成都七中高2020届高三数学二诊模拟试题(理科)含答案
2020届四川省成都七中高三二诊模拟考试理科综合试卷参考答案

该过程传送带的位移为: x2 v0t2 4m
(1 分) (1 分) (1 分)
该过程划痕为: x2 x2 x1 2m 所以划痕总长度为: x 18m
(1 分) (1 分)
故物体与传送带之间因摩擦产生的热量 Q mg x 144J
说明:其他合理解法也给分
(1 分)
34.答案:(1)ACD(5
物块返回到 A 点的速度为 4m/s,物体加速时间为: t2
v0 a1
4 s=1s 4
(1 分)
该过程的位移为:
x1
1 2
a1t22
1 2
412 m=2m
匀速运动的时间为: t3
L x1 v0
82 4
s=1.5s
物体向左减到零的时间为: t4
v a
2s
所以总时间为: t t2 t3 t4 4.5s
(1)5(1 分) (2)5:1(2 分)
(3)全为灰身(或“灰身∶黑身=1∶0”)(2 分)
(4)①让染色体片段缺失个体与黑身个体进行正反交(B0♀×bb 、B0 ×bb♀)(2 分)
②染色体片段缺失个体为母本的后代全为灰身用,染色体片段缺失个体为父本的后代灰身∶黑身=1∶1(2 分)
染色体片段缺失个体为母本的后代灰身∶学黑使身=1∶1,染色体片段缺失个体为父本的后代全为灰身(2 分)
分);(2)(i)
45
用 使(4 分);(ii)
(2
6
2)R 3.16 R (6 分)
学
2c
c
解析:(i)如图 a 所示
中
验
实
县
江
通
市
中
巴
省
川 若在圆弧面四刚好发生全反射,则由 sin
2020年四川省成都七中高考数学二诊试卷(理科)

2020年四川省成都七中高考数学二诊试卷(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A ={x |x 2﹣5x ﹣6<0},B ={x |x ﹣2<0},则A ∩B =( )A .{x |﹣3<x <2}B .{x |﹣2<x <2}C .{x |﹣6<x <2}D .{x |﹣1<x <2}2.(5分)设(1+i )•z =1﹣i ,则复数z 的模等于( )A .√2B .2C .1D .√3 3.(5分)已知α是第二象限的角,tan(π+α)=−34,则sin2α=( )A .1225B .−1225C .2425D .−24254.(5分)设a =log 30.5,b =log 0.20.3,c =20.3,则a ,b ,c 的大小关系是( )A .a <b <cB .a <c <bC .c <a <bD .c <b <a5.(5分)阿基米德(公元前287年﹣公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的23,并且球的表面积也是圆柱表面积的23”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为24π,则该圆柱的内切球体积为( )A .43πB .16πC .163πD .323π6.(5分)随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,如图是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面叙述不正确的是( )A .1月至8月空气合格天数超过20天的月份有5个B .第二季度与第一季度相比,空气达标天数的比重下降了C .8月是空气质量最好的一个月D .6月份的空气质量最差7.(5分)设等比数列{a n }的前n 项和为S n ,则“a 1+a 3<2a 2”是“S 2n ﹣1<0”的( )A .充分不必要B .必要不充分C .充要D .既不充分也不必要8.(5分)设x ,y 满足{2x +y ≥4x −y ≥−1x −2y ≤2,则z =x +y 的取值范围是( )A .[﹣5,3]B .[2,3]C .[2,+∞)D .(﹣∞,3] 9.(5分)设函数f(x)=x 2sinx 2,则y =f (x ),x ∈[﹣π,π]的大致图象大致是的( ) A . B .C .D .10.(5分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =1,c =2√3,bsinA =asin(π3−B),则sin C =( )A .√37B .√217C .√2112D .√571911.(5分)如图示,三棱椎P ﹣ABC 的底面ABC 是等腰直角三角形,∠ACB =90°,且P A=PB =AB =√2,PC =√3,则PC 与面P AB 所成角的正弦值等于( )A .13B .√63C .√33D .√23 12.(5分)在△ABC 中,AB =2,AC =3,∠A =60°,O 为△ABC 的外心,若AO →=xAB →+yAC →,x ,y ∈R ,则2x +3y =( )A .2B .53C .43D .32二、填空题:本题共4小题,每小题5分,共20分.13.(5分)在(x+a)6的展开式中的x3系数为160,则a=.14.(5分)已知f(x)是定义在R上的奇函数,当x>0时,f(x)=x2﹣2x,则不等式f (x)>x的解集用区间表示为.15.(5分)若对任意x∈R,不等式e x﹣kx≥0恒成立,则实数k的取值范围是.16.(5分)已知椭圆Γ:x2a +y2b=1(a>b>0),F1、F2是椭圆Γ的左、右焦点,A为椭圆Γ的上顶点,延长AF2交椭圆Γ于点B,若△ABF1为等腰三角形,则椭圆Γ的离心率为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生仅选一个作答.17.(12分)设数列{a n}是公差不为零的等差数列,其前n项和为S n,a1=1,若a1,a2,a5成等比数列.(Ⅰ)求a n及S n;(Ⅱ)设b n=1a n+12−1(n∈N∗),设数列{b n}的前n项和T n,证明:T n<14.18.(12分)2019年6月,国内的5G运营牌照开始发放.从2G到5G,我们国家的移动通信业务用了不到20年的时间,完成了技术上的飞跃,跻身世界先进水平.为了解高校学生对5G的消费意愿,2019年8月,从某地在校大学生中随机抽取了1000人进行调查,样本中各类用户分布情况如下:用户分类预计升级到5G的时段人数早期体验用户2019年8月至209年12月270人中期跟随用户2020年1月至20121年12月530人后期用户2022年1月及以后200人我们将大学生升级5G时间的早晚与大学生愿意为5G套餐支付更多的费用作比较,可得出如图的关系(例如早期体验用户中愿意为5G套餐多支付5元的人数占所有早期体验用户的40%).(Ⅰ)从该地高校大学生中随机抽取1人,估计该学生愿意在2021年或2021年之前升级到5G 的概率;(Ⅱ)从样本的早期体验用户和中期跟随用户中各随机抽取1人,以X 表示这2人中愿意为升级5G 多支付10元或10元以上的人数,求X 的分布列和数学期望;(Ⅲ)2019年底,从这1000人的样本中随机抽取3人,这三位学生都已签约5G 套餐,能否认为样本中早期体验用户的人数有变化?说明理由.19.(12分)如图示,在三棱锥A ﹣BCD 中,AB =BC =BD =2,AD =2√3,∠CBA =∠CBD =π2,点E 为AD 的中点.(Ⅰ)求证:平面ACD ⊥平面BCE ;(Ⅱ)若点F 为BD 的中点,求平面BCE 与平面ACF 所成锐二面角的余弦值.20.(12分)已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,1),离心率为√32,A 、B 、C 为椭圆上不同的三点,且满足OA →+OB →+OC →=0→,O 为坐标原点.(Ⅰ)若直线AB 、OC 的斜率都存在,求证:k AB •k OC 为定值;(Ⅱ)求|AB |的取值范围.。
20届高三理科数学二诊模拟考试试卷

2.设 (1 i) z 1 i ,则复数 z 的模等于( )
A. 2
B. 2
C.1
D. 3
3.已知 是第二象限的角, tan( ) 3 ,则 sin 2 ( )
4
A . 12 25
14.已知函数 f (x) 是定义在 R 上的奇函数,且 x 0 时, f (x) x 2 2x ,则不等式 f (x) x 的
解集为__________.
15.若对任意 x R ,不等式 e x kx 0 恒成立,则实数 k 的取值范围是
.
16.已知椭圆 C :
x2 a2
y2 b2
1(a
墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的 2 , 3
并且球的表面积也是圆柱表面积的 2 ”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积
为 24 ,则该圆柱的内切球体积为(3使)用
A. 4
学 B.16 中
C. 16
D. 32
3
级
3
3
6.随着人民生活水平的提高,侯对高城市空气质量的关注度也逐步增大,下图是某城市 1 月至 8 月的空气
(Ⅱ)求 AB 的取值范围.
21.设函数 f (x) e x 1 x 2 ax , a R . 2
(Ⅰ)讨论 f (x) 的单调性;
(Ⅱ) a 1时,若 x1 x2 , f (x1) f (x2 ) 2 ,求证: x1 x2 0 .
用
(二)选考题:共 10 分.请考生在第 22使、23 题中任选一题作答.如果多做,则按所做的第一题计分.
C
2020届成都七中高三理科数学二诊模拟考试试卷答案

n ⎢ ⎥ 1 1 2n成都七中高 2020 届高三二诊模拟考试 数学理科参考解答一、选择题 二、填空题1 2 3 4 5 6 7 8 9 10 11 12 D C D A D DA CB B A B13.2 14. (- 3,0)Y (3,+∞)三、填空题17.解:(Ⅰ)设 {a n }的公差为 d ,由题意有15. [0, e ]1 6.3 3⎧a 1 = 1 ⎧a 1 = 1 ⎧a 1 = 1 ⎨ 2 ⇒ ⎨ 且d ≠ 0 ⇒ ⎨ ………………4 分 ⎩a 2 = a 1 ⋅ a 5 ⎩(a 1 + d ) = a 1 ⋅ (a 1 + 4d )⎩d = 2所以 a n = 1+ 2(n -1) = 2n -1S n = n (a 1 + a n ) 2= n 2…………6 分1 1 (Ⅱ)因为 b n =2= 1 ⎛ 1 = - 1 ⎫ ⎪ ………8 分 a n +1 -1 4n (n +1) 4 ⎝ n n +1 ⎭1 ⎡⎛ 1 ⎫ ⎛ 11 ⎫ ⎛ 1 1 ⎫⎤ 所以 T = 1 - ⎪ + - ⎪ + ... + - 42 23 n n ⎪ …10 分 1 ⎣⎝ ⎭ ⎝ ⎭ ⎝ + ⎭⎦⎛ T = 1 - 1 ⎫ 1 ⎪ = - < 1 ……12 分4 ⎝ n + 1 ⎭ 44(n + 1) 4 18.解:(Ⅰ)由题意可知,从高校大学生中随机抽取 1 人,该学生在 2021 年或 2021 年之前升级到5G 的 270 + 530 概率估计为样本中早期体验用户和中期跟随用户的频率,即(Ⅱ)由题意 X 的所有可能值为 0,1, 2 ,……3 分1000= 0.8 .……2 分 记事件 A 为“从早期体验用户中随机抽取 1 人,该学生愿意为升级 5G 多支付 10 元或 10 元以上”, 事件 B 为“从中期跟随用户中随机抽取 1 人,该学生愿意为升级 5G 多支付 10 元或 10 元以上”, 由题意可知,事件 A , B 相互独立,且 P ( A ) = 1 - 40% = 0.6 , P (B ) = 1 - 45% = 0.55 ,所以 P ( X = 0) = P ( A B ) = (1 - 0.6)(1- 0.55) = 0.18,P ( X = 1) = P ( A B + AB ) = P ( AB ) + P ( A B ) = P ( A )(1 - P (B )) + (1 - P ( A )P (B )= 0.6 ⨯ (1 - 0.55) + (1 - 0.6) ⨯ 0.55 = 0.49 ,P ( X = 2) = P ( AB ) = 0.6 ⨯ 0.55 = 0.33 ,……6 分所以 X 的分布列为X0 1 2P0.180.490.33.⎢ ⎦又因为x2 +4y2 = 4, x2 +4y2 = 4 ⇒(x+x )(x-x )+4(y+y )(y-y )= 0 ,……4 分1 12 2 1 2 1 2 1 2 1 2⇒k =y1-y2 =-x1+x2 ;k=y3 =y1+y2 ⇒k k=-1.……6 分x1-x24(y1 +y2 )x3x1+x24AB OC AB OC(Ⅱ)解①当AB 的斜率不存在时:x1 =x2, y1 +y2 =0 ⇒x3 =-2x1, y3 = 0⇒代入椭圆得x=±1, y =± ⇒| AB |=……7 分1 1 2②当AB 的斜率存在时,设直线为y =kx +t ,这里t ≠0⎧y=kx +t由⎨⎩x 2 + 4 y 2 = 4⇒(4k2 +1)x2 +8ktx +4t2 -4 =0,∆> 0 ⇒4k2 +1>t2; ……8 分⇒C⎛ 8kt,-2t⎫⇒代入椭圆方程:k 2 =t 2 -1, t2 ≥1;4k 2 +1 4k 2 +1⎪ 4 4⎝|AB| x -x |=⎭; ……11 分1 2综上, AB 的范围是[ 3,23].……12 分21. 解:(Ⅰ)f '(x) =e x -x -a,令g(x) = f '(x).……1 分则g'(x) =e x -1,令g'(x) =e x -1= 0 得x =0当x ∈ (-∞,0) 时,当x ∈ (0,+∞) 时,g'(x) < 0, 则g(x) 在(-∞,0) 单调递减;g'(x) > 0, 则g(x) 在(0,+∞) 单调递增.所以gm in(x) =g(0) =1-a .……3 分当a ≤ 1时,gm in(x) = 1 -a ≥0,即g(x) = f '(x) ≥ 0 ,则f(x)在R 上单调递增; ……4 分当a >1时,gm in(x) = 1 -a <0,易知当x →-∞时,g(x) →+∞;当x →+∞时,g(x) →+∞,由零点存在性定理知,∃x1, x2,不妨设x1<x2,使得g(x1) =g(x2) =0.当x ∈ (-∞, x1)时,g(x) > 0 ,即当x ∈ (x1, x2)时,g(x) < 0 ,即当x ∈ (x2,+∞) 时,g(x) > 0 ,即f '(x) > 0 ;f '(x) < 0 ;f '(x) > 0 .所以f (x) 在(-∞, x1) 和(x2,+∞) 上单调递增,在(x1, x2) 单调递减. ……6 分(Ⅱ)证明:构造函数F (x) = f (x) +f (-x) - 2 ,x ≥ 0 .F ( x) =e x -1x 2 -ax +⎡e -x -1x 2 +ax⎤- 2 ,x ≥ 0 .2 ⎣ 2 ⎥=e x +e-x -x2 -2F'(x) =e x -e-x - 2xF''(x) =e x +e-x - 2 ≥2e x ⋅e-x- 2 =0 (当x = 0 时取=).所以F '(x) 在[0,+∞)上单调递增,则F '(x) ≥F '(0) = 0 ,。
四川省成都七中高2020届高三下学期二诊模拟试题理科数学(附答案)

成都七中高2020届高三二诊模拟考试数 学(理科)(满分150分,用时120分钟)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}0652<--=x x x A ,{}02<-=x x B ,则=B A I ( ) A .{}23<<-x x B .{}22<<-x x C .{}26<<-x x D .{}21<<-x x 2.设i z i -=⋅+1)1(,则复数z 的模等于( )A .2B .2C .1D .33.已知α是第二象限的角,43)tan(-=+απ,则=α2sin ( ) A .2512 B .2512- C .2524 D .2524-4.设5.0log 3=a ,3.0log 2.0=b ,3.02=c ,则c b a ,,的大小关系是( )A .c b a <<B .b c a <<C .b a c <<D .a b c << 5.阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的32, 并且球的表面积也是圆柱表面积的32”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积 为π24,则该圆柱的内切球体积为( )A .π34B .π16C .π316D .π332 6.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市1月至8月的空气 质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是空气 质量合格,下面四种说法不.正确..的是( )。
2020年3月6日四川省成都市高2020届高2017级高三成都七中二诊模拟理科数学试题

B. 2,3
C. 2,
D. ,3
9.设函数
f
(x)
x 2 sin x x2 1
,则
y
f
(x) , x , 的大致图象大致是的(
)
A
B
C
D
10.在 ABC 中,角 A 、 B 、 C 的对边分别为 a 、 b 、 c ,若 a 1, c 2
3
, b sin
A
a
sin
3
B
,
则 sin C ( )
7.设等比数列 an 的前 n 项和为 Sn , 则“ a1 a3 2a2 ”是“ S2n1 0 ”的( )
A.充分不必要
B.必要不充分
C.充要
D.既不充分也不必要
2x y 4 8.设 x , y 满足 x y 1 ,则 z x y 的取值范围是( )
x 2 y 2
A . 5,3
三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第 17~21 题为必考题,每个试题
考生都必须作答.第 22、23 为选考题,考生仅选一个作答.
17.设数列 an 是公差不为零的等差数列,其前 n 项和为 S n , a1 1,若 a1 , a2 , a5 成等比数列.
(Ⅰ)求 an 及 S n ;
(Ⅱ)设 bn
a
1
2 n1
1
(n
N*) ,设数列
bn
的前 n 项和 Tn ,证明: Tn
1. 4
18.2019 年 6 月,国内的 5G 运营牌照开始发放.从 2G 到 5G ,我们国家的移动通信业务用了不到 20 年
的时间,完成了技术上的飞跃,跻身世界先进水平.为了解高校学生对 5G 的消费中期跟随用户中各随机抽取 1 人,以 X 表示这 2 人中愿意为升级 5G 多支付 10 元或 10 元以上的人数,求 X 的分布列和数学期望;
成都七中高2020届高三二诊模拟试题(理科含答案)

成都七中高2020届高三二诊数学模拟考试(理科)(满分150分,用时120分钟)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{}0652<--=x xx A ,{}02<-=x x B ,则=B A ( )A .{}23<<-x x B .{}22<<-x x C .{}26<<-x x D .{}21<<-x x2.设i z i -=⋅+1)1(,则复数z 的模等于( )A .2B .2C .1D .3 3.已知α是第二象限的角,43)tan(-=+απ,则=α2sin ( ) A .2512 B .2512- C .2524 D .2524-4.设5.0log 3=a ,3.0log 2.0=b ,3.02=c ,则c b a ,,的大小关系是( )A .c b a <<B .b c a <<C .b a c <<D .a b c <<5.阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的32,并且球的表面积也是圆柱表面积的32”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为π24,则该圆柱的内切球体积为( )A .π34B .π16C .π316 D .π3326.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是空气 质量合格,下面四种说法不.正确..的是( )A .1月至8月空气质量合格天数超过20天的月份有5个B .第二季度与第一季度相比,空气质量合格天数的比重下降了C .8月是空气质量最好的一个月D .6月的空气质量最差7.设等比数列{}n a 的前n 项和为n S , 则“2312a a a <+”是“012<-n S ”的( )A .充分不必要B .必要不充分C .充要D .既不充分也不必要8.设x ,y 满足⎪⎩⎪⎨⎧≤--≥-≥+22142y x y x y x ,则y x z +=的取值范围是( )A .[]3,5-B .[]3,2C .[)+∞,2D . (]3,∞-9.设函数1sin )(22+=x xx x f ,则)(x f y =,[]ππ,-∈x 的大致图象大致是的( )ABCD10.在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若1a =,23c =,sin sin 3b A a B π⎛⎫=-⎪⎝⎭,则sin C =( ) A .37B .217C .2112D .1957 11.如图示,三棱椎ABC P -的底面ABC 是等腰直角三角形,︒=∠90ACB ,且2===AB PB PA ,3=PC ,则PC 与面PAB 所成角的正弦值等于( )A .31B .36C .33 D .32 12.在ABC ∆中,2=AB ,3=AC ,︒=∠60A ,O 为ABC ∆的外心,若AC y AB x AO +=,R y x ∈,,则=+y x 32( )A .2B .35C .34 D .23二、填空题:本题共4小题,每小题5分,共20分.PCBA13.在6)(a x +的展开式中的3x 系数为160,则=a _______.14.已知函数)(x f 是定义在R 上的奇函数,且0>x 时,x x x f 2)(2-=,则不等式x x f >)(的解集为__________.15.若对任意R x ∈,不等式0≥-kx e x 恒成立,则实数k 的取值范围是 .16.已知椭圆)0(1:2222>>=+b a by a x C 的左右焦点分别为1F ,2F ,上顶点为A ,延长2AF交椭圆C 于点B ,若△1ABF 为等腰三角形,则椭圆的离心率=e ______.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题 考生都必须作答.第22、23为选考题,考生仅选一个作答.17.设数列{}n a 是公差不为零的等差数列,其前n 项和为n S ,11=a ,若1a ,2a ,5a 成等比数列.(Ⅰ)求n a 及n S ; (Ⅱ)设*)(1121N n a b n n ∈-=+,设数列{}n b 的前n 项和n T ,证明:41<n T . 18.2019年6月,国内的5G 运营牌照开始发放.从2G 到5G ,我们国家的移动通信业务用了不到20年 的时间,完成了技术上的飞跃,跻身世界先进水平.为了解高校学生对5G 的消费意愿,2019年8月, 从某地在校大学生中随机抽取了1000人进行调查,样本中各类用户分布情况如下:我们将大学生升级5G 时间的早晚与大学生愿意为5G 套餐支付更多的费用作比较,可得出下图的关系(例如早期体验用户中愿意为5G 套餐多支付5元的人数占所有早期体验用户的40%).(Ⅰ)从该地高校大学生中随机抽取1人,估计该学生愿意在2021年或2021年之前升级到5G 的概率;(Ⅱ)从样本的早期体验用户和中期跟随用户中各随机抽取1人,以X 表示这2人中愿意为升级5G多支付10元或10元以上的人数,求X 的分布列和数学期望;(Ⅲ)2019年底,从这1000人的样本中随机抽取3人,这三位学生都已签约5G 套餐,能否认为样本中早期体验用户的人数有变化?说明理由.19.如图示,在三棱锥BCD A -中,2===BD BC AB ,32=AD ,2π=∠=∠CBD CBA ,点E 为AD 的中点.(Ⅰ)求证:平面ACD ⊥平面BCE ;(Ⅱ)若点F 为BD 的中点,求平面BCE 与平面ACF 所成锐二面角的余弦值.20.已知椭圆12222=+by a x (0>>b a )经过点)1,0(,离心率为23,A 、B 、C 为椭圆上不同的三点,且满足0=++OC OB OA ,O 为坐标原点.(Ⅰ)若直线AB 、OC 的斜率都存在,求证:OC AB k k ⋅为定值; (Ⅱ)求AB 的取值范围.21.设函数ax x e x f x --=221)(,R a ∈. (Ⅰ)讨论)(x f 的单调性;(Ⅱ)1≤a 时,若21x x ≠,2)()(21=+x f x f ,求证:021<+x x .(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.在直角坐标系xOy 中,直线l的参数方程为32t x y ⎧=-+⎪⎪⎨⎪=⎪⎩,(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为24cos 30ρρθ-+=. (Ⅰ)求l 的普通方程及C 的直角坐标方程; (Ⅱ)求曲线C 上的点P 到l 距离的取值范围. 23.已知a x x x f ++-=1)(,R a ∈.(Ⅰ) 若1=a ,求不等式4)(>x f 的解集; (Ⅱ))1,0(∈∀m ,R x ∈∃0,不等式)(1410x f mm >-+成立,求实数a 的取值范围.成都七中高2020届高三二诊模拟考试 数学理科参考解答13.2 14.()),3(0,3+∞-15.[]e ,0 1 6.33三、填空题17.解:(Ⅰ)设{}n a 的公差为d ,由题意有⎩⎨⎧⋅==512211a a a a ()0)4(111211≠⎩⎨⎧+⋅=+=⇒d d a a d a a 且⎩⎨⎧==⇒211d a ………………4分 所以()12121-=-+=n n a n()212n a a n S n n =+=…………6分(Ⅱ)因为()⎪⎭⎫ ⎝⎛+-=+=-=+111411411121n n n n a b n n ………8分 所以⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=111...312121141n n T n …10分()411414111141<+-=⎪⎭⎫ ⎝⎛+-=n n T n ……12分 18.解:(Ⅰ)由题意可知,从高校大学生中随机抽取1人,该学生在2021年或2021年之前升级到5G 的概率估计为样本中早期体验用户和中期跟随用户的频率,即2705300.81000+=.……2分(Ⅱ)由题意X 的所有可能值为0,1,2,……3分记事件A 为“从早期体验用户中随机抽取1人,该学生愿意为升级5G 多支付10元或10元以上”, 事件B 为“从中期跟随用户中随机抽取1人,该学生愿意为升级5G 多支付10元或10元以上”, 由题意可知,事件A ,B 相互独立,且()140%0.6P A =-=,()145%0.55P B =-=, 所以(0)()(10.6)(10.55)0.18P X P AB ===--=,(1)()()()P X P AB AB P AB P AB ==+=+()(1())(1()()P A P B P A P B =-+-0.6(10.55)(10.6)0.55=⨯-+-⨯0.49=,(2)()0.60.550.33P X P AB ===⨯=, ……6分所以X 的分布列为P 0.18 0.49 0.33故X 的数学期望()00.1810.4920.33 1.15E X =⨯+⨯+⨯=.……8分(Ⅲ)设事件D 为“从这1000人的样本中随机抽取3人,这三位学生都已签约5G 套餐”,则327031000()0.02C P D C =≈.……10分回答一:事件D 虽然发生概率小,但是发生可能性为0.02,所以认为早期体验用户没有发生变化. 回答二:事件D 发生概率小,所以可以认为早期体验用户人数增加. ……12分 19.(Ⅰ)证明:(第一问6分,证明了AD BC ⊥给4分)ACD BCE ACD AD BCE AD E BD BC ADBE AD BC ABD AD ED AE BD AB ABD BC CBD CBA 面面面面面面⊥⇒⎪⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎪⎬⎫⊂⊥⇒⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎬⎫=⊥⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂⇒⎭⎬⎫==⊥⇒=∠=∠ 2π(Ⅱ)解:以点B 为坐标原点,直线BC ,BD 分别为 x 轴,y 轴,过点B 且与平面BCD 垂直的直线为z 轴,建立空间直角坐标系,则()0,0,2=→BC ,⎪⎪⎭⎫ ⎝⎛=→23,21,0BE ,()0,1,2-=→CF ,()3,2,0=→BF 设面BCE 的一个法向量()1111,,z y x n =→,⎪⎩⎪⎨⎧⊥⊥BE n BC n 11⎪⎩⎪⎨⎧=+=⇒0232102111z y x ()1,3,0111-=−−→−→=n z 令…9分同理可得平面ACF 的一个法向量⎪⎪⎭⎫⎝⎛--=2,3,232n …10分31315,,cos 222222=⋅=><n n n n n n .……11分故平面BCE 与平面ACF 所成锐二面角的余弦值为31315.……12分20.(Ⅰ)证明:依题有⎪⎪⎩⎪⎪⎨⎧+===222231c b a a c b ⎪⎩⎪⎨⎧==⇒1422b a , 所以椭圆方程为1422=+y x .…2分设()11,y x A ,()11,y x B ,()11,y x C , 由O 为ABC ∆的重心123123,;x x x y y y ⇒+=-+=-又因为()()()()222211221212121244,4440+=+=⇒+-++-=x y x y x x x x y y y y ,……4分()312121212123121;.44-++⇒==-==⇒=--++AB OC AB OC y y y x x y y k k k k x x y y x x x ……6分(Ⅱ)解 ①当AB 的斜率不存在时:1212313,02,0=+=⇒=-=x x y y x x y111,||⇒=±=⇒=x y AB 代入椭圆得……7分 ②当AB 的斜率存在时,设直线为t kx y +=,这里0≠t 由⇒⎩⎨⎧=++=4422y x tkx y ()22222418440041;,∆>=>++-⇒++k x kt t t k x ……8分222228211,44,;4141-⎛⎫⇒⇒ ⎪⎝≥+-+⎭=k t t ktt C k k 代入椭圆方程:12||;-==AB x x ……11分综上,AB 的范围是[]32,3. ……12分21. 解:(Ⅰ)a x e x f x--=')(,令)()(x f x g '=.……1分 则1)(-='xe x g ,令01)(=-='xe x g 得0=x .当)0,(-∞∈x 时, ,0)(<'x g 则)(x g 在)0,(-∞单调递减;当),0(+∞∈x 时, ,0)(>'x g 则)(x g 在),0(+∞单调递增.所以a g x g -==1)0()(min .……3分当1≤a 时,01)(min ≥-=a x g , 即0)()(≥'=x f x g ,则f(x)在R 上单调递增; ……4分 当1>a 时,01)(min <-=a x g ,易知当-∞→x 时,+∞→)(x g ;当+∞→x 时,+∞→)(x g ,由零点存在性定理知,21,x x ∃,不妨设21x x <,使得.0)()(21==x g x g 当),(1x x -∞∈时,0)(>x g ,即 0)(>'x f ; 当),(21x x x ∈时,0)(<x g ,即 0)(<'x f ; 当),(2+∞∈x x 时,0)(>x g ,即 0)(>'x f .所以)(x f 在),(1x -∞和),(2+∞x 上单调递增,在),(21x x 单调递减. ……6分(Ⅱ)证明:构造函数2)()()(--+=x f x f x F ,0≥x .22121)(22-⎥⎦⎤⎢⎣⎡+-+--=-ax x e ax x e x F x x ,0≥x . 22--+=-x e e x xx e e x F x x 2)(--='-0222)(=-⋅≥-+=''--x x x x e e e e x F (当0=x 时取=).所以)(x F '在[)+∞,0上单调递增,则0)0()(='≥'F x F , 所以)(x F 在[)+∞,0上单调递增,0)0()(=≥F x F .……9分这里不妨设02>x ,欲证021<+x x , 即证21x x -< 由(Ⅰ)知1≤a 时,)(x f 在R 上单调递增,则有)()(21x f x f -<,由已知2)()(21=+x f x f 有)(2)(21x f x f -=, 只需证)()(2)(221x f x f x f -<-= ,即证2)()(22>-+x f x f ……11分 由2)()()(--+=x f x f x F 在[)+∞,0上单调递增,且02>x 时, 有02)()()(222>--+=x f x f x F ,故2)()(22>-+x f x f 成立,从而021<+x x 得证. ……12分22.【解】(Ⅰ )直线l的参数方程为32t x y ⎧=-+⎪⎪⎨⎪=⎪⎩,(t 为参数), 消去参数t 可得l0y -+=;曲线C 的极坐标方程为24cos 30ρρθ-+=,可得C 的直角坐标方程为22430x y x +-+=.…………5分(2)C 的标准方程为()2221x y -+=,圆心为()2,0C ,半径为1,所以,圆心C 到l的距离为d ==所以点P 到l的距离的取值范围是1⎤⎥⎣⎦.………………10分 23、解: (Ⅰ)当1=a 时,⎪⎩⎪⎨⎧-≤-<<-≥=++-=.1,2,11,2,1,211)(x x x x x x x x f …………2分⎩⎨⎧>≥⇔>4214)(x x x f ,或⎩⎨⎧><<-4211x ,或⎩⎨⎧>--≤421x x ……4分2>⇔x ,或2-<x故不等式4)(>x f 的解集为),2()2,(+∞--∞ ; (5)(Ⅱ)因为1)1()(1)(+=--+≥++-=a x a x a x x x f)1,0(∈∀m ,[]m mm m m m m m m m -+-+=-+-+=-+1145)1()141(141911425=-⋅-+≥m mm m (当31=m 时等号成立)……8分依题意,)1,0(∈∀m ,R x ∈∃0,有)(1410x f m m >-+则有91<+a 解之得810<<-a故实数a 的取值范围是)8,10(-…………10分。
2020届四川省成都市二诊数学(理科)试卷及答案

, aˆ y bˆx .
(xi x )2
i 1
20.(12
分)已知椭圆
E
:
x2 a2
y2 b2
1(a
0,b 0) 的左,右焦点分别为 F1(1, 0) , F2 (1, 0) ,点
P 在椭圆 E 上, PF2 F1F2 ,且 | PF1 | 3 | PF2 | .
(Ⅰ)求椭圆 E 的标准方程;
(Ⅰ)求证:平面 PAC 平面 PBD ;
(Ⅱ)若 PE 3 ,求二面角 D PE B 的余弦值.
19.(12 分)某动漫影视制作公司长期坚持文化自信,不断挖据中华优秀传统文化中的动漫
题材,创作出一批又一批的优秀动漫影视作品,获得市场和广大观众的一致好评,同时也为
公司赢得丰厚的利润.该公司 2013 年至 2019 年的年利润 y 关于年份代号 x 的统计数据如表
f
(x)
sin( x
)(0
),
f
(
)
0 ,则函数
f
(x)
的图象的对称轴方
2
4
程为 ( )
A. x k , k Z 4
B. x k , k Z 4
C. x 1 k , k Z 2
D. x 1 k , k Z 24
9.(5
分)如图,双曲线 C :
x2 a2
y2 b2
l(a
值时,称该年为 A 级利润年,否则称为 B 级利润年,将(Ⅰ)中预测的该公司 2020 年的年
第 4页(共 21页)
利润视作该年利润的实际值,现从 2013 年至 2020 年这 8 年中随机抽取 2 年,求恰有 1 年为
A 级利润年的概率.
n
(xi x )( yi y)
2020届四川省成都市第七中学高三二诊模拟考试数学(理)试题(解析版)

数学(理)试题一、单选题1.已知复数满足,则为A. B. C.2 D.1【答案】A【解析】首先利用复数的运算法则,求出复数z,再应用复数的模的运算公式,求得结果.【详解】由,得,所以,故选A.【点睛】该题考查的是有关复数的问题,涉及到的知识点有复数的乘法运算法则和除法运算法则,还有复数的模,属于简单题目.2.设全集,集合,,则A. B.C. D.【答案】B【解析】由集合或,先求解,再由集合能够求出答案.【详解】因为全集,集合或,所以,所以,故选B.【点睛】本题主要考查了集合的混合运算,属于基础题,其中解答中准确计算集合和集合的交集、补集的运算是解答的关键,着重考查了推理与运算能力.3.在的二项展开式中,若第四项的系数为,则( )A .B .C .D . 【答案】B【解析】 , ,,解得: ,故选B.4.在△ABC 中, 60A =︒, 2AB =,且ABC ∆的面积为32,则BC 的长为( ) A .32B .3C .23D .2 【答案】B 5.在区间内随机取两个数分别记为,,则使得函数有零点的概率为( ) A . B .C .D .【答案】B6.如果执行如图所示的程序框图,输出的S =110,则判断框内应填入的条件是( ).A.k<10? B.k≥11? C.k≤10? D.k>11?【答案】C7.已知函数,将的图像上的所有点的横坐标缩短到原来的,纵坐标保持不变;再把所得图像向上平移1个单位长度,得到函数的图像,若,则的值可能为A. B. C. D.【答案】B8.外接圆的半径为,圆心为,且,,则().A. B. C. D.【答案】C【解析】为边BC的中点,因而,又因为,所以为等边三角形,.9.给出下列说法:①“”是“”的充分不必要条件;②命题“,”的否定形式是“,”.③将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为种.其中正确说法的个数为()A.B.C.D.【答案】C【解析】根据充要关系、存在性问题否定形式以及排列组合分别判断,最后得结果. 【详解】①时,反之不然,所以“”是“”的充分不必要条件;②命题“,”的否定形式是“,”, ②错;③四名学生分到三个不同的班,每个班至少分到一名学生,分法有种,其中甲、乙两名学生分到同一个班,有种,因此甲、乙两名学生不能分到同一个班的分法种数为种.综上正确说法的个数为2,选C.10.某多面体的三视图如图所示,则该几何体的体积与其外接球的体积之比为( )A .B .C .D .【答案】A11.设双曲线2222:1x y C a b-=(0,0a b >>)的左右焦点分别为12,F F ,以12,F F 为直径的圆与双曲线左支的一个交点为P ,若以1OF (O 为坐标原点)为直径的圆与2PF 相切,则双曲线C 的离心率为( )A 2362-+ C 3 D 362+ 【答案】D【解析】试题分析:解:设以1OF (O 为坐标原点)为直径的圆与2PF 相切于点K ,圆心为点M ,1PF m = , 2PF n = ,由题意可知:2222222{4n m am n c c a b -=+==+ ,解得: 2222{m b c aa b c =+-++ , 设21PF F α∠= ,则222tan m c a b c n α-+== ,在2Rt MKF V 中可得: 2tan 22KM KF α== , 据此可得: 222222c a b c b -+= , 整理可得: ()()4222942421890c a c a -+-+= ,则:()()42942421890e e -+-+= ,分解因式有: ()()22942910e e ⎡⎤--⨯-=⎣⎦ ,双曲线的离心率1e ≠ ,故: ()294290e --= ,解得: 22942942e == ⎪--⎝⎭ ,双曲线的离心率: 3627942e +==- . 本题选择D 选项.12.已知函数,若函数恰有5个零点,且最小的零点小于-4,则的取值范围是( ) A .B .C .D .【答案】C 【解析】设,则充分利用函数的图象,分类讨论a的取值情况,得到的取值范围. 【详解】当时,,,当时,,单调递减;当时,,单调递增,故.当时,的图像恒过点,当时,;当时,.有5个零点,即方程有5个解,设,则.结合图像可知,当时,方程有三个根,,(∵,∴),于是有1个解,有1个解,有3个解,共有5个解.由,得,再由,得,∵,∴.而当时,结合图像可知,方程不可能有5个解.故选:C二、填空题13.某人次上班途中所花的时间(单位:分钟)分别为,,,,.已知这组数据的平均数为,方差为,则的值为__________.【答案】14.已知实数,满足,若的最大值为,则实数__________.【答案】【解析】结合不等式组,建立可行域,平移目标函数,计算参数,即可。
成都七中高2020级高三“二诊”模拟考试

启用前绝密成都七中高2020级高三“二诊”模拟考试英语考试时间:120分钟满分:150分注意事项:1. 答题前,考生务必将自己的学校、姓名、班级、准考证号填写在答题卡上相应的位置;2. 全部答案在答题卡上完成,答在本试题上无效;3. 回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案用0.5毫米黑色笔迹签字笔写在答题卡上。
第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. Who are the speakers?A. Mother and son.B. Husband and wife.C. Teacher and student.2. What is the woman dissatisfied with?A. The dress.B. The weather.C. The wedding.3. How does the woman feel?A. Grateful.B. Nervous.C. Relieved.4. How many planes can the woman see?A. Three.B. Four.C. Ten.5. What is the main idea of the conversation?A. Whom to play badminton with.B. When to play tennis.C. What sport to play.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都七中高2020届高三二诊数学模拟考试(理科)(满分150分,用时120分钟)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{}0652<--=x xx A ,{}02<-=x x B ,则=B A I ( )A .{}23<<-x x B .{}22<<-x x C .{}26<<-x x D .{}21<<-x x2.设i z i -=⋅+1)1(,则复数z 的模等于( )A .2B .2C .1D .3 3.已知α是第二象限的角,43)tan(-=+απ,则=α2sin ( ) A .2512 B .2512- C .2524 D .2524-4.设5.0log 3=a ,3.0log 2.0=b ,3.02=c ,则c b a ,,的大小关系是( )A .c b a <<B .b c a <<C .b a c <<D .a b c <<5.阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的32,并且球的表面积也是圆柱表面积的32”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为π24,则该圆柱的内切球体积为( )A .π34B .π16C .π316 D .π3326.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是空气 质量合格,下面四种说法不.正确..的是( )A .1月至8月空气质量合格天数超过20天的月份有5个B .第二季度与第一季度相比,空气质量合格天数的比重下降了C .8月是空气质量最好的一个月D .6月的空气质量最差7.设等比数列{}n a 的前n 项和为n S , 则“2312a a a <+”是“012<-n S ”的( )A .充分不必要B .必要不充分C .充要D .既不充分也不必要8.设x ,y 满足⎪⎩⎪⎨⎧≤--≥-≥+22142y x y x y x ,则y x z +=的取值范围是( )A .[]3,5-B .[]3,2C .[)+∞,2D . (]3,∞-9.设函数1sin )(22+=x xx x f ,则)(x f y =,[]ππ,-∈x 的大致图象大致是的( )ABCD10.在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若1a =,23c =,sin sin 3b A a B π⎛⎫=- ⎪⎝⎭,则sin C =( ) A .3B .21 C .21 D .1957 11.如图示,三棱椎ABC P -的底面ABC 是等腰直角三角形,︒=∠90ACB ,且2===AB PB PA ,3=PC ,则PC 与面PAB 所成角的正弦值等于( )A .31B .36C .33D .3212.在ABC ∆中,2=AB ,3=AC ,︒=∠60A ,O 为ABC ∆的外心,若AC y AB x AO +=,R y x ∈,,则=+y x 32( )A .2B .35C .34 D .23二、填空题:本题共4小题,每小题5分,共20分.PCA13.在6)(a x +的展开式中的3x 系数为160,则=a _______.14.已知函数)(x f 是定义在R 上的奇函数,且0>x 时,x x x f 2)(2-=,则不等式x x f >)(的解集为__________.15.若对任意R x ∈,不等式0≥-kx e x 恒成立,则实数k 的取值范围是 .16.已知椭圆)0(1:2222>>=+b a by a x C 的左右焦点分别为1F ,2F ,上顶点为A ,延长2AF交椭圆C 于点B ,若△1ABF 为等腰三角形,则椭圆的离心率=e ______.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题 考生都必须作答.第22、23为选考题,考生仅选一个作答.17.设数列{}n a 是公差不为零的等差数列,其前n 项和为n S ,11=a ,若1a ,2a ,5a 成等比数列.(Ⅰ)求n a 及n S ; (Ⅱ)设*)(1121N n a b n n ∈-=+,设数列{}n b 的前n 项和n T ,证明:41<n T . 18.2019年6月,国内的5G 运营牌照开始发放.从2G 到5G ,我们国家的移动通信业务用了不到20年 的时间,完成了技术上的飞跃,跻身世界先进水平.为了解高校学生对5G 的消费意愿,2019年8月, 从某地在校大学生中随机抽取了1000人进行调查,样本中各类用户分布情况如下:我们将大学生升级5G 时间的早晚与大学生愿意为5G 套餐支付更多的费用作比较,可得出下图的关系(例如早期体验用户中愿意为5G 套餐多支付5元的人数占所有早期体验用户的40%).(Ⅰ)从该地高校大学生中随机抽取1人,估计该学生愿意在2021年或2021年之前升级到5G 的概率;(Ⅱ)从样本的早期体验用户和中期跟随用户中各随机抽取1人,以X 表示这2人中愿意为升级5G多支付10元或10元以上的人数,求X 的分布列和数学期望;(Ⅲ)2019年底,从这1000人的样本中随机抽取3人,这三位学生都已签约5G 套餐,能否认为样本中早期体验用户的人数有变化?说明理由.19.如图示,在三棱锥BCD A -中,2===BD BC AB ,32=AD ,2π=∠=∠CBD CBA ,点E 为AD 的中点.(Ⅰ)求证:平面ACD ⊥平面BCE ;(Ⅱ)若点F 为BD 的中点,求平面BCE 与平面ACF 所成锐二面角的余弦值.20.已知椭圆12222=+by a x (0>>b a )经过点)1,0(,离心率为23,A 、B 、C 为椭圆上不同的三点,且满足=++,O 为坐标原点.(Ⅰ)若直线AB 、OC 的斜率都存在,求证:OC AB k k ⋅为定值; (Ⅱ)求AB 的取值范围.21.设函数ax x e x f x --=221)(,R a ∈. (Ⅰ)讨论)(x f 的单调性;(Ⅱ)1≤a 时,若21x x ≠,2)()(21=+x f x f ,求证:021<+x x .(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.在直角坐标系xOy 中,直线l的参数方程为32t x y ⎧=-+⎪⎪⎨⎪=⎪⎩,(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为24cos 30ρρθ-+=. (Ⅰ)求l 的普通方程及C 的直角坐标方程; (Ⅱ)求曲线C 上的点P 到l 距离的取值范围. 23.已知a x x x f ++-=1)(,R a ∈.(Ⅰ) 若1=a ,求不等式4)(>x f 的解集; (Ⅱ))1,0(∈∀m ,R x ∈∃0,不等式)(1410x f mm >-+成立,求实数a 的取值范围.成都七中高2020届高三二诊模拟考试 数学理科参考解答13.2 14.()),3(0,3+∞-Y15.[]e ,0 1 6.33三、填空题17.解:(Ⅰ)设{}n a 的公差为d ,由题意有⎩⎨⎧⋅==512211a a a a ()0)4(111211≠⎩⎨⎧+⋅=+=⇒d d a a d a a 且⎩⎨⎧==⇒211d a ………………4分 所以()12121-=-+=n n a n()212n a a n S n n =+=…………6分(Ⅱ)因为()⎪⎭⎫⎝⎛+-=+=-=+111411411121n n n n a b n n ………8分所以⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=111...312121141n n T n …10分()411414111141<+-=⎪⎭⎫ ⎝⎛+-=n n T n ……12分 18.解:(Ⅰ)由题意可知,从高校大学生中随机抽取1人,该学生在2021年或2021年之前升级到5G 的概率估计为样本中早期体验用户和中期跟随用户的频率,即2705300.81000+=.……2分(Ⅱ)由题意X 的所有可能值为0,1,2,……3分记事件A 为“从早期体验用户中随机抽取1人,该学生愿意为升级5G 多支付10元或10元以上”, 事件B 为“从中期跟随用户中随机抽取1人,该学生愿意为升级5G 多支付10元或10元以上”, 由题意可知,事件A ,B 相互独立,且()140%0.6P A =-=,()145%0.55P B =-=, 所以(0)()(10.6)(10.55)0.18P X PAB ===--=,(1)()()()P X P AB AB P AB P AB ==+=+()(1())(1()()P A P B P A P B =-+-0.6(10.55)(10.6)0.55=⨯-+-⨯0.49=,(2)()0.60.550.33P X P AB ===⨯=, ……6分所以X 的分布列为故X 的数学期望()00.1810.4920.33 1.15E X =⨯+⨯+⨯=.……8分(Ⅲ)设事件D 为“从这1000人的样本中随机抽取3人,这三位学生都已签约5G 套餐”,则327031000()0.02C P D C =≈.……10分回答一:事件D 虽然发生概率小,但是发生可能性为0.02,所以认为早期体验用户没有发生变化. 回答二:事件D 发生概率小,所以可以认为早期体验用户人数增加. ……12分 19.(Ⅰ)证明:(第一问6分,证明了AD BC ⊥给4分)ACD BCE ACD AD BCE AD E BD BC ADBE AD BC ABD AD ED AE BD AB ABD BC CBD CBA 面面面面面面⊥⇒⎪⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎪⎬⎫⊂⊥⇒⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎬⎫=⊥⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂⇒⎭⎬⎫==⊥⇒=∠=∠I 2π(Ⅱ)解:以点B 为坐标原点,直线BC ,BD 分别为 x 轴,y 轴,过点B 且与平面BCD 垂直的直线为z 轴,建立空间直角坐标系,则()0,0,2=→BC ,⎪⎪⎭⎫ ⎝⎛=→23,21,0BE ,()0,1,2-=→CF ,()3,2,0=→BF 设面BCE 的一个法向量()1111,,z y x n =→,⎪⎩⎪⎨⎧⊥⊥BE n BC n 11⎪⎩⎪⎨⎧=+=⇒0232102111z y x ()1,3,0111-=−−→−→=n z 令…9分同理可得平面ACF 的一个法向量⎪⎪⎭⎫⎝⎛--=2,3,232n …10分31315,,cos 222222=⋅=><n n n n n n .……11分故平面BCE 与平面ACF 所成锐二面角的余弦值为31315.……12分20.(Ⅰ)证明:依题有⎪⎪⎩⎪⎪⎨⎧+===222231c b a a c b ⎪⎩⎪⎨⎧==⇒1422b a , 所以椭圆方程为1422=+y x .…2分设()11,y x A ,()11,y x B ,()11,y x C , 由O 为ABC ∆的重心123123,;x x x y y y ⇒+=-+=-又因为()()()()222211221212121244,4440+=+=⇒+-++-=x y x y x x x x y y y y ,……4分()312121212123121;.44-++⇒==-==⇒=--++AB OC AB OC y y y x x y y k k k k x x y y x x x ……6分(Ⅱ)解 ①当AB 的斜率不存在时:1212313,02,0=+=⇒=-=x x y y x x y111,||⇒=±=⇒=x y AB 代入椭圆得……7分 ②当AB 的斜率存在时,设直线为t kx y +=,这里0≠t 由⇒⎩⎨⎧=++=4422y x tkx y ()22222418440041;,∆>=>++-⇒++k x kt t t k x ……8分222228211,44,;4141-⎛⎫⇒⇒ ⎪⎝≥+-+⎭=k t t ktt C k k 代入椭圆方程:12||;-==AB x x ……11分综上,AB 的范围是[]32,3. ……12分21. 解:(Ⅰ)a x e x f x--=')(,令)()(x f x g '=.……1分则1)(-='x e x g ,令01)(=-='xe x g 得0=x .当)0,(-∞∈x 时, ,0)(<'x g 则)(x g 在)0,(-∞单调递减;当),0(+∞∈x 时, ,0)(>'x g 则)(x g 在),0(+∞单调递增.所以a g x g -==1)0()(min .……3分当1≤a 时,01)(min ≥-=a x g , 即0)()(≥'=x f x g ,则f(x)在R 上单调递增; ……4分 当1>a 时,01)(min <-=a x g ,易知当-∞→x 时,+∞→)(x g ;当+∞→x 时,+∞→)(x g ,由零点存在性定理知,21,x x ∃,不妨设21x x <,使得.0)()(21==x g x g 当),(1x x -∞∈时,0)(>x g ,即 0)(>'x f ; 当),(21x x x ∈时,0)(<x g ,即 0)(<'x f ; 当),(2+∞∈x x 时,0)(>x g ,即 0)(>'x f .所以)(x f 在),(1x -∞和),(2+∞x 上单调递增,在),(21x x 单调递减. ……6分(Ⅱ)证明:构造函数2)()()(--+=x f x f x F ,0≥x .22121)(22-⎥⎦⎤⎢⎣⎡+-+--=-ax x e ax x e x F x x ,0≥x . 22--+=-x e e x xx e e x F x x 2)(--='-0222)(=-⋅≥-+=''--x x x x e e e e x F (当0=x 时取=).所以)(x F '在[)+∞,0上单调递增,则0)0()(='≥'F x F ,所以)(x F 在[)+∞,0上单调递增,0)0()(=≥F x F .……9分这里不妨设02>x ,欲证021<+x x , 即证21x x -< 由(Ⅰ)知1≤a 时,)(x f 在R 上单调递增,则有)()(21x f x f -<,由已知2)()(21=+x f x f 有)(2)(21x f x f -=, 只需证)()(2)(221x f x f x f -<-= ,即证2)()(22>-+x f x f ……11分 由2)()()(--+=x f x f x F 在[)+∞,0上单调递增,且02>x 时,有02)()()(222>--+=x f x f x F ,故2)()(22>-+x f x f 成立,从而021<+x x 得证. ……12分 22.【解】(Ⅰ )直线l的参数方程为32t x y ⎧=-+⎪⎪⎨⎪=⎪⎩,(t 为参数), 消去参数t 可得l0y -+=;曲线C 的极坐标方程为24cos 30ρρθ-+=,可得C 的直角坐标方程为22430xy x +-+=.…………5分(2)C 的标准方程为()2221x y -+=,圆心为()2,0C ,半径为1,所以,圆心C 到l的距离为d == 所以点P 到l的距离的取值范围是1⎤⎥⎣⎦.………………10分 23、解: (Ⅰ)当1=a 时,⎪⎩⎪⎨⎧-≤-<<-≥=++-=.1,2,11,2,1,211)(x x x x x x x x f …………2分⎩⎨⎧>≥⇔>4214)(x x x f ,或⎩⎨⎧><<-4211x ,或⎩⎨⎧>--≤421x x ……4分2>⇔x ,或2-<x故不等式4)(>x f 的解集为),2()2,(+∞--∞Y ; (5)(Ⅱ)因为1)1()(1)(+=--+≥++-=a x a x a x x x f)1,0(∈∀m ,[]m m m m m m m m m m -+-+=-+-+=-+1145)1()141(141911425=-⋅-+≥m mm m (当31=m 时等号成立)……8分依题意,)1,0(∈∀m ,R x ∈∃0,有)(1410x f m m >-+则有91<+a解之得810<<-a故实数a 的取值范围是)8,10(-…………10分。