132有理数的减法一32有理数的减法一
《1.3.2有理数的减法》教案
5.培养学生的团队合作意识,通过小组讨论和交流,提高解决问题的效率。
三、教学难点与重点
1.教学重点
(1)有理数减法的运算法则:本节课的核心是使学生掌握减去一个数等于加上这个数的相反数的概念,并能熟练应用此法则进行计算。
-重点举例:讲解5 - (-3)时,强调减去一个负数等于加上它的相反数(即5 + 3)。
(3)-2 - 5 = -7
(4)6 - 8 = -2
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生的逻辑推理能力,使其能够理解和掌握有理数减法的运算法则;
2.培养学生的数学运算能力,使其能够熟练进行有理数的减法运算;
3.培养学生的数学建模素养,使其能够将实际问题转化为有理数减法问题,并解决问题;
实践活动环节,分组讨论和实验操作让学生们有了实际操作的机会,这有助于他们将理论知识应用到具体问题中。但我注意到,有些小组在讨论时可能会偏离主题,需要我及时引导他们回到有理数减法的核心问题上。此外,实验操作的部分,如果能够提供更多样的教具和更实际的情境,可能会让学生的体验更加深刻。
在小组讨论中,学生们的参与度很高,他们能够提出自己的看法,并尝试解决实际问题。但在引导讨论的过程中,我发现有些学生对于开放性问题的回答还不够深入,可能是因为他们对减法法则的理解还不够深入。这也提醒我,在未来的教学中,需要更多地关注学生的思维过程,引导他们更深入地思考。
《1.3.2有理数的减法》教案
一、教学内容
本节课选自七年级数学教材《1.3.2有理数的减法》。教学内容主要包括以下几点:
1.掌握有理数减法的运算法则,能够正确进行减法运算;
1.3.2 有理数的减法(1)
=(-2.5)+(-5.9) =1.9+(+0.6)
=5
=-8.4
=2.5
2 计算
(1)比2℃低8℃的温度
(2)比-3℃低6℃的温度
解: 2-8=-6
比2℃低8℃的温度是-6 ℃
解 -3-6=-9
比-3℃低6℃的温度是-9 ℃
探索:输入-1,按图所示的程序运算,并写出
输出的结果。
解:当输入为-1时
5
1 ) 4
8
3 4
例6、 全班学生分为五个组进行游 戏,每组的基本分为100分,答对 一题加50分,答错一题扣50分,游 戏结束时,各组的分数如下:
第一组 第二组 第三组 第四组 第五组
100 150 -400 350 -100
(1) 第一名超出第二名多少分?
(2) 第二名超出第五名多少分?
解: 由上表可以看出,第一名得了 350分,第二名得了150分,第五名 得了- 400分
4-(-3)=7 ①
另一方面,我们知道 4+(+3)=7 ②
由①②有
4-(-3)=4+(+3) ③
4
7
0
-3
探究 减一个负数等于加上这个数的相反数
4-(-3)=4+(+3)③
从③式能看出减-3相当于加哪个数吗? 减-3相当于加-3的相反数
把4换成0,-1,-5,用上面的方法考虑
0-(-3) =3 0+3 =3 (-1)-(-3) =2 -1+3 =2
果加上20分的加分,她的成绩应该是 692。”吴老师说,何旋考出好成绩的秘 诀是心态好。“她很自信,也很有爱心。 考试结束后,她还问我怎么给边远地区
人教版七年级数学上册1.3.2有理数的减法(第2课时)
= [ ( - 2 0 ) + ( - 7 ) ] + [ ( + 5 ) + ( + 3 ) ] 【解析】4-(-3)=4+3=7
归纳
引入相反数后,加减混合运算可以统一为加法运算. 4)这四个数的和,为书写简单,可以省略算式中的括号和加号,把它写为
(3)23+(-11)+(-12) +10 这里使用了哪些运算律? 2、利用加法交换律、结合律进行简便运算; 解:原式=(-3)+(-8)+(+6)+(-7) 这里使用了哪些运算律?
解: 1430.5 解: 2 .4 3 .5 4 .6 3 .5
= 4 0 .5 13 = 2 .4 4 .6 3 .5 3 .5
=4.54 =0.5.
=77 = 0.
课堂练习
1、计算:
( 3 ) ( 7 ) ( 5 ) ( 4 ) ( 1 0 ) ; 解: ( 7 ) ( 5 ) ( 4 ) ( 1 0 );
探究
在数轴上,点 A,B 分别表示 a,b.利用有理数减 法,分别计算下列情况下点 A,B 之间的距离;
a=2,b=5; a=0,b=5; a=2,b=-5;a=-2,b=-5. 你能发现点 A, B 之间的距离与数 a,b 之间的关系 吗?
你能发现点 A, B 之间的距离与数 a,b 之间 的关系吗?
小试牛刀
1、把下式写成省略加号的和的形式,并把它读 出来
(-3)+(-8)-(-6)+(-7) 解:原式=(-3)+(-8)+(+6)+(-7)
七年级(人教版)集体备课教学设计:1.3.2《有理数的减法》(1)
七年级(人教版)集体备课教学设计:1.3.2《有理数的减法》(1)一. 教材分析《有理数的减法》是初中数学的重要内容,主要让学生掌握有理数减法的基本运算方法,理解有理数减法的运算规律,为后续的数学学习打下基础。
本节课的内容包括有理数减法的定义、法则以及运算方法,通过学习,让学生能够熟练地进行有理数的减法运算。
二. 学情分析七年级的学生已经掌握了有理数的基本概念和加法运算,但对减法运算可能还存在一定的困难。
因此,在教学过程中,教师需要引导学生从已有的知识出发,逐步过渡到减法运算的学习,帮助学生建立知识体系。
三. 教学目标1.让学生掌握有理数减法的基本运算方法。
2.培养学生解决实际问题的能力。
3.提高学生的数学思维能力。
四. 教学重难点1.教学重点:有理数减法的运算方法。
2.教学难点:理解有理数减法的运算规律,以及如何运用减法运算解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究有理数减法的运算方法。
2.运用实例讲解法,让学生通过具体例子理解有理数减法的运算规律。
3.采用小组合作学习法,培养学生的团队协作能力。
六. 教学准备1.准备相关教学PPT,展示有理数减法的运算方法。
2.准备一些实际问题,让学生在课堂上进行练习。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾有理数加法的基本运算方法,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT展示有理数减法的定义和运算方法,让学生初步了解有理数减法的基本概念。
3.操练(10分钟)教师给出一些简单的有理数减法题目,让学生在课堂上进行练习,巩固所学知识。
4.巩固(10分钟)教师通过PPT展示一些复杂的有理数减法题目,引导学生运用所学知识解决问题,提高学生的运算能力。
5.拓展(10分钟)教师引导学生思考有理数减法在实际生活中的应用,让学生举例说明,培养学生的实际应用能力。
6.小结(5分钟)教师对本节课的主要内容进行总结,强调有理数减法的运算方法和规律。
新人教版七年级数学上1.3.2 有理数的减法(1)教案及教学反思
新人教版七年级数学上1.3.2 有理数的减法(1)教案及教学反思1.3.2有理数的减法(1)毛集试验初级中学朱苗苗一、教学目标㈠知识与技能1.理解掌控有理数的减法法那么2.会进行有理数的减法运算㈡过程与方法1.通过把减法运算转化为加法运算,向同学渗透转化思想2.通过有理数减法法那么的推导,进展同学的规律思维技能3.通过有理数的减法运算,培育同学的运算技能㈢情感立场与价值感通过揭示有理数的减法法那么,渗透事物间普遍联系、相互转化的辨证唯物主义思想二、学法引导1.教学方法:尽量引导同学分析、归纳总结,以同学为主体,师生共同参加教学活动。
2.同学学法:探究新知归纳结论练习巩固三、重、难点与关键1.重点:有理数减法法那么和运算2.难点:有理数减法法那么的推导3.关键:正确完成减法到加法的转化四、师生互动活动设计老师提出实际问题,同学积极参加探究新知,老师出示练习题,同学以多种方式争论解决。
五、教学过程㈠创设情境,引入新课1、计算〔口答〕⑴;⑵-3+〔-7〕⑶-10+3;⑷10+〔-3〕2、由实物投影显示课本第21页中的画面,假设这是淮南冬季里的某个周六,白天的最高气温是3℃,夜晚的最低气温是-3℃,这一天的最高气温比最低气温高多少?引导同学观测:生:3℃比-3℃高6℃师:能不能列出算式计算呢?生:3-〔-3〕师:如何计算呢?总结:这就是我们今日要学的内容.(引入新课,板书课题)㈡探究新知,讲授新课1、师:大家知道减法是与加法相反的运算,计算3-〔-3〕,就是要求出一个数χ,使χ与-3的和等于3,那什么数与-3的和等于3呢?生:6+(-3)=3师:很好!由此可知3-〔-3〕=6师:计算:3+〔+3〕得多少呢?生:3+〔+3〕=6师:让同学观测两式结果,由此得到3-〔-3〕=3+〔+3〕师:通过上述题,同学们观测减法是否可以转化为加法计算呢?生:可以师:是如何转化的呢?生:减去一个负数〔-3〕,等于加上它的相反数〔+3〕2、换几个数再试一试,计算以下各式:⑴0-〔-3〕=0+〔+3〕=⑵-5-〔-3〕=-5+〔+3〕=⑶9-8=9+〔-8〕=引导同学完成答题,并提问:通过上述的争论,你能得出什么结论?归纳得出:有理数的减法可以转化为加法来进行,“相反数“是转化的桥梁。
1.3.2 有理数的减法 第2课时ppt
4.-2-3+5的读法正确的是( A ) A.负2、负3、正5的和 B.负2、减3、正5的和 C.负2、3、正5的和 D.以上都不对
5.把“+,-”看作性质符号,3-5+8-7应读作_正__3_、__负__5_、__正__8、 _负_7_的__和__ ;把“+,-”看作运算符号,3-5+8-7应读作_3_减__ _5_加__8减__7__ .
17. 某汽车厂计划上半年每月生产汽车200辆,由于另有任务,每 月上班人数不一定相等,实际每月生产量与计划量相比情况如下 表(增加记为正数,减少记为负数):
月份 一 二 三 四 五 六 增减(辆) +30 -20 -10 +40 +20 -50
(1)生产量最多的一个月比生产量最少的一个月多生产多少辆? (2)半年内总生产量是多少?比计划增加数
1.3 有理数的加减法 1.3.2 有理数的减法
第2课时 有理数的加减混合运算
知识点1:加减混合运算统一成加法运算 1.把(-3)-(+2)-(-4)+(-5)+(+6)统一成几个有理数相加 的形式,正确的为( B ) A.(-3)+(+2)+(-4)+(-5)+(+6) B.(-3)+(-2)+(+4)+(-5)+(+6) C.(+3)+(+2)+(+4)+(+5)+(+6) D.(-3)-(+2)-(-4)+(-5)+(+6)
2. 将4-(+6)-(-3)+(-5)写成省略括号和加号的和的形式
为(C )
A.4-6+3+5
B.4+6-3-5
C.4-6+3-5
D.4-6-3-5
3. 下列式子可读作“负1、负3、正6、负8的和”的是( B ) A.-1+(-3)+(+6)-(-8) B.-1-3+6-8 C.-1-(-3)-(-6)-(-8) D.-1-(-3)-6-(-8)
人教版七年级上册数学第一章《1.3.2有理数的减法》(2课时,教案+课件)
人教版七年级上册数学第一章《1.3.2 有理数 的减法 》(2 课时, 教案+课 件)
达标检测
2. 一电脑公司仓库在8月1日库存某种型号 的电脑20台,8月2日到6日该种型号的电脑 进出记录如下表,问到8月6日止,库存该 种电脑多少台
人教版七年级上册数学第一章《1.3.2 有理数 的减法 》(2 课时, 教案+课 件)
尝试应用
把下式写成省略加号的和的形式,并把它读出来 (-3)+(-8)-(-6)+(-7)
解:原式=(-3)+(-8)+(+6)+(-7) =-3-8+6-7
读作“-3,-8,+6,-7的和 或负3减8加6减7
人教版七年级上册数学第一章《1.3.2 有理数 的减法 》(2 课时, 教案+课 件)
课文讲解
算式 (20) (3) (5) (7)
是-20,3,5,-7 这四个数的和,为书写简单, 可以省略算式中的括号和加号,把它写为
20 3 5 7
这个算式可以读作“负20、正3、正5、负7的 和”,或读作“负20加3加5减7”.
人教版七年级上册数学第一章《1.3.2 有理数 的减法 》(2 课时, 教案+课 件)
知识探究
在数轴上,点 A,B 分别表示 a,b.利用有理数减法, 分别计算下列情况下点 A,B 之间的距离;
a=2,b=6;a=0,b=6;a=2,b=-6; a=-2,b=-6. 你能发现点 A, B 之间的距离与数 a,b 之间的关系吗? A,B之间的距离就是a,b中较大的数减去较小的数的差
人教版七年级上册数学第一章《1.3.2 有理数 的减法 》(2 课时, 教案+课 件)
1.3.2有理数的减法(1)
填空: 填空: (1)温度3℃比-8 ℃高 温度3℃比 ℃高 3℃ ℃低 (2)温度-9 ℃比-1 ℃低 温度- ℃比 (3)海拔-20m比-30m高 海拔-20m比 30m高 (4)从海拔22m到-10m,下降了 从海拔22m到 10m, 22m ; ; ; ;
全班学生分为五个组进行游戏, 全班学生分为五个组进行游戏,每组的基本 分为100 100分 答对一题加50 50分 答错一题扣50 分为100分,答对一题加50分,答错一题扣50 游戏结束时,各组的分数如下: 分。游戏结束时,各组的分数如下:
7℃
1 0 —1
-2
-3 -4 -5 -6
-2
-3 -4 -5 -6
比较这两个式子,你能发现什么? 比较这两个式子,你能发现什么? 不变
变成相反数
4 -(- 3)= 7 ( )
减号变加号
4+ 3=7
结果相同
计算下列各式: 计算下列各式:
•50 - 20 = ? 50 •50 - 10 =? 50 =? •50 – 0 =? 50 =? •50 -(-10)= ? 50 10) •50 -(-20)=? 50 20)
(3) 一个数与 相 一个数与0相 仍得这个数. 加,仍得这个数.
全国北方主要城市天气预报
城市
天气 最高温 最低温
7 5 -3 0 -2 -3 -3 ……….. ………..
温差
15 多云 郑州 9 小雨 西安 3 小雪 哈尔滨 -1 小雪 银川 5 小雪 沈阳 -1 呼和浩特 雨夹雪 4 晴 乌鲁木齐 …………. ……….. ………. …………. ……….. ……….
第1组 第2组 第3组 第4组 第5组 100 150 -400 350 -100
第一章有理数1.3.2有理数的减法
下列说法正确的是______ C A,减去一个数等于加上这个数;
B,0减去一个数仍得这个数;
C,a-b=a+(-b);
D,两个数的差一定比被减数小。
例1 计算下列各题:
(1)9 -(-5)
(3)0 – 8
(2)(-3)- 1
(4)(-5) - 0 减去(-5)等于加上 -5 的相反数。
解:(1)原式= 9 + 5 = 14
(2)原式=(-3)+(-1) 减去1等于加上 1 的相 =-4 反数。 (3)原式 = 0 +(-8)= - 8
(4)原式 =(-5 )+ 0 = -5
例 计算:
(1)(-3)-(-5); (2) 0-7;
1 1 3 5 2 4
(3)(7.2)-(-4.8); (4)
减号变加号
解: (1)(-3) -(-5)= (-3)+5= 2
减数变相反数
问题:由(2)可知:较小的数减去较大的数, 所得的差。符号是什么?
课 堂 达 标
(1) 3-(-3)=___; (2)(-11)-2=______; (3) 0-(-6)=_____; (4)(-7)-(+8)= _____;
=8848+155
=9003(米)
答:两处高度相差9003米。
全班同学分为四组进行游戏,每组 的基本分为100分,答对一题加50分, 答错一题扣50分,游戏结束时,各组 的分数如下
第一组 第二组 第三组 第四组 第五组 100 150 - 400 350 - 100
(1)第一名超出第二名多少分? (2)第一名超出第五名多少分?
1.3.2有理数的减法知识点及练习
1.3.2有理数的减法 知识点有理数的减法可以转化为加法来进行。
有理数减法法则:减去一个数,等于加这个数的相反数。
a -b =a +(-b)有理数的减法 巩固练习一、填空题:1、(1)温度3°C 比-9°C 高 ;(2)温度-6°C 比-2°C 低 ; (3)海拔-200米比-300米高 ;(4)海拔600米比-100米高 。
2、(1)表示数3的点与表示数-2.2的点的距离是 ; (2)表示数4.5的点与表示数2.5的点的距离是 ; (3)表示数-4与-4.5的点的距离是 ; (4)表示数-3.5与2.5的点的距离是 .3、(1)1653比—12大 ; (2)—14.25比741小 ;(3)—8比 小16;(4)—8比 大16.二、判断题:(1)减去一个数,等于加上这个数. ( )(2)零减去一个数仍得这个数. ( ) (3)一个数减去零仍得这个数.()(4)两个有理数的差一定小于被减数. ( )(5)比—3小3的数是0.()(6)两个负数之和小于两个正数之和.()(7)任何两个有理数的和都不等于这两个有理数的差.( )(8)若0>a >b ,则a -b >0.()三、计算题1、(1)(1)-5-7; (2)(-5)-(-5) (3)(-23)-(-1) (4)-8-82、(—36)—(—25)—(+36)3、30-15-(-15)-(-7)4、)65(313217---5、851)83()81(---- 6、(-3)-8-4四、解答题:1、 北京某日早晨气温是零下2°C ,中午上升了8°C ,半夜又下降了6°C ,半夜时气温是多少?2、有八箱苹果,每箱质量如下(单位:千克):25,24,26,23,25,27,26,28.你能较快的算出它的总质量吗?有理数加减法同步测试题一、选择题1、下面是小华做的数学作业,其中算式中正确的是( )①74)74(0=+-;②417)417(0=--;③510)51(-=-+;④510)51(-=+-A 、①②B 、①③C 、①④D 、②④ 2、下列交换加数的位置的变形中,正确的是( ) A 、14541445-+-=-+- B 、1311131134644436-+--=+--C 、12342143-+-=-+-D 、4.5 1.7 2.5 1.8 4.5 2.5 1.8 1.7--+=-+- 3、下列计算结果中等于3的是( ) A 、74-++ B 、()()74-++ C 、74++- D 、()()74+--4、已知胜利企业第一季度盈利26000元,第二季度亏本3000元,该企业上半年盈利(或亏本)可用算式表示为( ) A 、)3000()26000(+++ B 、)3000()26000(++- C 、)3000()26000(-+- D 、)3000()26000(-++5、下列说法正确的是( )A 、两个数之差一定小于被减数B 、减去一个负数,差一定大于被减数C 、减去一个正数,差一定大于被减数D 、0减去任何数,差都是负数6、小明今年在银行中办理了7笔储蓄业务:取出9.5元,存进5元,取出8元,存进12无,存进25元,取出1.25元,取出2元,这时银行现款增加了( )A 、12.25元B 、-12.25元C 、12元D 、-12元 7、-2与414的和的相反数加上651-等于( )A 、-1218B 、1214- C 、125 D 、12548、一个数加上-12得-5,那么这个数为( ) A 、17 B 、7 C 、-17 D 、-79、x <0, y >0时,则x, x+y, x -y ,y 中最小的数是 ( ) A x B x -y C x+y D y 10、下面结论正确的有 ( )①两个有理数相加,和一定大于每一个加数. ②一个正数与一个负数相加得正数. ③两个负数和的绝对值一定等于它们绝对值的和. ④两个正数相加,和为正数. ⑤两个负数相加,绝对值相减. ⑥正数加负数,其和一定等于0.A 、0个B 、1个C 、2个D 、3个11、甲、乙、丙三地的海拔高度分别为20米,-15米和-10米,那么最高的地方比最低的地方高( ) A 、10米 B 、15米 C 、35米 D 、5米12、计算:21)7()9()3()5(+---++--所得结果正确的是( )A 、2110- B 、219- C 、218 D 、2123- 13、若031=++-b a ,则21--a b 的值为( ) A 、214- B 、212- C 、211- D 、211二、填空题1、+8与-12的和取___号,+4与-3的和取___号.2、0℃比-10℃高多少度?列算式为 ,转化为加法是 ,•运算结果为 .3、小华记录了一天的温度是:早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的温度是 ℃.4、比-18小5的数是 ,比-18小-5的数是 .5、3与-2的和的倒数是____,-1与-7差的绝对值是____.6、 已知两个数556和283-,这两个数的相反数的和是 .7、小明存折中原有450元,取出260元,又存入150元,现在存折中还有____元.8、将()()()6372-+--+-中的减法改成加法并写成省略加号的代数和的形式应是 . 9、-0.25比-0.52大____,比-521小2的数是____.10、已知m 是6的相反数,n 比m 的相反数小2,则m n -等于 . 11、若b a ,b a -<>则0,0一定是____(填“正数”或“负数”)12.在-13与23之间插入三个数,使这5个数中每相邻两个数之间的距离相等,则这三个数的和是 . 13、已知21,43,32-=-==c b a ,则式子=--+-)()(c b a _____.14、有理数中,所有整数的和等于 .15、把下列算式写成省略括号的形式:)7()3()2()8()5(++---++-+=____.16、某足球队在一场比赛中上半场负5球,下半场胜4球,•那么全场比赛该队净胜 球为______. 17、若,,则_____0,_______0.三、解答题 1、列式并计算:(1)什么数与125-的和等于87-?(2)-1减去5232与-的和,所得的差是多少?2、计算下列各式:(1))8()13(2)6(0+---+-- (2))127(65)43(6513--+--(3)4122)75.0()218()25.6()4317(-+---+-+ (4)(-441)-(+531)-(-441)(5)-0.5-(-341)+2.75-(+721) (6)712143269696⎛⎫⎛⎫⎛⎫⎛⎫----++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(7) ()34187.5213772⎛⎫⎛⎫⎛⎫-+-+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(8) ()232321 1.75343⎛⎫⎛⎫⎛⎫------+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(9) 1 ―3 +5―7 +9―11+…+97―99 (10) (+9)+(-7)+(+10)+(-3)+(-9)3、下表是某中学七年级6名学生的体重情况: (1)根据已知情况完成下表:(2)谁最重?谁最轻?(3)最重的与最轻的相差多少?4、某公司老板对下半年每月的利润作了如下记录:7、8、11、12月盈利分别是13万元、12万元、12.5万元、10万元,9、10月亏损分别是0.7万元和0.8万元.算出该公司下半年的总利润额5、小红和小明在游戏中规定:长方形表示加,圆形表示减,结果小者获.列式计算,小明和小红谁为胜者?6、某出租汽车从停车场出发沿着东西向的大街进行汽车出租,到晚上6时,一天行驶记录如下:(向南为正,向北为负,单位:千米)+12、-5、+3、+2、+9、+5、-3、-7、+11、-6、-5 (1)晚上8时,出租车在什么位置.(2)若汽车每千米耗0.2升,则从停车场出发到晚上8时,出租车共耗没多少升?小红:小明:4.5-6-7-823.21.11.4。
2020秋七彩课堂初中数学人教版七年级上册教学课件1.3.2 有理数的减法
探究新知
1.3 有理数的加减法/
归纳总结
1. 有理数减法的运算步骤:①根据有理数的减法法则将减法运算 变为加法运算;②根据有理数的加法法则和运算律计算出结 果.
2. 有理数的减法是有理数加法的逆运算 ,在转化过程中,应注 意“两变一不变”,即减法变加法、减数变成它的相反数、 被减数不变.
探究新知
被减数不变
减数变其相 反数
探究新知
素养考点 1 有理数的减法运算
例1 计算:
(1)(–3)–(–5);
(2)0–7;
解:(1) (–3)–(–5)= (–3)+5=2
1.3 有理数的加减法/
(3)7.2–(–4.8).
(2) 0–7 = 0+(–7) = –7
(3) 7.2–(–4.8) = 7.2+4.8 = 12
探究新知
1.3 有理数的加减法/
例4 某日哈尔滨、长春等五个城市的最高气温与最低
气温记录如下表.
城市 哈尔滨 最高气温 2 ℃ 最低气温 –12 ℃
长春 3℃ –10 ℃
沈阳 3℃ –8 ℃
北京 12 ℃ 2℃
大连 6℃ –2 ℃
哪个城市的温差最大?哪个城市的温差最小?
探究新知
1.3 有理数的加减法/
(3)海拔高度–13m比–200m高___1_8_7__m;
(4)从海拔20m到–40m,下降了__6_0___m.
课堂检测
1.3 有理数的加减法/
3. 判断并说明理由.
(1)在有理数的加法中,两数的和一定比加数大.( ×)
也可能小于加数或等于加数,例如–2+(–3)=–5,–3+0=–3.
(2)两个数相减,被减数一定比减数大.( ×)
1.3.2 第1课时 有理数的减法运算
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学ຫໍສະໝຸດ ◆反馈演练 (◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
人教版七年级上《1.3.2有理数的减法》同步练习含答案解析
《1.3.2 有理数的减法》一、选择题1.计算(﹣8)﹣2的结果是( )A.﹣6 B.6 C.10 D.﹣102.如图,数轴上A点表示的数减去B点表示的数,结果是( )A.8 B.﹣8 C.2 D.﹣23.下列说法正确的是( )A.两个数之差一定小于被减数B.减去一个负数,差一定大于被减数C.减去一个正数,差不一定小于被减数D.0减去任何数,差都是负数4.当a<0时,2,2+a,2﹣a,a中最大的是( )A.2 B.2+a C.2﹣a D.a5.0减去一个数等于( )A.这个数B.0C.这个数的相反数D.负数6.在(﹣4)﹣( )=﹣9中的括号里应填( )A.﹣5 B.5 C.13 D.﹣137.已知a,b在数轴上的位置如图所示,则a﹣b的结果的符号为( )A.正B.负C.0 D.无法确定二、填空题8.求﹣5℃下降3℃后的温度.列式表示为,结果为℃.9.在下列括号内填上适当的数.(1)(﹣7)﹣(﹣3)=(﹣7)+(2)(﹣5)﹣4=(﹣5)+ ;(3)0﹣(﹣2.5)=0+ ;(4)8﹣(+2 013)=8+ .10.两个有理数的差是7,被减数是﹣2,减数为.11.甲地的海拔是150m,乙地的海拔是130m,丙地的海拔是﹣105m,地的海拔最高,地的海拔最低,最高的地方比最低的地方高米,丙地比乙地低米.12.武汉地区2月5日早上6时的气温为﹣1℃,中午12时为3℃,晚上11时为﹣4℃,中午12时比早上6时高℃,晚上11时比早上低℃.三、解答题13.计算:(1)(﹣6)﹣9;(2)(﹣3)﹣(﹣11);(3)1.8﹣(﹣2.6);(4)(﹣2)﹣4.14.世界最高峰是珠穆朗玛峰,海拔高度是8848m,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是﹣392m,则两处高度差为米.15.列式计算:(1)已知甲、乙两数之和为﹣2020,其中甲数是﹣7,求乙数;(2)已知x是5的相反数,y比x小﹣7,求x与﹣y的差.16.已知a=﹣1,|﹣b|=|﹣|,c=|﹣8|﹣|﹣|,求﹣a﹣b﹣c的值.《1.3.2 有理数的减法》参考答案与试题解析一、选择题1.计算(﹣8)﹣2的结果是( )A.﹣6 B.6 C.10 D.﹣10【考点】有理数的减法.【专题】计算题;实数.【分析】原式利用减法法则变形,计算即可得到结果.【解答】解:原式=﹣(8+2)=﹣10,故选D【点评】此题考查了有理数的减法,熟练掌握减法法则计算是解本题的关键.2.如图,数轴上A点表示的数减去B点表示的数,结果是( )A.8 B.﹣8 C.2 D.﹣2【考点】数轴;有理数的减法.【分析】首先由数轴,得出A点表示的数是﹣3,B点表示的数是5,然后根据减法的意义,求出结果.【解答】解:﹣3﹣5=﹣8.故选B.【点评】知道数轴上的点和实数是一一对应的,会熟练计算有理数的减法.3.下列说法正确的是( )A.两个数之差一定小于被减数B.减去一个负数,差一定大于被减数C.减去一个正数,差不一定小于被减数D.0减去任何数,差都是负数【考点】有理数的减法.【分析】本题是对有理数减法的差的考查.【解答】解:如果减数是负数,那么差就大于被减数,所以第一个不对;减去一个负数等于加上它的相反数,即加上一个正数,差一定大于被减数;减去一个正数,差一定小于被减数,所以第三个不对;0减去负数,差是正数,所以最后一个不对.故选B.【点评】减去一个数等于加上这个数的相反数,所以差与被减数的关系要由减数决定.4.当a<0时,2,2+a,2﹣a,a中最大的是( )A.2 B.2+a C.2﹣a D.a【考点】有理数大小比较.【分析】根据有理数的减法,可得两正数相加,根据两正数的和大于任何一个正数,正数大于异号两数的和,正数大于负数,可得答案.【解答】解:∵a<0,∴2﹣a>2>2+a>a.故选:C.【点评】本题考查了有理数的大小比较,利用了两正数的和大于任何一个正数,正数大于异号两数的和,正数大于负数.5.0减去一个数等于( )A.这个数B.0C.这个数的相反数D.负数【考点】相反数.【分析】根据有理数减法法则:减去一个数,等于加上这个数的相反数作答.【解答】解:0减去一个数等于这个数的相反数.故选:C.【点评】本题考查了有理数减法.注意:在有理数减法运算时,被减数与减数的位置不能随意交换;因为减法没有交换律.减法法则不能与加法法则类比,0加任何数都不变,0减任何数应依法则进行计算.6.在(﹣4)﹣( )=﹣9中的括号里应填( )A.﹣5 B.5 C.13 D.﹣13【考点】有理数的减法.【分析】根据减数=被减数﹣减数列式,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:﹣4﹣(﹣9)=﹣4+9=5.故选B.【点评】本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.7.已知a,b在数轴上的位置如图所示,则a﹣b的结果的符号为( )A.正B.负C.0 D.无法确定【考点】数轴.【分析】先比较出a的b大小,然后在进行移项可得到问题的答案.【解答】解:∵a在b的左边,∴a<b.∴a﹣b<0.故选:B.【点评】本题主要考查的是数轴的认识,能够利用数轴比较两个数的大小是解题的关键.二、填空题8.求﹣5℃下降3℃后的温度.列式表示为﹣5﹣3 ,结果为﹣8 ℃.【考点】有理数的减法.【分析】用﹣5℃减去下降的温度列出算式即可,再根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣5﹣3=﹣8℃.故答案为:﹣5﹣3;﹣8.【点评】本题考查了有理数的减法,读懂题目信息并熟记运算法则是解题的关键.9.在下列括号内填上适当的数.(1)(﹣7)﹣(﹣3)=(﹣7)+ 3(2)(﹣5)﹣4=(﹣5)+ (﹣4) ;(3)0﹣(﹣2.5)=0+ 2.5 ;(4)8﹣(+2 013)=8+ (﹣2020) .【考点】有理数的减法.【分析】有理数减法法则:减去一个数,等于加上这个数的相反数.依此即可求解.【解答】解:(1)(﹣7)﹣(﹣3)=(﹣7)+3(2)(﹣5)﹣4=(﹣5)+(﹣4);(3)0﹣(﹣2.5)=0+2.5;(4)8﹣(+2 013)=8+(﹣2020).故答案为:3;(﹣4);2.5;(﹣2020).【点评】考查了有理数的减法,方法指引:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).10.两个有理数的差是7,被减数是﹣2,减数为﹣9 .【考点】有理数的减法.【分析】根据有理数的减法,即可解答.【解答】解:﹣2﹣7=﹣9,故答案为:﹣9.【点评】本题考查了有理数的减法,解决本题的关键是熟记有理数的减法.11.甲地的海拔是150m,乙地的海拔是130m,丙地的海拔是﹣105m,甲地的海拔最高,丙地的海拔最低,最高的地方比最低的地方高255 米,丙地比乙地低235 米.【考点】有理数的减法.【分析】先比较大小,得到海拔最高和海拔最低的地方,再根据有理数的减法运算,可得最大数减最小数,可得最高的地方比最低的地方高多少米,再用丙地比乙地的距离差.【解答】解:∵150m>130m>﹣105m,∴甲地的海拔最高,丙地的海拔最低,150﹣(﹣105)=255(m),130﹣(﹣105)=235(m).故最高的地方比最低的地方高255米,丙地比乙地低235米.故答案为:甲,丙,255,235.【点评】本题考查了有理数的减法,减一个数等于加这个数的相反数.12.武汉地区2月5日早上6时的气温为﹣1℃,中午12时为3℃,晚上11时为﹣4℃,中午12时比早上6时高 4 ℃,晚上11时比早上低 3 ℃.【考点】有理数的减法;有理数的加法.【分析】用中午的温度减去早上的温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解;用早上的温度减去晚上的温度,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:3﹣(﹣1),=3+1,=4℃;﹣1﹣(﹣4),=﹣1+4,=3℃.故答案为:4;3.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.三、解答题13.计算:(1)(﹣6)﹣9;(2)(﹣3)﹣(﹣11);(3)1.8﹣(﹣2.6);(4)(﹣2)﹣4.【考点】有理数的减法.【分析】(1)根据有理数的减法运算法则进行计算即可得解;(2)(3)根据减去一个数等于加上这个数的相反数进行计算即可得解;(4)根据有理数的减法运算法则进行计算即可得解.【解答】解:(1)(﹣6)﹣9=﹣15;(2)(﹣3)﹣(﹣11),=﹣3+11,=8;(3)1.8﹣(﹣2.6),=1.8+2.6,=4.4;(4)(﹣2)﹣4,=﹣2﹣4,=﹣7.【点评】本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.14.世界最高峰是珠穆朗玛峰,海拔高度是8848m,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是﹣392m,则两处高度差为9240 米.【考点】有理数的减法;正数和负数.【专题】应用题.【分析】求海拔高度差用“作差法”,即:珠穆朗玛峰海拔高度﹣死海湖面海拔高度,列式计算.【解答】解:8848﹣(﹣392)=8848+392=9240m.故答案为:9240m【点评】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.15.列式计算:(1)已知甲、乙两数之和为﹣2020,其中甲数是﹣7,求乙数;(2)已知x是5的相反数,y比x小﹣7,求x与﹣y的差.【考点】有理数的加减混合运算;相反数.【专题】计算题.【分析】(1)用甲、乙两个数的和减去甲数,求出乙数是多少即可.(2)首先根据x是5的相反数,可得x=﹣5;然后根据y比x小﹣7,求出y的值,即可求出x与﹣y 的差是多少.【解答】解:(1)﹣2020﹣(﹣7)=﹣2020,答:乙数是﹣2020.(2)∵x是5的相反数,∴x=﹣5,∵y比x小﹣7,∴y=﹣5﹣7=﹣12,∴x﹣(﹣y)=﹣5﹣12=﹣17答:x与﹣y的差是﹣17.【点评】此题主要考查了有理数的加减混合运算,要熟练掌握,解答此题的关键是要明确:有理数加减法统一成加法.16.已知a=﹣1,|﹣b|=|﹣|,c=|﹣8|﹣|﹣|,求﹣a﹣b﹣c的值.【考点】绝对值.【分析】根据绝对值的性质求出b、c的值,计算即可.【解答】解:∵|﹣b|=|﹣|,∴b=,c=7,当a=﹣1,b=,c=7时,﹣a﹣b﹣c=﹣6,当a=﹣1,b=﹣,c=7时,﹣a﹣b﹣c=﹣5.【点评】本题考查的是绝对值的性质、有理数的加减混合运算,掌握绝对值的性质、有理数的加减混合运算法则是解题的关键.第1页(共3页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、下列结论不正确的是( ) A、若a>0,b<0,则a-b>0 B、若a<0,b>0,则a-b<0 C、若a<0,b<0,则a-(-b)>0,.
D、若a<0,b<0,且 b ? a 则a-b>0
5、若 x ? 0,则 x ? (? x) 等于( )
A、? x B、0 C、2x D、? 2x
6、若m ? n ? n ? m, m ? 4, n ? 3, 则m ? n ?
(3)(-5)-(-8); (4) 0 -(-5);
(5)(-2.5)-5.9 ; (6) 1.9 -(-0.6). 2.计算:
(1)比2oC 低 8oC 的温度;
(2)比 -3oC 低 6oC 的温度.
3.分别求出数轴上下列两点间的距离: (1)表示数-8的点与表示数3的点; (2)表示数-2的点与表示数-3的点.
(2) 0-7 ;
解:原式= (-3)+5
=2
.
解:原式= 0+(-7) =-7
例 4 计算:
(3) 7.2-(-4.8) ;
(4) (-3 1 )-5 1 24
.
解:原式= 7.2+4.8
解:原式=(-3
1 )
?
(-5
1 )
2
1.计算:
(1) 6-9;
(2) (+4)-(-7);
有理数减法法则:
减去一个数,等于加上这个数的相反数.
你能用字母把减法法则表示出来吗?
a ? b ? a ? (? b)
例 4 计算:
(1) (? 3) ? (? 5) ; (3) 7.2 ? (? 4.8) ;
.
(2) 0 ? 7 ;
(4) (? 3 1 ) ? 2
1 5
4
.
例 4 计算:
(1) (-3)-(-5) ;
你能从中发现什么吗?
9 ? 8 ? _______ , 9 ? (? 8) ? ________ ,
15 ? 7 ? ________ ,15 ? (? 7) ? _________.
(? 1) ? (? 3) ? ________ ,? 1 ? (? 3) ? ________ , ? 8 ? (? 4) ? ________ ,? 8 ? (? 4) ? ________ , 0 ? (? 3) ? ________ ,0 ? (? 3) ? ________ , 0 ? (? 5) ? ________ ,0 ? (? 5) ? ________ ,
温差是指最高气温 减最低气温.
某地一天的最高温度为 3℃, 最低温度是- 3℃ , 这天的温差是多少摄氏度呢?
你能看出3oC 比-3oC高多 少摄氏度吗?
3-(-3)=?6
(1)怎样理解 3 ? (? 3) ? 6 ?
(2)想一想: 3? _____? 6 .
观察( 1 )( 2)两个等式得出的结果,你发现 了什么?从结果中能看出减- 3相当于加哪个数?
思考:对于其它的数,这个猜想还成立吗?
将上式中的数换成 0,-1,-5, 用上面的方法考虑: 某地一天的最高温度为 ℃, 最低温度是- 3℃ , 这天的温差是多少摄氏度呢?
0 ? (? 3); (? 1) ? (? 3); (? 5) ? (? 3).
这些数减- 3的结果与它们加+ 3的结果相同吗?
世上无难事只怕有心人