北京早的时间数),如果现在北京时间是7:00,那么巴黎的时间是()A.0:00 B.7:00 C.14:00 D.21:00答案:A.4.数-4与-3的和比它们的绝对值的和()A.大7 B.小7 C.小14 D.相等答案:C【中等题】5.今年11月份甲、乙、丙三个城市的平均气温分别为-5℃、-1℃、15℃,那么最高的平均气温比最低的平均气温高()A.10℃ B.14℃ C.16℃ D.20℃答案:D.6.若|a|=8,|b|=3,且a<b,则a-b的值()A.-11 B.-5 C.-5或5 D.-11或-5答案:D.7. 填空题:(1)3-(-3)=_______; (2)(-11)-2=_______;(3)0-(-6)=_______; (4)(-7)-(+8)=_______;(5)-12-(-5)=________; (6)3比5大_________;(7)-8比-2小_________; (8)-4-(______)=10.答案:利用减法法则把减法运算转化成加法运算.(1)6 (2)-13 (3)6 (4)-15 (5)-7 (6)-2 (7)6 (8)-148. 我市2012年的最高气温为39 ℃,最低气温为零下7 ℃,则计算2012年温差列式正确的是()A.(+39)-(-7)B.(+39)+(+7)C.(+39)+(-7)D.(+39)-(+7)答案:A9. (1)某冷库温度是零下10 ℃,下降-3 ℃后又下降5 ℃,两次变化后冷库温度是多少?(2)零下12 ℃比零上12 ℃低多少?(3)数轴上A、B两点表示的有理数分别是-612和734,求A、B两点的距离.答案:(1)(-10)-(-3)-(+5)=(-10)+(+3)+(-5)=(-15)+(+3)=-12. (2)(-12)-(+12)=(-12)+(-12)=-24.(3)|734-(-612)|=|734+612|=1414.10. 判断题:(1)两个数相减,就是把绝对值相减; ()(2)若两数的差为0,则这两数必相等; ()(3)两数的差一定小于被减数; ()(4)两个负数之差一定是负数; ()(5)两个数的和一定大于这两个数的差; ()(6)任意不同号的两个数的和一定小于它们的差的绝对值. ()答案:按减法法则和加法法则判断.(1)× (2)√ (3)× (4)× (5)× (6)√11. 计算:(1)7.21-(-9.35); (2)(-19)-(+9.5);(3)(+538)-(+734); (4)(-413)-(-425);(5)(-6.79)-(-6.79); (6)(-347)-(+347).答案:按减法法则,把减法转化为加法计算.(1) 16. 56 (2) -28.5 (3)-238(4)115(5)0 (6)-717二、以考查技能为主试题【中等题】12.两个数的差是负数,则这两个数一定是()A.被减数是正数,减数是负数B.被减数是负数,减数是正数C.被减数是负数,减数也是负数D.被减数比减数小答案:D.13.甲、乙、丙三家商场都以8万元购进了同一种货物,一周后全部销售完.结果甲、乙、丙收回资金分别为10万元、7.8万元、8.2万元,若记盈利为“+”,(1)分别用“+”“-”数表示三家的盈利情况;(2)哪家商场的效益最好?哪家最差?差距是多少万元?答案:“正”和“负”相对,所以,若高于8万元,记作“+”,那么低于8万元,应记作“-”.则10万元、7.8万元、8.2万元分别记作甲:+2万元、乙:-0.2万元、丙:+0.2万元.可以看出甲商场的效益最好,乙商场的最差,相差2.2万元,故(1)甲:+2万元、乙:-0.2万元、丙:+0.2万元;(2)甲商场的效益最好,乙商场的最差,相差2.2万元.14.北京等5个城市的国际标准时间(单位:小时)可在数轴上表示如下:如果将两地国际标准时间的差简称为时差,那么()A.汉城与纽约的时差为13小时B.汉城与多伦多的时差为13小时C.北京与纽约的时差为14小时D.北京与多伦多的时差为14小时答案:B.15.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.4)kg的字样,从中任意拿出两袋,它们的质量最多相差 kg.答案:质量最小值是25-0.4=24.6,最大值是25+0.4=25.4,∴25.4-24.6=0.8.故答案为:0.8.16. 计算:(1)(-1.5)-(-9.4)-(+3.6)+(-4.3)-(+5.2);(2)0-(+12)-(-13)-(-14)-(+16);(3)0-(-2.75)-(+0.71)-(-4);(4)(-323)-(-234)-(-123)-(+1.75).答案:(1)原式=-1.5-3.6-4.3-5.2+9.4=-5.2;(2)原式=-12-16+13+14=-46+712=-112;(3)原式=2.75+4-0.71=6.04;(4)原式=-323+123+234-134=-2+1=-1.17. 如下图:(1)A,B两点间的距离是多少?(2)B,C两点间的距离是多少?答案:(1)|AB|=|2-(-113)|=|2+113|=313;(2)|BC|=|-113-(-3)|=|-113+3|=132.18. 要使下列各式成立,有理数x应取什么值?(1)-[-(-7)]+x=0;(2)x+(-512)=2.5;(3)x+[-(-1113)]=1113.答案:应先移项,将数字合并.或已知两个数的和与一个加数,求另一个加数,用减法. (1)x=7 (2)x=8 (3)x=0【较难题】19. 若a、b为数轴上的有理数,用小于号把b+a,b-a,a-b,-a-b连起来.答案:∵a<b<0,∴b-a>0,-a-b>0,a+b<0,a-b<0.又∵|b-a|>|-a-b|且|b+a|>|a-b|,∴b+a<a-b<b-a<-a-b.20. 如图是南宁冬季某一天的气温随时间变化的情况图,请你来观察:(1)当天什么时间气温最低,最低气温是多少?(2)当天什么时间气温最高,最高气温是多少?(3)这一天的温差是多少?(结果都取整数)答案:(1)当天4时气温最低,最低气温是约零下1℃;(2)当天16时气温最高,最高气温是约10℃;(3)这一天的温差是约11℃.21. 识图与理解:请认真观察如图给出的未来一周某市的每天的最高气温和最低气温,直接回答后面提出的问题:(1)这一周该市的最高气温和最低气温分别是多少?(2)这一周中,星期几的温差最大是多少?答案:(1)如图可知最高气温和最低气温分别是9℃和-4℃.(2)这一周中,星期四的温差最大,温度在-4℃到4℃之间,故温差是4-(-4)=8℃.有理数的加法运算律一、以考查知识为主试题【容易题】1.计算16+(-25)+24+(-32).答案:16+(-25)+24+(-32)=16+24+(-25)+(-32) (加法交换律)=[16+24]+[(-25)+(-32)] (加法结合律) (同号相加法则) =40+(-57) (异号相加法则) =-17.2.计算:18.56+(-5.16)+(-1.45)+(+5.16)+(-18.56)答案:原式=[18.56+(-18.56)]+[(-5.16)+5.16]+(-1.45)=-1.45.计算:5116 +5+-3+-6+-15 6767答案:原式=511111 5-6+-3+-15=-+-19=-19 6677333.足球循环赛中,红队胜黄队4:1,蓝队胜黄队3:2,蓝队胜红队1:0,三个队分别计算净胜球,其中净胜球数最多的是个.答案:红队的净胜球数=4+0-1-1=2;蓝队的净胜球数=3+1-2=2;黄队的净胜球数=1+2-4-3=-4.故净胜球最多2个.故答案为:2.【中等题】4. 10袋小麦称后记录如图所示(单位:千克).10袋小麦一共多少千克?如果每袋小麦以90千克为标准,10袋小麦总计超过多少千克或不足多少千克?答案:解法1:先计算10袋小麦一共多少千克:91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1=905.4再计算总计超过多少千克:905.4-90×10=5.4解法2:每袋小麦超过90千克的千克数记作正数,不足的千克数记作负数;以90千克为标准,10袋小麦的记录如下:+1、+1、+1.5、-1、+1.2、+1.3、-1.3、-1.2、+1.8、+1.1,(+1)+(+1)+(+1.5)+(-1)+(+1.2)+(+1.3)+(-1.3)+(-1.2)+(+1.8)+(+1.1)=(+1)+(-1)+(+1.2)+(-1.2)+(+1.3)+(-1.3)+(+1)+(+1.5)+(+1.8)+(+1.1)=5.4千克.答:10袋小麦总计超过5.4千克.5. 10箱苹果,如果每箱以30千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+2,+1,0,-1,-1.5,-2,+1,-1,-1,-0.5.这10箱苹果的总质量是多少千克?答案:这10箱苹果与标准质量的差值的和为(+2)+(+1)+0+(-1)+(-1.5)+(-2)+(+1)+(-1)+(-1)+(-0.5)=-3(千克).因此,这10箱苹果的总质量为30×10=300-3=297(千克).答:10箱苹果的总质量为297千克.6. 计算:(1)(+17)+(-32)+(-16)+(+24)+(-1);(2)(+653)+(-523)+(+425)+(-113).答案:运用有理数加法的运算律可以简化运算,在多个有理数相加时,往往实际运用交换律,又运用结合律.(1)原式=(+17)+(+24)+(-32)+(-16)+(-1)=(+41)+(-49)=-8;(2)原式=(+635)+(+425)+(-523)+(-113)=11-7=47. 计算:88+95+92+89+86+91+90+88+92+90+86+92+87+89+91+93+88+94+91+87.答案:注意到数字都在90左右波动,可将之两两组合,或取整数90的20倍,再将差数求和.原式=90×2+(-2+5+2-1-4+1-2+2-4+2-3-1+1+3-2+4+1-3)=1 7998. 小学里学过的加法交换律、结合律在有理数运算中仍然适用.利用加法运算律可以使运算简便.(1)同号结合法:先把正数与负数分别结合以后再_______.(2)凑整结合法:先把某些加数结合凑为_______再相加.(3)相反数结合法:先把互为________的数结合起来.(4)同分母结合法:遇有分数,先把_______结合起来.答案:利用运算法,把数的加法、进行分类运算、简化计算.(1)相加(2)整数(3)相反数(4)同分母分数9. 计算:5116 +5+-3+-6+-15 6767答案:原式=511111 5-6+-3+-15=-+-19=-19 66773310. 足球循环赛中,红队胜黄队4:1,蓝队胜黄队3:2,蓝队胜红队1:0,三个队分别计答案:红队的净胜球数=4+0-1-1=2;蓝队的净胜球数=3+1-2=2;黄队的净胜球数=1+2-4-3=-4.故净胜球最多2个.故答案为:2.二、以考查技能为主试题【中等题】11. 从-30起,逐次加2,得到一列整数:-28,-26,-24,-22,…(1)第30个整数是多少?(2)计算这30个整数的和.答案:(1)∵第n个数为-30+2×(n-1),∴第30个数为-30+2×29=-30+58=28;(2)根据题意得:-30-28-26-24-…+24+26+28=-30.12. 出租车司机小李某天下午运营全是在东西方向的大衔上进行的.如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+15,-8,+5,-10,+12,-7,+9,-12,-8,+11(1)将最后一名乘客送到目的地时,小李距离下午出车时的出发点多远?(2)若汽车耗油量为0.1升/千米,这天下午小李共耗油多少升?答案:(1)+15-8+5-10+12-7+9-12-8+11=7千米.即将最后一名乘客送到目的地时,小李距下午出车时的出发点7千米,此时在出车点的东边.(2)由题意得每千米耗油0.06升;耗油量=每千米的耗油量×总路程=0.1×(|+15|+|-8|+|+5|+|-10|+|+12|+|-7|+|+9|+|-12|+|-8|+|+11|)=9.7升.答:若汽车耗油量为0.1升/千米,这天下午小李共耗油9.7升13.计算3+5+7+9+…+195+197+199的值是()A.9699 B.9999 C.9899 D.9799答案:B.9. 1+(-2)+3+(-4)+…+99+(-100).答案:1+(-2)+3+(-4)+…+99+(-100)=[1+(-2)]+[3+(-4)]+…+[99+(-100)]=-1+(-1)+(-1)+…+(-1)=-50.14. 一口水井,水面比井口低3米,一只蜗牛从水面沿着井壁往井口爬,第一次往上爬了0.5米,却下滑了0.1米;第二次往上爬了0.47米后又往下滑了0.15米;第三次往上爬了0.6米又下滑了0.15米;第四次往上爬了0.8米又下滑了0.1米,第五次往上爬了0.55米,没有下滑.问:它能爬出井口吗?如果不能,第六次它至少要爬多少米?答案:根据题意,蜗牛前5次向井口爬行的距离为:0.5+(-0.1)+0.47+(-0.15)+0.6+(-0.15)+0.8+(-0.1)+0.55,=0.5+0.47+0.6+0.8+0.55+(-0.1)+(-0.15)+(-0.15)+(-0.1),=2.92-0.5,=2.42米,∵2.42<3,∴它不能爬出井口,3-2.42=0.58米,第六次它至少要爬0.58米.15. 计算下列各式:(1)(-7)+512+(-312)+4;(2)(-5)+223+(-12)+(-223).答案:应根据数字的特征,利用加法的交换律来解之.(1)原式=(-7)+4+512+(-312)-3+2=-1;(2)原式=(-5)+(-12)+223+(-223)=-512.16. 计算下列各式:(1)(-557)+(-612)+(-1427)+(+16.5);(2)(-423)+38+(-56)+(-58)+(334).答案:先进行合理分组.即同分母的数分为一组.(1)-10 (2)-217. 若|y-3|+|2x-4|=0,求3x+y的值.答案:根据绝对值的性质可以得到|y-3|≥0,|2x-4|≥0,所以只有当y-3=0且2x-4=0时,|y-3|+|2x-4|=0才成立.由y-3=0得y=3,由2x-4=0,得x=2.则3x+y易求.18. 我国古代有一道有趣的数学题:“井深十米,一只小蜗牛从井底向上爬,白天向上爬2米,夜间又掉下1米,问小蜗牛几天可爬出深井?”你能用有理数加法的知识解决这个古老的问题吗?千万别落入陷阱哦!答案:这里注意最后一个白天蜗牛已经爬上井口,夜间就不会掉下了!8[(+2)+(-1)+[(+2)+(-1)]++[(+2)+(-1)] 天+(+2)=10(米).【较难题】19. 从-55起逐次加1得到一连串整数,-54,-53,-52,…请问:(1)第100个整数是什么?(2)这100个整数的和是什么?答案:(1)第100个整数为-55+100=45;(2)这100个整数和为(-54)+(-53)+(-52)+(-1)+0+1+…+(45)=-(1+2+...+54)+(1+2+ (45)=-(46+47+48+49+50+51+52+53+54)=-450.20. 某检修小组从A 地出发,在东西方向的公路上检修线路.如果规定向东行驶为正,向西行驶为负,这个检修小组一天中行驶的距离记录如下(单位:千米):-4,+7,-9,+8,+6,-4,-3.(1)求收工时检修小组距A 地多远?(2)距A 地最远时是哪一次?(3)若检修小组所乘汽车每千米耗油0.5升,则从出发到收工时共耗油多少升?答案:(1)-4+7+(-9)+8+6+(-4)+(-3)=1(千米).答:收工时检修小组在A 地东面1千米处.(2)第一次距A地|-4|=4千米;第二次:|-4+7|=3千米;第三次:|-4+7-9|=6千米;第四次:|-4+7-9+8|=2千米;第五次:|-4+7-9+8+6|=8千米;第六次:|-4+7-9+8+6-4|=4千米;第七次:|-4+7-9+8+6-4-3|=1千米.所以距A地最远的是第5次.(3)从出发到收工汽车行驶的总路程:|-4|+|+7|+|-9|+|+8|+|+6|+|-4|+|-3|=41;从出发到收工共耗油:41×0.5=20.5(升).答:从出发到收工共耗油20.5升.一、以考查知识为主试题【容易题】1.计算:(1)(-3)+(-9);(2)(-4.7)+3.9答案:(1)(-3)+(-9)=-(3+9)=-12(2)(-4.7)+3.9= -(4.7-3.9)=-0.82.下列运算中,正确的个数有()①(-5)+5=0 ②(-10)+(+7)=-3 ③0+(-4)=-4 ④(-3)+2=-1 ⑤(-1)+(+2)=-1.A.1个 B.2个 C.3个 D.4答案:D.3.如果2010个不都相等的有理数的和为0,那么下列说法中,正确的是()A.其中至少有一个是负数B.其中正数与负数各占一半C.其中正数不能少于1005个D.其中必须有一个数是0答案:A.4.计算16+(-25)+24+(-32).答案:16+(-25)+24+(-32)=16+24+(-25)+(-32) (加法交换律)=[16+24]+[(-25)+(-32)] (加法结合律) (同号相加法则)=40+(-57) (异号相加法则) =-17.5.计算:18.56+(-5.16)+(-1.45)+(+5.16)+(-18.56)答案:原式=[18.56+(-18.56)]+[(-5.16)+5.16]+(-1.45)=-1.45.计算:5116 +5+-3+-6+-15 6767答案:原式=511111 5-6+-3+-15=-+-19=-19 6677336.足球循环赛中,红队胜黄队4:1,蓝队胜黄队3:2,蓝队胜红队1:0,三个队分别计算净胜球,其中净胜球数最多的是个.答案:红队的净胜球数=4+0-1-1=2;蓝队的净胜球数=3+1-2=2;黄队的净胜球数=1+2-4-3=-4.故净胜球最多2个.故答案为:2.11-3-524答案:(1)(-3)-(-5)=-3+5=2(2)0-7= 0+(-7)= -7(3)7.2-(-4.8)=7.2+4.8=12)11113 -3-5=-3+-5=-8 242448. 已知x=4,|y|=5且x>y,则2x-y的值为()A.13 B.3 C.13或3 D.-13或-3答案:A.9.北京与巴黎两地的时差是-7小时(带正号的数表示同一时间比北京早的时间数),如果现在北京时间是7:00,那么巴黎的时间是()A.0:00 B.7:00 C.14:00 D.21:00答案:A.10.数-4与-3的和比它们的绝对值的和()A.大7 B.小7 C.小14 D.相等答案:C【中等题】答案:∵比5的相反数小7为-5-7=-12,∴其中的一个数为-12,∵两个数的和是-25,∴另一个数是-13,故答案为-13.12.某仓库第一天运进+100箱水果,第二天运进-70箱,第三天运进+55箱,第四天运进64箱,四天共运进仓库多少箱水果?答案:100+(-70)+55+64=149(箱),答:四天共运进仓库149箱水果.13. 计算下列各题:(1)(+3)+(-12)=________;(2)(+20)+(+32)=________;(3)(-312)+(-23)=_______;(4)(-20072006)+0=________.答案:根据有理数的加法法则进行. (1)(+3)+(-12)=-(12-3)=-9;(2)(+20)+(+32)=+(20+32)=52;(3)(-312)+(-23)=-(312+23)=-416;(4)(-20072006)+0=-20072006.14. 判断题:(1)两个有理数的和为正数时,这两个数都是正数;()(2)两个数的和的绝对值一定等于这两个数绝对值的和;()(3)如果两个数的和为负,那么这两个加数中至少有一个是负数;()(4)两数之和必大于任何一个加数;()(5)如果两个有理数的和比其中任何一个加数都大,那么这两个数都是正数. ()答案:(1)×(2)×(3)√(4)×(5)√15. 计算:(1)(-718)+(-16);(2)(-1.13)+(+1.12);(3)(-237)+237;(4)0+(-4).答案:利用有理数的加法法则进行有理数的加法的基本步骤:第一步要判断是同号两数相加还是异号两数相加;第二步要判断结果是正号还是负号;第三步要判断用绝对值的和算还是用绝对值的差算(1)-5/9 (2)-0.01 (3)0 (4)-416. 8袋大米,以每袋50千克为准,超过的千克数记作正数,分别为-2,+1,+5,+6,-3,-5,+5,-3.问8袋大米总共重多少千克.若每千克大米1.9元,这8袋大米值多少元?答案:注意这里以每袋50千克为准,故共重:50×8+(-2)+1+5+6+(-3)+(-5)+5+(-3)=404(千克),价值为404×1.9=767.6(元).17. 某产粮专业户出售余粮20袋,每袋重量如下:(单位千克)199、201、197、203、200、195、197、199、202、196、203、198、201、200、197、196、204、199、201、198.用简便方法计算出售的余粮总共多少千克?答案:以200(千克)为基准,超过的千克数记作正数,不足的千克数记作负数,则这20个数的差的累计是:(-1)+(+1)+(-3)+(+3)+0+(-5)+(-3)+(-1)+(+2)+(-4)+(+3)+(-2)+(+1)+0+(-3)+(-4)+(+4)+ (-1)+(+1)+(-2)=-14.200×20+(-14)=4 000-14=3 986(千克)答:余粮总共有3 986千克.18. 10袋小麦称后记录如图所示(单位:千克).10袋小麦一共多少千克?如果每袋小麦以90千克为标准,10袋小麦总计超过多少千克或不足多少千克?答案:解法1:先计算10袋小麦一共多少千克:91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1=905.4再计算总计超过多少千克:905.4-90×10=5.4解法2:每袋小麦超过90千克的千克数记作正数,不足的千克数记作负数;以90千克为标准,10袋小麦的记录如下:+1、+1、+1.5、-1、+1.2、+1.3、-1.3、-1.2、+1.8、+1.1,(+1)+(+1)+(+1.5)+(-1)+(+1.2)+(+1.3)+(-1.3)+(-1.2)+(+1.8)+(+1.1)=(+1)+(-1)+(+1.2)+(-1.2)+(+1.3)+(-1.3)+(+1)+(+1.5)+(+1.8)+(+1.1)=5.4千克.答:10袋小麦总计超过5.4千克.19. 10箱苹果,如果每箱以30千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+2,+1,0,-1,-1.5,-2,+1,-1,-1,-0.5.这10箱苹果的总质量是多少千克?答案:这10箱苹果与标准质量的差值的和为(+2)+(+1)+0+(-1)+(-1.5)+(-2)+(+1)+(-1)+(-1)+(-0.5)=-3(千克).因此,这10箱苹果的总质量为30×10=300-3=297(千克).答:10箱苹果的总质量为297千克.20. 计算:(1)(+17)+(-32)+(-16)+(+24)+(-1);(2)(+653)+(-523)+(+425)+(-113).答案:运用有理数加法的运算律可以简化运算,在多个有理数相加时,往往实际运用交换律,又运用结合律.(1)原式=(+17)+(+24)+(-32)+(-16)+(-1)=(+41)+(-49)=-8;(2)原式=(+635)+(+425)+(-523)+(-113)=11-7=421. 计算:88+95+92+89+86+91+90+88+92+90+86+92+87+89+91+93+88+94+91+87.答案:注意到数字都在90左右波动,可将之两两组合,或取整数90的20倍,再将差数求和.原式=90×2+(-2+5+2-1-4+1-2+2-4+2-3-1+1+3-2+4+1-3)=1 79922. 小学里学过的加法交换律、结合律在有理数运算中仍然适用.利用加法运算律可以使运算简便.(1)同号结合法:先把正数与负数分别结合以后再_______.(2)凑整结合法:先把某些加数结合凑为_______再相加.(3)相反数结合法:先把互为________的数结合起来.(4)同分母结合法:遇有分数,先把_______结合起来.答案:利用运算法,把数的加法、进行分类运算、简化计算.(1)相加(2)整数(3)相反数(4)同分母分数23. 计算:5116 +5+-3+-6+-15 6767答案:原式=511111 5-6+-3+-15=-+-19=-19 66773324. 足球循环赛中,红队胜黄队4:1,蓝队胜黄队3:2,蓝队胜红队1:0,三个队分别计算净胜球,其中净胜球数最多的是个.答案:红队的净胜球数=4+0-1-1=2;蓝队的净胜球数=3+1-2=2;黄队的净胜球数=1+2-4-3=-4.故净胜球最多2个.故答案为:2.25.今年11月份甲、乙、丙三个城市的平均气温分别为-5℃、-1℃、15℃,那么最高的平均气温比最低的平均气温高()A.10℃ B.14℃ C.16℃ D.20℃答案:D.26.若|a|=8,|b|=3,且a<b,则a-b的值()A.-11 B.-5 C.-5或5 D.-11或-5答案:D.27. 填空题:(1)3-(-3)=_______; (2)(-11)-2=_______;(3)0-(-6)=_______; (4)(-7)-(+8)=_______;(5)-12-(-5)=________; (6)3比5大_________;(7)-8比-2小_________; (8)-4-(______)=10.答案:利用减法法则把减法运算转化成加法运算.(1)6 (2)-13 (3)6 (4)-15 (5)-7 (6)-2 (7)6 (8)-1428. 我市2012年的最高气温为39 ℃,最低气温为零下7 ℃,则计算2012年温差列式正确的是()A.(+39)-(-7)B.(+39)+(+7)C.(+39)+(-7)D.(+39)-(+7)答案:A29. (1)某冷库温度是零下10 ℃,下降-3 ℃后又下降 5 ℃,两次变化后冷库温度是多少?(2)零下12 ℃比零上12 ℃低多少?(3)数轴上A、B两点表示的有理数分别是-612和734,求A、B两点的距离.答案:(1)(-10)-(-3)-(+5)=(-10)+(+3)+(-5)=(-15)+(+3)=-12. (2)(-12)-(+12)=(-12)+(-12)=-24.(3)|734-(-612)|=|734+612|=1414.30. 判断题:(1)两个数相减,就是把绝对值相减; ()(2)若两数的差为0,则这两数必相等; ()(3)两数的差一定小于被减数; ()(4)两个负数之差一定是负数; ()(5)两个数的和一定大于这两个数的差; ()(6)任意不同号的两个数的和一定小于它们的差的绝对值. ()答案:按减法法则和加法法则判断.(1)× (2)√ (3)× (4)× (5)× (6)√31. 计算:(1)7.21-(-9.35); (2)(-19)-(+9.5);(3)(+538)-(+734); (4)(-413)-(-425);(5)(-6.79)-(-6.79); (6)(-347)-(+347).答案:按减法法则,把减法转化为加法计算.(1) 16. 56 (2) -28.5 (3)-238(4)115(5)0 (6)-717二、以考查技能为主试题【中等题】32.若x的相反数是3,y的绝对值是4,则x+y的值是()A.-1 B.7 C.7或-1 D.-7或1答案:D.33.绝对值大于3且小于4的所有的整数的和是()A.7 B.-7 C.3 D.0答案:D.34.小于2011大于-2012的所有整数的和是()A.-1 B.-2011 C.-2010 D.2010 答案:B.35.已知|a|=3,|b|=4,求:答案:∵a|=3,|b|=4∴a=3,或a=-3,b=4,或b=-4,(1)a,b异号时:a=3,b=-4,a-b=3-(-4)=7,a=-3,b=4时,a-b=-3-4=-7;(2)a,b同号时:a=3,b=4时,a+b=3+4=7,a=-3,b=-4时,a+b=-3+(-4)=-7.36.规定扑克牌中的黑色数字为正数,红色数字为负数,且J为11,Q为12,K为13,A为1,如图计算下列各组两张牌面数字之和.答案:根据题意得,四张扑克的数字为:-11,-13,-13,+5,故-11-13=-24-13+5=-8,故各组两张牌面数字之和分别为-24和-8.37.设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,a,b,c三个数的和为()A.-1 B.0 C.1 D.不存在答案:A.38. 从-30起,逐次加2,得到一列整数:-28,-26,-24,-22,…(1)第30个整数是多少?(2)计算这30个整数的和.答案:(1)∵第n个数为-30+2×(n-1),∴第30个数为-30+2×29=-30+58=28;(2)根据题意得:-30-28-26-24-…+24+26+28=-30.39. 出租车司机小李某天下午运营全是在东西方向的大衔上进行的.如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+15,-8,+5,-10,+12,-7,+9,-12,-8,+11(1)将最后一名乘客送到目的地时,小李距离下午出车时的出发点多远?(2)若汽车耗油量为0.1升/千米,这天下午小李共耗油多少升?答案:(1)+15-8+5-10+12-7+9-12-8+11=7千米.即将最后一名乘客送到目的地时,小李距下午出车时的出发点7千米,此时在出车点的东边.(2)由题意得每千米耗油0.06升;耗油量=每千米的耗油量×总路程=0.1×(|+15|+|-8|+|+5|+|-10|+|+12|+|-7|+|+9|+|-12|+|-8|+|+11|)=9.7升.答:若汽车耗油量为0.1升/千米,这天下午小李共耗油9.7升40.计算3+5+7+9+…+195+197+199的值是()A.9699 B.9999 C.9899 D.9799答案:B.41. 1+(-2)+3+(-4)+…+99+(-100).答案:1+(-2)+3+(-4)+…+99+(-100)=[1+(-2)]+[3+(-4)]+…+[99+(-100)]=-1+(-1)+(-1)+…+(-1)=-50.42. 一口水井,水面比井口低3米,一只蜗牛从水面沿着井壁往井口爬,第一次往上爬了0.5米,却下滑了0.1米;第二次往上爬了0.47米后又往下滑了0.15米;第三次往上爬了0.6米又下滑了0.15米;第四次往上爬了0.8米又下滑了0.1米,第五次往上爬了0.55米,没有下滑.问:它能爬出井口吗?如果不能,第六次它至少要爬多少米?答案:根据题意,蜗牛前5次向井口爬行的距离为:0.5+(-0.1)+0.47+(-0.15)+0.6+(-0.15)+0.8+(-0.1)+0.55,=0.5+0.47+0.6+0.8+0.55+(-0.1)+(-0.15)+(-0.15)+(-0.1),=2.92-0.5,=2.42米,∵2.42<3,∴它不能爬出井口,3-2.42=0.58米,第六次它至少要爬0.58米.43. 计算下列各式:(1)(-7)+512+(-312)+4;(2)(-5)+223+(-12)+(-223).答案:应根据数字的特征,利用加法的交换律来解之.(1)原式=(-7)+4+512+(-312)-3+2=-1;(2)原式=(-5)+(-12)+223+(-223)=-512.44. 计算下列各式:(1)(-557)+(-612)+(-1427)+(+16.5);(2)(-423)+38+(-56)+(-58)+(334).答案:先进行合理分组.即同分母的数分为一组. (1)-10 (2)-245. 若|y -3|+|2x -4|=0,求3x +y 的值.答案:根据绝对值的性质可以得到|y -3|≥0,|2x -4|≥0,所以只有当y -3=0且2x -4=0时,|y -3|+|2x -4|=0才成立.由y -3=0得y =3,由2x -4=0,得x =2.则3x +y 易求.46. 我国古代有一道有趣的数学题:“井深十米,一只小蜗牛从井底向上爬,白天向上爬2米,夜间又掉下1米,问小蜗牛几天可爬出深井?”你能用有理数加法的知识解决这个古老的问题吗?千万别落入陷阱哦!答案:这里注意最后一个白天蜗牛已经爬上井口,夜间就不会掉下了!8[(+2)+(-1)+[(+2)+(-1)]++[(+2)+(-1)] 天+(+2)=10(米).47.两个数的差是负数,则这两个数一定是( )E . 被减数是正数,减数是负数F . 被减数是负数,减数是正数G . 被减数是负数,减数也是负数H . 被减数比减数小答案:D .48.甲、乙、丙三家商场都以8万元购进了同一种货物,一周后全部销售完.结果甲、乙、丙收回资金分别为10万元、7.8万元、8.2万元,若记盈利为“+”,(1)分别用“+”“-”数表示三家的盈利情况;(2)哪家商场的效益最好?哪家最差?差距是多少万元?答案:“正”和“负”相对,所以,若高于8万元,记作“+”,那么低于8万元,应记作“-”.则10万元、7.8万元、8.2万元分别记作甲:+2万元、乙:-0.2万元、丙:+0.2万元.可以看出甲商场的效益最好,乙商场的最差,相差2.2万元,故(1)甲:+2万元、乙:-0.2万元、丙:+0.2万元;(2)甲商场的效益最好,乙商场的最差,相差2.2万元.49.北京等5个城市的国际标准时间(单位:小时)可在数轴上表示如下:如果将两地国际标准时间的差简称为时差,那么()A.汉城与纽约的时差为13小时B.汉城与多伦多的时差为13小时C.北京与纽约的时差为14小时D.北京与多伦多的时差为14小时答案:B.50.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.4)kg的字样,从中任意拿出两袋,它们的质量最多相差 kg.答案:质量最小值是25-0.4=24.6,最大值是25+0.4=25.4,∴25.4-24.6=0.8.故答案为:0.8.51. 计算:(1)(-1.5)-(-9.4)-(+3.6)+(-4.3)-(+5.2);(2)0-(+12)-(-13)-(-14)-(+16);(3)0-(-2.75)-(+0.71)-(-4);(4)(-323)-(-234)-(-123)-(+1.75).答案:(1)原式=-1.5-3.6-4.3-5.2+9.4=-5.2;(2)原式=-12-16+13+14=-46+712=-112;(3)原式=2.75+4-0.71=6.04;(4)原式=-323+123+234-134=-2+1=-1.52. 如下图:(1)A,B两点间的距离是多少?(2)B,C两点间的距离是多少?答案:(1)|AB|=|2-(-113)|=|2+113|=313;(2)|BC|=|-113-(-3)|=|-113+3|=132.53. 要使下列各式成立,有理数x应取什么值?(1)-[-(-7)]+x=0;(2)x+(-512)=2.5;(3)x+[-(-1113)]=1113.答案:应先移项,将数字合并.或已知两个数的和与一个加数,求另一个加数,用减法. (1)x=7 (2)x=8 (3)x=0【较难题】54.小红和小丽做游戏,每人抽4张扑克牌,红色为正,黑色为负,结果大则胜.小红抽到的是:红桃4,方块5,梅花3,黑桃7.小丽抽到的是:方块6,梅花J,黑桃A.红桃9.问:小红和小丽谁获胜?(说明:J为11,A为1)答案:小红:+4+(+5)+(-3)+(-7)=-1,小丽:(+6)+(-11)+(-1)+(+9)=3,3>-1,∴小丽获胜.55.请把1-8个数字分别填入正方体顶点处的圆圈内,如图,使各个面上的四个数字之和相等,并求出这个和.答案:如图所示56. 下表为某公司股票在本周内每日的涨跌情况(股价上涨记为“+”,下跌记为“-”):星期一二三四五每股涨跌+4.35 -3.20 -0.35 -2.75 +1.15计算本周内该公司股票总的变化是上涨还是下降,上涨或下降的值是多少元?答案:把每日涨跌值相加即可,注意若和为正,则为上涨,反之为下跌,本周该公司股票下跌0.80元.57. 一位同学沿着一条东西向的跑道,先走了20米,又走了30米,能否确定他现在位于原来位置的哪个方向,相距多少米?答案:(1)若两次都是向东走,则一共向东走了50米,表示:(+20)+(+30)=+50;(2)若两次都是向西走,则一共向西走了50米,表示:(-20)+(-30)= -50;(3)若第一次向东走20米,第二次向西走30米,则最后位于原来位置的西方10米,表示:(+20)+(-30)= -10;(4)若第一次向西走20米,第二次向东走30米,则最后位于原来位置的东方10米,表示:(- 20)+(+30)= +1058. 从-55起逐次加1得到一连串整数,-54,-53,-52,…请问:(1)第100个整数是什么?(2)这100个整数的和是什么?答案:(1)第100个整数为-55+100=45;(2)这100个整数和为(-54)+(-53)+(-52)+(-1)+0+1+…+(45)=-(1+2+...+54)+(1+2+ (45)=-(46+47+48+49+50+51+52+53+54)=-450.59. 某检修小组从A地出发,在东西方向的公路上检修线路.如果规定向东行驶为正,向西行驶为负,这个检修小组一天中行驶的距离记录如下(单位:千米):-4,+7,-9,+8,+6,-4,-3.(1)求收工时检修小组距A地多远?(2)距A地最远时是哪一次?(3)若检修小组所乘汽车每千米耗油0.5升,则从出发到收工时共耗油多少升?答案:(1)-4+7+(-9)+8+6+(-4)+(-3)=1(千米).答:收工时检修小组在A地东面1千米处.(2)第一次距A地|-4|=4千米;第二次:|-4+7|=3千米;第三次:|-4+7-9|=6千米;第四次:|-4+7-9+8|=2千米;第五次:|-4+7-9+8+6|=8千米;第六次:|-4+7-9+8+6-4|=4千米;第七次:|-4+7-9+8+6-4-3|=1千米.所以距A地最远的是第5次.(3)从出发到收工汽车行驶的总路程:|-4|+|+7|+|-9|+|+8|+|+6|+|-4|+|-3|=41;从出发到收工共耗油:41×0.5=20.5(升).答:从出发到收工共耗油20.5升.60. 若a、b为数轴上的有理数,用小于号把b+a,b-a,a-b,-a-b连起来.。

人教版七年级数学上册 第一章 有理数 第三节 有理数的加减法 同步测试

人教版七年级数学上册 第一章 有理数 第三节 有理数的加减法 同步测试

人教版七年级数学上册第一章有理数第三节有理数的加减法同步测试一.选择题(共10小题,每小题3分,共30分)1.荆州某日夜晚最低温度比白天最高温度下降了10℃.若这一天白天最高温度为8℃,则夜晚最低温度为()A.2℃B.﹣2℃C.0℃D.18℃2.遵义市2019年6月1日的最高气温是25℃,最低气温是15℃,遵义市这一天的最高气温比最低气温高()A.25℃B.15℃C.10℃D.﹣10℃3.计算﹣2+(﹣6)的结果是()A.12 B.C.﹣8 D.﹣44.比﹣3的相反数小1的数是()A.2 B.﹣2 C.D.5.计算﹣19+20等于()A.﹣39 B.﹣1 C.1 D.396.计算(﹣5)+(﹣7)的值是()A.﹣12 B.﹣2 C.2 D.127.我市春季里某一天的气温为﹣3℃~13℃,则这一天的温差是()A.3℃B.10℃C.13℃D.16℃8.已知|a|=1,b是2的相反数,则a+b的值为()A.﹣3 B.﹣1 C.﹣1或﹣3 D.1或﹣39.计算﹣8+1的结果为()A.﹣5 B.5 C.﹣7 D.710.在下列气温的变化中,能够反映温度上升5℃的是()A.气温由﹣5℃到5℃B.气温由﹣1℃到﹣6℃C.气温由5℃到0℃D.气温由﹣2℃到3℃二.填空题(共8小题,每小题3分,共24分)11.计算:﹣=.12.计算:﹣20﹣19=.13.某年一月份,哈尔滨市的平均气温约为﹣20℃,绥化市的平均气温约为﹣23℃,则两地的温差为℃.14.2017年,随州学子尤东梅参加《最强大脑》节目,成功完成了高难度的项目挑战,展现了惊人的记忆力.在2019年的《最强大脑》节目中,也有很多具有挑战性的比赛项目,其中《幻圆》这个项目充分体现了数学的魅力.如图是一个最简单的二阶幻圆的模型,要求:①内、外两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,则图中两空白圆圈内应填写的数字从左到右依次为和.15.某地某天早晨的气温是﹣2℃,到中午升高了6℃,晚上又降低了7℃.那么晚上的温度是℃.16.比﹣4大3的数是.17.扬州2月份某日的最高气温是6℃,最低气温是﹣3℃,则该日扬州的温差(最高气温﹣最低气温)是℃.18.若|a|=3,|b|=5且a>0,则a﹣b=.三.解答题(共7小题,共66分)19.若|a|=3,|b|=5,求a+b的值.20.一个数减去﹣5与2的和,所得的差是6,求该数的相反数.21.计算:﹣5+(+2)+(﹣1)﹣(﹣)22.列式并计算(1)求+1.2的相反数与﹣1.3的绝对值的和.(2)4与2的和的相反数.(3)巴黎和北京的时差是﹣7个小时,李伯伯于北京时间9月29号早上8:00搭乘飞往巴黎,飞行时间约11个小时,则李伯伯到达巴黎的时间是.(填月日时)23.某同学在计算时﹣3﹣N,误将﹣N看成了+N,从而算得结果是5,请你帮助算出正确结果.24.用A、B、C、D分别表示有理数a、b、c,0为原点如图所示.化简|a﹣c|+|b﹣a|+|c﹣a|25.下表记录的是今年长江某一周内的水位变化情况,这一周的上周末的水位已达到警戒水位33米(正号表示水位比前一天上升,负号表示水位比前一天下降).星期一二三四五六水位变化(米)+0.2 +0.8 ﹣0.4 +0.2 +0.3 ﹣0.2(1)本周哪一天长江的水位最高?位于警戒水位之上还是之下?(2)与上周周末相比,本周周末长江的水位是上升了还是下降了?并通过计算说明理由.参考答案一、选择题1.【解答】解:8℃﹣10℃=﹣2℃,夜晚最低温度为﹣2℃.故选:B.2.【解答】解:25﹣15=10℃.故选:C.3.【解答】解:﹣2+(﹣6)=﹣(2+6)=﹣8所以计算﹣2+(﹣6)的结果是﹣8.故选:C.4.【解答】解:﹣3的相反数为3,故比﹣3的相反数小1的数是2.故选:A.5.【解答】解:﹣19+20=1.故选:C.6.【解答】解:(﹣5)+(﹣7)=﹣(5+7)=﹣12,故选:A.7.【解答】解:13﹣(﹣3)=13+3=16.∴这一天的温差是16°C.故选:D.8.【解答】解:∵|a|=1,b是2的相反数,∴a=1或a=﹣1,b=﹣2,当a=1时,a+b=1﹣2=﹣1;当a=﹣1时,a+b=﹣1﹣2=﹣3;综上,a+b的值为﹣1或﹣3,故选:C.9.【解答】解:﹣8+1=﹣7.故选:C.10.【解答】解:A.气温由﹣5℃到5℃,上升了5﹣(﹣5)=10(℃),不符合题意;B.气温由﹣1℃到﹣6℃,上升了﹣6﹣(﹣1)=﹣5(℃),不符合题意;C.气温由5℃到0℃,上升了0﹣5=﹣5(℃),不符合题意;D.气温由﹣2℃到3℃,上升了3﹣(﹣2)=5(℃),符合题意;故选:D.二、填空题11.【解答】解:﹣+=﹣+=.故答案:.12.【解答】解:﹣20﹣19=﹣(20+9)=﹣39,所以计算﹣20﹣19的结果是﹣39.故答案:﹣39.13.【解答】解:﹣20﹣(﹣23)=﹣20+23=3(℃).故答案为3.14.【解答】解:设图中两空白圆圈内应填写的数字从左到右依次为a,b ∵外圆两直径上的四个数字之和相等∴4+6+7+8=a+3+b+11①∵内、外两个圆周上的四个数字之和相等∴3+6+b+7=a+4+11+8②联立①②解得:a=2,b=9∴图中两空白圆圈内应填写的数字从左到右依次为2,9故答案为:2;9.15.【解答】解:﹣2+6﹣7=﹣3,故答案为:﹣316.【解答】解:﹣4+3=﹣1.故答案为:﹣1.17.【解答】解:6﹣(﹣3)=9(℃)∴该日扬州的温差(最高气温﹣最低气温)是9℃.故答案为:9.18.【解答】解:∵|a|=3,|b|=5,a>0,∴a=3,b=±5,当a=3,b=5时,a﹣b=3﹣5=﹣2;当a=3,b=﹣5时,a﹣b=3﹣(﹣5)=8;综上,a﹣b的值为﹣2或8,故答案为:﹣2或8.三、解答题19.【解答】解:∵|a|=3,|b|=5,∴a=±3,b=±5,则a=3,b=5时,a+b=8.a=3,b=﹣5时,a+b=﹣2,a=﹣3,b=5时,a+b=2,a=﹣3,b=﹣5时,a+b=﹣8,综上,a+b的值为±2或±8.20.【解答】解:根据题意知这个数为6+(﹣5+2)=6+(﹣3)=3,所以这个数的相反数为﹣3.21.【解答】解:﹣5+(+2)+(﹣1)﹣(﹣)=(﹣5﹣1)+(2+)=﹣7+3=﹣4.22.【解答】解:(1)﹣(+1.2)+|﹣1.3|=﹣1.2+1.3=0.1;(2)﹣(4+2)=﹣7;(3)根据题意得:8+11﹣7=12,则到达巴黎得时间是12:00,故答案为:9月29日12:00.23.【解答】解:根据题意得:N=5﹣(﹣3)=5+3=9,则正确的算式为﹣3﹣9=﹣13.24.【解答】解:由图可知:a﹣c<0,b﹣a>0,c﹣a>0,所以|a﹣c|+|b﹣a|+|c﹣a|=﹣(a﹣c)+(b﹣a)+(c﹣a)=﹣a+c+b﹣a+c﹣a=﹣3a+b+2c.25.【解答】解:(1)正号表示水位比前一天上升,负号表示水位比前一天下降,由此计算出每天的实际水位即可求值.本周水位最高的为周五,周一:+0.2,周二:+0.2+0.8=+1,周三:+1﹣0.4=+0.6,周四:+0.6+0.2=+0.8,周五:+0.8+0.3=1.1m,故本周五水位最高高于警戒水位1.1m;(2)通过表格可得+0.2+0.8﹣0.4+0.2+0.3﹣0.2=0.9m,故与上周周末相比,本周周末长江的水位是上升了0.9m.。

七年级数学上册《第一章 有理数的加减法》同步练习题含答案(人教版)

七年级数学上册《第一章 有理数的加减法》同步练习题含答案(人教版)

七年级数学上册《第一章 有理数的加减法》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:1.在0、-3、-3.14,π中,最大的有理数的是( )A .0B .3-C . 3.14-D .π2.某市某年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高 ( )A .-10℃B .-6℃C .6℃D .10℃3.下列各式结果等于3的是( )A .(﹣2)﹣(﹣9)+(+3)﹣(﹣1)B .0﹣1+2﹣3+4﹣5C .4.5﹣2.3+2.5﹣3.7+2D .﹣2﹣(﹣7)+(﹣6)+0+(+3)4.在+1,﹣2,﹣1这三个数中,任取两个数相加,所得的和最大的是( )A .-1B .1C .0D .-35.绝对值不大于3的所有整数的和是( )A .0B .―1C .1D .66.数轴上点A 表示-3,点B 表示1,则表示A 、B 两点间的距离的算式是( )A .-3+1B .-3-1C .1-(-3)D .1-37.如图,数轴上A 、B 两点分别对应有理数a 、b ,则下列结论:①a >0,b <0;②a ﹣b <0;③a+b >0;④|a|﹣|b|>0,其中正确的有( )A .1B .2C .3D .08.大家都知道,八点五十五可以说成九点差五分,有时这样表达更清楚.这启发人们设计一种新的加减计数法.比如:9写成11,11=10﹣1;198写成202,202=200﹣2;7683写成12323,12323=10000﹣2320+3总之,数字上画一杠表示减去它,按这个方法请计算5231﹣3241=( )A .1990B .2068C .2134D .3024二、填空题: 9.计算: ()()14103-+--= .10.珠穆朗玛峰的海拔为8848.86 m ,吐鲁番盆地的海拔为-155 m ,珠穆朗玛峰的海拔比吐鲁番盆地的海拔高 m.11.若140a b -++=,则b a += .12.如果四个有理数之和是12,其中三个数是-9,+8,-2,则第四个数是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学有理数加减法同步练习题
无限不循环小数和开根开不尽的数叫无理数
整数和分数统称为有理数
包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。

这一定义在数的十进制和其他进位制(如二进制)下都适用。

数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作 a/b,故又称作分数。

希腊文称为λογος,原意为“成比例的数”(rational number),但中文翻译不恰当,逐渐变成“有道理的数”。

不是有理数的实数遂称为无理数。

所有有理数的集合表示为 Q,有理数的小数部分有限或为循环。

有理数分为整数和分数
整数又分为正整数、负整数和0
分数又分为正分数、负分数
正整数和0又被称为自然数。

相关文档
最新文档