扣件式钢管脚手架计算规则

合集下载

建筑施工扣件式钢管脚手架安全技术规范JGJ 130-2011附条文说明

建筑施工扣件式钢管脚手架安全技术规范JGJ 130-2011附条文说明

中华人民共和国行业标准建筑施工扣件式钢管脚手架安全技术规范Technical code for safety of steel tubular scaffold with couplers in constructionJGJ 130-20111 总则1.0.1 为在扣件式钢管脚手架设计与施工中贯彻执行国家安全生产的方针政策,确保施工人员安全,做到技术先进、经济合理、安全适用,制定本规范。

1.0.2 本规范适用于房屋建筑工程和市政工程等施工用落地式单、双排扣件式钢管脚手架、满堂扣件式钢管脚手架、型钢悬挑扣件式钢管脚手架、满堂扣件式钢管支撑架的设计、施工及验收。

1.0.3 扣件式钢管脚手架施工前,应按本规范的规定对其结构构件与立杆地基承载力进行设计计算,并应编制专项施工方案。

1.0.4 扣件式钢管脚手架的设计、施工及验收,除应符合本规范的规定外,尚应符合国家现行有关标准的规定。

2 术语和符号2.1 术语2.1.1 扣件式钢管脚手架 steel tubular scaffold with couplers为建筑施工而搭设的、承受荷载的由扣件和钢管等构成的脚手架与支撑架,包含本规范各类脚手架与支撑架,统称脚手架。

2.1.2 支撑架 formwork support为钢结构安装或浇筑混凝土构件等搭设的承力支架。

2.1.3 单排扣件式钢管脚手架 single pole steel tubular scaf-fold with couplers 只有一排立杆,横向水平杆的一端搁置固定在墙体上的脚手架,简称单排架。

2.1.4 双排扣件式钢管脚手架 double pole steel tubular scaf-fold with couplers 由内外两排立杆和水平杆等构成的脚手架,简称双排架。

2.1.5 满堂扣件式钢管脚手架 fastener steel tube full hall scaffold 在纵、横方向,由不少于三排立杆并与水平杆、水平剪刀撑、竖向剪刀撑、扣件等构成的脚手架。

扣件式脚手架计算

扣件式脚手架计算

1、计算依据(1)《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)(2)《建筑结构荷载规范》(GB50009-2001)(3)工程设计图纸及地质资料等2、脚手架的计算参数搭设高度H=39.6米(取最大高度,22排),步距h=1.8米,立杆纵距la=1.5米,立杆横距lb=1.1米,连墙件为2步3跨设置,脚手板为毛竹片,按同时铺设7排计算,同时作业层数n1=1。

脚手架材质选用φ48×3.5钢管,截面面积A=489mm2,截面模量W=5.08×103 mm3,回转半径i=15.8mm,抗压、抗弯强度设计值f=205N/mm2,基本风压值ω0=0.7 kN/m2,计算时忽略雪荷载等。

3、荷载标准值结构自重标准值:gk1=0.1248kN/m (双排脚手架)竹脚手片自重标准值:gk2=0.35kN/m2 (可按实际取值)施工均布活荷载:qk=3 kN/m2 风荷载标准值:ωk=0.7μz•μs•ω0 式中μz——风压高度变化系数,查《建筑结构荷载规范》并用插入法得39.6米为1.12 μs——脚手架风荷载体型系数,全封闭式为1.2 ω0——基本风压值,为0.7 kN/m2 则ωk=0.7×1.12×1.2×0.7=0.658 kN/m24、纵向水平杆、横向水平杆计算横向水平杆计算脚手架搭设剖面图如下:按简支梁计算,计算简图如下:每纵距脚手片自重NG2k=gk2×la×lb=0.35×1.5×1.1=0.5775 kN 每纵距施工荷载NQk=qk×la×lb =3×1.5×1.1=4.95 kN MGk= kN•mMQk= kN•m M=1.2MGk+1.4MQk=1.2×0.07+1.4×0.605=0.931 kN•m <f=205 kN/mm2 横向水平杆抗弯强度满足要求。

扣件式钢管脚手架计算书

扣件式钢管脚手架计算书

扣件式钢管脚手架计算书基本参数架子基本尺寸:本脚手架准备搭设总高度为37.3m ,立杆纵距b=1.5m ,立杆横距l=1.05m ,内立杆距外墙皮距离b1=0.4m,脚手架步距h=1.8m ;铺设钢脚手板层数4层,同时进行施工层数2层;脚手架与建筑结构连接点布置:竖向间距H1=5.1m ,水平距离L1=4.5m ,均布施工荷载:Qk=2kN/m 2。

一、立杆计算1、立杆计算长度h k l μ=0(m )k 为计算长度附加系数,取1.155;μ为考虑脚手架整体稳定因素的单杆计算长度系数,立杆横距为1.05m 、连墙件按二步三跨布置时查规范JGJ130-2001表5.3.3可得μ=1.50;h 为立杆步距,在此取1.8m ;m h k l 638.38.175.1155.10=⨯⨯==∴μ2、杆件长细比i l /0=λ的验算查规范JGJ130-2001附录B 可知48φ钢管的回转半径i =1.58cm ;2101990158.0 1.81.751)1(<=⨯⨯==∴取k i h k μλ 查规范JGJ130-2001表5.1.9,因此立杆长细比满足要求。

3、轴心受压构件稳定系数ϕ2300158.03.638===∴i h k μλ可查规范JGJ130-2001附录C 表C 得138.0=ϕ; 4、计算Af ϕ(KN )A 为48φ钢管截面积,查规范JGJ130-2001附录B 表B 可知289.4cm A =; f 为235Q 钢抗拉、抗压和抗弯强度设计值,查规范JGJ130-2001表5.1.6可得2/205mm N f =;KN Af 65.182051089.4186.02=⨯⨯⨯=∴ϕ5、计算构配件自重标准值产生的轴向力k G N 2(KN )a p p ab k G l Q Q l a l N 2112)(5.0+∑+=a l 为立杆纵距,此处取1.5m 。

b l 为立杆横距,此处取1.05m 。

扣件式钢管脚手架风荷载标准值计算

扣件式钢管脚手架风荷载标准值计算

扣件式钢管脚手架风荷载标准值计算在搭建扣件式钢管脚手架时,风荷载是一个需要考虑的重要因素。

根据《建筑结构荷载规范》(GB 50009-2012)中的规定,扣件式钢管脚手架的风荷载标准值需要根据一系列参数计算得出。

计算参数在计算扣件式钢管脚手架的风荷载标准值时,需要考虑以下参数:•扣件式钢管脚手架的高度;•扣件式钢管脚手架的单元面积;•环境风压力系数;•设计年限。

计算方法步骤一:计算风压力按照地形、建筑类型、设计风速确定到达设计风速的三秒平均风速,然后根据该风速计算风压力。

步骤二:计算单元结构将扣件式钢管脚手架分成一个个不可分割的单元结构,每个单元结构面积为1m²,即扣件式钢管脚手架的单元面积。

对于每个单元结构,计算出风荷载,即单元结构的面积乘以单位面积风荷载。

步骤四:计算风荷载标准值将所有单元结构的风荷载相加得到总风荷载,然后根据环境风压力系数和设计年限计算出风荷载标准值。

具体计算过程下面以具体的实例来说明扣件式钢管脚手架的风荷载标准值的计算过程。

假设扣件式钢管脚手架高度为10m,单元面积为1m²,环境风压力系数为0.6,设计年限为50年。

根据《建筑结构荷载规范》中的公式,可得到以下计算过程:步骤一:计算风压力假设设计风速为25m/s,对应的三秒平均风速为18m/s。

根据公式$p=0.6\\times \\frac{1}{2}\\times 1.3\\times v^2=0.7N/m^2$,可得到风压力为0.7N/m²。

步骤二:计算单元结构将扣件式钢管脚手架分成一个个不可分割的单元结构,每个单元结构面积为1m²。

每个单元结构的面积为1m²,根据公式F=pA=0.7×1=0.7N,可得到单元结构的风荷载为0.7N。

步骤四:计算风荷载标准值假设扣件式钢管脚手架的总面积为1000m²,那么扣件式钢管脚手架的总风荷载为1000×0.7=700N。

扣件式钢管脚手架计算

扣件式钢管脚手架计算

扣件式钢管脚手架计算㈠ 编制依据《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2011) 《建筑施工计算手册》江正荣著《建筑施工手册》第四版 中国建筑工业出版社 《钢结构设计规范》(GB50017-2003) 《建筑结构荷载规范》(GB50009-2001) ㈡ 结构参数 1、脚手架参数搭设最高高度:8m ,立杆横距1.0m ,纵距1.5m ,步距1.5m 。

钢管类型:φ48×3.5mm 。

支架基础直接架立在承台上。

2、风荷载参数基本风压按《建筑结构荷载规范》,取W 0=0.5 kN/m2按照《建筑结构荷载规范》,风荷载高度变化系数μz 取1.23,风荷载体型系数取垂直面的0.8倍,μS 取0.128。

3、静荷载参数施工均布活荷载标准值:2.0 kN/m 2;脚手板自重标准值:0.35 kN/m 2 , 栏杆、踢脚板自重标准值:0.017 kN/m 2;脚手管每米自重:0.0384 kN/m 。

㈢ 脚手架计算 1、单肢立杆稳定性计算A 、风荷载对立杆产生的弯矩设计值:m KN h l a k k ∙=⨯⨯⨯⨯=⨯=⨯=033.010/5.15.1079.04.19.010/4.19.0M 4.19.0M 22w w ω 式中:M wk ――风荷载产生的弯矩标准值(N.mm )ωk ――风荷载标准值(kN/m2) L a ――立杆纵距(m ) h ――步距(m )其中 kpa W S Z k 079.05.0128.023.10=⨯⨯==μμω B 、单肢立杆轴向力计算: 不组合风荷载时N=1.2(N G1k +N G2k )+1.4ΣN Qk =1.2×(0.918+0.707)+1.4×3.0=6.15KN 组合风荷载时N=1.2(N G1k +N G2k )+0.85×1.4ΣN Qk =1.2×(0.918+0.707)+0.85×1.4×3.0=5.52KN式中:N G1k ——脚手架结构自重产生的轴向力标准值;N G2k ——构配件自重产生的轴向力标准值;ΣN Qk ——施工荷载产生的轴向力标准值总和,内、外立杆各按一纵距内施工荷载总和的1/2取值。

扣件式钢管落地脚手架计算书2

扣件式钢管落地脚手架计算书2

扣件式钢管落地脚手架计算书一、工程概况东方体育城33#楼工程位于东海县晶都路南,振兴路西,为砖混结构,地上6层,建筑总高度20米,建筑总面积6398.47平方米,标准层层高2.8米,。

本工程由连云港万盛房地产开发有限公司投资建设,连云港东海设计有限公司设计,连云港天正监理公司监理,安徽第一建筑工程公司组织施工;由张宝安担任项目经理,霍连军担任技术负责人。

二、计算依据《建筑施工计算手册》江正荣著中国建筑工业出版社;《建筑施工手册》第四版中国建筑工业出版社、《钢结构设计规范》GB50017-2003 中国建筑工业出版社;《建筑结构荷载规范》GB50009-2001中国建筑工业出版社;《建筑施工脚手架实用手册(含垂直运输设施)》中国建筑工业出版社;《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2001 中国建筑工业出版社;《建筑地基基础设计规范》GB50007-2002中国建筑工业出版社;《建筑施工安全检查标准》JGJ59-99中国建筑工业出版社。

三、计算参数1、钢管截面特征:(钢号:Q235,B类)钢管规格:Ф48×3.2;钢管直径d(mm):48;钢管壁厚t(mm):3.2;单位重量q g(kN/m):0.0347;惯性矩I(mm4):113600;抵抗矩W(mm3):4730;截面积A(mm2):450;回转半径i(mm);15.9;抗弯、抗压容许应力[σ](N/mm2):205;弹性模量E(N/mm2):206000;2、脚手架构造参数脚手架类型:双排架;脚手架高度H s(m):25;立杆纵距L a(m):1.5;立杆横距L b(m):1.05;横杆步距h(m):1.8;上部横杆根数n2:2;脚手板铺设层数n3:5;立杆底垫块面积A(m2):0.2;连墙件类型:扣件连接;连墙件布置方式:二步三跨;连墙件水平间距l w(m):4.5;连墙件垂直间距h w(mm4):3.6;连墙件长度b1(m):0.4;剪刀撑斜杆与地面的倾角a:45;剪刀撑跨越立杆根数n4:6;3、荷载参数脚手板自重q j(kN/m2):0.35;栏杆、挡脚板自重q d(kN/m):0.15;安全网自重q a(kN/m2):0.0014;作业层施工均布荷载q s(kN/m2):2;同时施工作业层数n1:2;脚手架状况:全封闭;连云港地区基本风压w0(kN/m2): 0.55;4、其他参数风压高度变化系数μz(查GB50009-2001表7.2.1)架高25m,地处B类(城市郊区)μz为:1.42;脚手架风荷载体型系数μs(查JGJ 130-2001表4.2.4):0.53;风荷载标准值w k=0.7×μs×μz×w0 =0.292kN/m2;立杆计算长度系数μ(查JGJ 130-2001表5.3.3):1.5;轴心受压构件稳定系数φ(查JGJ 130-2001附录C):0.245;注:计算长度l0 = μ×h =1.5×1.8=2.7m长细比λ= l0 / i=2.7/0.0159=170荷载分项系数(查GB50009-2001第8页)永久荷载γG:1.2;可变荷载γQ:1.4;地基承载力标准值f gk(kPa)地基为粘性土:200;脚手架地基承载力调整系数k c(查JGJ 130-2001第20页)工况为架底铺设混凝土及设置排水沟:1;5、材料种类说明脚手板采用:竹串片脚手板挡脚板采用:栏杆,竹笆片脚手板挡板安全网采用:ML1.8×6;1.5kg四、脚手架验算本脚手架属于施工荷载由横向水平杆传递给立杆情况,荷载传递线路如下:脚手板→纵向水平杆(大横杆)→横向水平杆(小横杆)→立杆→地基。

12米以下为双立杆扣件式脚手架计算书

12米以下为双立杆扣件式脚手架计算书

扣件式脚手架计算书计算依据:1、《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-20112、《建筑地基基础设计规范》GB50007-20113、《建筑结构荷载规范》GB50009-20124、《钢结构设计规范》GB50017-2003一、脚手架参数(其中10层、11层采用12米以下为双立杆)脚手架设计类型结构脚手架,装修脚手架脚手板设计荷载(kN/m2) 3,2同时施工作业层数1,1 卸荷设置无脚手架搭设方式双排脚手架脚手架钢管类型Ф48×3.5脚手架架体高度H(m) 40 脚手架沿纵向搭设长度L(m) 243立杆步距h(m) 1.8 立杆纵距或跨距l a(m) 1.5立杆横距l b(m) 1 内立杆离建筑物距离a(m) 0.2双立杆计算方法按双立杆受力设计双立杆计算高度H1(m) 12双立杆受力不均匀系数K S0.6二、荷载设计脚手板类型竹串片脚手板脚手板自重标准值G kjb(kN/m2) 0.35脚手板铺设方式2步1设密目式安全立网自重标准值G kmw(kN/m 2)0.01挡脚板类型竹串片挡脚板栏杆与挡脚板自重标准值G kdb(kN/m) 0.14 挡脚板铺设方式2步1设每米立杆承受结构自重标准值g k(kN/m)0.129 横向斜撑布置方式5跨1设结构脚手架作业层数n jj 1结构脚手架荷载标准值G kjj(kN/m 2) 3 装修脚手架作业层数n zj 1装修脚手架荷载标准值G kzj(kN/m 2) 2 地区浙江慈溪市安全网设置全封闭基本风压ω0(kN/m2) 0.3风荷载体型系数μs 1.254 风压高度变化系数μz(连墙件、单立杆、双立杆稳定性)1.06,0.796,0.65风荷载标准值ωk(kN/m2)(连墙件、单立杆、双立杆稳定性)0.399,0.299,0.245计算简图:立面图侧面图三、纵向水平杆验算纵、横向水平杆布置方式纵向水平杆在上横向水平杆上纵向水平杆根数n 2横杆抗弯强度设计值[f](N/mm2) 205 横杆截面惯性矩I(mm4) 121900 横杆弹性模量E(N/mm2) 206000 横杆截面抵抗矩W(mm3) 5080纵、横向水平杆布置承载能力极限状态1/(2+1))+1.43×1/(2+1)=1.(0.038+0.35×G k×l b/(n+1)=1.2×q=1.2×(0.038+G kjb×l b/(n+1))+1.4×586kN/m正常使用极限状态q'=(0.038+G kjb×l b/(n+1))+G k×l b/(n+1)=(0.038+0.35×1/(2+1)=1.155kN/m1/(2+1))+3×计算简图如下:1、抗弯验算M max=0.1ql a2=0.1×1.586×1.52=0.357kN·mσ=M max/W=0.357×106/5080=70.25N/mm2≤[f]=205N/mm2满足要求!2、挠度验算1.155×15004/(100×206000×121900)=1.576mmνmax=0.677q'l a4/(100EI)=0.677×=min[l a/150,10]=min[1500/150,10]=10mm νmax=1.576mm≤[ν]满足要求!3、支座反力计算承载能力极限状态R max=1.1ql a=1.1×1.586×1.5=2.617kN正常使用极限状态R max'=1.1q'l a=1.1×1.155×1.5=1.906kN四、横向水平杆验算承载能力极限状态由上节可知F1=R max=2.617kNq=1.2×0.038=0.046kN/m正常使用极限状态由上节可知F1'=R max'=1.906kNq'=0.038kN/m1、抗弯验算计算简图如下:弯矩图(kN·m)σ=M max/W=0.877×106/5080=172.679N/mm2≤[f]=205N/mm2 满足要求!2、挠度验算计算简图如下:变形图(mm)=min[l b/150,10]=min[1000/150,10]=6.667mm νmax=2.712mm≤[ν]满足要求!3、支座反力计算承载能力极限状态R max=2.64kN五、扣件抗滑承载力验算横杆与立杆连接方式单扣件扣件抗滑移折减系数0.85 扣件抗滑承载力验算:纵向水平杆:R max=2.617/2=1.309kN≤Rc=0.85×8=6.8kN横向水平杆:R max=2.64kN≤Rc=0.85×8=6.8kN满足要求!六、荷载计算脚手架架体高度H 40 双立杆计算高度H112脚手架钢管类型Ф48×3.5每米立杆承受结构自重标准值0.129gk(kN/m)立杆静荷载计算1、立杆承受的结构自重标准值N G1k单外立杆:(40-12)=4.508kN2/2×0.038/1.8)×N G1k=(gk+l a×n/2×0.038/h)×(H-H1)=(0.129+1.5×单内立杆:N G1k=4.508kN双外立杆:12=2.393kN2/2×0.038/1.8)×H1=(0.129+0.038+1.5×N G1k=(gk+0.038+l a×n/2×0.038/h)×双内立杆:N GS1k=2.393kN2、脚手板的自重标准值N G2k1单外立杆:1.5×1×0.35×1/2/2=2.173kNN G2k1=((H-H1)/h+1)×l a×l b×G kjb×1/2/2=((40-12)/1.8+1)×1/2表示脚手板2步1设单内立杆:N G2k1=2.173kN1.5×1×0.35×1/2/2=0.875kN双外立杆:N GS2k1=H1/h×la×l b×G kjb×1/2/2=12/1.8×1/2表示脚手板2步1设双内立杆:N GS2k1=0.875kN3、栏杆与挡脚板自重标准值N G2k21.5×0.14×1/2=1.738kN单外立杆:N G2k2=((H-H1)/h+1)×la×G kdb×1/2=((40-12)/1.8+1)×1/2表示挡脚板2步1设1.5×0.14×1/2=0.7kN双外立杆:N GS2k2=H1/h×la×G kdb×1/2=12/1.8×1/2表示挡脚板2步1设4、围护材料的自重标准值N G2k3单外立杆:N G2k3=G kmw×la×(H-H1)=0.01×1.5×(40-12)=0.42kN双外立杆:N GS2k3=G kmw×la×H1=0.01×1.5×12=0.18kN构配件自重标准值N G2k总计单外立杆:N G2k=N G2k1+N G2k2+N G2k3=2.173+1.738+0.42=4.331kN单内立杆:N G2k=N G2k1=2.173kN双外立杆:N GS2k=N GS2k1+N GS2k2+N GS2k3=0.875+0.7+0.18=1.755kN双内立杆:N GS2k=N GS2k1=0.875kN立杆施工活荷载计算外立杆:N Q1k=la×l b×(n jj×G kjj+n zj×G kzj)/2=1.5×1×(1×3+1×2)/2=3.75kN 内立杆:N Q1k=3.75kN组合风荷载作用下单立杆轴向力:单外立杆:N=1.2×(N G1k+ N G2k)+0.9×1.4×N Q1k=1.2×(4.508+4.331)+0.9×1.4×3.75=15.332kN单内立杆:N=1.2×(N G1k+ N G2k)+0.9×1.4×N Q1k=1.2×(4.508+2.173)+0.9×1.4×3.75=12.742kN双外立杆:N s=1.2×(N GS1k+ N GS2k)+0.9×1.4×N Q1k=1.2×(2.393+1.755)+0.9×1.4×3.75=9.702kN双内立杆:N s=1.2×(N GS1k+ N GS2k)+0.9×1.4×N Q1k=1.2×(2.393+0.875)+0.9×1.4×3.75=8.646kN七、立杆稳定性验算脚手架架体高度H 40 双立杆计算高度H112 双立杆受力不均匀系数K S0.6 立杆计算长度系数μ 1.5 立杆截面抵抗矩W(mm3) 5080 立杆截面回转半径i(mm) 15.8立杆抗压强度设计值[f](N/mm 2) 205 立杆截面面积A(mm2) 489连墙件布置方式两步两跨1、立杆长细比验算立杆计算长度l0=Kμh=1×1.5×1.8=2.7m长细比λ=l0/i=2.7×103/15.8=170.886≤210轴心受压构件的稳定系数计算:立杆计算长度l0=kμh=1.155×1.5×1.8=3.118m 长细比λ=l0/i=3.118×103/15.8=197.373查《规范》表A得,φ=0.186满足要求!2、立杆稳定性验算不组合风荷载作用单立杆的轴心压力设计值N=(1.2×(N G1k +N G2k )+1.4×N Q1k )=(1.2×(4.508+4.331)+1.4×3.75)=15.857kN 双立杆的轴心压力设计值N S =1.2×(N GS1k +N GS2k )+N=1.2×(2.393+1.755)+15.857=20.834kNσ=N/(φA)=15857.1/(0.186×489)=174.342N/mm 2≤[f]=205N/mm2满足要求!σ=KS N S /(φA)=0.6×20834.46/(0.186×489)=137.44N/mm 2≤[f]=205N/mm2满足要求!组合风荷载作用单立杆的轴心压力设计值N=(1.2×(N G1k +N G2k )+0.9×1.4×N Q1k )=(1.2×(4.508+4.331)+0.9×1.4×3.75)=15.332kN双立杆的轴心压力设计值N S =1.2×(N GS1k +N GS2k )+N=1.2×(2.393+1.755)+15.332=20.309kNM w =0.9×1.4×M wk =0.9×1.4×ωk l a h 2/10=0.9×1.4×0.299×1.5×1.82/10=0.183kN ·m σ=N/(φA)+M w /W=15332.1/(0.186×489)+183095.64/5080=204.612N/mm 2≤[f]=205N/mm 2满足要求!M ws =0.9×1.4×M wk =0.9×1.4×ωk l a h 2/10=0.9×1.4×0.245×1.5×1.82/10=0.15kN ·m σ=KS (N S /(φA)+ M w /W)=0.6×(20309.46/(0.186×489)+150028.2/5080)=151.696N/mm 2≤[f]=205N/mm 2满足要求!八、连墙件承载力验算连墙件布置方式两步两跨连墙件连接方式扣件连接连墙件约束脚手架平面外变形轴向力N0(kN) 3 连墙件计算长度l 0(mm)600连墙件截面类型钢管连墙件型号Ф48×3.5连墙件截面面积A c (mm 2)489 连墙件截面回转半径i(mm) 158连墙件抗压强度设计值[f](N/mm 2)205 连墙件与扣件连接方式双扣件扣件抗滑移折减系数0.85N lw =1.4×ωk ×2×h ×2×l a =1.4×0.399×2×1.8×2×1.5=6.033kN 长细比λ=l 0/i=600/158=3.797,查《规范》表A.0.6得,φ=0.992(N lw +N 0)/(φAc)=(6.033+3)×103/(0.992×489)=18.621N/mm 2≤0.85 ×[f]=0.85 ×205N/mm 2=174.25N/mm2满足要求!扣件抗滑承载力验算:N lw +N 0=6.033+3=9.033kN ≤0.85×12=10.2kN 满足要求!。

扣件式钢管脚手架计算规则

扣件式钢管脚手架计算规则

扣件式钢管脚手架计算规则
扣件式钢管脚手架是一种常用的施工支架,其计算规则包括以下几方面:
1. 承重力计算:需要根据脚手架的使用条件和设计要求确定脚手架的承重能力。

一般来说,扣件式钢管脚手架的承重能力要符合国家标准和相关规范的要求。

计算承重时,需要考虑脚手架的结构、材料强度和连接方式等因素。

2. 结构计算:脚手架的结构计算主要包括支撑结构、水平平衡杆和组件等的计算。

其中,支撑结构的计算包括立杆的数量、直径和间距等参数的确定,而水平平衡杆的计算则需要考虑水平杆的长度和数量。

3. 连接计算:扣件式钢管脚手架的连接主要通过扣件进行,计算时需要确保扣件的强度和连接方式的合理性。

扣件的数量和布置需要根据脚手架的整体结构和使用条件来确定。

4. 稳定性计算:脚手架的稳定性计算主要包括抗倾覆和抗滑移的计算。

抗倾覆计算需要考虑脚手架的高度、支撑结构的布置和规范要求等因素,而抗滑移计算则需要考虑支撑结构和地面的摩擦系数、地基的稳定性等因素。

总而言之,扣件式钢管脚手架的计算规则是综合考虑结构强度、承重能力、连接方式和稳定性等因素,并根据国家标准和相关规范进行计算和设计。

在实际应用中,应严格按照计算规则进行设计和施工,以确保脚手架的安全和可靠性。

第 1 页共 1 页。

扣件式钢管脚手架计算规则

扣件式钢管脚手架计算规则

扣件式钢管脚手架计算规则扣件式钢管脚手架计算规则扣件式钢管脚手架与一般结构相比,其工作条件具有以下特点:所受荷载的变异性比较大;扣件连接节点属于半刚性,且节点刚性大小与扣件质量、安装质量有关,节点性能存在较大变异;脚手架结构构件存在初始缺陷,如杆件的初弯曲、锈蚀,搭设尺寸误差、受荷偏心等均较大;与墙柱板的连接点,对于脚手架的约束变异较大等。

鉴于以上问题目前研究的不足,缺乏系统积累和统计资料,目前脚手架国家规范采用的设计计算方法在实质上属于半概率、半经验的。

落地式扣件钢管脚手架计算要根据规范《建筑施工扣件式钢管脚手架技术规范》(JGJ130-2001),在规范中有明确的计算要求,应该包括的内容:1.纵向和横向水平杆(大小横杆)等受弯构件的强度和挠度计算其中大横杆规范要求按照三跨连续梁计算,小横杆规范要求按照简支梁计算。

2.扣件的抗滑承载力计算 3.立杆的稳定性计算脚手架整体稳定性计算通过计算长度附加系数u反映到立杆稳定性计算中,u反映脚手架各杆件对立杆的约束作用,综合了影响脚手架整体失稳的各种因素。

4.连墙件的连接强度计算对于使用钢管作为连墙件要求计算钢管扣件。

5.立杆的地基承载力计算计算强度和稳定性时,要考虑荷载效应组合,永久荷载分项系数1.2,可变荷载分项系数1.4。

受弯构件要根据正常使用极限状态验算变形,采用荷载短期效应组合。

规范中规定当高度超过50米的脚手架,可采用双管立杆、分段悬挑或分段卸荷等有效措施,必须另行专门设计。

一、纵向和横向水平杆(大小横杆)的计算南方地区通常采用小横杆上铺设大横杆的方式,北方反之;两种方式的传力过程不同,具体根据当地情况选择计算。

大小横杆不同的方式对应不同的计算过程,双排脚手架大小横杆计算是计算中不太重要的部分,一般都能满足要求,但它是脚手架整体荷载传递的第一部分,所以还是要比较进行简单的计算。

小横杆大横杆立杆图1.4 南北方大小横杆布置方式图大小横杆的强度计算要满足??MW?[f] (1.5)式中M——弯矩设计值,包括脚手板自重荷载产生的弯矩和施工活荷载的弯矩;W——钢管的截面模量;[f]——钢管抗弯强度设计值。

扣件式钢管脚手架材料用量计算

扣件式钢管脚手架材料用量计算

扣件式钢管脚手架材料用量计算扣件式钢管脚手架是一种常用的搭建工程脚手架的材料,它由钢管、扣件、模板和木枋等材料组成。

计算扣件式钢管脚手架的材料用量需要考虑以下几个方面:脚手架的高度、长度和宽度、脚手架的类型(单排脚手架、双排脚手架或多排脚手架)、工程要求等因素。

首先,计算钢管的用量。

钢管是扣件式钢管脚手架的主要支撑材料,根据脚手架的高度和长度,可以计算出需要的钢管用量。

通常,脚手架的高度为2米至6米不等,取中间值4米作为计算基准。

脚手架的长度取决于工程的需求,一般取10米作为计算基准。

脚手架的横跨宽度一般为2米至3米,取2.5米作为计算基准。

钢管的长度一般为3米、6米和9米,根据脚手架的长度和横跨宽度,可以计算出需要的钢管数量。

假设脚手架长度为10米,横跨宽度为2.5米,按3米一根的钢管计算,需要的钢管数量为10米/3米=3.33根,按整数计算,需要4根钢管。

其次,计算扣件的用量。

扣件是连接钢管的关键,用于固定和支撑脚手架。

扣件的用量与钢管的数量和连接方式有关。

对于单排脚手架,每根钢管连接需要2个扣件;对于双排脚手架,每根钢管连接需要3个扣件;对于多排脚手架,每根钢管连接需要4个扣件。

根据上述计算,单排脚手架需要8个扣件,双排脚手架需要12个扣件,多排脚手架需要16个扣件。

然后,计算模板的用量。

模板是扣件式钢管脚手架搭建工程的主要支撑结构,用于搭建脚手架的平台。

模板的用量与脚手架的长度和横跨宽度有关。

通常,模板的长度和横跨宽度与脚手架的长度和横跨宽度一致。

假设脚手架长度为10米,横跨宽度为2.5米,模板的尺寸为2.5米×2.5米,计算出需要的模板数量为(10米/2.5米)×(2.5米/2.5米)=10块。

最后,计算木枋的用量。

木枋是支撑模板和脚手架的关键材料,用于提供平台和承重作用。

木枋的用量与模板数量和支撑间距有关。

通常,木枋的长度与模板的宽度一致,木枋的支撑间距一般为1米至2米。

钢管扣件量计算

钢管扣件量计算

十、脚手架配件数量匡算扣件式钢管脚手架的杆件配备数量需要一定的富余量,以适应构架时变化需要因此按匡算方式来计算;根据脚手架立杆数量按以下公式进行计算:L = l.lxff x n +—xf?-I h5N =03XyS = 1 Ax (r? 2) x l a x l b L --长杆总长度(m);N 2 --直角扣件数(个);N 4 --旋转扣件数(个);n --立杆总数(根)n=286 ;h -- 步距 (m) h=1.8 ;l b --立杆横距 (m) l b=0.8 ;Ni --小横杆数(根);N3 --对接扣件数(个);S --H --搭设高度(m)H=23 ;l a r-立杆纵距(m)la=1.5;长杆总长度 (m) L =1.1X 23.00 X (286 + 1.50 X 286/1.80 - 2 X1.50/1.80)=13223.47;小横杆数 ( 根) N1=1.1 X (23.00 /1.80X 1/2 + 1) X 286 = 2325;直角扣件数 ( 个) N2=2.2 X (23.00 / 1.80 + 1)X 286 = 8669;对接扣件数(个)N 3 =13223.47 / 6.00 = 22047旋转扣件数(个)N 4 =0.3 X 13223.47 / 6.00 = 662;脚手板面积(m2) S = 1.1 X( 286-2 )X 1.50 / 0.80=585.75。

根据以上公式计算得长杆总长 13223.467m ;小横杆 2325 根; 直角扣件 8669 个; 对接扣件 2204 个 ; 旋转扣件 662 个; 脚手板 585.75m 2。

扣件式钢管脚手架计算规则范本

扣件式钢管脚手架计算规则范本

扣件式钢管脚手架计算规则范本第一章总则第一条为保证扣件式钢管脚手架的安全可靠使用,制定本计算规则。

第二条所有扣件式钢管脚手架应按照国家建筑安全技术规程及相关标准进行设计、制造、施工和使用。

第三条扣件式钢管脚手架的计算规则适用于钢管脚手架的静力分析,不适用于动力分析。

第四条扣件式钢管脚手架的计算主要包括承重能力、稳定性和刚度等方面的计算。

第二章符号和单位第五条本计算规则中所涉及的符号和单位应符合国家有关标准的规定。

第三章承重能力的计算第六条扣件式钢管脚手架的承重能力计算应按照以下步骤进行:(一)确定脚手架的整体结构形式以及所使用的材料和规格;(二)计算整体结构的自重并根据现场使用条件确定荷载组合;(三)根据结构形式和材料强度计算各构件的承载力;(四)综合考虑各构件的受力情况,确定脚手架整体的承重能力。

第四章稳定性的计算第七条扣件式钢管脚手架的稳定性计算应按照以下步骤进行:(一)确定脚手架的整体结构形式以及所使用的材料和规格;(二)根据脚手架的位置、高度、荷载组合等条件,进行整体结构的稳定性计算;(三)对于高度较大的脚手架,还需要进行风荷载的影响计算;(四)根据计算结果,确定脚手架的稳定性要求以及必要的加固措施。

第五章刚度的计算第八条扣件式钢管脚手架的刚度计算应按照以下步骤进行:(一)确定脚手架的整体结构形式以及所使用的材料和规格;(二)根据脚手架的位置、高度、荷载组合等条件,进行整体结构的刚度计算;(三)根据计算结果,确定脚手架的抗变形要求以及必要的刚性加固措施。

第六章安全措施第九条在进行扣件式钢管脚手架计算时,应注意以下安全措施:(一)在计算中充分考虑脚手架的受力情况,确保脚手架的结构安全可靠;(二)对于高度较大的脚手架,应考虑地震和风荷载的影响;(三)在设计和施工过程中,应采取适当的防护措施,确保施工人员的安全;(四)定期进行脚手架的检测和维护,及时消除隐患,保证脚手架的安全使用。

第七章质量控制第十条扣件式钢管脚手架的设计、制造、施工和使用应按照国家有关标准的要求进行质量控制。

扣件式钢管脚手架计算要点

扣件式钢管脚手架计算要点
活荷载标准值: Q=3.000×1.050×1.200/2=1.890kN
荷载的设计值: R=1.2×(0.046+0.06)+1.2×0.220+1.4×1.890=3.0kN
扣件抗滑验算满足要求!
第32页/共92页
计算要点之四 立杆稳定性验算
计算方法力求简单、正确、可靠。整体稳定、单杆局部稳定合并为一个公式。计算部位:最底层立杆
第17页/共92页
为什么不计算钢管的抗剪强度
第18页/共92页
1 作业层上非主节点处的横向水平杆,宜根据支承脚手板的需要等间距设置,最大间距不应大于纵距的1/2;2 当使用冲压钢脚手板、木脚手板、竹串片脚手板时,双排脚手架的横向水平杆两端均应采用直角扣件固定在纵向水平杆上;单排脚手架的横向水平杆的一端应用直角扣件固定在纵向水平杆上,另一端应插入墙内,插入长度不应小于180mm; 3 当使用竹笆脚手板时,双排脚手架的横向水平杆的两端,应用直角扣件固定在立杆上;单排脚手架的横向水平杆的一端,应用直角扣件固定在立杆上,另一端插入墙内,插入长度不应小于180mm。主节点处必须设置一根横向水平杆,用直角扣件扣接且严禁拆除。(去掉了内排架离墙距离的要求)
第8页/共92页
计算基础知识之五
钢管(Φ)截面特性
外径D
壁 厚t
截面积A
惯性矩I
截面模量W
回转半径i
每米长质量
(mm)
(mm)
(cm2)
(cm4)
(cm3)
(cm)
(kg/m)
48.3
3.6
5.06
12.71
5.26
1.59
3.97
外径Φ
壁 厚t
截面积A
惯性矩I

扣件式钢管脚手架规范详解

扣件式钢管脚手架规范详解

扣件式钢管脚手架规范详解扣件式钢管脚手架是我们日常施工中常用的工具,而在建筑施工安全管理中,脚手架工程的安全管理也占有很大的比重,保证脚手架体系的施工安全是施工现场安全管理的重要工作之一。

1、构配件1.钢管: 脚手架钢管宜采用Φ×钢管(方案据实计算)。

每根钢管的最大质量不应大于。

2.脚手板:脚手板可采用钢、木、竹材料制作,单块脚手板的质量不宜大于30kg,木脚手板厚度不应小于50mm,两端应采用直径为4mm的镀锌钢丝各设两道箍。

3.扣件:分为旋转、直角、对接扣件,扣件在螺栓拧紧扭力达到65N· m时,不得发生破环。

4.悬挑脚手架用型钢:型钢悬挑梁宜采用双轴对称截面的型钢,钢梁截面高度不应小于不应小于160mm。

2、纵向水平杆1.纵向水平杆应设置在立杆内侧,单根杆长度不应小于3跨(如下图);2.纵向水平杆接长应采用对接扣件连接或搭接,并应符合下列规定:(1)两根相邻纵向水平杆的接头不应设置在同步或同跨内;不同步或不同跨两个相邻接头在水平方向错开的距离不应小于500mm;各接头中心至最近主节点的距离不应大于纵距的1/3(如下图)。

(2)搭接长度不应小于1m,应等间距设置3个旋转扣件固定;端部扣件盖板边缘至搭接纵向水平杆杆端的距离不应小于100mm。

3.当使用钢芭网片脚手板时,纵向水平杆应采用直角扣件固定在横向水平杆上(纵向水平杆在上,横向水平杆在下),并应等间距设置填心芯杆,间距不应大于400mm(如图)。

当使用冲压钢脚手板、木脚手板、竹串片脚手板时,纵向水平杆应作为横向水平杆的支座,用直角扣件固定在立杆上(纵向水平杆在下,横向水平杆在上)(如图)。

3、横向水平杆1.作业层上非主节点处的横向水平杆,宜根据支承脚手板的需要等间距设置,最大间距不应大于纵距的1/2;2.当使用冲压钢脚手板、木脚手板、竹串片脚手板时,双排脚手架的横向水平杆两端均应采用直角扣件固定在纵向水平杆上(纵向水平杆在下,横向水平杆在上);3.当使用钢芭网片脚手板时,双排脚手架的横向水平杆的两端,应用直角扣件固定在立杆上(纵向水平杆在上,横向水平杆在下);4.主节点处必须设置一根横向水平杆,用直角扣件扣接且严禁拆除。

扣件式钢管脚手架设计计算

扣件式钢管脚手架设计计算

扣件式钢管脚手架设计计算11钢结构钢管:外径48mm、壁厚3.5mm的无缝钢管。

扣件:有对接扣件、直角扣件和回转扣件三种。

(2)荷载施工荷载(操作人员和材料及设备等自重)、脚手架自重。

荷载的传递途径:脚手板→小横杆→大横杆→立杆→底座→地基。

(3)脚手架计算简化成平面结构体系计算。

计算内容:●小、大横杆的抗弯强度验算;●立杆体系的整体稳定性及单根立杆的局部稳定性验算;●脚手架的最大搭设高度计算;●立杆底座及地基承载力验算。

1)小横杆计算①强度验算Mma某fWn(附11.1)式中σ——小横杆的弯曲应力;Mma某——小横杆跨内最大弯矩设计值;Wn——小横杆净截抵抗矩;f——钢管的抗弯强度设计值,f=205N/mm2。

①挠度验算进行挠度验算时,需先将小横杆上承受的荷载换算成等效的均布荷载,然后按下式验算5ql4vv384EI(附11.2)式中v——小横杆的挠度;q——脚手板作用在小横杆上的等效均布荷载;l——小横杆的跨度;E——钢材的弹性模量;I——小横杆的截面惯性矩;[v]——受弯构件的容许挠度,取l/150。

2)大横杆计算①强度验算大横杆按三跨连续梁计算,取小横杆支座反力的最大值,进行最不利荷载布置后,计算出三跨连续梁的最大弯矩设计值。

其抗弯强度按下式验算Mma某fWn(附11.3)式中σ——大横杆的弯曲应力;Mma某——三跨连续梁(大横杆),经过最不利荷载布置求得的最大弯矩设计值;Wn——大横杆的截面抵抗矩;f——钢管的抗弯强度设计值。

注意:当脚手架外侧有遮盖物或有六级以上大风时,须按双向弯曲求出最大组合弯矩,再进行验算。

②挠度验算取小横杆最大支座反力的标准值进行三跨连续梁(大横杆)最不利荷载布置,求出其最大弯矩标准值,然后换算成等效均布荷载,按下式验算的挠度0.99ql4vv100EI(附11.4)式中v——大横杆的挠度;q′——大横杆上的等效均布荷载;l——大横杆的跨距;I——大横杆截面惯性矩。

扣件式钢管脚手架计算规则范文

扣件式钢管脚手架计算规则范文

扣件式钢管脚手架计算规则范文在计算扣件式钢管脚手架的设计时,需要遵循一定的规则和标准,以确保脚手架的安全和稳定性。

本文将介绍扣件式钢管脚手架的计算规则,涵盖扣件的数量计算、受力分析、钢管的选取和支撑件的设计等方面。

一、扣件数量计算扣件式钢管脚手架的搭建离不开扣件的使用,扣件的数量计算对于脚手架的设计至关重要。

计算扣件数量的基本原则是:结构中的每个焊接点或连接点,都需要使用一个扣件。

1. 立杆扣件数的计算:立杆是扣件式钢管脚手架的主要支撑部分,其数量的计算是根据脚手架的高度和间距来确定的。

一般情况下,每隔2米至2.5米需要设置一个立杆。

如果脚手架的高度超过30米,每10米高度需要增加一个立杆。

2. 横杆扣件数的计算:横杆是脚手架的横向连接部分,可以提高整体的稳定性。

横杆扣件的数量取决于脚手架的宽度和横杆的间隔。

一般情况下,每隔1.2米至1.8米需要设置一个横杆。

3. 斜杆扣件数的计算:斜杆是脚手架的支撑部分,可以提供额外的支撑力。

斜杆扣件的数量取决于脚手架的高度和斜杆的间隔。

一般情况下,每个立杆和横杆交叉点需要设置一个斜杆。

二、受力分析在扣件式钢管脚手架的设计中,需要对脚手架的受力情况进行分析,以确保其结构强度和稳定性。

1. 立杆的受力分析:立杆主要承受垂直方向的重力和水平方向的风载力。

在计算立杆的受力时,需要考虑各种情况下的荷载和弯矩,以确定立杆的尺寸和材料。

2. 横杆的受力分析:横杆主要承受水平方向的荷载和拉力。

在计算横杆的受力时,需要考虑横杆的跨度和荷载分布情况,以确定横杆的尺寸和材料。

3. 斜杆的受力分析:斜杆主要承受垂直方向的压力和拉力。

在计算斜杆的受力时,需要考虑斜杆的角度和长度,以确定斜杆的尺寸和材料。

三、钢管的选取选择合适的钢管对于扣件式钢管脚手架的设计至关重要。

在选择钢管时,需要考虑以下几个方面:1. 材料强度:扣件式钢管脚手架需要使用高强度的钢管,以确保其稳定性和承载能力。

常见的钢管材料包括Q235B钢和Q345B钢,其抗拉强度分别为375MPa和345MPa。

扣件式钢管满堂架一立方重量计算

扣件式钢管满堂架一立方重量计算

扣件式钢管满堂架一立方重量计算摘要:1.扣件式钢管满堂架的概述2.计算扣件式钢管满堂架一立方重量的方法3.影响扣件式钢管满堂架重量的因素4.结论正文:一、扣件式钢管满堂架的概述扣件式钢管满堂架是一种常见的脚手架类型,主要用于建筑物的施工过程中,为施工人员提供一个临时的操作平台。

它主要由钢管、扣件、横杆、立杆等构件组成,具有结构稳定、承载能力强、搭设方便等特点。

在施工现场,根据建筑物的尺寸和结构,扣件式钢管满堂架的尺寸和形状也会有所不同。

二、计算扣件式钢管满堂架一立方重量的方法要计算扣件式钢管满堂架一立方的重量,需要先了解其结构和材料。

扣件式钢管满堂架主要由钢管和扣件组成,其中钢管通常采用Q235 钢,扣件一般为铸铁扣件。

计算方法如下:1.首先,需要知道扣件式钢管满堂架的尺寸,包括长、宽、高。

假设长为L,宽为W,高为H。

2.然后,计算出扣件式钢管满堂架的体积V,公式为:V = L × W × H。

3.接着,需要知道钢管和扣件的密度。

钢管的密度一般为7850 kg/m,扣件的密度会因材料不同而有所差异,一般为5000 kg/m左右。

4.最后,将体积乘以密度,即可得到扣件式钢管满堂架一立方的重量。

公式为:重量= V × (钢管密度+ 扣件密度)。

三、影响扣件式钢管满堂架重量的因素1.尺寸:扣件式钢管满堂架的尺寸直接影响其重量,尺寸越大,重量也越大。

2.材料:钢管和扣件的材料不同,密度也会有所差异,从而影响扣件式钢管满堂架的重量。

3.结构:扣件式钢管满堂架的结构设计不同,其重量也会有所变化。

例如,立杆间距、横杆步距等参数的改变都会影响结构稳定性,从而影响重量。

四、结论扣件式钢管满堂架一立方的重量可以通过计算其体积并乘以钢管和扣件的密度得出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

仅供参考[整理] 安全管理文书
扣件式钢管脚手架计算规则
日期:__________________
单位:__________________
第1 页共4 页
扣件式钢管脚手架计算规则
内容摘要
扣件式钢管脚手架与一般结构相比,其工作条件具有以下特点:所受荷载的变异性比较大;扣件连接节点属于半刚性,且节点刚性大小与扣件质量、安装质量有关,节点性能存在较大变异;脚手架结构构件存在初始缺陷,如杆件的初弯曲、锈蚀,搭设尺寸误差、受荷偏心等均较大;与墙柱板的连接点,对于脚手架的约束变异较大等。

鉴于以上问题目前研究的不足,缺乏系统积累和统计资料,目前脚手架国家规范采用的设计计算方法在实质上属于半概率、半经验的。

落地式扣件钢管脚手架计算要根据规范《建筑施工扣件式钢管脚手架技术规范》(JGJ130-2001),在规范中有明确的计算要求,应该包括的内容:
1.纵向和横向水平杆(大小横杆)等受弯构件的强度和挠度计算
其中大横杆规范要求按照三跨连续梁计算,小横杆规范要求按照简支梁计算。

2.扣件的抗滑承载力计算
3.立杆的稳定性计算
脚手架整体稳定性计算通过计算长度附加系数反映到立杆稳定性计算中,反映脚手架各杆件对立杆的约束作用,综合了影响脚手架整体失稳的各种因素。

4.连墙件的连接强度计算
对于使用钢管作为连墙件要求计算钢管扣件。

5.立杆的地基承载力计算
计算强度和稳定性时,要考虑荷载效应组合,永久荷载分项系数
第 2 页共 4 页
1.2,可变荷载分项系数1.4。

受弯构件要根据正常使用极限状态验算变形,采用荷载短期效应组合。

规范中规定当高度超过50米的脚手架,可采用双管立杆、分段悬挑或分段卸荷等有效措施,必须另行专门设计。

第 3 页共 4 页
仅供参考[整理] 安全管理文书
整理范文,仅供参考!
日期:__________________
单位:__________________
第4 页共4 页。

相关文档
最新文档