(完整版)高考数列专题复习

合集下载

高考数列专题总结(全是精华)

高考数列专题总结(全是精华)

数列专题复习(0929)一、证明等差等比数列1. 等差数列的证明方法:(1)定义法:1n n a a d +-=(常数) (2)等差中项法:112(2)n n n a a a n +-+=≥ 2.等比数列的证明方法: (1)定义法:1n na q a +=(常数) (2)等比中项法:211(2)n n n a a a n +-=≥例1.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75, T n 为数列{nS n}的前n 项和,求T n . 解:设等差数列{a n }的公差为d ,则S n =na 1+21n (n -1)d .∴S 7=7,S 15=75,∴⎩⎨⎧=+=+,7510515,721711d a d a 即⎩⎨⎧=+=+,57,1311d a d a解得a 1=-2,d =1.∴n S n =a 1+21(n -1)d =-2+21(n -1). ∵2111=-++n S n S n n ,∴数列{n S n }是等差数列,其首项为-2,公差为21, ∴T n =41n 2-49n . 例2.设数列{a n }的首项a 1=1,前n 项和S n 满足关系式: 3tS n -(2t +3)S n -1=3t (t >0,n =2,3,4,…) 求证:数列{a n }是等比数列;解:(1)由a 1=S 1=1,S 2=1+a 2,得a 2=tta a t t 323,32312+=+ 又3tS n -(2t +3)S n -1=3t ①3tS n -1-(2t +3)S n -2=3t ② ①-②得3ta n -(2t +3)a n -1=0 ∴tt a a n n 3321+=-,(n =2,3,…) 所以{a n }是一个首项为1,公比为tt 332+的等比数列.练习:已知a 1=2,点(a n ,a n+1)在函数f (x )=x 2+2x 的图象上,其中=1,2,3,… (1) 证明数列{lg(1+a n )}是等比数列;(2) 设T n =(1+a 1) (1+a 2) …(1+a n ),求T n 及数列{a n }的通项;答案 .(2) 213n n T -=,2131n n a -=-;二.通项的求法(1)利用等差等比的通项公式(2)累加法:1()n n a a f n +-= 例3.已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。

数列高考知识点归纳(非常全!) - 含答案

数列高考知识点归纳(非常全!) - 含答案

数列高考知识点大扫描第一节等差数列的概念、性质及前n 项和例1.等差数列{a n }中,69121520a a a a +++=,求S 20 [思路]等差数列前n 项和公式11()(1)22n n a a n n n S na d +-==+: 1、 由已知直接求a 1,公差d.2、 利用性质q p n m a a a a q p n m +=+⇒+=+[解题 ] 由69121520a a a a +++=,615912120a a a a a a +=+=+,得1202()20a a +=,12010a a ∴+=,120()201002n a a S +⨯∴==。

[收获] 灵活应用通项性质可使运算过程简化。

练习:1.等差数列{a n }满足121010a a a +++= ,则有()A 、11010a a +> B 、21000a a +< C 、3990a a += D 、5151a =2.等差数列中,a 3+a 7-a 10=8,a 11-a 4=4,求13S 。

3.等差数列{a n }共10项,123420a a a a +++=,12360n n n n a a a a ---+++=,求S n. [思路] 已知数列前四项和与后四项和,结合通项性质,联想S n 公式推导方法。

[解题] 已知123420a a a a +++=,12360n n n n a a a a ---+++=,又14()80n a a +=,得120n a a +=,1()201010022n n a a n S +⨯∴==⨯=,[收获] 1、重视倒加法的应用,恰当运用通项性质:q p n m a a a a q p n m +=+⇒+=+,快捷准确;1、 求出1n a a +后运用“整体代换”手段巧妙解决问题。

4.等差数列{a n }前n 项和为18 ,若1S =3, 123n n n a a a --++=, 求项数n .第2变已知前n 项和及前m 项和,如何求前n+m 项和[变题2] 在等差数列{a n }中,S n =a,S m =b,(m>n),求S n+m 的值。

高考文科数学数列专题复习(附答案及解析)

高考文科数学数列专题复习(附答案及解析)

高考文科数学数列专题复习数列常用公式数列的通项公式与前n 项的和的关系a n s , n 11s s ,n 2n n 1( 数列{a n} 的前n 项的和为s n a1 a2 a n ).等差数列的通项公式*a a1 (n 1)d dn a1 d(n N ) ;n等差数列其前n 项和公式为n(a a ) n(n 1)1 ns na1 d n2 2 d 12n (a d)n .12 2等比数列的通项公式an 1 1 n *a a1q q (n N )nq;等比数列前n 项的和公式为na (1 q )1s 1 qn , q 1或sna a q1 n1 q,q 1na ,q 1 1 na ,q 1 1一、选择题1.( 广东卷) 已知等比数列{a n} 的公比为正数,且a3 ·a9 =2 2a ,a2 =1,则a1 =5A. 12B.22C. 2D.22.(安徽卷)已知为等差数列,,则等于A. -1B. 1C. 3D.7 3(. 江西卷)公差不为零的等差数列{a n} 的前n项和为S n .若a4 是a3与a7 的等比中项, S8 32, 则S等于10A. 18B. 24C. 60D. 904(湖南卷)设S n 是等差数列a n 的前n 项和,已知a2 3,a6 11,则S7 等于【】第1页/ 共8页A .13 B.35 C.49 D.633.(辽宁卷)已知a为等差数列,且a7 -2 a4 =-1, a3 =0, 则公差d=n(A)-2 (B)-12 (C)12(D)24.(四川卷)等差数列{a n }的公差不为零,首项a1 =1,a2 是a1 和a5 的等比中项,则数列的前10 项之和是A. 90B. 100C. 145D. 1905.(湖北卷)设x R, 记不超过x 的最大整数为[ x ], 令{x }= x -[ x ],则{ 52 1} ,[ 521],521A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列6.(湖北卷)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1 中的1,3,6,10,⋯,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16⋯这样的数成为正方形数。

(完整版)高考数学专题《数列》超经典

(完整版)高考数学专题《数列》超经典

高考复习序列-----高中数学数列一、数列的通项公式与前n 项的和的关系①11,1,2n n n s n a s s n -=⎧=⎨-≥⎩(注:该公式对任意数列都适用)②1(2)n n n S S a n -=+≥ (注:该公式对任意数列都适用) ③12n n S a a a =+++L (注:该公式对任意数列都适用) ④s n+1−s n−1=a n+1+a n (注:该公式对任意数列都适用) 二、等差与等比数列的基本知识 1、等差数列⑴ 通项公式与公差:定义式:d a a n n =--1一般式:()q pn a d n a a n n +=⇔-+=11 推广形式: ()n m a a n m d =+-ma a d mn --=⇔;⑵ 前n 项和与通项n a 的关系:前n 项和公式:1()n n n a a s +=1(1)n n na d -=+211()2d n a d n =+-.前n 项和公式的一般式:应用:若已知()n n n f +=22,即可判断为某个等差数列n 的前n 项和,并可求出首项及公差的值。

n a 与n S 的关系:1(2)n n n a S S n -=-≥(注:该公式对任意数列都适用)例:等差数列12-=n S n ,=--1n n a a (直接利用通项公式作差求解) ⑶ 常用性质:①若m+n=p+q ,则有 m n p q a a a a +=+ ;特别地:若,m n p a a a 是的等差中项,则有2m n p a a a =+⇔n 、m 、p 成等差数列;②等差数列的“间隔相等的连续等长片断和序列”(如123,a a a ++456,a a a ++789a a a ++,⋅⋅⋅)仍是等差数列;③{}n a 为公差为d 等差数列,n S 为其前.n .项和..,则232,,m m m m m S S S S S --,43m m S S -,...也成等差数列, A 、 构成的新数列公差为D=m 2d ,即m 2d=(S 2m -S m )- S m ;B 、 对于任意已知S m ,S n ,等差数列{}n a ⎭⎬⎫⎩⎨⎧n S n 也构成一个公差为2d 等差数列。

高三数学第一轮复习——数列(知识点很全)

高三数学第一轮复习——数列(知识点很全)

数列一、 知识梳理概念1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.2.通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n=.3.递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,12,11+==n na a a ,其中12+=n n a a 是数列{}n a 的递推公式.4.数列的前n 项和与通项的公式①n na a a S +++= 21; ②⎩⎨⎧≥-==-)2()1(11n S S n S a n n n .5. 数列的表示方法:解析法、图像法、列举法、递推法.6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何+∈N n ,均有n n a a >+1.②递减数列:对于任何+∈N n ,均有n n a a <+1.③摆动数列:例如: .,1,1,1,1,1 --- ④常数数列:例如:6,6,6,6,……. ⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >.等差数列1.等差数列的概念如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d ,这个数列叫做等差数列,常数d 称为等差数列的公差.2.通项公式与前n 项和公式⑴通项公式d n a a n)1(1-+=,1a 为首项,d 为公差.⑵前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=.3.等差中项如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项.即:A 是a 与b 的等差中项⇔b a A +=2⇔a ,A ,b 成等差数列.4.等差数列的判定方法 ⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.5.等差数列的常用性质⑴数列{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列;⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n)(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )⑷若),,,(+∈+=+N q p n m q p nm ,则q p n m a a a a +=+;⑸若等差数列{}n a 的前n 项和n S ,则⎭⎬⎫⎩⎨⎧n S n 是等差数列;⑹当项数为)(2+∈N n n ,则nn a a S S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n ,则nn S S a S S n 1,-==-奇偶偶奇. 等比数列1.等比数列的概念如果一个数列从第二项起,每一项与它前一项的比等于同一个常数)0(≠q q ,这个数列叫做等比数列,常数q 称为等比数列的公比. 2.通项公式与前n 项和公式⑴通项公式:11-=n nq a a ,1a 为首项,q 为公比 .⑵前n 项和公式:①当1=q时,1na S n =②当1≠q 时,qqa a q q a S n n n --=--=11)1(11.3.等比中项如果b G a ,,成等比数列,那么G 叫做a 与b 的等比中项. 即:G 是a 与b 的等差中项⇔a ,A ,b 成等差数列⇒b a G ⋅=2.4.等比数列的判定方法 ⑴定义法:q a a nn =+1(+∈N n ,0≠q 是常数)⇔{}n a 是等比数列; ⑵中项法:221++⋅=n n n a a a (+∈N n )且0≠n a ⇔{}n a 是等比数列.5.等比数列的常用性质⑴数列{}n a 是等比数列,则数列{}n pa 、{}n pa (0≠q 是常数)都是等比数列;⑵在等比数列{}n a 中,等距离取出若干项也构成一个等比数列,即 ,,,,32k n k n k n n a a a a +++为等比数列,公比为kq .⑶),(+-∈⋅=N m n q a a m n m n⑷若),,,(+∈+=+N q p n m q p nm ,则q p n m a a a a ⋅=⋅;⑸若等比数列{}n a 的前n 项和n S ,则k S 、k k S S -2、k k S S 23-、k k S S 34-是等比数列.二、典型例题A 、求值类的计算题(多关于等差等比数列) 1)根据基本量求解(方程的思想) 1、已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==nS a a ,求n ;2、等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S .3、设{}n a 是公比为正数的等比数列,若16,151==a a ,求数列{}n a 前7项的和.4、已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37,中间两数之和为36,求这四个数.2)根据数列的性质求解(整体思想) 1、已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ;2、设n S 、n T 分别是等差数列{}n a 、{}n a 的前n 项和,327++=n n T S nn,则=55b a . 3、设n S 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则( )4、等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n n S n T n =+,则n na b =( ) 5、已知n S 为等差数列{}n a 的前n 项和,)(,m n n S m S m n ≠==,则=+n m S .6、在正项等比数列{}n a 中,153537225a a a a a a ++=,则35a a +=_______。

求数列通项公式方法专题(高考大题数列复习)

求数列通项公式方法专题(高考大题数列复习)

求数列通项公式方法专题(1).公式法(定义法)经过简单的处理后,得出11n n n n c c c d q c ---==或形式可以利用上等差数列、等比数列的定义求通项。

1.已知数列}{n a 满足)1(1,211≥=-=-n a a a n n ,求数列}{n a 的通项公式;2.数列{}n a 满足1a =8,022124=+-=++n n n a a a a ,且 (*∈N n ),求数列{}n a 的通项公式;3. 已知数列}{n a 满足211,211=-=+n n a a a ,求数列{}n a 的通项公式;4.设数列}{n a 满足01=a 且111111=---+nn a a ,求}{n a 的通项公式5. 已知数列{}n a 满足112,12n n n a a a a +==+,求数列{}n a 的通项公式。

6.已知数列}{n a 满足2122142++=⋅==n n n a a a a a 且, (*∈N n ),求数列{}n a 的通项公式;7.已知数列}{n a 满足,21=a 且1152(5)n n n n a a ++-=-(*∈N n ),求数列{}n a 的通项公式;8.数列已知数列{}n a 满足111,41(1).2n n a a a n -==+>则数列{}n a 的通项公式=9.已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。

解:1232nn n a a +=+⨯两边除以12n +,得113222n nn n a a ++=+,则113222n n n na a ++-=,故数列{}2n n a 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n na n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。

(2)累加法(适用于:1()n n a a f n +=+ ) 例:1.已知数列{}n a 满足141,21211-+==+n a a a n n ,求数列{}n a 的通项公式。

数列复习专题精选完整版ppt课件

数列复习专题精选完整版ppt课件

数列与函数问题:化归思想,函数与方程思想
恒成立问题: 论证推理
探索性问题--恒成立问题
恒成立问题: 论证推理
探索性问题--存在性问题
注:(1)不等式恒成立与最值问题相关联:确定变量最大或最小(2)数列最值问题关联:单调数列特征,或数列取值正负变化特征,或数列二次函数特征(3)恒成立问题:推理论证(4)存在性问题:寻找,特值法、代入验证法等
二、数列基本方法
1、方程(组)思想、函数思想2、代入法,因式分解降次法3、待定系数法4、分类讨论思想5、化归转换思想★6、不等式放缩应用
数列问题探究-典型例举
数列问题探究-典型例举
数列问题:
2、一般数列通项递推的应用(关于Sn--an)
递推式运用原则:减元原则、降次原则、目标趋近原则
知识拓展与方法应用:
数 列
1.知识
2. 问题
3. 方法
一、数列基础知识
一般数列:
特殊数列:等差数列
特殊数列:等差数列性质 足码和特征、和项特征、奇偶项和特征
特殊数列:等比数列
特殊数列:等比数列性质 足码和特征、和项特征、奇偶项和特征
二、数列基本问题
公式变式\性质应用
题例
基本关系式应用:正用代入--逆用作差
一般数列通项递推的应用
数列求和:数列递推问题:数列与不等式问题:数列与函数:探索性问题:成立与存在性问题预测方向
数列递推问题
数列递推问题
数列递推问题---化归转换为运用待定系数法、累加或累乘型
数列递推问题---化归转换为运用待定系数法、累加或累乘型
小结:(1)高考卷选择填空题型:等差等比比重大,一般数列通项或和,新定义与创新型问题(2)高考数列解答题:通项、前n项和,★递推问题,不等式证明(3)含参数问题:取值或范围,最值问题(4)重点问题:特殊数列、递推问题等

(完整版)高三总复习数列知识点及题型归纳总结

(完整版)高三总复习数列知识点及题型归纳总结

高三总复习----数列一、数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。

记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。

例:判断下列各组元素能否构成数列 (1)a, -3, -1, 1, b, 5, 7, 9;(2)2010年各省参加高考的考生人数。

(2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。

例如:①:1 ,2 ,3 ,4, 5 ,…②:514131211,,,,…数列①的通项公式是n a = n (n ≤7,n N +∈), 数列②的通项公式是n a = 1n(n N +∈)。

说明:①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式; ② 同一个数列的通项公式的形式不一定唯一。

例如,n a = (1)n-=1,21()1,2n k k Z n k-=-⎧∈⎨+=⎩;③不是每个数列都有通项公式。

例如,1,1.4,1.41,1.414,……(3)数列的函数特征与图象表示: 序号:1 2 3 4 5 6 项 :4 5 6 7 8 9上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。

从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。

例:画出数列12+=n a n 的图像.(4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。

数列知识点总结高考

数列知识点总结高考

数列知识点总结高考一、数列的概念数列是指有限或无限个数的有序排列,以逗号分隔,记作{an}。

其中an称为数列的通项。

常见的数列有等差数列、等比数列等。

二、等差数列1. 等差数列的定义若一个数列中任意两项之间的差都相等,则这个数列称为等差数列。

其中,差值称为公差,记作d。

2. 等差数列的通项公式设等差数列的首项为a1,公差为d,则等差数列的通项公式为:an = a1 + (n-1)d3. 等差数列的前n项和公式等差数列的前n项和公式为:Sn = (a1 + an) * n / 24. 等差数列中的常见问题等差数列中的常见问题包括求首项、公差、通项、前n项和以及数列的性质等。

三、等比数列1. 等比数列的定义若一个数列中任意两项之间的比值都相等,则这个数列称为等比数列。

其中,比值称为公比,记作q。

2. 等比数列的通项公式设等比数列的首项为a1,公比为q,则等比数列的通项公式为:an = a1 * q^(n-1)3. 等比数列的前n项和公式等比数列的前n项和公式为:Sn = a1 * (1 - q^n) / (1 - q)4. 等比数列中的常见问题等比数列中的常见问题包括求首项、公比、通项、前n项和以及数列的性质等。

四、数列的性质1. 有限数列的性质有限数列的性质包括首项、末项、公差或公比、前n项和等。

2. 无限数列的性质无限数列的性质包括首项、公差或公比、极限等。

3. 数列的通项公式数列的通项公式是数列的重要性质,通过通项公式可以求得数列的任意项。

五、利用数列解决实际问题数列在实际问题中的应用十分广泛,例如等差数列可以用来描述等距离的运动过程,等比数列可以用来描述成倍增加的现象等。

总结:通过学习数列的知识,我们可以得到多种数学问题的解决方法,通过分析数列的性质和通项公式,可以更好地理解数学问题的本质。

因此,数列是数学学习中一个重要的基础知识。

以上就是数列的相关知识点总结,希望对你的学习有所帮助。

高三数列专题复习

高三数列专题复习

高三(文科数学)第二轮专题复习数列及其应用一、基本概念:1. 数列的定义及表示方法.2. 数列的项与项数.3. 有穷数列与无穷数列.4. 递增(减)、摆动、循环数列.5. 数列{a n }的通项公式a n .6. 数列的前n 项和公式S n .7. 等差数列、公差d 、等差数列的结构.8. 等比数列、公比q 、等比数列的结构.9. 无穷递缩等比数列的意义及公比q 的取值范围.二、基本公式:1. 一般数列的通项a n 与前n 项和S n 的关系:⎩⎨⎧≥-==-)2(,)1(,11n s s n s a n nn . 2.等差数列的通项公式:a n =a 1+(n-1)d , a n =a k +(n-k)d (其中a 1为首项、a k 为已知的第k 项) 当d ≠0时,a n 是关于n 的一次式;当d=0时,a n 是一个常数.3.等差数列的前n 项和公式: (1)d n n na s n 2)1(1-+=, (2)2)(1n n a a n s +=. 当d ≠0时,S n 是关于n 的二次式且常数项为0;当d=0时(a 1≠0),S n =na 1是关于n 的正比例式.4.等差中项公式:2b a A +=(有唯一的值). 5.等比数列的通项公式:(1)a n = a 1 q n-1 , (2)a n = a k q n-k . .(其中a 1为首项、a k 为已知的第k 项,a n ≠0).6.等比数列的前n 项和公式:(1)当q=1时,S n =n a 1 (是关于n 的正比例式);(2)当q ≠0时,(1)qq a s n n --=1)1(1, (2)q q a a s n n --=11. 7.等比中项公式: ab G ±=(ab>0,有两个值).三、有关等差、等比数列的结论1.等差数列{a n }中,若m+n=p+q ,则 q p n m a a a a +=+.2. 等比数列{a n }中,若m+n=p+q ,则q p n m a a a a •=•. 3.等差数列{a n }的任意连续m 项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、S 4m - S 3m 、……仍为等差数列.4.等比数列{a n }的任意连续m 项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、S 4m - S 3m 、……仍为等比数列.5.两个等差数列{a n }与{b n }的和差的数列{a n +b n }、{a n -b n }仍为等差数列.6.两个等比数列{a n }与{b n }的积、商、倒数的数列{a n ·b n } 、 ⎭⎬⎫⎩⎨⎧n n b a 、⎭⎬⎫⎩⎨⎧n b 1 ,仍为等比数列. 7.等差数列{a n }的任意等距离的项构成的数列仍为等差数列.8.等比数列{a n }的任意等距离的项构成的数列仍为等比数列.9.三个数成等差的设法:a-d,a,a+d ;四个数成等差的设法:a-3d,a-d,,a+d,a+3d .10.三个数成等比的设法:q a , a, aq ;四个数成等比的错误设法:3qa , q a , aq, aq 3 . 四、数列求和其他方法1.拆项法求数列的和,如a n = 2n+3n ;2.错位相减法求和,如a n = (2n-1) 2n ;3.分裂项法求和,如a n = )1(1 n n ; 4.反序相加法求和,如a n =n n C 100;5.公式法求和;6.观察规律求和.五.数列的综合应用数列的综合应用主要归结为等差、等比和递推数列的应用.主要题型有:产量的增减、价格的升降、细胞的繁植、求利率、增长率等.解决此类问题的关键是数列的建模问题.六、数列实际应用例题1.从盛满a 升(a >1)纯酒精的容器里倒出一升酒精,然后用水填满后搅匀,再倒出一升混合溶液后再用水填满,如此继续进行下去.(1)每次用水填满后的酒精浓度是否依次成等差数列或等比数列?试证明你的结论.(2)若a =2,至少倒几次后(每次倒过后都用水加满搅匀)才能使酒精浓度低于10%?例题2.资料表明,2000年我国荒漠化土地占国土陆地总面积960万平方公里的17%,近二十年来,我国荒漠化土地每年以2460平方公里的速度扩展,若这二十年间我国治理荒漠化土地的面积占前一年荒漠化土地面积的1%,试问:二十年前我国荒漠化土地的面积有多少平方公里?( 精确到1平方公里)例题3.某单位用分期付款的方式为职工购买40套住房,共需1150万元.购买当天先付150万元,以后每月这一天都交付50万元,并加付欠款利息,月利率1%.(1)若交付150万元后的第一个月算开始分期付款的第一个月,问分期付款的第十个月应该付多少钱?(2)全部款项付清后,买这40套住房实际花了多少钱?。

高考数列总复习(完整)

高考数列总复习(完整)

在数列高考知识点大扫描知识网络数列基本概念数列是一种特殊函数,对于数列这种特殊函数,着重讨论它的定义域、值域、增减性和最值等方面的性质,依据这些性质将数列分类:依定义域分为:有穷数列、无穷数列;依值域分为:有界数列和无界数列;依增减性分为递增数列、递减数列和摆动数列。

数列的表示方法:列表法、图象法、解析法(通项公式法及递推关系法);数列通项:()n a f n 2、等差数列1、定义当n N,且2n 时,总有1,()n n a a d d 常,d 叫公差。

2、通项公式1(1)n a a n d3、前n 项和公式由1211,n n n n n S a a a S a a a ,相加得12n n a a S n ,还可表示为1(1),(0)2n n n S na d d ,是n 的二次函数。

特别的,由1212nn a a a 可得21(21)n n S n a 。

4、由三个数a ,,b 组成的等差数列可以看成最简单的等差数列,则称为a 与b 的等差中项.若2a cb ,则称b 为a 与c 的等差中项.5、等差数列的性质:(1)m n p q (m 、n 、p 、*q),则m n p q a a a a ;特别地,若2np q (n 、p 、*q ),则2n p q a a a .(2)n S ,2n n S S ,32n n S S 成等比数列.(3)若项数为*2n n ,则S S nd 偶奇,.(4)若项数为*21n n ,则2121n n S n a ,1S n S n 奇偶3、等比数列1、定义当n N ,且2n 时,总有1(0)nna q q a , q 叫公比。

2、通项公式:11n n m n m a a q a q , 在等比数列中,若2m n p q r , 则2m np q r a a a a a . 3、、在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则G 称为a 与b 的等比中项.若2G ab ,则称G 为a 与b 的等比中项.4、等比数列的前n 项和的性质:(1)m n pq (m 、n 、p 、*q ),则m n p q a a a a ;若n a 是等比数列,且2np q (n 、p 、*q ),则2n p q a a a .(2)n S ,2n n S S ,32n n S S 成等比数列。

高考数学数列复习 题集附答案

高考数学数列复习 题集附答案

高考数学数列复习题集附答案高考数学数列复习题集附答案1. 数列基本概念数列是数学中重要的概念之一,在高考数学中也占有重要的地位。

数列是按照一定的规律排列的一系列数的集合。

在数列中,每个数称为该数列的项,而规律则决定了数列的特征。

在高考中,数列的考查形式多样,掌握数列的基本概念对于解题至关重要。

2. 等差数列等差数列是一种常见的数列形式,在解题中经常出现。

等差数列的特点是每一项与前一项之差都相等。

假设等差数列的首项为a₁,公差为d,第n项为aₙ,则数列的通项公式是aₙ = a₁ + (n-1)d。

在考试中,理解等差数列的通项公式以及应用等差数列的性质解题是必要的。

3. 等比数列等比数列是另一种常见的数列形式,也经常出现在高考数学试题中。

等比数列的特点是每一项与前一项之比都相等。

假设等比数列的首项为a₁,公比为q,第n项为aₙ,则数列的通项公式是aₙ = a₁ * q^(n-1)。

了解等比数列的通项公式、性质以及应用等比数列解题的方法对于解答高考试题非常关键。

4. 递推数列递推数列是数列中常见的一种类型,其中每一项通过前一项计算得出。

递推数列的求解常常需要列出前几项进行观察。

在解题时,可以通过观察数列的规律,推导出数列的通项公式,从而求解特定项。

练习题:1. 给定等差数列的首项a₁ = 3,公差d = 2,求该等差数列的第10项。

答:根据等差数列的通项公式,第10项的计算公式为 a₁₀ = a₁ + (n-1)d = 3 + (10-1)2 = 21。

2. 给定等比数列的首项a₁ = 2,公比q = 3,求该等比数列的第5项。

答:根据等比数列的通项公式,第5项的计算公式为 a₅ = a₁ *q^(n-1) = 2 * 3^(5-1) = 162。

3. 已知递推数列的前两项分别为a₁ = 1,a₂ = 2,且每一项都等于前两项之和,求该递推数列的第6项。

答:观察数列的前几项,发现每一项都等于前两项的和,即aₙ =aₙ₋₁ + aₙ₋₂。

高考数列汇总

高考数列汇总

高考数列汇总一、基本概念数列是数学中重要的概念之一,也是高考中常见的考点。

数列是按照某种规律排列的一组数,其中每个数称为数列的项。

数列中的每个项都有一个位置下标,第n个项用an表示。

数列可以通过一般项公式或递推公式来表示。

二、常见数列类型1.等差数列:等差数列又称等差数列,是指数列中任意两个相邻项之差都相等的数列。

等差数列的通项公式为an=a1+(n-1)d,其中a1为首项,d为公差,n为项数。

例如:1,3,5,7,9,...这个数列的首项为1,公差为2,通项公式为an=1+(n-1)2。

2.等比数列:等比数列是指数列中任意两个相邻项之比都相等的数列。

等比数列的通项公式为an=a1*rn-1,其中a1为首项,r为公比,n为项数,注意首项不能为0。

例如:1,2,4,8,16,...这个数列的首项为1,公比为2,通项公式为an=1*2n-1。

3.斐波那契数列:斐波那契数列是指从第三项开始,每一项都等于前两项之和的数列。

斐波那契数列的通项公式为an=an-1+an-2,其中a1=1,a2=1,n≥3。

例如:1,1,2,3,5,8,...这个数列的前两项都是1,后面每一项都是前两项之和。

4.等差数列与等比数列混合:有时候数列可能既具有等差又具有等比的性质,此时可以通过观察数列特点来确定其通项公式。

例如:1,2,4,7,11,16,...可以发现该数列中相邻项之差分别是1,2,3,4,5,...,这是一个等差数列。

进一步观察发现,相邻项之差递增的规律是1,2,3,4,...,这也是一个等差数列。

因此,这个数列既是等差数列又是等差数列,其通项公式可以表示为an=a1+(n-1)n/2。

三、常见数列性质1.数列和:数列和是指数列中的所有项的和。

对于等差数列,数列和的求和公式为Sn=n/2(a1+an),对于等比数列,数列和的求和公式为Sn=a1(1-rn)/(1-r),其中Sn表示数列的和。

2.数列通项的求法:对于等差数列,可以通过观察相邻项之差的规律来确定其通项公式;对于等比数列,可以通过观察相邻项之比的规律来确定其通项公式;对于其他类型的数列,可以通过递推公式或其他方法来确定其通项公式。

数列高考复习题(含答案)

数列高考复习题(含答案)

数列1.{}是首项a i=1,公差为d = 3的等差数列,如果=2 005,那么序号n 等于〔〕a 5 =(3.如果a b…,a 8为各项都大于零的等差数列,公差 d 中0,那么〔〕A. a 〔a 8> a 4a 5B. a 〔a 8 V a 4a 5C. a 〔+ a 8 V a d+ a 5D. a 〔a 8= a 4a 54.方程〔x 2—2x+ m 〕〔 x 2—2x + n 〕 = 0的四个根组成一个首项为项和>0成立的最大自然数 门是〔〕A. 667B. 668C. 669D. 6702. 在各项都为正数的等比数列 {}中,首项a 〔 = 3,而二项和为 21,那么a ?+ a 4十A. 33B. 72C. 84D. 189I m- n |等于(A.5. 等比数列 ). B. 34{}中,&=9, a 5= 243,那么{}的前4项和为〔 ).A. 816. 假设数列{}是等差数列,首项a 1>0, a 2003 + a 2 004>0, & 003 •a 2 004V 0,那么使前nA. 4 005B. 4 006C. 4 007D. 4 0087.等差数列 {}的公差为2, a 1,a 3, a 4成等比数列,那么a 2=〔〕A. -4B. -6C. -8D. —108.设是等差数列 {}的前n 项和, a 5 一 A. 18 . — 1a 3C. 25,那么S 9=(D.9 .数歹U — 1, a1,a2, 一4成等差数列,一1, b1,1 2b2, b3, — 4成等比数列,那么—1的值是().b2A. 1B. - 1C. — 1或1D. 12 2 2 2 410 .在等差数列{}中,中0, —1—a; + +i=0(n>2),假设S2n—1=38,那么n=() .A. 38B. 20C. 10D. 9二、填空题11 .设f(x) =k',利用课本中推导等差数列前n项和公式的方法,可求得2x ,2f(-5) + f(-4)+- + f(0) +•••+ f (5) +f(6)的值为.12 .等比数列{}中,(1)假设a3 •a4 • a5= 8,贝U a2 •a3 •a4 •a5 •a6=.(2) a〔 + a2=324, a3+a4=36,贝U as+a6=.(3) Jzf 3=2, S8 = 6, 那么a〔7+a〔8 + a〔9 + st.=.13 .在8和27之间插入三个数,使这五个数成等比数列,那么插入的三个数的乘积 3 2为.14 .在等差数列{}中,3( a3+ a s) + 2( a?+ a10+a〔3)=24,那么此数列前13项之和为—.15 .在等差数列{}中,a5=3, a6= — 2,那么a4 + a5+…+ a〔0=.16 .设平面内有n条直线(n>3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.假设用f(n)表示这n条直线交点的个数,那么f(4) =;当n >4 时,f(n)=.三、解做题17 . (1)数列{}的前n项和=3n2- 2n,求证数列{}成等差数列.(2)1, 1, 1成等差数列,求证U , J ,—也成等差数列. a b c a b c18 .设{}是公比为q的等比数列,且ai, as, &成等差数列.(1)求q的值;⑵设{}是以2为首项,q为公差的等差数列,其前n项和为,当n?2时,比拟与的大小,并说明理由.19 .数列{}的前n项和记为,ai = 1, +i=U(n=1, 2, 3…). n求证:数列{员}是等比数列.n20 .数列{}是首项为a且公比不等于1的等比数列,为其前n项和,a i, 2a7,3a4成等差数列,求证:124, S12- &成等比数列.第二章数列参考答案一、选择题1. C解析:由题设,代入通项公式=a i+(n—l)d,即2 005= 1 + 3(n- 1) , /.n = 699.2. C解析:此题考查等比数列的相关概念,及其有关计算水平.设等比数列{}的公比为q(q>0),由题意得a1+a2 + a3=21,即a1(1 + q+ q) =21,又a1 = 3, • . 1 + q+ q= 7.解得q = 2或q= —3(不合题意,舍去),. . a?+ a4+ a5= a1q (1 + q + q ) = 3X2 x 7= 84.3. B.解析:由a1 + a8 = a4+a5,「.排除C.2又a• a8= 81(81+ 7d) =81 + 7a1d,• ・a4・a5=(a1+3d)( a[ + 4d) =a; + 7a1d +12d2>a「a8.4. C解析:解法 1 :设a〔 = 1, 82= 1 + d, a3= 1+ 2d, a4= 1 + 3d,而方程x2-2x+ m= 0 中 4 4 4 4两根之和为2, x2—2x+n= 0中两根之和也为2,•二a〔+ 82+ 83+ 84= 1 + 6d = 4,• d=1, 81=1,84= 7是一个方程的两个根,81=9, 83=勺是另一个方程的两 2 4 4 4 4个根.二•二,15分别为m或n,16 16「•Im- n I = 1,应选C.2解法 2:设方程的四个根为 x i, X 2, X 3, x% 且 x i+X 2=X 3+X 4= 2,x i - X 2= ny X 3 •X 4=n.由等差数列的性质:假设 +s=p+ q,那么 a + = + ,假设设X i 为第一项,X 2必为第 四项,那么X 2= 7,于是可得等差数列为1, 3 , 5 , 7 ,44444.•.m= Ln= 15 ,1616 • . I m- n | = 1.25. B解析:= a 2=9, a 5 = 243,曳=43=空=27, a 29• . q= 3, a 1q=9, a i = 3, .•・3= 3z3t=啊= i20.i-326. B 解析:解法 i :由 a 2 003 + a 2 004 >0, a 2 003 , a 2 004 <0,知 a 2 003 和 a 2 004 两项中1有一正数一负 数,又a i>0,那么公差为负数,否那么各项总为正数,故 a 2003>a 2004 , 即a 2 003 >0, a 2004 <0.4 006( a.+ a )4 006( a + a )Si 4 006 , _ j 2 003 2 004)> 02 2'故4 006为>0的最大自然数.选B. 分析得 & 003〉0,& 004 V 0 , . ・ S 003为中的最大值.•••是关于n 的二次函数,如草图所示,・•.2 003到对称轴的距离比2004到对称轴的距离小,• S 4 006 =•二 S 4 007 =4 007(a i + a 4 007) =等・ 2氏 004 V 0 ,解法2:由a i>0,a 2003 + a 2 004>0, V0,同解法i 的〔第6「• 土吧在对称轴的右侧. 2根据条件及图象的对称性可得 4 006在图象中右侧零点B的左侧,4 007, 4 008都在其右侧,>0的最大自然数是4 006 .7. B解析:; {}是等差数列,•二a3=a1+4, a4=a1 + 6,又由ai, a3, a4成等比数列,. , . 〔a〔 + 4〕 = a〔〔a〔 + 6〕,解得ai = - 8,・ 22= — 8+2 = — 6.8. A9〔一—〕解析:名=1^=二=9• 5 = 1, ••・选AS55〔ai %〕 5 a35 929. A解析:设d和q分别为公差和公比,那么—4=—1 + 3d且—4=〔—1〕q4,• • d = - 1, q2= 2, .% ♦— d _ 1 ・・ 2 - •b2 q 210. C解析:; {}为等差数列,.二a; = — 1 ++1,a: = 2,又中0, ...= 2, {}为常数数列,而="^,即2n—1 =竺=19,2n 1 2• • n =10.、填空题解析:f(x)=2 、2「• f (1 — x) = 1——= -- ——— ........ ,21 x . 2 2 .2 2x 2 2xL 2, 1 1 2「.f (x) + f (1 -x) = ^1—+ 42—= J22 2x 2 2x 2 21五H2 2);亚一12~ 2设S= f( -5) +f( -4) +•••+ f(0) +…+ f (5) +f(6),那么S=f(6) +f(5) +…+ f(0) + • • + f ( — 4) + f ( —5),••.2S= [f(6) +f(—5)] +[f(5) +f(—4)] +•- + [f(-5) +f(6)] =6j攵,.•.S= f( -5) +f( -4) +•••+ f(0) +•••+ f(5) +f(6) =3行.12. (1) 32; (2) 4; (3) 32.解析:(1)由a3 • a5= a:,得a4= 2,「• a2 • a3 , a4 , a5 , a6= a: = 32.(2) a1 a2 3242 1, 、2 “ q 二(a1 a2)q 36 94 ,• • a s+ a6= (a〔+ &) q = 4.(3)S4= art- a2+ a3+ a4=2S8= a〔+a2+4 + a8= S4+ S4q16• • a〔7+a〔8+a〔9+ a20=S4q =32.13. 216.解析:此题考查等比数列的性质及计算,由插入三个数后成等比数列,因而中间数必与8,红同号,由等比中项的中间数为乒=6,插入的三个数之积为1乂史3 2 ; 3 2 ' 3 2 X6 = 216.14. 26.解:• a?+a5= 2a4, a7+a〔3=2a i0,6( a4+a[0)= 24, a4+ a1o=4,. S13=1&%+%3)= 13( a4+ 包.)=13 J = 262 2 2^15. -49.解析:: d= a6 — a5= — 5,• • a4+ as + …+ a1o_ 7( a4+ a10)2=7( a5— d+a5+5d)2= 7(a5+2d)=—49.16. 5, l(n+1)( n-2).2解析:同一平面内两条直线假设不平行那么一定相交,故每增加一条直线一定与前面已有的每条直线都相交,・•.f(k)=f(k-1)+(k-1).由f(3) =2,f(4) =f (3) +3=2 + 3 = 5,f(5) =f (4) +4=2 + 3 + 4=9,f (n) =f (n— 1) + (n— 1),相加得f(n) =2 + 3+4+ - + (n-1) = 1(n+1)( n-2).2三、解做题17. 分析:判定给定数列是否为等差数列关键看是否满足从第2项开始每项与其前一项差为常数.证实:(1) n = 1 时,ai=Si = 3—2=1,当 n>2 时,=- -1= 3n — 2n — [3( n- 1) 一2(n- 1)] = 6n-5, n=l 时,亦满足,.•.= 6n — 5(nGN*).首项 a 1= 1, — -1 = 6n-5-[6( n- 1) — 5] =6(常数)(nG N*), 数列{}成等差数列且31=1,公差为6. (2)二,1, 1成等差数列, a b c2 = 1 + 1 化简得 2= b ( a+ c ). b a c222 2 2 2b+ c + a + b _ bc+ c + a + ab_ b( a+ c)+ a + c _ (a + c) _ (a + c)_ 2 . a+ ca cacac ac b( a+ c)b2c+a ? 坐也成等差数列. a b c18.解:(1)由题设 2a 3=a 〔 + a 2,即 2a 1q 2= a 1 + a 1q,. a 1 中 0, • • 2q — q — 1 = 0,「.q= 1 或一1.2(2)假设 q=1,那么=2n +当n)2时,=-1=(n -1)( n+2)>0,故〉. 右 q=— 1,那么=2n +2当n)2时,=-1=22 .公n(n —1) ( _ 1 ) _ — n +9n 224(n-1)( 10- n)故对于nG,当2Wn09时, 19.证实:.+1 = +1 — , +1 =>;当n=10时,=;当n>11时,vn + 2 n• • ( n + 2) = n ( +1 —) ,整理得 所以S±i =遇.+1=2(n+1), 2 _n(n —1) _ n + 3n故{邑}是以2为公比的等比数列. n20.证实:由a1,2a7, 3a4成等差数列,得4a7 = a1+3a4,即4 a1q6变形得(4 q3+1)( q3—1) =0, • ・q3= —II或q3=1(舍).4a1(1 q6) 3由9 = 一1 q3 = t_q_ =工;12S3 12a0 q3) 12 16S6 — SI2 S6语ST-・•.12S,S12—&成等比数列.II q3 a1 + 3a1q ,S12 S6S. 1—1 =S6a1(1 q12)1 q6—1 = 1 + q6— 1=—;8(1 q ) 「16,1 q。

数列高考知识点大全

数列高考知识点大全

数列高考知识点大全数列是高中数学中的一个重要内容,也是高考中经常出现的考点之一。

掌握好数列的相关知识点,对于解题和提高数学分数都十分关键。

本文将对数列在高考中的各个知识点进行全面总结和归纳,以帮助考生快速复习和掌握相关内容。

一、等差数列等差数列是指数列中相邻两项之差都相等的数列。

在高考中,涉及到等差数列的考点有:1. 等差数列的通项公式及性质;2. 等差数列的前n项和公式及性质;3. 等差数列的性质和应用,如等差数列的中项、公差等。

二、等比数列等比数列是指数列中相邻两项之比都相等的数列。

在高考中,涉及到等比数列的考点有:1. 等比数列的通项公式及性质;2. 等比数列的前n项和公式及性质;3. 等比数列的性质和应用,如等比数列的求和、常用等比数列问题的解题方法等。

三、斐波那契数列斐波那契数列是指数列中从第三项开始,每一项都是前两项之和的数列。

在高考中,涉及到斐波那契数列的考点有:1. 斐波那契数列的定义和性质;2. 斐波那契数列的求解和应用,如斐波那契数列的递推公式、斐波那契数列与黄金分割、应用题等。

四、等差数列与等比数列的联立等差数列与等比数列的联立是指在题目中同时涉及到等差数列和等比数列的解题方法。

在高考中,涉及到等差数列与等比数列的联立的考点有:1. 根据已知条件建立等差数列或等比数列的方程;2. 利用等差数列和等比数列的性质求解方程组;3. 应用等差数列与等比数列的性质解答应用题。

五、数列的极限数列的极限是指随着项数趋于无穷大,数列的值趋于稳定的一个值。

在高考中,涉及到数列的极限的考点有:1. 数列极限的定义和性质;2. 数列极限的判敛方法,如夹逼定理、单调有界原理等;3. 应用数列极限解答极限计算题。

六、数列的应用数列的应用是指将数列的相关知识点应用于实际问题中。

在高考中,涉及到数列的应用的考点有:1. 利用数列解决经典问题,如数列求和问题、数列递推问题等;2. 利用数列建立模型,解决实际问题;3. 数列应用题的解题思路和方法。

高考数学数列专项复习

高考数学数列专项复习

高考数学数列专项复习强化主干知识复习通过新课标与考试大纲对比,我们知道数列这一章的主干知识是:等差数列等比数列数列的通项及前n项和的求法。

因此,在备考复习中应抓住主干知识线,实施有效复习,帮助同学构建知识网络。

1. 等差数列:(1)要求同学理解等差概念,掌握等差数列的通项公式,弄清等差数列与一次函数的关系;(2)抓住等差数列的特征,掌握前n项和公式,弄清前n项的和与二次函数的关系;(3)强化"知三求二'的题型训练。

作为高考复习,适当强化题型训练是很有必要的,"知三求二'是等差数列的重要题型。

所谓"知三求二'就是等差数列有五个参量:项数、通项、前n项和、首项、公差,只要已知这五个量中的任意三个,就可以利用通项公式和前n项和公式求出其余两个。

关于"知三求二'的题型训练要适度,不要人为编造太难、太繁题目给同学做,这样不仅增加同学负担,而且淡化数学本质。

2. 等比数列:(1)要求同学理解等比概念,掌握等比数列的通项公式,弄清等比数列与指数函数的关系;(2)抓住等比数列的特征,掌握等比数列前n项和公式及其推导方法;(3)控制"知三求二'题型的难度。

得注意的是,关于等比数列,"知三求二'的问题可能出现高次方程,这不在新课标要求范围之内。

新课标的要求只限制在直接用一元二次方程求解问题,因此在复习等比数列"知三求二'问题时要注意控制难度,按新课标的要求复习。

强化信息研究,准确把握高考动向数列的概念与运算在高考试题中单独出现的频率并不高,常与其他知识综合进行考查。

主要命题点为:数列概念的革新定义性问题、数列的最大(最小)项问题、数列的通项公式或递推公式、数列的前n项和ns与na的关系等,而求数列的通项公式、研究数列的单调性、周期性和数列的递推关系式的应用是命题的热点,一般会在选择题或填空题中出现,且常考常新;数列的前n项和ns与na的关系是高考命题的重点,往往渗透在数列的解答题中。

(完整)高考数列大题专题

(完整)高考数列大题专题

(完整)高考数列大题专题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高考中的数列—最后一讲(内部资料勿外传)1.已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值;(2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k;(3)设,.当b1=1时,求数列{b n}的通项公式.2.设{a n}是公比为正数的等比数列a1=2,a3=a2+4.(Ⅰ)求{a n}的通项公式;(Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n.3.已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n项和为S n,且,,成等比数列.(Ⅰ)求数列{a n}的通项公式及S n;(Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小.4.已知等差数列{a n}满足a2=0,a6+a8=﹣10(I)求数列{a n}的通项公式;(II)求数列{}的前n项和.5.成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5.(I)求数列{b n}的通项公式;(II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列.6.在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积计作T n,再令a n=lgT n,n≥1.(I)求数列{a n}的通项公式;(Ⅱ)设b n=tana n?tana n+1,求数列{b n}的前n项和S n.7.设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0.(Ⅰ)若S 5=5,求S 6及a 1;(Ⅱ)求d 的取值范围.8.已知等差数列{a n }的前3项和为6,前8项和为﹣4.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =(4﹣a n )q n ﹣1(q ≠0,n ∈N *),求数列{b n }的前n 项和S n .9.已知数列{a n }满足a 1=0,a 2=2,且对任意m 、n ∈N *都有a 2m ﹣1+a 2n ﹣1=2a m+n ﹣1+2(m ﹣n )2(1)求a 3,a 5;(2)设b n =a 2n+1﹣a 2n ﹣1(n ∈N *),证明:{b n }是等差数列;(3)设c n =(a n+1﹣a n )q n ﹣1(q ≠0,n ∈N *),求数列{c n }的前n 项和S n .10.已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数列.(Ⅰ)求数列{a n }的通项;(Ⅱ)求数列{2an }的前n 项和S n .11.已知数列{a n }满足,,n ∈N ×.(1)令b n =a n+1﹣a n ,证明:{b n }是等比数列;(2)求{a n }的通项公式.12.等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N *,点(n ,S n ),均在函数y=b x +r (b >0)且b ≠1,b ,r 均为常数)的图象上.(1)求r 的值;(2)当b=2时,记b n =n ∈N *求数列{b n }的前n 项和T n .13.(本小题满分12分)已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S .(Ⅰ)求n a 及n S ;(Ⅱ)令b n =211n a -(n ∈N *),求数列{}n b 的前n 项和n T .14.已知数列{a n}是一个公差大于0的等差数列,且满足a2a6=55,a2+a7=16(1)求数列{a n}的通项公式;(2)数列{a n}和数列{b n}满足等式a n=(n∈N*),求数列{b n}的前n项和S n.15.设数列{a n}的通项公式为a n=pn+q(n∈N*,P>0).数列{b n}定义如下:对于正整数m,b m是使得不等式a n≥m成立的所有n中的最小值.(Ⅰ)若,求b3;(Ⅱ)若p=2,q=﹣1,求数列{b m}的前2m项和公式;16.已知数列{x n}的首项x1=3,通项x n=2n p+np(n∈N*,p,q为常数),且成等差数列.求:(Ⅰ)p,q的值;(Ⅱ)数列{x n}前n项和S n的公式.17.设数列{a n}的前n项和为S n=2a n﹣2n,(Ⅰ)求a1,a4(Ⅱ)证明:{a n+1﹣2a n}是等比数列;(Ⅲ)求{a n}的通项公式.18.在数列{a n}中,a1=1,.(Ⅰ)求{a n}的通项公式;(Ⅱ)令,求数列{b n}的前n项和S n;(Ⅲ)求数列{a n}的前n项和T n.19.已知数列{a n}的首项,,n=1,2,3,….(Ⅰ)证明:数列是等比数列;(Ⅱ)求数列的前n项和S n.20.在数列{}n a 中,10a =,且对任意*k N ∈k N ∈,21221,,k k k a a a -+成等差数列,其公差为k d 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题数列知识网络
专题训练
一.选择题
1.设数列
{}
n a 的前n 项和
2
n S n =,则
8
a 的值为
(A ) 15 (B) 16 (C) 49 (D )64
2.设等差数列{}n a 的前n 项和为n S ,若111a =-,466a a +=-,则当n S
取最小值时,n 等于
A.6
B.7
C.8
D.9
3.如果等差数列{}n a 中,34512
a a a ++=,那么127...a a a +++= (A )14 (B )21 (C )28 (D )35
4.已知等比数列{m a }中,各项都是正数,且1a ,321,22a a 成等差数列,则91078a a a a +=
+
A.12+
B. 12-
C. 322+
D 322-
5.在等比数列{}n a 中,11a =,公比1q ≠.若12345
m a a a a a a =,则m= (A )9 (B )10 (C )11 (D )12
6.等比数列
{}
n a 中,15252||1,8,,
a a a a a ==->则
n a =
A .1
(2)n --
B .1
(2)n --- C .(2)n - D .(2)n
--
7.设{n a }是由正数组成的等比数列,n
S 为其前n 项和,已知24a a =1,
37
S =,

5S =
(A )152 (B)314 (C)33
4 (D)172
8.设
n
S 为等比数列{}n a 的前n 项和,已知3432S a =-,2332
S a =-,则公比q =
(A )3 (B )4 (C )5 (D )6
9.(文)设{}n a 是等比数列,则“123a a a <<”是数列{}n a
是递增数列的 (A )充分而不必要条件 (B)必要而不充分条件、
(C )充分必要条件
(D )既不充分也不必要条件
(理)设{}n a 是首项大于零的等比数列,则“12
a a <”是“数列{}n a 是递增数列”的
(A )充分而不必要条件 (B)必要而不充分条件
(C)充分必要条件 (D)既不充分也不必要条件 10.已知{
n
a }是首项为1的等比数列,n S 是{n a }的前n 项和,且36
9S S =。

则数列
n 1a ⎧⎫
⎨⎬
⎩⎭的前5项和为
(A )158或5 (B )3116或5 (C )3116 (D )15
8 11.设n S 为等比数列{}n a 的前n 项和,2580a a +=,则5
2S S =
(A )11 (B )5 (C )8- (D )11-
12.设{}n a
是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为,,X Y Z ,则下列等式中恒成立的是
A 、2X Z Y +=
B 、
()()
Y Y X Z Z X -=-
C 、2
Y XZ =
D 、
()()
Y Y X X Z X -=-
二:填空题
13.在等比数列{}n a
中,若公比q=4,且前3项之和等于21,则该数列的通项公式
n a =
14.设n
S 为等差数列
{}
n a 的前n 项和,若
36324
S S ==,,则
9a =
15.设
1,a d
为实数,首项为
1
a ,公差为d 的等差数列{}n a 的前n 项和为n S
,满足
56150
S S +=,则d 的取值范围是
16.在如下数表中,已知每行、每列中的数都成等差数列,那么,位于下表中的第n 行第n+1列的数是
三:解答题:
17.(理)设数列{}n a
满足
(1)求数列{}n a
的通项公式; (2)令
n n
b na =,求数列的前n 项和
n
S
(文)设等差数列{}n a 满足35a =,109
a =-。

(Ⅰ)求{}n a
的通项公式;
(Ⅱ)求{}n a 的前n 项和n S 及使得n S
最大的序号n 的值。

18.已知是公差不为零的等差数列,
成等比数列.
求数列的通项; 求数列
的前n 项和
19.(文)已知为等差数列,且
36
a =-,
60
a =。

(Ⅰ)求
的通项公式;
(Ⅱ)若等差数列满足
18
b =-,
2123
b a a a =++,求的前n 项和公式
(理)已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S
. (Ⅰ)求
n
a 及
n
S ;
(Ⅱ)令n b =211
n a - (n ∈N*),求数列{}n b 的前n 项和n T .
20.(理)已知等差数列{}
n a 的前3项和为6,前8项和为-4。

(Ⅰ)求数列
{}
n a 的通项公式
(Ⅱ)设
1*
(4)(0,)
n
n n
b a q q n N
-
=-≠∈,求数列{}
n
b的前n项和
n
S
(文)已知{}
n
a
是首项为19,公差为-2的等差数列,n S为
{}
n
a
的前n项和.
(Ⅰ)求通项n a及n S;
(Ⅱ)设{}
n n
b a
-
是首项为1,公比为3的等比数列,求数列
{}
n
b
的通项公式及其
前n项和n T.
21. 已知数列{}
n
a
的前n项和为n S,且585
n n
S n a
=--,*
n N

(1)证明:{}1
n
a-
是等比数列;
(2)求数列{}
n
S
的通项公式,并求出n为何值时,n S取得最小值,并说明理由。

22.已知某地今年年初拥有居民住房的总面积为a(单位:m2),其中有部分旧住房需要拆除。

当地有关部门决定每年以当年年初住房面积的10%建设新住房,同事也拆除面积为b(单位:m2)的旧住房。

(Ⅰ)分别写出第一年末和第二年末的实际住房面积的表达式:
(Ⅱ)如果第五年末该地的住房面积正好比今年年初的住房面积增加了30%,则每年拆除的旧住房面积b是多少?(计算时取1.15 1.6)。

相关文档
最新文档