地铁车站火灾事故分析与应急救援
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这个差距对地铁长远发展是否有影响,有什么对策,应该引起大家思考。地铁车站是钢筋混凝土结构,一旦建成很难进行改造。天津地铁1号线和东京地铁4号线,都有改建车站的经历。
1.1.3
决定了供乘客安全逃生途径的单一性。除安全疏散通道处,既没有供乘客使用的垂直电梯,也没有紧急避难场所,突发火灾事故中,大量乘客同时涌向狭窄的通道及楼梯,另有检票机等障碍物挡道,严重影响乘客快速逃生。列车若在隧道内发生火灾,乘客逃生的唯一通道是列车首尾一扇宽度仅为80cm的直通式紧急疏散门,其后果可想而知。
一般设计的原则包括以下3个方面:
(1)客观反映真实火灾。火灾场景的设计虽然不能完全重复真实火灾场景,但必须能够对真实地铁火灾的主要特点作出描述,不能用某种统一的模式来反映所有真实火灾。
(2)突出火源特性,具有代表性。根据地铁火灾的实际状况,确定其火源形式,进而通过对火源的全尺寸实验或者建立数学模型来研究,找出地铁火灾的火源特性,并且这种火源特性能够代表最一般的火灾特性,以适应地铁火灾研究。
已有近百年历史的发达国家地铁,至今车厢内仍然很拥挤,甚至关不上车门。这从反面说明了现在的客运量,已经超出了当年的预测客流量。
2.1
火灾场景是一类特定的火灾,其主要反映在两个方面:一是对于一个具体建筑物需要考虑的火灾场景数量不能是无穷多个,即不可能把所有的场景穷举出来,它应是一个有限的集合,一般是把可能最不利,危害后果最大的典型情况作为火灾场景的集合;二是火灾场景不是真实火灾,它是在对大量的,已发生的火灾数据的统计基础上,集成抽象出来具有典型特征的特定火灾,因而其具有一系列严格、规整的火灾发生、发展的演进条件[3]。
(3)充分考虑地铁的建筑结构,使用功能以及环境等因素的影响,将这些不同的影响因素作为火灾模型的边界条件结合到火源特性的研究中去,以体现地铁火灾发展和蔓延的特点。
2.3
针对地铁火灾事故,日本消防部门曾做过实验,日本地铁的车厢虽被确认具有不易燃烧性,但起火后,快则1.5min,慢则8min之后就会出现对人体有害的气体。2~5min内,车厢内烟雾弥漫就无法看清楚逃生出口,相邻的车厢在5~10min内也会出现相同情形。试验证实,答应乘客逃生只有五分钟左右的时间。另外,车内乘客的衣物一旦引燃,火势能在短时间内扩大,答应逃生的时间则更短。
地铁车站是城市轨道交通路网中一种重要的建筑物,它是供旅客乘降,换乘和候车的场所,应保证旅客使用方便,安全,迅速地进出车站。近年来,地铁火灾是火灾科学界研究的热点。火灾场景设计是开展地铁火灾研究的基础环节,它对地铁内的烟气运动和人员疏散有重要的影响。通过对国内外文献的调研发现,地铁火灾场景的设计并无统一明确的表述。在综合前人研究的基础上,对地铁火灾场景中需要确定的火灾荷载和起火点位置进行了初步探讨,并给出了分析结果。
地铁车站火灾事故分析与应急救援
学生姓名:吴会龙
学号:0000000
专业班级:城轨运营管理000000班
指导教师:******
摘 要
本论文主要阐述地铁车站火灾事故分析与应急救援。地铁运输系统是现代化城市综合运输系统的重要组成部分,是高速运行的大容量轨道交通系统。地铁运输系统较地面交通系统相对封闭,人员密集,运行秩序顺畅,安全性相对较高,但其运量大、运行速度快、发车密度高、设施设备复杂,一旦发生事故将产生较为严重的后果。火灾事故是地铁运输系统发生频率较高的事故类型,它对地铁运营系统的危害性主要体现在封闭地下建筑环境中燃烧产生的烟气、毒害物质、燃烧辐射热等对人员的威胁。地铁车站是地铁运输系统的网络节点,作为系统运行连接中心和作业中心,实时产生大量的人员流动和列车到发,特别是运营高峰时段系统高速运转、能力异常紧张,各种因素的交叉影响使得地铁车站火灾事故发生的可能性长期存在。
2.2.2 机械排烟
排烟风机单独排烟,由于扰动很大,烟气还会扩散至站厅。
挡烟装置配合排烟风机排烟,挡烟装置将烟气阻隔在一定的蓄烟区域里,并由排烟风机及时排出,被动挡烟和主动排烟相互配合,达到很好的控烟效果。
由于烟囱效应的影响,烟气有向出口面积较小的一端蔓延的趋势,而人员可以从出口面积较大的有迎面补风气流的出口进行疏散。
2.2
在地铁火灾事故中,造成人员极大伤亡的主要原因在于火灾烟气控制系统没能有效地控制烟气蔓延以及没能有效地组织人员疏散。我国规范虽然对地铁烟控系统有要求,但烟控系统的有效性和经济性很难估量,因此运用性能化设计的思想,借助火灾研究领域得到较好应用的FDS (Fire DynamicsSimulator)模拟地铁车站的三维烟气流场,对地铁车站火灾烟气的蔓延情况及烟气控制系统对烟气的控制效果进行研究,提出性能化的地铁烟控系统模式。
关键词:地铁车站;火灾事故;救援措施
引 言
近些年来,地铁火灾的研究是国内外火灾科学研究的热点,主要从实验测试和计算机数值模拟两个方面进行大量的研究。在地铁火灾研究中,不论是火灾实验,还是火灾模型的建立,火灾场景设计都是首要的基础研究,它决定了火灾发展的趋势和预测目标。地铁火灾容易造成人员大量伤亡的原因首先是地铁客流量大,人员集中,一旦发生火灾,极易造成群死群伤;其次,地铁列车的车座、顶棚及其他装饰材料大多可燃,容易造成火势蔓延扩大,塑料、橡胶等新型材料燃烧时还会产生毒性气体,加上地下供氧不足,燃烧不完全,烟雾浓,发烟量大,而地铁的出入口一般较少,大量烟雾只能从少量几个洞口向外涌;最后,在地铁火灾中,烟气蔓延方向与人员疏散方向有可能同向而相互影响,大量有毒有害的烟雾及其造成的可见度的降低给疏散和救援工作造成困难。
通常每个人在不同的位置、时刻所移动的速度是不同的,但在人口密度较大的公共场所,人们的群聚效应是明显的,个体比较难以独立采取行动,因此,可以忽略个体心理反应等次要因素,而假定人们的移动速度只与他所处的几何位置以及该位置一定范围内的人员密度两个因素有关,根据人们在前进时受前后和左右两个方向阻力,以及考虑其他因素3部分的影响,人们的逃生的速度,火灾场景是一类特定的火灾,其主要反映在两个方面:一是对于一个具体建筑物需要考虑的火灾场景数量不能是无穷多个,即不可能把所有的场景穷举出来,它应是一个有限的集合,一般是把可能最不利,危害后果最大的典型情况作为火灾场景的集合;二是火灾场景不是真实火灾,ห้องสมุดไป่ตู้是在对大量的,已发生的火灾数据的统计基础上,集成抽象出来具有典型特征的特定火灾,因而其具有一系列严格、规整的火灾发生、发展的演进条件[3]。
2.2
商业运营的地铁,一般建在地下15m左右,考虑商业和战备兼顾的地铁,则一般建在深达30~70m左右的地下,如日本东京都营大江户地铁线,其中六本木车站共七层,深入地下达42.3m,光台阶就有200多级。突发火灾事故后,乘客从站台及站厅层仅凭体力往地面逃生,既耗时,又耗力,再加上不安全因素,安全逃生的把握性不大,对老弱病残的乘客而言,更是凶多吉少。
轻轨系统可能发生的灾害较多,主要有火灾,其次是水灾、风灾、地震和意外停车事故等。轻轨或地铁防灾报警系统以火灾报警系统为主(简称FAS) ,兼顾其他灾害。 FAS 系统实行两级管理,在指挥中心大楼内设防灾控制中心(为主控级),在各车站(车辆段、停车场、主变电所) 等设防灾控制室(为分控级) 。
因轻轨线路较长,站间距较大,各分控级与控制中心通过光纤联网。FAS 系统全线通信传输网络为独立的光纤环网。通信系统在轻轨2 条通信光缆中为FAS 系统各提供两芯独立光纤,为提高传输的可靠性采用站间跳接方式组成双环拓扑结构的对等式环网(Peer2 to2Peer Networking) 。FAS 控制中心主机与各分控级分机均为网络上的一个节点,网络中任何一个节点故障或离线时不会影响系统其他节点的正常工作,当网络光纤发生单点故障时,不影响整个系统正常通信,并在控制中心主机及车站FAS 分机上显示故障位置;当网络发生多点故障时,通过路径自动选择后可自动重组生成多个子网络保持通讯。全线FAS 系统以各分控级独立检测、报警、控制为主,控制中心主控级接收显示分控级的信息,不对各分控级的现场设备进行直接控制。
2.2
当左、右站厅着火时,由于烟囱效应,不需要机械排烟,就可以保证人员从另一端站厅安全疏散。当中部站台着火时,没有机械排烟,人员将无法安全疏散。
火场烟气明显的分为两层,即上层热气流层和下层冷气流层。
烟囱效应在地铁车站中比较复杂,其影响因素主要是火源的位置和出口通道的面积:首先全部或大部分的烟气将从距离最近、最先到达的出口排出,此时位置是主要的影响因素;如果在位置上没有优势,烟气将从出口通道面积较小的出口排出,面积成为主要影响因素。
机械送风口或自然补风口的位置不当、时机不当将会助燃火势,短路风流,影响烟气的控制。
西安地铁2号线总长度26.4km,共设23个站点,2010年建成后,预计承担日客运量79万人次,占城市公交出行的13.5%。在地铁突发火灾事故情况下,这么大的客流量,组织有序疏散很难,若要确保所有乘客在安全答应的时间内全部逃生,难度更大。
2.4
在地铁火灾场景进行确定过程中,要以火源特性为基础,结合建筑结构、使用功能、环境因素等边界条件,确定地铁火灾场景中的可燃材料物性、火灾荷载、起火点位置等。
在基本查明火灾事故原因和损害后果的情况下,尽快拟出事故情况的书面材料,按规定的时间和程序向上级机关报告。包括对现场救援措施和效果的评价。
在火灾事故原因查明后,协助当地公安部门进行事故处理,按法定程序,组织公开听证,公开、公平、公正地对事故责任作出认定,依法处理火灾事故责任者,积极、稳妥地对地铁火灾事故所造成的损害后果进行善后调解。
2.2
地铁运营环境的特定性,决定了供乘客安全逃生途径的单一性。除安全疏散通道处,既没有供乘客使用的垂直电梯,也没有紧急避难场所,突发火灾事故中,大量乘客同时涌向狭窄的通道及楼梯,另有检票机等障碍物挡道,严重影响乘客快速逃生。列车若在隧道内发生火灾,乘客逃生的唯一通道是列车首尾一扇宽度仅为80cm的直通式紧急疏散门,其后果可想而知。
1.1.2
设计使用年限为100年。国外地铁的使用期有的已经超过了100年。按照地铁设计规范要求,地铁工程按远期预测客流量(建成通车后第25年)进行设计。即地铁车站的站台宽度、出入口、通道及楼扶梯宽度,都是按地铁建成通车后25年的客流量进行设计的。这就出现了使用年限100年与车站按25年客流量设计的差距。
1.2
现有的各种预测方法,用在短期预测(0.5—3年)可信度较高。进行时间跨度长达25—30年的预测,其准确度不高。因此,客流预测存在着不确定性,这一点在设计中应该注意。
1999年为进行上海地铁1号线北延伸线设计,当时预测2005年地铁一号线北延伸线的全日客流量为68万人次,高峰小时最大断面客流量为2.18万人次。
2005年上海地铁运营公司实际统计,地铁1号线全年完成客运量29479.3万人次。平均日客运量80.77万人次。比预测客运量高出近20%。高峰小时断面客流在3.5—3.9万人。
2007年10月7号,北京地铁改为单一票价制,不论乘车距离远近,票价一律2圆。由此,使北京地铁的客运量增加30%,郊区线增幅达40%左右。
然而,通过大量的文献调研发现,国内外对于地铁火灾场景的设计没有统一的表述,因此本文旨在对地铁火灾场景的设计方法进行初步讨论。
1.1
1.1.1
他是城市经济发展水平、居民收入水平和政府交通政策的综合结晶。由于上述因素是随着时代的发展而变化,地铁的客流量也会随着经济的发展而增加。
目前客流预测的基础资料是城市总体规划,国民经济统计数据,车票价格等。按照这些资料标注客流预测模型,得到一组预测客流量。因为城市总体规划差不多十年修改一次,国民经济每年以两位数增长。过若干年再对同一条地铁线进行客流预测,其结果肯定不同。
2.1.1
典型火灾场景就是在具体建筑中针对几个危险性较大的功能单元,根据火灾的双重性特点,考虑在该位置发生局部火灾后的火灾发展特性。评价火灾发展特性的重要参数是火灾过程的热释放速率变化。在性能化防火设计中,常采用t2模型来描述火灾过程的热释放速率随时间的变化。
2.1.2
火灾场景的选取通常采用最不利的原则,即根据火灾危害较大与火灾最可能发生的情况来选取火灾场景,但在实际操作过程上,设计者往往不能事先完全判断出哪一个火灾场景危害较大或最可能发生的情况来选取火灾场景[3,4]。但在实际操作过程上,设计者往往不可能完全判断出哪一个火灾场景危害较大或最可能发生,所以在确定火灾场景时应全面科学合理的筛选,以避免由于设计者本人对火灾规律认识的局限性,导致选取的片面性。
1.1.3
决定了供乘客安全逃生途径的单一性。除安全疏散通道处,既没有供乘客使用的垂直电梯,也没有紧急避难场所,突发火灾事故中,大量乘客同时涌向狭窄的通道及楼梯,另有检票机等障碍物挡道,严重影响乘客快速逃生。列车若在隧道内发生火灾,乘客逃生的唯一通道是列车首尾一扇宽度仅为80cm的直通式紧急疏散门,其后果可想而知。
一般设计的原则包括以下3个方面:
(1)客观反映真实火灾。火灾场景的设计虽然不能完全重复真实火灾场景,但必须能够对真实地铁火灾的主要特点作出描述,不能用某种统一的模式来反映所有真实火灾。
(2)突出火源特性,具有代表性。根据地铁火灾的实际状况,确定其火源形式,进而通过对火源的全尺寸实验或者建立数学模型来研究,找出地铁火灾的火源特性,并且这种火源特性能够代表最一般的火灾特性,以适应地铁火灾研究。
已有近百年历史的发达国家地铁,至今车厢内仍然很拥挤,甚至关不上车门。这从反面说明了现在的客运量,已经超出了当年的预测客流量。
2.1
火灾场景是一类特定的火灾,其主要反映在两个方面:一是对于一个具体建筑物需要考虑的火灾场景数量不能是无穷多个,即不可能把所有的场景穷举出来,它应是一个有限的集合,一般是把可能最不利,危害后果最大的典型情况作为火灾场景的集合;二是火灾场景不是真实火灾,它是在对大量的,已发生的火灾数据的统计基础上,集成抽象出来具有典型特征的特定火灾,因而其具有一系列严格、规整的火灾发生、发展的演进条件[3]。
(3)充分考虑地铁的建筑结构,使用功能以及环境等因素的影响,将这些不同的影响因素作为火灾模型的边界条件结合到火源特性的研究中去,以体现地铁火灾发展和蔓延的特点。
2.3
针对地铁火灾事故,日本消防部门曾做过实验,日本地铁的车厢虽被确认具有不易燃烧性,但起火后,快则1.5min,慢则8min之后就会出现对人体有害的气体。2~5min内,车厢内烟雾弥漫就无法看清楚逃生出口,相邻的车厢在5~10min内也会出现相同情形。试验证实,答应乘客逃生只有五分钟左右的时间。另外,车内乘客的衣物一旦引燃,火势能在短时间内扩大,答应逃生的时间则更短。
地铁车站是城市轨道交通路网中一种重要的建筑物,它是供旅客乘降,换乘和候车的场所,应保证旅客使用方便,安全,迅速地进出车站。近年来,地铁火灾是火灾科学界研究的热点。火灾场景设计是开展地铁火灾研究的基础环节,它对地铁内的烟气运动和人员疏散有重要的影响。通过对国内外文献的调研发现,地铁火灾场景的设计并无统一明确的表述。在综合前人研究的基础上,对地铁火灾场景中需要确定的火灾荷载和起火点位置进行了初步探讨,并给出了分析结果。
地铁车站火灾事故分析与应急救援
学生姓名:吴会龙
学号:0000000
专业班级:城轨运营管理000000班
指导教师:******
摘 要
本论文主要阐述地铁车站火灾事故分析与应急救援。地铁运输系统是现代化城市综合运输系统的重要组成部分,是高速运行的大容量轨道交通系统。地铁运输系统较地面交通系统相对封闭,人员密集,运行秩序顺畅,安全性相对较高,但其运量大、运行速度快、发车密度高、设施设备复杂,一旦发生事故将产生较为严重的后果。火灾事故是地铁运输系统发生频率较高的事故类型,它对地铁运营系统的危害性主要体现在封闭地下建筑环境中燃烧产生的烟气、毒害物质、燃烧辐射热等对人员的威胁。地铁车站是地铁运输系统的网络节点,作为系统运行连接中心和作业中心,实时产生大量的人员流动和列车到发,特别是运营高峰时段系统高速运转、能力异常紧张,各种因素的交叉影响使得地铁车站火灾事故发生的可能性长期存在。
2.2.2 机械排烟
排烟风机单独排烟,由于扰动很大,烟气还会扩散至站厅。
挡烟装置配合排烟风机排烟,挡烟装置将烟气阻隔在一定的蓄烟区域里,并由排烟风机及时排出,被动挡烟和主动排烟相互配合,达到很好的控烟效果。
由于烟囱效应的影响,烟气有向出口面积较小的一端蔓延的趋势,而人员可以从出口面积较大的有迎面补风气流的出口进行疏散。
2.2
在地铁火灾事故中,造成人员极大伤亡的主要原因在于火灾烟气控制系统没能有效地控制烟气蔓延以及没能有效地组织人员疏散。我国规范虽然对地铁烟控系统有要求,但烟控系统的有效性和经济性很难估量,因此运用性能化设计的思想,借助火灾研究领域得到较好应用的FDS (Fire DynamicsSimulator)模拟地铁车站的三维烟气流场,对地铁车站火灾烟气的蔓延情况及烟气控制系统对烟气的控制效果进行研究,提出性能化的地铁烟控系统模式。
关键词:地铁车站;火灾事故;救援措施
引 言
近些年来,地铁火灾的研究是国内外火灾科学研究的热点,主要从实验测试和计算机数值模拟两个方面进行大量的研究。在地铁火灾研究中,不论是火灾实验,还是火灾模型的建立,火灾场景设计都是首要的基础研究,它决定了火灾发展的趋势和预测目标。地铁火灾容易造成人员大量伤亡的原因首先是地铁客流量大,人员集中,一旦发生火灾,极易造成群死群伤;其次,地铁列车的车座、顶棚及其他装饰材料大多可燃,容易造成火势蔓延扩大,塑料、橡胶等新型材料燃烧时还会产生毒性气体,加上地下供氧不足,燃烧不完全,烟雾浓,发烟量大,而地铁的出入口一般较少,大量烟雾只能从少量几个洞口向外涌;最后,在地铁火灾中,烟气蔓延方向与人员疏散方向有可能同向而相互影响,大量有毒有害的烟雾及其造成的可见度的降低给疏散和救援工作造成困难。
通常每个人在不同的位置、时刻所移动的速度是不同的,但在人口密度较大的公共场所,人们的群聚效应是明显的,个体比较难以独立采取行动,因此,可以忽略个体心理反应等次要因素,而假定人们的移动速度只与他所处的几何位置以及该位置一定范围内的人员密度两个因素有关,根据人们在前进时受前后和左右两个方向阻力,以及考虑其他因素3部分的影响,人们的逃生的速度,火灾场景是一类特定的火灾,其主要反映在两个方面:一是对于一个具体建筑物需要考虑的火灾场景数量不能是无穷多个,即不可能把所有的场景穷举出来,它应是一个有限的集合,一般是把可能最不利,危害后果最大的典型情况作为火灾场景的集合;二是火灾场景不是真实火灾,ห้องสมุดไป่ตู้是在对大量的,已发生的火灾数据的统计基础上,集成抽象出来具有典型特征的特定火灾,因而其具有一系列严格、规整的火灾发生、发展的演进条件[3]。
2.2
商业运营的地铁,一般建在地下15m左右,考虑商业和战备兼顾的地铁,则一般建在深达30~70m左右的地下,如日本东京都营大江户地铁线,其中六本木车站共七层,深入地下达42.3m,光台阶就有200多级。突发火灾事故后,乘客从站台及站厅层仅凭体力往地面逃生,既耗时,又耗力,再加上不安全因素,安全逃生的把握性不大,对老弱病残的乘客而言,更是凶多吉少。
轻轨系统可能发生的灾害较多,主要有火灾,其次是水灾、风灾、地震和意外停车事故等。轻轨或地铁防灾报警系统以火灾报警系统为主(简称FAS) ,兼顾其他灾害。 FAS 系统实行两级管理,在指挥中心大楼内设防灾控制中心(为主控级),在各车站(车辆段、停车场、主变电所) 等设防灾控制室(为分控级) 。
因轻轨线路较长,站间距较大,各分控级与控制中心通过光纤联网。FAS 系统全线通信传输网络为独立的光纤环网。通信系统在轻轨2 条通信光缆中为FAS 系统各提供两芯独立光纤,为提高传输的可靠性采用站间跳接方式组成双环拓扑结构的对等式环网(Peer2 to2Peer Networking) 。FAS 控制中心主机与各分控级分机均为网络上的一个节点,网络中任何一个节点故障或离线时不会影响系统其他节点的正常工作,当网络光纤发生单点故障时,不影响整个系统正常通信,并在控制中心主机及车站FAS 分机上显示故障位置;当网络发生多点故障时,通过路径自动选择后可自动重组生成多个子网络保持通讯。全线FAS 系统以各分控级独立检测、报警、控制为主,控制中心主控级接收显示分控级的信息,不对各分控级的现场设备进行直接控制。
2.2
当左、右站厅着火时,由于烟囱效应,不需要机械排烟,就可以保证人员从另一端站厅安全疏散。当中部站台着火时,没有机械排烟,人员将无法安全疏散。
火场烟气明显的分为两层,即上层热气流层和下层冷气流层。
烟囱效应在地铁车站中比较复杂,其影响因素主要是火源的位置和出口通道的面积:首先全部或大部分的烟气将从距离最近、最先到达的出口排出,此时位置是主要的影响因素;如果在位置上没有优势,烟气将从出口通道面积较小的出口排出,面积成为主要影响因素。
机械送风口或自然补风口的位置不当、时机不当将会助燃火势,短路风流,影响烟气的控制。
西安地铁2号线总长度26.4km,共设23个站点,2010年建成后,预计承担日客运量79万人次,占城市公交出行的13.5%。在地铁突发火灾事故情况下,这么大的客流量,组织有序疏散很难,若要确保所有乘客在安全答应的时间内全部逃生,难度更大。
2.4
在地铁火灾场景进行确定过程中,要以火源特性为基础,结合建筑结构、使用功能、环境因素等边界条件,确定地铁火灾场景中的可燃材料物性、火灾荷载、起火点位置等。
在基本查明火灾事故原因和损害后果的情况下,尽快拟出事故情况的书面材料,按规定的时间和程序向上级机关报告。包括对现场救援措施和效果的评价。
在火灾事故原因查明后,协助当地公安部门进行事故处理,按法定程序,组织公开听证,公开、公平、公正地对事故责任作出认定,依法处理火灾事故责任者,积极、稳妥地对地铁火灾事故所造成的损害后果进行善后调解。
2.2
地铁运营环境的特定性,决定了供乘客安全逃生途径的单一性。除安全疏散通道处,既没有供乘客使用的垂直电梯,也没有紧急避难场所,突发火灾事故中,大量乘客同时涌向狭窄的通道及楼梯,另有检票机等障碍物挡道,严重影响乘客快速逃生。列车若在隧道内发生火灾,乘客逃生的唯一通道是列车首尾一扇宽度仅为80cm的直通式紧急疏散门,其后果可想而知。
1.1.2
设计使用年限为100年。国外地铁的使用期有的已经超过了100年。按照地铁设计规范要求,地铁工程按远期预测客流量(建成通车后第25年)进行设计。即地铁车站的站台宽度、出入口、通道及楼扶梯宽度,都是按地铁建成通车后25年的客流量进行设计的。这就出现了使用年限100年与车站按25年客流量设计的差距。
1.2
现有的各种预测方法,用在短期预测(0.5—3年)可信度较高。进行时间跨度长达25—30年的预测,其准确度不高。因此,客流预测存在着不确定性,这一点在设计中应该注意。
1999年为进行上海地铁1号线北延伸线设计,当时预测2005年地铁一号线北延伸线的全日客流量为68万人次,高峰小时最大断面客流量为2.18万人次。
2005年上海地铁运营公司实际统计,地铁1号线全年完成客运量29479.3万人次。平均日客运量80.77万人次。比预测客运量高出近20%。高峰小时断面客流在3.5—3.9万人。
2007年10月7号,北京地铁改为单一票价制,不论乘车距离远近,票价一律2圆。由此,使北京地铁的客运量增加30%,郊区线增幅达40%左右。
然而,通过大量的文献调研发现,国内外对于地铁火灾场景的设计没有统一的表述,因此本文旨在对地铁火灾场景的设计方法进行初步讨论。
1.1
1.1.1
他是城市经济发展水平、居民收入水平和政府交通政策的综合结晶。由于上述因素是随着时代的发展而变化,地铁的客流量也会随着经济的发展而增加。
目前客流预测的基础资料是城市总体规划,国民经济统计数据,车票价格等。按照这些资料标注客流预测模型,得到一组预测客流量。因为城市总体规划差不多十年修改一次,国民经济每年以两位数增长。过若干年再对同一条地铁线进行客流预测,其结果肯定不同。
2.1.1
典型火灾场景就是在具体建筑中针对几个危险性较大的功能单元,根据火灾的双重性特点,考虑在该位置发生局部火灾后的火灾发展特性。评价火灾发展特性的重要参数是火灾过程的热释放速率变化。在性能化防火设计中,常采用t2模型来描述火灾过程的热释放速率随时间的变化。
2.1.2
火灾场景的选取通常采用最不利的原则,即根据火灾危害较大与火灾最可能发生的情况来选取火灾场景,但在实际操作过程上,设计者往往不能事先完全判断出哪一个火灾场景危害较大或最可能发生的情况来选取火灾场景[3,4]。但在实际操作过程上,设计者往往不可能完全判断出哪一个火灾场景危害较大或最可能发生,所以在确定火灾场景时应全面科学合理的筛选,以避免由于设计者本人对火灾规律认识的局限性,导致选取的片面性。