数学与战争(图)

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学与战争

军人讲究的是孔武之道,写写算算是文人的事情。在连队里,和数学最接近的大概就是司务长了,要把粮饷之事计算清楚。但数学和战争其实相距不远。

第一次世界大战前夕,多才多艺的英国人兰切斯特用数学开创了半经验的作战模拟方法,建立了经典的兰切斯特方程。兰切斯特用平方律定量地解释了特拉法尔加海战中纳尔逊各个击破的成功诀窍(人称Nelson Touch),恩格尔在1954年用线性律精确地复现了硫磺岛中美军伤亡情况。经典兰切斯特方程对士气、地形、机动、增援和撤退等没有考虑,但对战斗的一般规律仍有指导意义。

兰切斯特把战斗简化为两种基本情况:远距离交火杀伤和近距离集中火力杀伤。远距离交火时,一方损失率既和对方兵力成正比,也和己方兵力成正比。换句话说,敌人越多,自己损失越大;另一方面,自己人越多,目标越大,损失也越大。这个情况以微分方程表示即为dy/dt=-axy

dx/dt=-bxy

其中x和y分别为红军和蓝军的战斗单位数量,a和b分别为红军和蓝军的平均单位战斗力,因此双方实力相等的条件为

ax=by

即任一方的实力和本身战斗单位的数量成线性关系,也称兰切斯特线性律。这就是说,如果蓝军平均单位战斗力(包括武器、训练等因素)是红军四倍的话,100 名蓝军和400名红军的战斗力相同,100名蓝军和400名红军交战的结果是同归于尽。集中优势兵力只是拼消耗,并不占便宜。

但近距离集中火力杀伤时,一方损失率仅和对方战斗单位数量成正比,而和己方战斗单位数量无关。换句话说,敌人越多,自己损失依然越大;但短兵相接,自己方面已经无所谓目标大小的问题。于是微分方程变为:

dy/dt=-ax

dx/dt=-by

双方实力相等的条件变为

ax^2=by^2

即任一方实力和本身战斗单位数量的平方成正比,也称兰切斯特平方律。仍假定蓝军平均单位战斗力是红军的四倍,100名蓝军和400名红军近战后,当蓝军100人全军覆没时,红军仍有√(〖400〗^2-4×〖100〗^2 )=346人留下,即损失54人,实际损失比蓝军还小。这就是集中兵力打歼灭战和避免添油战术的数学依据。

考虑另一个情况:200名蓝军和400名红军近战,双方实力相等

(√(〖400〗^2-4×〖200〗^2 )=0)。如果红军通过战术动作或计策使蓝

军分成各为100人但互不支援的两半,则红军可以54人的代价先歼灭蓝军的第一个100人,再用剩余的力量以64人的代价歼灭蓝军的第二个100人,红军总代价为118人,总战果为200人。这就是“各个击破”原则的数学解释,也是兵败如山倒的数学解释,因为兵败的典型特征是各自为战,首尾不顾,即使不考虑战斗意志瓦解的问题,也在客观上强化了被各个击破的机会。

再考虑一个情况。仍然考虑蓝军100人,红军400人,双方战斗力差距为4:1的情况,但双方相距很远。如果红军付出一半的代价推进到近距离,按4:1的线性律,这时红军还剩200人,蓝军50人。但接下来红军就可以发挥近战优势,以27人的代价消灭蓝军的第二个50人。这就是勇猛突破、近战歼敌以克服敌人远射火力优势的数学解释。

兰切斯特平方律和线性律还可以有特殊情况,比如游击战中,游击的一方在暗处,容易主动集中兵力,近战歼敌;反游击的一方在明处,需要分兵把守,比较被动。这样游击一方服从平方律,反游击一方服从线性律,游击一方占便宜。空袭和反空袭也是类似的情况。

兰切斯特方程当然是把战场情况简单化、理想化了,后人在此基础上大大扩充,用于研究更现实的战场实际。但兰切斯特方程在本质上是确定性的,没有考虑随机的因素,比如说,规模相当的王牌军和乌合之众交战,王牌军的胜算较大,但不能排除偶然的因素,使得乌合之

众获胜。这个胜算的大小就是概率和随机的范畴。

在兰切斯特之前,德国总参谋部就在世界上率先使用沙盘演习。沙盘演习不仅构造一个模仿战场的模型,还要在摆兵布阵时考虑部队机动能力、天气地形条件等因素,到最后交战的时候,丢骰子决定战斗的胜负。根据战斗力的差别,较强的一方可以多丢几次,较弱的一方少丢几次,但最后结果依然是随机的。这里面的科学道理就是概率和随机过程。老毛奇指挥下的德军依靠这一科学的指挥体系,在普法战争中像机器一样精确地作战,把曾经称霸欧洲大陆的法军打得一筹莫展。在第二次世界大战后期的阿登反击战中,德军丧失先机,遭到美军反击。莫德尔元帅命令A集团军参谋部和所有尚未投入战斗的一线部队主官在指挥部继续进行作战模拟,当前的战况作为输入数据。后来的战事果然如作战模拟所示那样危急,第116装甲师师长瓦尔登堡将军在几分钟内就将作战模拟时的假想性命令作为实际作战命令

下达,待命的第116师得以在短得不可思议的时间内有计划地投入战斗,虽然没能最终扭转战局,但还是显示了作战模拟的实战价值。

另一方面,忽视作战模拟所揭示的问题,有可能在战争中带来巨大损失。第一次世界大战坦能堡战役前,俄军总参谋部的作战模拟表明,为避免形成缺口和被各个击破,萨姆索诺夫的第二集团军必须先于莱能肯普夫的第一集团军三天行动,方能在因斯特堡形成钳击。但这一要求没有在作战计划中反映出来,也没有包括进后来的行动中。果然,

德国名将鲁登道夫将军和兴登堡元帅(两人关系有点象解放战争中三野的粟裕和陈毅)及时抓住战机,先全歼萨姆索诺夫的第二集团军于坦能堡,再重创莱能肯普夫的第一集团军于马苏莱湖,扭转了德军在东普鲁士的危局,给沙俄这个已经危机重重的柴禾堆上添加了一大捧干柴,只等十月革命的最后一根火柴了。在中途岛海战前日本海军的作战模拟中,当假想的美军空袭时,南云的飞机在攻击中途岛,舰队受到惨重损失,裁判判定南云的航母受到9次命中,赤诚号和加贺号沉没。演习总指挥宇垣海军少将专断地否决裁决,将击中次数减少3次,航母沉没为1艘,于是被判沉没的1艘航母重新参加战斗,演习继续。实战结果比演习更具灾难性,4艘航母全被击沉。

描述作战过程的数学理论还有诺依曼的博奕论(也称对策论)、马尔科夫过程的微分-差分方程、杜普伊的战斗效能定量比较方法、蒙特卡洛方法等其他数学方法。计算机的出现使作战过程的数学模拟实用化,计算机化的作战模拟已经成为现代军队制订作战计划、研究战略战术、评估武器效能的有力工具。

除了作战模拟,数学还用于作战分析。在第二次世界大战前后,美英科学家用数学方法对雷达搜索、船队护航、反水雷和反潜搜索进行研究,推出一系列有效的战术,为盟军所采用,为反法西斯战争的胜利立下了功绩,成为人们所熟悉的佳话。

相关文档
最新文档