一次函数知识点总结与常见题型-一次函数知识点整理(最新最全)

合集下载

(完整版)一次函数知识点复习总结

(完整版)一次函数知识点复习总结
5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式
6、函数的图像
一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
7、描点法画函数图形的一般步骤
第一步:列表(表中给出一些自变量的值及其对应的函数值);
一次函数
(1)函数
1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
*判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应
⑶当 , 时,它不是一次函数.
⑷正比例函数是一次函数的特例,一次函数包括正比例函数.
2、正比例函数及性质
一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.
注:正比例函数一般形式y=kx (k不为零) k不为零 x指数为1 b取零
当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时, 直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.
k<0,y随x的增大而减小。(从左向右下降)
倾斜度
|k|越大,越接近y轴;|k|越小,越接近x轴
图像的
平 移
b>0时,将直线y=kx的图象向上平移 个单位;
b<0时,将直线y=kx的图象向下平移 个单位.
6、直线 ( )与 ( )的位置关系
(3)走向:k>0,图象经过第一、三象限;k<0,图象经过第二、四象限

一次函数的知识点

一次函数的知识点

一次函数的知识点一、函数基本概念一次函数的定义:形如y = kx + b(其中k和b是常数,且k ≠ 0)的函数称为一次函数。

二、一次函数的性质1、斜率(k):当k > 0时,函数图像从左到右上升,即函数是增函数。

当k < 0时,函数图像从左到右下降,即函数是减函数。

斜率k表示函数图像与x轴正方向的夹角大小。

2、截距(b):当x = 0时,y = b,即点(0, b)为一次函数与y轴的交点,b称为y轴截距。

3、图象:一次函数的图象是一条直线。

当k > 0时,直线从左到右上升;当k < 0时,直线从左到右下降。

三、一次函数的表达式1、点斜式:y - y1 = k(x - x1),其中(x1, y1)是直线上的一点。

2、斜截式:y = kx + b,其中k是斜率,b是y轴截距。

3、两点式:当已知直线上的两点(x1, y1)和(x2, y2)时,可以使用两点式(y - y1) / (y2 - y1) = (x - x1) / (x2 - x1)。

四、一次函数的应用1、线性方程:一次函数常用于表示线性方程,如ax + by = c(其中a和b不全为0)可以转化为斜截式y = (-a/b)x + (c/b)。

2、实际问题建模:一次函数常用于建模实际问题中的线性关系,如物价增长、距离速度时间的关系等。

五、一次函数的平移和对称1、平移:2、上下平移:上加下减,即y = kx + b向上平移m个单位变为y = kx + (b + m),向下平移m个单位变为y = kx + (b - m)。

3、左右平移:左加右减,即y = kx + b向左平移m个单位变为y = k(x + m) + b,向右平移m个单位变为y = k(x - m) + b。

4、对称:一次函数图像关于x轴对称时,其解析式中的y变为-y,即y = -kx - b。

一次函数图像关于y轴对称时,其解析式中的x变为-x,即y = -kx + b。

一次函数知识点总结

一次函数知识点总结

一次函数知识点总结一次函数是数学中的基础概念之一,也是学习更高级数学知识的基础。

它在数学、物理、经济学等领域都有着广泛的应用。

本文将对一次函数的相关知识点进行总结,希望能够帮助读者更好地理解和掌握这一重要的数学概念。

一、一次函数的定义。

一次函数是指形式为f(x) = ax + b的函数,其中a和b是常数且a不等于0。

在一次函数中,x的最高次数为1,因此也称为线性函数。

一次函数的图像是一条直线,其斜率为a,截距为b。

二、一次函数的性质。

1. 斜率,一次函数的斜率表示函数图像在x轴上每增加1个单位对应的y轴上的增加量。

斜率为正表示函数递增,斜率为负表示函数递减,斜率为零表示函数水平。

2. 截距,一次函数的截距表示函数图像与y轴的交点坐标,记作(0, b)。

截距决定了函数图像的位置关系。

3. 单调性,当斜率大于0时,函数递增;当斜率小于0时,函数递减。

4. 零点,一次函数的零点表示函数图像与x轴的交点坐标,记作(x, 0)。

零点决定了函数的根的位置。

5. 定义域和值域,一次函数的定义域为全体实数,值域为全体实数。

这意味着一次函数的图像可以覆盖整个坐标平面。

三、一次函数的图像。

一次函数的图像是一条直线,其特点是斜率和截距决定了直线的位置和倾斜程度。

当斜率增大时,直线越陡;当截距增大时,直线在y轴上的位置越高。

四、一次函数的应用。

1. 经济学中的应用,一次函数可以用来描述成本、收益、供求关系等经济学问题。

2. 物理学中的应用,一次函数可以用来描述速度、加速度、位移等物理学问题。

3. 工程学中的应用,一次函数可以用来描述线性电路、材料强度、温度变化等工程学问题。

五、一次函数的解题方法。

1. 求斜率,通过两点坐标的差值来求斜率,斜率为Δy/Δx。

2. 求截距,当已知斜率和一点坐标时,可以利用直线方程求截距。

3. 求零点,将函数值设为0,通过代数方法求解x的值。

4. 确定单调性,通过斜率的正负来确定函数的单调性。

一次函数的知识点总结

一次函数的知识点总结

一次函数的知识点总结一、一次函数的基本概念一次函数是数学中最基础的函数之一,它的表达式为y = ax + b,其中a和b是常数,a不等于0。

在这个函数中,x称为自变量,y称为因变量,a称为斜率,b称为截距。

斜率表示了函数图象的倾斜程度,而截距表示了函数图象与y轴的交点位置。

从函数的表达式中可以看出,一次函数的图象是一条直线,即直线函数。

一次函数的定义域为实数集R,值域也为实数集R。

它的图象可以延伸到整个坐标平面上。

当a大于0时,函数图象是上升的直线;当a小于0时,函数图象是下降的直线。

二、一次函数的性质1. 斜率和截距一次函数的斜率a表示了函数图象的倾斜程度,它的绝对值越大,直线的斜率越大。

当a大于0时,函数图象向右上方倾斜;当a小于0时,函数图象向右下方倾斜。

而截距b表示了函数图象与y轴的交点位置,当b大于0时,函数图象在y轴上方;当b小于0时,函数图象在y轴下方。

2. 函数值对于一次函数y = ax + b,当给定x的值时,我们可以通过代入x的值得到对应的函数值y。

一次函数的函数值可以用来描述一根直线上的点的位置。

3. 函数的奇偶性一次函数是一个奇函数,它的图象关于原点对称。

这意味着,如果(x, y)在函数的图象上,则(-x, -y)也在函数的图象上。

4. 函数的单调性当a大于0时,一次函数是递增的;当a小于0时,一次函数是递减的。

递增意味着函数图象自左向右是上升的,递减意味着函数图象自左向右是下降的。

三、一次函数的图象一次函数的图象是一条直线,在坐标平面上呈现出一种特定的形状。

它的位置、斜率、倾斜方向和截距等特征可以通过图象来直观地展现。

1. 斜率和截距斜率a决定了函数图象的倾斜程度,它的绝对值越大,直线的斜率越大。

当a大于0时,函数图象是上升的直线;当a小于0时,函数图象是下降的直线。

而截距b决定了函数图象与y轴的交点位置,它是函数图象与y轴的交点的纵坐标。

2. 基本图象y = x + 1是一次函数的基本图象,它是一条经过原点,斜率为1的直线。

一次函数知识点总结与常见题型-一次函数知识点整理

一次函数知识点总结与常见题型-一次函数知识点整理

一次函数知识点总结与常见题型-一次函数知识点整理基本概念1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

例题:在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,则变量是________,常量是_______。

在圆的周长公式C =2πr 中,变量是________,常量是_________.2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。

*判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应例题:下列函数(1)y =πx (2)y =2x -1 (3)y =1x (4)y =21-3x (5)y =x 2-1中,是一次函数的有( )(A )4个 (B )3个 (C )2个 (D )1个3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

例题:下列函数中,自变量x 的取值范围是x ≥2的是( )A .yB .yC .yD .y函数y =x 的取值范围是___________. 已知函数221+-=x y ,当11≤<-x 时,y 的取值范围是 ( )A .2325≤<-yB .2523<<yC .2523<≤yD .2523≤<y5、函数的图像6、函数解析式:78、函数的表示方法系,不能用解析式表示。

9、正比例函数及性质一般地,形如y =kx (k 是常数,注:正比例函数一般形式 y =当k >0时,直线y =kx 象限,从左向右下降,即随x (1) 解析式:y =kx (k 是常数,(2) 必过点:(0,0)、(1,(3) 走向:k >0(4) 增减性:k >0,y 随x (5) 倾斜度:|k |越大,越接近y 例题:(1).正比例函数(3y m =(2)若23y x b =+- A .0 B .23 .(3)函数y =(k -1)x ,y 随x A .0<k B .1>k (4)东方超市鲜鸡蛋每个0.4(5)平行四边形相邻的两边长为x、y,周长是30,则y与x的函数关系式是__________.10、一次函数及性质一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式y=kx+b (k不为零) ①k不为零②x指数为1 ③b取任意实数一次函数y=kx+b的图象是经过(0,b)和(-kb,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)(1)解析式:y=kx+b(k、b是常数,k≠0 (2)必过点:(0,b)和(-kb,0)(3)走向:k>0,图象经过第一、三象限;k<0,图象经过第二、四象限b>0,图象经过第一、二象限;b<0,图象经过第三、四象限⇔⎩⎨⎧>>bk直线经过第一、二、三象限⇔⎩⎨⎧<>bk直线经过第一、三、四象限⇔⎩⎨⎧><bk直线经过第一、二、四象限⇔⎩⎨⎧<<bk直线经过第二、三、四象限(4)增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小.(5)倾斜度:|k| 越大,图象越接近于y轴;|k| 越小,图象越接近于x轴.(6)图像的平移:当b>0时,将直线y=kx的图象向上平移b个单位;(上加下减,左加右减)当b<0时,将直线y=kx的图象向下平移b个单位.例题:若关于x的函数1(1)my n x-=+是一次函数,则m= ,n..函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()将直线y=3x向下平移5个单位,得到直线;将直线y=-x-5向上平移5个单位,得到直线. 若直线axy+-=和直线bxy+=的交点坐标为(8,m),则=+ba____________.已知函数y=3x+1,当自变量增加m时,相应的函数值增加()A.3m+1 B.3mC.m D.3m-111、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:与y轴的交点(0,b),与x轴的交点(kb-,0).即横坐标或纵坐标为0的点.b>0 b<0 b=0k>0经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y随x的增大而增大k<0经过第一、二、四象限经过第二、三、四象限经过第二、四象限图象从左到右下降,y随x的增大而减小☆k 、b 的符号对直线位置的影响☆图像过一、二、三象限 图像过一、三、四象限 图像过一、二、四象限 图像过二、三、四象限 (大大不过四) (大小不过二) (小大不过三) (小小不过一) 思考:若m <0, n >0, 则一次函数y=mx+n 的图象不经过 ( )A .第一象限B . 第二象限C .第三象限D .第四象限 12、正比例函数与一次函数图象之间的关系一次函数y =kx +b 的图象是一条直线,它可以看作是由直线y =kx 平移|b |个单位长度而得到(当b >0时,向上平移;当b <0时,向下平移).13、直线y =k 1x +b 1与y =k 2x +b 2的位置关系(1)两直线平行:k 1=k 2且b 1 ≠b 2 (2)两直线相交:k 1≠k 2 (3)两直线重合:k 1=k 2且b 1=b 2 (4)两直线垂直:k 1·k 2= –1 14、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程; (3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式. 15、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax +b =0(a ,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y =ax +b 确定它与x 轴的交点的横坐标的值. 16、一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为ax +b >0或ax +b <0(a ,b 为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围. 17、一次函数与二元一次方程组(1)以二元一次方程ax +by =c 的解为坐标的点组成的图象与一次函数y =bcx b a +-的图象相同. (2)二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解可以看作是两个一次函数y =1111b c x b a +-和y =2222b cx b a +-的图象交点.18、一次函数的图像与两坐标轴所围成三角形的面积一次函数y =kx +b 的图象与两条坐标轴的交点:与y 轴的交点(0,b ),与x 轴的交点(kb-,0). 直线(b ≠0)与两坐标轴围成的三角形面积为s =kb b k b 2212=⨯⨯常见题型一、考察一次函数定义 1、若函数()213m y m x=-+是y 关于x 的一次函数,则m 的值为 ;解析式为 .2、要使y =(m -2)x n -1+n 是关于x 的一次函数,n ,m 应满足 , . 二、考查图像性质1、已知一次函数y =(m -2)x +m -3的图像经过第一,第三,第四象限,则m 的取值范围是________.2、若一次函数y =(2-m )x +m 的图像经过第一、•二、•四象限,•则m •的取值范围是______3、已知m 是整数,且一次函数(4)2y m x m =+++的图象不过第二象限,则m 为 .4、直线y kx b =+经过一、二、四象限,则直线y bx k =-的图象只能是图4中的( )5、直线0px qy r ++=(0)pq ≠如图5,则下列条件正确的是( ).,1A p q r == .,0B p q r == .,1C p q r =-= .,0D p q r =-=6、如果0ab >,0a c <,则直线a cy x b b=-+不通过( )A .第一象限B .第二象限C .第三象限D .第四象限7、如图6,两直线1y kx b =+和2y bx k =+在同一坐标系内图象的位置可能是( )8、如果0ab >,0a c <,则直线a cy x b b=-+不通过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限9、b 为 时,直线2y x b =+与直线34y x =-的交点在x 轴上. 10、要得到y =-32x -4的图像,可把直线y =-32x ( ). (A )向左平移4个单位(B )向右平移4个单位 (C )向上平移4个单位 (D )向下平移4个单位11、已知一次函数y =-kx +5,如果点P 1(x 1,y 1),P 2(x 2,y 2)都在函数的图像上,且当x 1<x 2时,有y 1<y 2成立,那么系数k 的取值范围是________.12、已知点(-4,y 1),(2,y 2)都在直线y =- 12x +2上,则y 1 、y 2大小关系是( )(A )y 1 >y 2 (B )y 1 =y 2 (C )y 1 <y 2 (D )不能比较 三、交点问题1、若直线y =3x -1与y =x -k 的交点在第四象限,则k 的取值范围是( ).(A )k <13 (B )13<k <1 (C )k >1 (D )k >1或k <132、若直线y x a =-+和直线y x b =+的交点坐标为(,8)m ,则a b += .3、一次函数y kx b =+的图象过点(,1)m 和(1,)m 两点,且1m >,则k = ,b 的取值范围是 .4、直线y kx b =+经过点(1,)A m -,(,1)B m (1)m >,则必有( )A . 0,0k b >> .0,0B k b >< .0,0C k b <> .0,0D k b <<5、如图所示,已知正比例函数xy 21-=和一次函数b x y +=,它们的图像都经过点P (a ,1),且一次函数图像与y 轴交于Q 点。

关于一次函数的所有知识点

关于一次函数的所有知识点

关于一次函数的所有知识点一、一次函数的定义。

1. 一般形式。

- 形如y = kx + b(k,b是常数,k≠0)的函数叫做一次函数。

当b = 0时,y=kx(k≠0),此时函数为正比例函数,正比例函数是特殊的一次函数。

2. 定义域。

- 一次函数的定义域是全体实数R。

二、一次函数的图象。

1. 图象形状。

- 一次函数y = kx + b(k≠0)的图象是一条直线。

- 例如y = 2x+1的图象是一条直线,我们可以通过取两个点来画出这条直线,一般取x = 0时,y=1;y = 0时,x=-(1)/(2),然后连接这两个点(0,1)和(-(1)/(2),0)就得到函数图象。

2. 图象与系数的关系。

- 斜率k的影响。

- 当k>0时,直线y = kx + b从左到右上升,y随x的增大而增大。

例如y = 3x+2,k = 3>0,函数图象是上升的。

- 当k<0时,直线y = kx + b从左到右下降,y随x的增大而减小。

比如y=-2x + 3,k=-2<0,函数图象是下降的。

- k的绝对值越大,直线越“陡”。

例如y = 5x+1比y = 2x+1的图象更陡。

- 截距b的影响。

- b为直线y = kx + b与y轴交点的纵坐标。

- 当b>0时,直线与y轴交于正半轴,如y = 2x + 3,直线与y轴交于点(0,3)。

- 当b<0时,直线与y轴交于负半轴,例如y=3x - 2,直线与y轴交于点(0,-2)。

- 当b = 0时,直线过原点,像y = 2x就是过原点的直线。

三、一次函数的性质。

1. 单调性。

- 由前面图象与系数关系可知,当k>0时,函数在R上单调递增;当k<0时,函数在R上单调递减。

2. 函数值的变化。

- 对于一次函数y = kx + b,当x增加Δ x时,y的变化量Δ y=kΔ x。

四、一次函数的解析式的确定。

1. 待定系数法。

- 如果已知一次函数y = kx + b的图象经过两个已知点(x_1,y_1)和(x_2,y_2),将这两个点代入函数解析式得到方程组y_1=kx_1 + b y_2=kx_2 + b,解这个方程组求出k和b的值,就得到一次函数的解析式。

(完整word)《一次函数》知识点归纳和题型归类,推荐文档

(完整word)《一次函数》知识点归纳和题型归类,推荐文档
2、 点 D(a,b)到 x 轴的距离是_________;到 y 轴的距离是____________; 题型三、一次函数与正比例函数的识别 方法:若 y=kx+b(k,b 是常数,k≠0),那么 y 叫做 x 的一次函数,特别的,当 b=0 时,一次函数就
成为 y=kx(k 是常数,k≠0),这时,y 叫做 x 的正比例函数,当 k=0 时,一次函数就成为若 y=b,这时,y 叫做常函数。 ☆A 与 B 成正比例A=kB(k≠0)
1、当 k_____________时, y k 3x2 2x 3 是一次函数;
2、当 m_____________时, y m 3x2m1 4x 5 是一次函数;
3、当 m_____________时, y m 4x2m1 4x 5 是一次函数;
4、2y-3 与 3x+1 成正比例,且 x=2,y=12,则函数解析式为________________;
方法:点到 x 轴的距离用纵坐标的绝对值表示,点到 y 轴的距离用横坐标的绝对值表示;
若 AB∥x 轴,则 A(xA, 0), B(xB , 0) 的距离为 xA xB ; 若 AB∥y 轴,则 A(0, yA ), B(0, yB ) 的距离为 yA yB ;
1、 点 C(0,-5)到 x 轴的距离是_________;到 y 轴的距离是____________;到原点的距离是 ____________;
.
(2)在同一直角坐标系中画出这两个一次函数的
.
(3)这两条直线的
的坐标,就是这个二元一次方程组的解.
5.一次函数与一元一次不等式的关系
一次一次不等式 kxb>0(或 kxb<0)的解集,就是使一次函数
中 y>0(或 y<0)的

一次函数知识点(全)

一次函数知识点(全)

一次函数知识点一、函数与变量常量与变量的概念:我们在现实生活中所遇到的一些实际问题,存在一些数量关系,其中有的量永远不变,同时也出现了一些数值会发生变化的两个量,且这两个量之间相互依赖、密切相关.在某一变化过程中,可以取不同数值的量,叫做变量.在某一变化过程中,有两个量,例如x 和y ,对于x 的每一个值,y 都有惟一的值与之对应,其中x 是自变量,y 是因变量,此时也称y 是x 的函数.在一些变化过程中,还有一种量,它的取值始终保持不变,我们称之为常量.例如:圆的面积S 与圆的半径r 存在相应的关系:2πS r =,这里π表示圆周率;它的数值不会变化,是常量,S 随着r 的变化而变化,r 是自变量,S 是因变量;◆ “y 有唯一值与x 对应”是指在自变量的取值范围内,x 每取一个确定值,y 都唯一的值与之相对应,否则y 不是x 的函数.◆ 判断两个变量是否有函数关系,不仅要有关系式,还要满足上述确定的对应关系.x 取不同的值,y 的取值可以相同. 例如:函数2(3)y x =-中,2x =时,1y =;4x =时,1y =.◆ 函数不是数,它是指在一个变化过程中两个变量之间的关系,函数本质就是变量间的对应关系.数学上表示函数关系的方法通常有三种:⑴解析法:用数学式子表示函数的方法叫做解析法.譬如:30S t =,2S R π=. ⑵列表法:通过列表表示函数的方法.⑶图象法:用图象直观、形象地表示一个函数的方法.关于函数的关系式(即解析式)的理解:● 函数关系式是等式. 例如4y x =就是一个函数关系式. ● 函数关系式中指明了那个是自变量,哪个是函数.通常等式右边代数式中的变量是自变量,等式左边的一个字母表示函数. 例如:y x =是自变量,y 是x 的函数.● 函数关系式在书写时有顺序性.例如:31y x =-+是表示y 是x 的函数,若写成13yx -=就表示x 是y 的函数. ● 求y 与x 的函数关系时,必须是只用变量x 的代数式表示y ,得到的等式右边只含x 的代数式.自变量的取值范围:很多函数中,自变量由于受到很多条件的限制,有自己的取值范围,例如y =自变量x 受到开平方运算的限制,有10x -≥即1x ≥;当汽车行进的速度为每小时80公里时,它行进的路程s 与时间t 的关系式为80s t =;这里t 的实际意义影响t 的取值范围t 应该为非负数,即0t ≥. 在初中阶段,自变量的取值范围考虑下面几个方面: ⑴根式:当根指数为偶数时,被开方数为非负数. ⑵分母中含有自变量:分母不为0. ⑶实际问题:符合实际意义.函数图象:函数的图象是由平面直角中的一系列点组成的.描点法画函数图象的步骤:⑴列表; ⑵描点; ⑶连线.函数解析式与函数图象的关系:⑴满足函数解析式的有序实数对为坐标的点一定在函数图象上; ⑵函数图象上点的坐标满足函数解析式.二、一次函数及其性质● 知识点一 一次函数的定义一般地,形如y kx b =+(k ,b 是常数,0k ≠)的函数,叫做一次函数,当0b =时,即y kx =,这时即是前一节所学过的正比例函数.⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数.● 知识点二 一次函数的图象及其画法 ⑴一次函数y kx b =+(0k ≠,k ,b 为常数)的图象是一条直线.⑵由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可.①如果这个函数是正比例函数,通常取()00,,()1k ,两点;②如果这个函数是一般的一次函数(0b ≠),通常取()0b ,,0b k ⎛⎫- ⎪⎝⎭,,即直线与两坐标轴的交点.⑶由函数图象的意义知,满足函数关系式y kx b =+的点()x y ,在其对应的图象上,这个图象就是一条直线l ,反之,直线l 上的点的坐标()x y ,满足y kx b =+,也就是说,直线l 与y kx b =+是一一对应的,所以通常把一次函数y kx b =+的图象叫做直线l :y kx b =+,有时直接称为直线y kx b =+.● 知识点三 一次函数的性质⑴当0k >时,一次函数y kx b =+的图象从左到右上升,y 随x 的增大而增大;⑵当0k <时,一次函数y kx b =+的图象从左到右下降,y 随x 的增大而减小.● 知识点四 一次函数y kx b =+的图象、性质与k 、b 的符号⑵一次函数y kx b =+中,当0k >时,其图象一定经过一、三象限;当0k <时,其图象一定经过二、四象限.当0b >时,图象与y 轴交点在x 轴上方,所以其图象一定经过一、二象限;当0b <时,图象与y 轴交点在x 轴下方,所以其图象一定经过三、四象限.反之,由一次函数y kx b =+的图象的位置也可以确定其系数k 、b 的符号.● 知识点五 用待定系数法求一次函数的解析式 ⑴定义:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待字系数法.⑵用待定系数法求函数解析式的一般步骤: ①根据已知条件写出含有待定系数的解析式;②将x y ,的几对值,或图象上的几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程(组),得到待定系数的值;④将求出的待定系数代回所求的函数解析式中,得到所求的函数解析式.1.一次函数与一元一次方程的关系:直线y b k 0kx =+≠()与x 轴交点的横坐标,就是一元一次方程b 0(0)kx k +=≠的解。

一次函数知识点汇总

一次函数知识点汇总

一次函数知识点汇总一、一次函数的概念。

1. 定义。

- 一般地,形如y = kx + b(k,b是常数,k≠0)的函数,叫做一次函数。

当b = 0时,y=kx(k为常数,k≠0),y = kx叫做正比例函数,它是一种特殊的一次函数。

2. 自变量的取值范围。

- 自变量x的取值范围是全体实数。

但在实际问题中,要根据具体情况确定自变量的取值范围。

例如,在计算长方形周长y = 2(x + 3)(设长为x,宽为3),x的取值范围是x>0。

二、一次函数的图象。

1. 图象的形状。

- 一次函数y = kx + b(k≠0)的图象是一条直线。

- 由于两点确定一条直线,所以画一次函数图象时,只要先描出两点,再连成直线即可。

通常选取(0,b)和(-(b)/(k),0)(k≠0)这两点。

2. 图象的性质。

- k的作用。

- 当k>0时,直线y = kx + b从左向右上升,y随x的增大而增大。

例如y = 2x+1,k = 2>0,当x = 1时,y=3;当x = 2时,y = 5,y随着x的增大而增大。

- 当k<0时,直线y = kx + b从左向右下降,y随x的增大而减小。

例如y=-3x + 2,k=-3<0,当x = 1时,y=-1;当x = 0时,y = 2,y随着x的增大而减小。

- b的作用。

- b是直线y = kx + b与y轴交点的纵坐标。

当b>0时,直线与y轴交于正半轴;例如y = x+3,b = 3,直线与y轴交于点(0,3)。

- 当b<0时,直线与y轴交于负半轴;例如y = 2x - 1,b=-1,直线与y轴交于点(0, - 1)。

- 当b = 0时,直线过原点,此时函数为正比例函数。

例如y = 3x,图象过原点(0,0)。

三、一次函数的解析式的确定。

1. 待定系数法。

- 一般步骤:- 设出含有待定系数的函数解析式,例如设一次函数解析式为y = kx + b。

- 把已知条件(自变量与函数的对应值)代入解析式,得到关于待定系数的方程(组)。

一次函数知识点总结(共12篇)

一次函数知识点总结(共12篇)

一次函数知识点总结(共12篇)篇1:一次函数知识点总结一次函数知识点总结一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数 b取任何实数)2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。

所以可以列出2个方程:y1=kx1+b …… ① 和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。

一次函数知识点总结

一次函数知识点总结

一次函数知识点总结一次函数,即一元一次方程,是数学中常见的函数形式。

它的特点是变量的最高次数为1,表示为y = ax + b的形式,其中a和b是实数常数。

本文将对一次函数的基本概念、性质及应用进行总结。

一、一次函数的定义及特点一次函数是指变量的最高次数为1的函数,通常表示为y = ax + b。

其中,a称为一次项系数,b称为常数项。

1. 一次函数的定义域和值域一次函数的定义域为整个实数集,即(-∞, +∞)。

其值域同样为整个实数集,即(-∞, +∞)。

2. 一次函数的图像特点一次函数的图像是一条直线。

当a > 0时,表示直线为正斜率,斜率越大,直线越陡;当a < 0时,表示直线为负斜率,斜率越小,直线越陡峭;当a = 0时,表示直线为水平线。

3. 一次函数的斜率和截距斜率是一次函数中的重要概念,表示函数图像上两个点间的垂直距离与水平距离的比值。

对于一次函数y = ax + b来说,斜率为a。

截距则表示直线与y轴的交点,在一次函数中即b。

二、一次函数的性质1. 一次函数的单调性一次函数的单调性取决于其斜率的正负性。

当a > 0时,函数单调递增;当a < 0时,函数单调递减。

2. 一次函数的零点一次函数的零点是指函数值等于零的x值。

对于一次函数y = ax + b 来说,其零点为-x = b / a。

3. 一次函数的最值一次函数的最值即函数的最大值和最小值。

对于一次函数而言,由于其斜率始终为常数,所以不存在最值。

三、一次函数的应用1. 直线方程的求解一次函数可用于求解直线方程。

假设已知通过两个点P(x1, y1)和Q(x2, y2),可根据两点式直线方程求解。

首先根据两点间的差值确定斜率a,然后再利用一次函数的形式求解常数项b。

2. 经济学中的线性关系一次函数常用于经济学中建立线性关系模型。

例如,将总收入与销售数量之间的关系表示为一次函数,可以帮助经济学家预测在不同销售情况下的总收入。

一次函数考点知识梳理

一次函数考点知识梳理

一次函数考点知识梳理1.一次函数定义:o一次函数的一般形式为y=kx+b(k≠0),其中k是斜率,b 是y轴截距。

o理解并掌握一次函数的图像特征:直线、方向(上升或下降)、位置(与坐标轴的交点)。

2.斜率的理解和应用:o斜率的意义:表示直线的倾斜程度,斜率为正时,直线从左向右上升;斜率为负时,直线从左向右下降。

o计算斜率的方法:两点式斜率公式k=(y2-y1)/(x2-x1)。

o判断两条直线平行或垂直的关系:若两直线斜率相等,则两线平行;若一直线斜率为另一直线斜率的相反数且绝对值相等,则两线垂直。

3.一次函数图像平移变换:o水平平移:原函数y=kx+b平移h个单位后变为y=k(x-h)+ b,其中h>0向右平移,h<0向左平移。

o垂直平移:原函数y=kx+b向上平移k个单位后变为y=kx+b +k,向下平移则减去相应的单位。

4.一次函数的实际应用问题:o表示实际生活中的增长、减少、路程与时间关系等问题,理解“速度”即斜率的概念。

o解决与一次函数相关的面积计算、行程问题、利润问题等。

5.一次函数与方程、不等式的联系:o一次函数解析式可以转化为一元一次方程和一元一次不等式,通过求解方程或不等式来确定图像上的点或区域。

6.一次函数与坐标轴的交点坐标:o求解一次函数与x轴和y轴的交点坐标,从而确定函数图形的具体位置。

7.线性关系与一次函数模型:o在实际问题中建立一次函数模型,通过观察数据、分析趋势确定变量之间的线性关系,并用一次函数的形式表示出来。

o学会从表格、图象或具体情境中提取信息,构建并验证一次函数模型。

8.一次函数图像特征与性质:o根据k和b的符号及绝对值大小,判断一次函数图像经过的象限(一、二、三、四象限)以及单调性(增函数还是减函数)。

o了解两点决定一条直线的原理,并能利用两个点坐标画出一次函数图像。

9.一次函数与反比例函数、二次函数的区别与联系:o明确一次函数是一次项系数不为零的多项式函数,而反比例函数是y=k/x形式,二次函数是y=ax²+bx+c形式,理解它们在图形、性质上的差异与共同点。

一次函数知识点(全)

一次函数知识点(全)

一次函数知识点(全)一次函数,也称为线性函数,是数学中最简单的一类函数之一,其定义域为全体实数,函数的表达式为f(x) = ax + b,其中a和b为常数。

一次函数以一条直线表示,具有线性关系,其图像是一条直线,斜率为a,截距为b。

一次函数的基本性质及应用:1. 斜率:一次函数的斜率a代表了直线的倾斜程度,也称为直线的导数或变化率。

斜率的计算方法为:a = (y2 - y1) / (x2 - x1),其中(x1,y1)和(x2,y2)为直线上的两个点。

斜率可正可负,若a > 0,表示直线向右上方倾斜;若a < 0,表示直线向右下方倾斜;若a = 0,表示直线水平。

2. 截距:一次函数的截距b代表了直线与y轴的交点,即x = 0时对应的y值。

截距可为正、负或零,当b > 0时,直线在y轴上方与之交点在正半轴;当b < 0时,直线在y轴下方与之交点在负半轴;当b = 0时,直线通过原点。

3. 表示方式:一次函数可以通过函数表达式、函数关系式、函数图像、函数性质等多种方式进行表示和描述。

4. 对称性:一次函数的图像关于直线y = x具有对称性,即将图像沿y = x对称后,两者完全重合。

5. 平行和垂直:两条直线平行的情况是它们的斜率相等,即a1 = a2;两条直线垂直的情况是它们的斜率之积等于-1,即a1 * a2 = -1。

6. 定义域和值域:一次函数的定义域为全体实数,即(-∞, +∞);值域为全体实数,即(-∞, +∞)。

7. 函数运算:一次函数可以进行相加、相减、相乘、相除等运算,运算结果仍为一次函数。

8. 应用:一次函数广泛应用于经济学、物理学、工程学等领域。

在经济学中,一次函数常用来描述成本、收入、利润等与产量的关系。

在物理学中,一次函数可以描述速度、位移与时间的关系。

在工程学中,一次函数可用于线性规划、线性回归等问题的建模与解决。

综上所述,一次函数是数学中基础的一类函数,具有简单明了的性质和应用。

一次函数知识点

一次函数知识点

一次函数知识点一次函数是数学中一种基本的函数类型,它在解析几何、函数分析等领域中有着广泛的应用。

一次函数的表达式通常写作y = kx + b,其中k是斜率,b是y轴截距。

以下是一次函数的主要知识点总结:1. 定义:一次函数是形如y = kx + b的函数,其中k和b是常数,k≠0。

2. 图像:一次函数的图像是一条直线,这条直线的斜率由k决定,截距由b决定。

3. 斜率:斜率k表示函数图像的倾斜程度,斜率的正负决定了直线的上升或下降方向。

4. 截距:截距b是直线与y轴交点的y坐标,当x=0时,y的值即为b。

5. 增减性:当k>0时,函数随着x的增加而增加;当k<0时,函数随着x的增加而减少。

6. 函数值的正负:当k>0,b>0时,函数值y>0;当k>0,b<0时,函数值y可能为正或负;当k<0,b>0时,函数值y可能为正或负;当k<0,b<0时,函数值y<0。

7. 函数的平移:一次函数可以通过改变k和b的值来实现图像的平移。

8. 函数的对称性:一次函数没有对称性,因为它的图像是一条直线,不会关于任何点或线对称。

9. 函数的交点:两条一次函数的图像相交于一点,这一点的坐标满足两个函数的方程。

10. 函数的应用:一次函数在现实生活中有着广泛的应用,如计算斜率、预测趋势、解决实际问题等。

11. 函数的解析:通过解析一次函数的方程,可以找到函数图像上任意一点的坐标。

12. 函数的变换:一次函数可以通过缩放、平移等方式进行变换,以适应不同的数学和实际问题。

13. 函数的方程:一次函数的方程可以表示为y = kx + b,也可以表示为x = (y - b) / k。

14. 函数的解析式:解析式是描述一次函数图像特征的数学表达式,它包含了斜率和截距的信息。

15. 函数的图像绘制:通过绘制一次函数的图像,可以直观地理解函数的性质和变化趋势。

掌握这些知识点,可以帮助我们更好地理解和应用一次函数,解决与之相关的数学问题。

一次函数主要知识点

一次函数主要知识点

一次函数主要知识点一、一次函数的定义。

1. 一般地,形如y = kx + b(k,b是常数,k≠0)的函数,叫做一次函数。

- 当b = 0时,y=kx(k为常数,k≠0),y = kx叫做正比例函数,它是一种特殊的一次函数。

2. 自变量x的取值范围。

- 自变量x的取值范围是全体实数。

但在实际问题中,要根据具体情况确定自变量的取值范围。

例如,在计算长方形周长C = 2(x + y),如果把y用含x的一次函数表示,且x、y表示长方形的长和宽,那么x>0,y>0,这就限制了x的取值范围。

二、一次函数的图象。

1. 一次函数y = kx + b(k,b是常数,k≠0)的图象是一条直线。

- y = kx(k为常数,k≠0)的图象是经过原点(0,0)的一条直线。

2. 画一次函数图象的方法:两点法。

- 通常取直线与y轴的交点(0,b)和直线与x轴的交点(-(b)/(k),0)(k≠0)。

例如,对于一次函数y = 2x+3,与y轴交点为(0,3),令y = 0,则0 = 2x+3,解得x=-(3)/(2),与x轴交点为(-(3)/(2),0),然后过这两点画直线即可。

3. 一次函数图象的性质。

- 当k>0时,y随x的增大而增大,图象从左到右上升。

例如y = 3x+1,k = 3>0,随着x的值增大,y的值也增大,其图象是上升的直线。

- 当k<0时,y随x的增大而减小,图象从左到右下降。

例如y=-2x + 4,k=-2<0,随着x的值增大,y的值减小,其图象是下降的直线。

- 对于y = kx + b,b决定直线与y轴交点的位置。

当b>0时,直线与y轴交于正半轴;当b = 0时,直线过原点;当b<0时,直线与y轴交于负半轴。

三、一次函数的解析式确定。

1. 待定系数法。

- 如果知道一次函数图象上的两个点的坐标(x_1,y_1),(x_2,y_2),将其代入y = kx + b中,得到方程组y_1=kx_1 + b y_2=kx_2 + b,解这个方程组求出k和b的值,就可以确定一次函数的解析式。

初二数学一次函数知识点总结_会计基础知识点总结

初二数学一次函数知识点总结_会计基础知识点总结

初二数学一次函数知识点总结_会计基础知识点总结一、一次函数的定义一次函数也叫线性函数,它的一般形式为y = kx + b,其中k和b为常数。

k表示直线的斜率,b表示直线在y轴上的截距。

二、一次函数的图像特征1. 斜率k的值决定了直线的倾斜方向和程度。

当k>0时,直线向右上方倾斜;当k<0时,直线向左下方倾斜;当k=0时,直线与x轴平行,不倾斜。

2. 斜率k的绝对值越大,直线的倾斜度越大;斜率k的绝对值越小,直线的倾斜度越小。

3. 截距b的值决定了直线与y轴的交点位置。

当b>0时,直线与y轴的交点在y轴上方;当b<0时,直线与y轴的交点在y轴下方;当b=0时,直线与y轴的交点是原点。

三、一次函数的性质1. 整个一次函数图像都是一条直线。

2. 一次函数图像上的任意两个点,连接起来的线段和直线的倾斜方向相同。

3. 若直线过两个不同的点,则直线上的任意一点都在连接这两个点的线段上。

4. 如果直线经过第一个象限的一个点,则该点所在的直线全在第一象限;同理,经过第二、三、四象限的点的直线也全在相应象限。

四、一次函数的图像确定确定一次函数的图像需要知道直线的斜率k和截距b,可以通过以下方法确定:1. 已知直线上的两个点,根据两点坐标可以求得斜率k和截距b。

2. 已知直线的斜率和经过的一个点,可以根据斜率公式求得截距b。

3. 已知直线的截距和经过的一个点,可以根据截距公式求得斜率k。

五、一次函数的应用由于一次函数的图像是一条直线,其特性使得一次函数在实际问题中得到广泛应用,如:1. 速度和时间的关系。

一次函数可以描述速度与时间之间的关系,斜率表示速度,截距表示起始位置。

2. 成本和产量的关系。

一次函数可以描述成本与产量之间的关系,斜率表示单位产量成本,截距表示固定成本。

3. 坡度和高度的关系。

一次函数可以描述坡度与高度之间的关系,斜率表示坡度,截距表示起始高度。

4. 收入和销量的关系。

一次函数可以描述收入与销量之间的关系,斜率表示单位销售额,截距表示固定收入。

一次函数知识点全

一次函数知识点全

一次函数知识点全一次函数作为初中数学中最基础的函数之一,在我们的学习中扮演着非常重要的角色。

它是一个线性函数,表达式为y = kx + b,其中k和b为常数,x和y分别表示自变量和因变量。

在本文中,我们将全面介绍一次函数的各个知识点。

一、函数的定义和性质1. 函数的定义:一次函数是指自变量和因变量之间的关系能够用线性方程y = kx + b表示的函数。

其中k和b为常数,x和y分别表示自变量和因变量。

2. 定义域和值域:一次函数的定义域是所有实数集,值域也是所有实数集。

3. 单调性和增减性:一次函数的单调性取决于斜率k的正负。

当k > 0时,函数是递增的;当k < 0时,函数是递减的。

4. 零点和斜率:一次函数的零点是使得函数值为0的x值。

斜率表示函数图像的斜率,它等于函数的斜率系数k。

二、图像和性质1. 直线图像:一次函数的图像是一条直线。

当斜率k为正时,图像向上倾斜;当斜率k为负时,图像向下倾斜。

2. 截距:截距表示函数图像与坐标轴的交点。

一次函数有两个截距,分别为x轴截距和y轴截距。

x轴截距等于使得y = 0的x值,即-x轴的坐标;y轴截距等于使得x = 0的y值,即-y轴的坐标。

3. 平行和垂直:两条一次函数图像平行的条件是它们的斜率相等;两条一次函数图像垂直的条件是它们的斜率的乘积等于-1。

4. 点斜式和截距式:一次函数的点斜式表示为y - y₁ = k(x - x ₁),其中(x₁, y₁)为已知点,k为斜率;一次函数的截距式表示为y = kx + b,其中b为y轴截距。

三、应用1. 直线方程:一次函数在实际中常常用于解决直线方程的问题。

通过已知条件,可以确定一个点和斜率,从而写出一次函数的方程。

2. 性质推导:一次函数的各种性质可以通过代入特定的值来推导得出。

例如,已知两个点,可以求出斜率和截距;已知斜率和一个点,也可以确定该一次函数的方程。

3. 解方程:一次函数常用于解决实际问题中的方程。

八年级数学一-次函数知识点总结

八年级数学一-次函数知识点总结

一、一次函数的定义一次函数是指形如 $y = ax + b$ 的函数,其中 $a$ 和 $b$ 是常数,且 $a \neq 0$。

这个函数的图像是一条直线,其斜率由$a$ 决定,截距由 $b$ 决定。

二、一次函数的性质1. 斜率:一次函数的斜率 $a$ 表示函数图像的倾斜程度。

当$a > 0$ 时,直线向上倾斜;当 $a < 0$ 时,直线向下倾斜。

2. 截距:一次函数的截距 $b$ 表示直线与 y 轴的交点。

当 $b > 0$ 时,直线与 y 轴的交点在 y 轴的正半轴;当 $b < 0$ 时,直线与 y 轴的交点在 y 轴的负半轴。

3. 增减性:一次函数在其定义域内是单调的。

当 $a > 0$ 时,函数随着 $x$ 的增大而增大;当 $a < 0$ 时,函数随着 $x$ 的增大而减小。

4. 奇偶性:一次函数既不是奇函数也不是偶函数,因为它的图像不是关于原点对称的,也不是关于 y 轴对称的。

三、一次函数的图像1. 确定函数的一般形式 $y = ax + b$。

2. 确定直线的斜率 $a$ 和截距 $b$。

3. 在坐标系中绘制直线,使其通过点 $(0, b)$(即 y 轴上的截距点)。

4. 利用斜率 $a$,从截距点出发,绘制一条直线,使其与 x 轴和 y 轴的交点满足函数的方程。

四、一次函数的应用1. 在日常生活中,一次函数可以用来描述物体的线性变化,如温度随时间的变化、速度随距离的变化等。

2. 在物理学中,一次函数可以用来描述物体的直线运动,如自由落体运动。

3. 在经济学中,一次函数可以用来描述线性成本、线性收益等经济变量之间的关系。

4. 在计算机科学中,一次函数可以用来直线和折线图。

5. 在工程设计中,一次函数可以用来优化设计方案,如桥梁、建筑等。

一次函数是数学中的一个基本概念,它具有简单的形式和丰富的性质。

通过深入理解一次函数的定义、性质和图像,我们可以更好地掌握数学和物理学的相关知识,从而为解决实际问题提供有力的工具。

一次函数知识点归纳和题型归类

一次函数知识点归纳和题型归类

一次函数知识点归纳和题型归类一次函数是初中数学中比较基础但重要的一章,我们需要熟练掌握其中的知识点和题型。

本篇文章将对一次函数的知识点进行归纳和题型进行分类,帮助初学者更好地掌握这一章的知识。

一、函数的概念首先,需要明确函数的概念。

函数是一个有特定规律的对应关系,对于每一个自变量,都有且只有一个因变量与之对应。

用数学符号表示,就是y=f(x),其中x 是自变量,y是因变量,f(x)是规律。

二、一次函数的概念一次函数是一种函数,其特征是自变量的最高次数为1。

用数学符号表示,可以写成y=kx+b的形式,其中k和b为常数。

三、常规解题方法在解一次函数题目时,我们需要掌握两种基本的方法——画图法和代数法。

1.画图法:画出函数的图像,并根据题目中的条件标注出截距或斜率等信息,通过图像判断问题的解。

2.代数法:根据函数公式中k和b的意义,列出方程组,解得x或y的值,从而得出问题的解。

四、基础知识点1.截距:指函数图像与y轴的交点,用b表示。

2.斜率:指函数图像的斜率,用k表示。

斜率表示函数的增长或减少的速度,斜率大表示函数增长或减少的速度快。

3.函数图像:一次函数的图像是一条直线,其斜率和截距决定了函数的图像形状。

4.平行和垂直:一次函数的图像平行于y轴,意味着斜率为无穷大,而平行于x轴,则斜率为零。

两条直线垂直的条件是斜率的乘积为负一。

五、题型归类在进行题型分类时,我们可以根据难度和解题思路来划分不同的类型。

下面列出了一些常见的一次函数题型。

1.求截距:已知函数图像上的一点和其斜率,求函数的截距。

2.求斜率:已知函数图像上的两点,求函数的斜率。

3.求交点:已知两个函数,求它们的交点。

4.根据图像判断:已知函数图像的截距或斜率,求函数是否有解,以及解的性质。

5.综合问题:将已知函数与图形相结合,需要综合运用所学的知识求解问题。

总的来说,一次函数作为中等难度的内容,在实际的生活中有许多应用,例如物理、经济和地理等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数知识点总结与常见题型基本概念1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

例题:在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,则变量是________,常量是_______。

在圆的周长公式C =2πr 中,变量是________,常量是_________.2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。

*判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应例题:下列函数(1)y =πx (2)y =2x -1 (3)y =1x (4)y =21-3x (5)y =x 2-1中,是一次函数的有( )(A )4个 (B )3个 (C )2个 (D )1个3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

例题:下列函数中,自变量x 的取值范围是x ≥2的是( )A .yB .yC .yD .y函数y =x 的取值范围是___________.已知函数221+-=x y ,当11≤<-x 时,y 的取值范围是 ( )A .2325≤<-yB .2523<<yC .2523<≤yD .2523≤<y5、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。

7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

9、正比例函数及性质一般地,形如y =kx (k 是常数,k ≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y =kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零当k >0时,直线y =kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k <0时,•直线y =kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1)解析式:y =kx (k 是常数,k ≠0)(4)增减性:k >0,y 随x 的增大而增大;k <0,y 随x 增大而减小 (5)倾斜度:|k |越大,越接近y 轴;|k |越小,越接近x 轴例题:(1).正比例函数(35)y m x =+,当m 时,y 随x 的增大而增大. (2)若23y x b =+-是正比例函数,则b 的值是 ( )A .0B .23C .23-D .32-.(3)函数y =(k -1)x ,y 随x 增大而减小,则k 的范围是 ( ) A .0<k B .1>k C .1≤k D .1<k(4)东方超市鲜鸡蛋每个0.4元,那么所付款y 元与买鲜鸡蛋个数x (个)之间的函数关系式是_______________.(5)平行四边形相邻的两边长为x 、y ,周长是30,则y 与x 的函数关系式是__________. 10、一次函数及性质一般地,形如y =kx +b (k ,b 是常数,k ≠0),那么y 叫做x 的一次函数.当b =0时,y =kx +b 即y =kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y =kx +b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数一次函数y =kx +b 的图象是经过(0,b )和(-kb,0)两点的一条直线,我们称它为直线y =kx +b ,它可以看作由直线y =kx 平移|b |个单位长度得到.(当b >0时,向上平移;当b <0时,向下平移)(1)解析式:y =kx +b (k 、b 是常数,k ≠0 (2)必过点:(0,b )和(-kb,0)(3)走向: k >0,图象经过第一、三象限;k <0,图象经过第二、四象限 b >0,图象经过第一、二象限;b <0,图象经过第三、四象限 ⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<0b k 直线经过第二、三、四象限 (4)增减性: k >0,y 随x 的增大而增大;k <0,y 随x 增大而减小.(5)倾斜度:|k | 越大,图象越接近于y 轴;|k | 越小,图象越接近于x 轴. (6)图像的平移: 当b >0时,将直线y =kx 的图象向上平移b 个单位; (上加下减,左加右减) 当b <0时,将直线y =kx 的图象向下平移b 个单位. 例题:若关于x 的函数1(1)m y n x -=+是一次函数,则m = ,n . .函数y =ax +b 与y =bx +a 的图象在同一坐标系内的大致位置正确的是( )将直线y =3x 向下平移5个单位,得到直线 ;将直线y =-x -5向上平移5个单位,得到直线 .若直线a x y +-=和直线b x y +=的交点坐标为(8,m ),则=+b a ____________. 已知函数y =3x +1,当自变量增加m 时,相应的函数值增加( ) A.3m +1 B.3m C.m D.3m -1 11、一次函数y =kx +b 的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:与y轴的交点(0,b ),与x 轴的交点(b-,0).即横坐标或纵坐标为0的点.k>0经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y随x的增大而增大k<0经过第一、二、四象限经过第二、三、四象限经过第二、四象限图象从左到右下降,y随x的增大而减小☆k、b的符号对直线位置的影响☆图像过一、二、三象限图像过一、三、四象限图像过一、二、四象限图像过二、三、四象限(大大不过四)(大小不过二)(小大不过三)(小小不过一)思考:若m<0, n>0, 则一次函数y=mx+n的图象不经过()A.第一象限B. 第二象限C.第三象限D.第四象限12、正比例函数与一次函数图象之间的关系一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移).13、直线y=k1x+b1与y=k2x+b2的位置关系(1)两直线平行:k1=k2且b1≠b2 (2)两直线相交:k1≠k2(3)两直线重合:k1=k2且b1=b2 (4)两直线垂直:k1·k2= –114、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.15、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b确定它与x任何一个一元一次不等式都可以转化为ax +b >0或ax +b <0(a ,b 为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围. 17、一次函数与二元一次方程组(1)以二元一次方程ax +by =c 的解为坐标的点组成的图象与一次函数y =bcx b a +-的图象相同.(2)二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解可以看作是两个一次函数y =1111b c x b a +-和y =2222b cx b a +-的图象交点.18、一次函数的图像与两坐标轴所围成三角形的面积一次函数y =kx +b 的图象与两条坐标轴的交点:与y 轴的交点(0,b ),与x 轴的交点(kb-,0). 直线(b ≠0)与两坐标轴围成的三角形面积为s =kb b k b 2212=⨯⨯常见题型一、考察一次函数定义1、若函数()213m y m x=-+是y 关于x 的一次函数,则m 的值为 ;解析式为 .2、要使y =(m -2)x n -1+n 是关于x 的一次函数,n ,m 应满足 , . 二、考查图像性质1、已知一次函数y =(m -2)x +m -3的图像经过第一,第三,第四象限,则m 的取值范围是________.2、若一次函数y =(2-m )x +m 的图像经过第一、•二、•四象限,•则m •的取值范围是______3、已知m 是整数,且一次函数(4)2y m x m =+++的图象不过第二象限,则m 为 .4、直线y kx b =+经过一、二、四象限,则直线y bx k =-的图象只能是图4中的( )5、直线0px qy r ++=(0)pq ≠如图5,则下列条件正确的是( ).,1A p q r == .,0B p q r == .,1C p q r =-= .,0D p q r =-=6、如果0ab >,0a c <,则直线a cy x b b=-+不通过( )A .第一象限B .第二象限C .第三象限D .第四象限 7、如图6,两直线1y kx b =+和2y bx k =+在同一坐标系内图象的位置可能是( )8、如果0ab >,0a c <,则直线a cy x b b=-+不通过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9、b 为 时,直线2y x b =+与直线34y x =-的交点在x 轴上.10、要得到y =-32x -4的图像,可把直线y =-32x ( ).(A )向左平移4个单位(B )向右平移4个单位 (C )向上平移4个单位 (D )向下平移4个单位 11、已知一次函数y =-kx +5,如果点P 1(x 1,y 1),P 2(x 2,y 2)都在函数的图像上,且当x 1<x 2时,有y 1<y 2成立,那么系数k 的取值范围是________.12、已知点(-4,y 1),(2,y 2)都在直线y =- 12x +2上,则y 1 、y 2大小关系是( )(A )y 1 >y 2 (B )y 1 =y 2 (C )y 1 <y 2 (D )不能比较 三、交点问题1、若直线y =3x -1与y =x -k 的交点在第四象限,则k 的取值范围是( ).(A )k <13 (B )13<k <1 (C )k >1 (D )k >1或k <132、若直线y x a =-+和直线y x b =+的交点坐标为(,8)m ,则a b += .3、一次函数y kx b =+的图象过点(,1)m 和(1,)m 两点,且1m >,则k = ,b 的取值范围是 .4、直线y kx b =+经过点(1,)A m -,(,1)B m (1)m >,则必有( )A . 0,0k b >> .0,0B k b >< .0,0C k b <> .0,0D k b <<5、如图所示,已知正比例函数x y 21-=和一次函数b x y +=,它们的图像都经过点P (a ,1),且一次函数图像与y 轴交于Q 点。

相关文档
最新文档