河北衡水中学高考模拟试卷

合集下载

2023年河北省衡水中学高考语文模拟试卷(5月份)

2023年河北省衡水中学高考语文模拟试卷(5月份)

2023年河北省衡水中学高考语文模拟试卷(5月份)·学生版一、现代文阅读(36分)(一)论述类文本阅读(本题共1小题9分)1.(9分)阅读下面的文字,完成下面小题。

对小说中风景描写的考察,可以从有效性、适度性、技术性这三个维度进行。

风景描写的有效性是指小说中风景描写的必要性,是就其价值与意义而言的。

在小说创作中,风景描写的有效性主要体现在其有助于人物形象的刻画,从而实现“圆形”人物的塑造要求。

小说中的风景描写既可以展现人物周围的环境,又可以揭示人物的身份、气质和个性,展示人物的隐蔽心理结构,并与创作主题紧密相连。

朱光潜说:“人的思想情感和自然的动静消息交感共鸣,自然界事物常可成为人的内心活动的象征。

”风景描写还有助于小说空间的构建,尤其体现在以地域空间为表征的外在物理空间和以情绪空间、哲理空间为代表的内在心理空间的开拓上。

小说空间是一个虚构的艺术空间,往往由物理空间和心理空间这两个层面构成。

在物理空间中最为重要的是时空的构建,时空与涉及人物出场、情节推进的风景关系紧密,比如展示故事发生的时间、地点,呈现时序中的自然环境,进而折射社会大环境。

小说中的风景描写是不是越多越好呢?我想这需要坚持一个适度性的原则。

在有效性的基础上,风景描写过短和冗长都是一种弊病。

英国小说家毛姆曾说:“黎明和夕阳、夜晚的星空、万里无云的暗天、白雪皑皑的山岭、阴森幽暗的树木……所有这一切,都会引来没完没了的冗长描写。

许多描写固然很美,但离题万里。

这是到了很久之后,作家们才明白,不管多么富有诗意、多么逼真形象的景物描写,除非它有助于推动故事的发展或者有助于读者了解人物的某些情况,否则就是多余的废话。

”毛姆点出了风景描写的有效性问题,同时也批评了尺幅“冗长”的缺陷,暗含了风景描写应遵循适度性的原则。

许多人都有过阅读外国经典小说时因过于冗长的风景描写而被迫翻页寻找故事情节的不适阅读体验。

小说是写给读者大众看的,而读者大众是一种“意义动物”。

河北衡水中学2023年高考仿真卷生物试卷含解析

河北衡水中学2023年高考仿真卷生物试卷含解析

2023年高考生物模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题:(共6小题,每小题6分,共36分。

每小题只有一个选项符合题目要求)1.某研究小组使用小鼠跑步机实验法研究小鼠不同运动强度下机体氧气消耗量和血液中乳酸含量,结果如图所示,下列说法正确的是()A.在运动状态下,小鼠肌肉细胞CO2的产生部位是细胞质基质和线粒体B.无氧呼吸只在第一阶段生成少量的ATP,其余能量以热能散失C.运动强度为15米/分钟时,无氧呼吸消耗的葡萄糖大约是有氧呼吸的3倍D.研究可知提倡慢跑可以避免肌肉组织乳酸积累引起下丘脑形成酸胀感2.科学家最近发现了一种在低光照环境中能吸收光能并释放氧气的蓝细菌——温泉拟甲色球藻。

下列相关叙述正确的是()A.温泉拟甲色球藻细胞膜的主要成分是蛋白质和磷酸B.温泉拟甲色球藻含有核糖体,核糖体中不含有磷元素C.温泉拟甲色球藻的拟核区存在某种蛋白质结合在DNA 上发挥催化作用D.温泉拟甲色球藻吸收光能并释放氧气的化学反应是在类囊体薄膜上进行的3.下列叙述中,不能说明“核基因和染色体行为存在平行关系”的是A.基因发生突变而染色体没有发生变化B.非等位基因随非同源染色体的自由组合而组合C.二倍体生物形成配子时基因和染色体数目均减半D.Aa杂合体发生染色体缺失后,可表现出a基因控制的性状4.研究表明,下丘脑SCN细胞中PER基因表达与昼夜节律有关,其表达产物的浓度呈周期性变化,如图为相关过程。

据此判断,下列说法正确的是()A.PER基因两条链均参与转录,形成的mRNA碱基排列顺序不同B.图1过程②的原料为核糖核苷酸,需要的酶由核糖体提供C.图2中DNA模板链中一个碱基C变成了T,则mRNA中嘌呤与嘧啶比例不变D.图3过程与图1中的①过程相同5.秀丽隐杆线虫的ced3、ced4基因发生突变失活后,原先应该凋亡的131个细胞依然存活;ced9基因突变会导致所有细胞在胚胎期死亡,无法得到成虫。

2023年河北省衡水中学高考数学模拟试卷+答案解析(附后)

2023年河北省衡水中学高考数学模拟试卷+答案解析(附后)

2023年河北省衡水中学高考数学模拟试卷1. 已知全集,,,则( )A. B.C. D.2. 已知复数,,若z在复平面上对应的点在第三象限,则( )A. 4B.C.D.3.已知等差数列的前n项和为,,则( )A. 66B. 78C. 84D. 964. 条件p:,,则p的一个必要不充分条件是( )A. B. C. D.5. 函数的部分图象大致是( )A. B. C. D.6. 在中,,,,P,Q是平面上的动点,,M是边BC上的一点,则的最小值为( )A. 1B. 2C. 3D. 47. 已知抛物线C:过点,动点M,N为C上的两点,且直线AM 与AN的斜率之和为0,直线l的斜率为,且过C的焦点F,l把分成面积相等的两部分,则直线MN的方程为( )A. B.C. D.8. 《九章算术》是我国古代数学名著,它在几何学中的研究比西方早一千多年,其中有很多对几何体外接球与内切球的研究.其中的一些研究思想启发着后来者的研究方向.已知正四棱锥的外接球半烃为R,内切球半径为r,且两球球心重合,则( )A. 2B.C.D.9. 统计学是源自对国家的资料进行分析,也就是“研究国家的科学”.一般认为其学理研究始于希腊的亚里士多德时代,迄今已有两千三百多年的历史.在两千多年的发展过程中,将社会经济现象量化的方法是近代统计学的重要特征.为此,统计学有了自己研究问题的参数,比如:均值、中位数、众数、标准差.一组数据:,,⋯,记其均值为m,中位数为k,标准差为s,则( )A.B.C.新数据:,,,⋯,的标准差为D.新数据:,,,⋯,的标准差为2s10. 已知,,且满足,则的取值可以为( )A. 10B. 11C. 12D. 2011. 圆O:与双曲线交于A,B,C,D四点,则( )A. r的取值范围是B. 若,矩形ABCD的面积为C. 若,矩形ABCD的对角线所在直线是E的渐近线D. 存在,使四边形ABCD为正方形12. 已知函数的导函数为,则( )A. 有最小值B. 有最小值C. D.13. 已知角终边上有一点,则______ .14. 甲、乙两人下围棋,若甲执黑子先下,则甲胜的概率为;若乙执黑子先下,则乙胜的概率为假定每局之间相互独立且无平局,第二局由上一局负者先下,若甲、乙比赛两局,第一局甲、乙执黑子先下是等可能的,则甲、乙各胜一局的概率为______ .15. 已知函数的部分图像如图所示,在区间内单调递减,则的最大值为______ .16. 如图,在多面体ABCDEFG中,四边形ABCD为菱形,,,,且平面ABCD,四边形BEFG是正方形,则______ ;异面直线AG与DE所成角的余弦值为______ .17. 已知数列满足,且,求证:是等比数列,并求的通项公式;若数列的前n项和为,求使不等式成立的n的最小值.18. 已知的内角A,B,C的对边分别为a,b,c,且求的最小值;若M为的重心,,求19. 第22届亚运会将于2023年9月23日至10月8日在我国杭州举行,这是我国继北京后第二次举办亚运会.为迎接这场体育盛会,浙江某市决定举办一次亚运会知识竞赛,该市A社区举办了一场选拔赛,选拔赛分为初赛和决赛,初赛通过后才能参加决赛,决赛通过后将代表A社区参加市亚运知识竞赛.已知A社区甲、乙、丙3位选手都参加了初赛且通过初赛的概率依次为、、,通过初赛后再通过决赛的概率均为,假设他们之间通过与否互不影响.求这3人中至多有2人通过初赛的概率;求这3人中至少有1人参加市知识竞赛的概率;某品牌商赞助了A社区的这次知识竞赛,给参加选拔赛的选手提供了两种奖励方案:方案一:参加了选拔赛的选手都可参与抽奖,每人抽奖1次,每次中奖的概率均为,且每次抽奖互不影响,中奖一次奖励600元;方案二:只参加了初赛的选手奖励200元,参加了决赛的选手奖励500元.若品牌商希望给予选手更多的奖励,试从三人奖金总额的数学期望的角度分析,品牌商选择哪种方案更好.20. 如图,在直四棱柱中,四边形ABCD是平行四边形,,,AD与平面所成的角为求;求二面角的余弦值.21. 如图,已知椭圆的右顶点为A,下顶点为B,且直线AB的斜率为,的面积为1,O为坐标原点.求C的方程;设直线l与C交于,两点,且,N与B不重合,M与C的上顶点不重合,点Q在线段MB上,且轴,AB平分线段QN,点到l的距离为d,求当d取最大值时直线MN的方程.22. 已知函数证明:当时,为增函数;若有3个零点,求实数a的取值范围,参考数据:,答案和解析1.【答案】A【解析】解:因为,,所以,又因为,所以则故选:求出集合M、N,再利用并集和补集的定义,即可求解.本题主要考查交集、补集的混合运算,属于基础题.2.【答案】B【解析】解:因为,则,解得,因为复数z在复平面上对应的点在第三象限,则,解得,因此,故选:利用复数的除法化简复数z,利用复数的模长公式以及复数的几何意义可求得实数a的值.本题主要考查复数的四则运算,属于基础题.3.【答案】B【解析】解:设等差数列的首项为,公差为d,由可得,整理可得,所以,则故选:设等差数列的首项为,公差为d,结合题意可得,结合等差数列的性质代入等差数列的前n项和公式即可求解.本题主要考查了等差数列的通项公式及求和公式的应用,属于基础题.4.【答案】A【解析】解:若,使得,则,可得,则,因为函数在上单调递减,在上单调递增,且,故当时,,即p:,所以p的一个必要不充分条件是故选:对于命题p,由参变量分离法可得,求出函数在上的最大值,可得出实数a的取值范围,再利用必要不充分条件的定义可得出合适的选项.本题主要考查充分条件、必要条件的定义,属于基础题.5.【答案】C【解析】解:对于函数,有,可得,所以,函数的定义域为,因为,,所以,函数为偶函数,排除AB选项;当时,,则,此时,排除D选项.故选:分析函数的定义域、奇偶性及其在上的函数值符号,结合排除法可得出合适的选项.本题主要考查了函数的奇偶性在函数图象判断中的应用,属于基础题.6.【答案】B【解析】解:取PQ的中点N,则,可得,,当且仅当N在线段AM上时,等号成立,故,显然当时,取到最小值,,故故选:根据向量运算可得,结合图形分析的最小值即可得结果.本题主要考查了向量的线性表示及向量数量积的性质的应用,属于中档题.7.【答案】D【解析】解:因为抛物线C:过点,所以,解得:,所以,设,,直线MN:,代入中整理得,所以,,所以,即,则,解得:,所以直线MN:,直线l的斜率为,且过C的焦点,所以l:,则到直线l的距离为,所以l把分成面积相等的两部分,因为直线l与直线MN平行,所以到直线l:的距离为到直线MN:距离的,,解得:或舍去所以直线MN的方程为故选:由题意求出抛物线方程为,设,,直线MN:,联立直线和抛物线的方程结合韦达定理由,可求出,再求出直线l的方程,由题意可转化为到直线l:的距离为到直线MN:距离的,代入求解即可得出答案.本题主要考查了抛物线的性质,考查了直线与抛物线的位置关系,属于中档题.8.【答案】B【解析】解:设底面正方形ABCD的对角线长为2a,高为h,,正方形的中心为O,外接球的球心为,则有即,在中,,①,②,以O为原点,建立空间直角坐标系,如图所示:则有,,设平面PCD的一个法向量为,则有,即,令,解得,,设向量与平面PCD的夹角为,则,球心到平面PCD的距离,,由①得,即③,故设,则③可整理成,两边平方得,,由①②得故选:正四棱锥的外接球和内接球球心重合,说明其结构特殊,找出结构的特殊性,再计算.本题主要考查了正四棱锥的外接球和内切球问题,考查了学生的空间想象能力,属于中档题.9.【答案】AD【解析】解:对于A选项,因为,样本数据最中间的项为,由中位数的定义可知,A对;对于B选项,不妨令,则,B错;对于C选项,数据,,,⋯,的均值为,方差为,所以,数据,,,⋯,的标准差为s,C错;对于D选项,数据,,,⋯,的均值为,其方差为,所以,新数据:,,,⋯,的标准差为2s,D对.故选:利用中位数的定义可判断A选项;取,可判断B选项;利用方差公式可判断CD选项.本题主要考查了均值、中位数和标准差的计算公式,属于基础题.10.【答案】CD【解析】解:因为,,所以,,故,当,且,而时,即等号不能同时成立,所以,故AB错误,CD正确.故选:根据条件及基本不等式可得,进而即得.本题主要考查基本不等式及其应用,属于基础题.11.【答案】BD【解析】解:对于选项A,双曲线的顶点坐标为,渐近线方程为,因为圆O:与双曲线交于A,B,C,D四点,所以,故A错误;对于选项B,C,当时,圆O:,联立方程,解得,所以或或或,不妨令,,,,所以,,所以,则,所以AC:,故不是双曲线的渐近线,即B正确,C错误;对于选项D,若四边形ABCD为正方形,不妨设A为第一象限内的交点,设,,由,解得,又,所以,所以当时,使四边形ABCD为正方形,故D正确;故选:首先求出双曲线的顶点坐标与渐近线方程,即可判断A,对于B、C,求出交点坐标,即可判断B、C,设,求出m、r,即可判断本题主要考查了双曲线的性质,考查了圆与双曲线的综合问题,属于中档题.12.【答案】ACD【解析】解:由于函数的导函数为,则,又得其导函数为,故在定义域为单调递增函数,知无最小值,故B错误;当时,,,,故;当时,,,,但是指数函数始终增长的最快,故;又因为,,故一定存在,使得,所以在时为单调递减,在时为单调递增,故在处取得最小值,故A正确;又在定义域为单调递增函数,可知在为凹函数,可得,即,故C正确;令,易知,,,令,故在定义域为单调递增函数,故,则,故D正确.故选:对选项逐一判断,首先对求导得到,再对进行求导,得出的单调性及零点,即可得出,最值及单调性,即可判断AB的正误,由的增减性可知的凹凸性,由此可知,的大小,即可判断C的正误,再构造,同理可判断D的正误.本题主要考查了导数与单调性,函数性质的综合应用,属于中档题.13.【答案】【解析】解:,,根据同角关系有,故答案为:根据正切的定义,运用诱导公式以及同角关系求解.本题主要考查任意角的三角函数的定义,属于基础题.14.【答案】【解析】解:分两种情况讨论:第一局甲胜,第二局乙胜:若第一局甲执黑子先下,则甲胜第一局的概率为,第二局乙执黑子先下,则乙胜的概率为,若第一局乙执黑子先下,则甲胜第一局的概率为,第二局乙执黑子先下,则乙胜的概率为,所以第一局甲胜,第二局乙胜的概率为;第一局乙胜,第二局甲胜:若第一局甲执黑子先下,则乙胜第一局的概率为,第二局甲执黑子先下,则甲胜的概率为,若第一局乙执黑子先下,则乙胜第一局的概率为,第二局甲执黑子先下,则甲胜的概率为,所以,第一局乙胜,第二局甲胜的概率为综上所述,甲、乙各胜一局的概率为故答案为:分两种情况讨论:第一局甲胜,第二局乙胜:第一局乙胜,第二局甲胜.分析出每局输赢的情况,结合独立事件和互斥事件的概率公式可求得所求事件的概率.本题主要考查了独立事件的概率乘法公式,属于基础题.15.【答案】2【解析】解:由图可知函数过点,所以,即,所以或,,因为,所以或,又函数在原点右侧最近的零点的右侧的极值点函数取得最小值,所以,所以,因为在区间内单调递减,,所以,所以,所以,则或解得或,所以的最大值为故答案为:根据函数过点求出的值,再根据x的范围求出的范围,结合函数的单调性与周期性求出的大致范围,再根据正弦函数的性质得到不等式组,解得即可.本题主要考查了正弦函数性质的应用,属于中档题.16.【答案】【解析】解:由四边形ABCD为菱形,,可得为正三角形,设H为AB的中点,连接DH,所以又,因此又平面ABCD,故以D为原点,分别以DE,DC,DF所在直线为x轴,y轴,z轴,建立空间直角坐标系,如图所示:设,,,,则,,,,由题意,则平面ABCD,平面ABCD,设,,从而,因为四边形BEFG是正方形,所以,所以,解得,所以,,设,则,因为,所以,所以,即,所以,所以,设异面直线AG与DE所成角为,又,所以,即异面直线AG与DE所成角的余弦值为故答案为:;根据线面垂直,建立空间直角坐标系,利用向量法求解距离及异面直线所成角的余弦值.本题主要考查了利用空间向量求线段的长,以及利用空间向量求异面直线所成的角,属于中档题.17.【答案】解:由,,可得,所以,则,又因为,所以数列是以2为首项,2为公比的等比数列,则,所以,则,所以由可知:,当n为偶数时,,当n为奇数时,,因为,,所以使不等式成立的n的最小值为【解析】根据递推公式即可证明是等比数列,然后利用等比数列的通项公式和已知条件即可求解;结合的通项公式求出数列的前n项和为,然后讨论即可求解.本题主要考查数列递推式,数列的求和,考查运算求解能力,属于中档题.18.【答案】解:,,当且仅当,即时,等号成立,的最小值为;分别延长BM,CM,AM,交三角形的对应边于点D,E,F,点M为的重心,,在中,,D为边AC的中点,,,设,,则,,在中,又勾股定理可得:,即,同理在中,,即,在中,,即,消去x,y得,又,所以,从而解得,即,在中,由余弦定理可得:,,同理在中,,,【解析】利用余弦定理及基本不等式即可求解最小值;利用重心性质及勾股定理求出边长关系,利用余弦定理求出两个角的余弦值,然后通过同角关系求出正弦值即可.本题考查解三角形,余弦定理勾股定理,基本不等式的应用,方程思想,属中档题.19.【答案】解:人全通过初赛的概率为,所以这3人中至多有2人通过初赛的概率为;甲参加市知识竞赛的概率为,乙参加市知识竞赛的概率为,丙参加市知识竞赛的概率为,所以这3人中至少有1人参加市知识竞赛的概率为;方案一:设三人中奖人数为X,所获奖金总额为Y元,则,且,所以元,方案二:记甲、乙、丙三人获得奖金之和为Z元,则Z的所有可能取值为600、900、1200、1500,则,,,,所以所以,所以从三人奖金总额的数学期望的角度分析,品牌商选择方案二更好.【解析】计算出3人全通过初赛的概率,再利用对立事件的概率公式可求得所求事件的概率;计算出3人各自参加市知识竞赛的概率,再利用独立事件和对立事件的概率公式可求得所求事件的概率;利用二项分布及期望的性质求出方案一奖金总额的期望,对方案二,列出奖金总额为随机变量的所有可能取值,并求出对应的概率,求出其期望,比较大小作答.本题主要考查了独立事件的概率乘法公式,考查了二项分布的概率公式和期望公式,属于中档题.20.【答案】解:因为,,在中,由余弦定理可得,则,所以,则,又因为为直四棱柱,所以平面ABCD,所以,DA,DB两两垂直,建立如图所示空间直角坐标系,设,则,,,,,,,所以,,,设平面的法向量为,则,则可取,由题意可知:AD与平面所成的角为,所以,解得,所以由知:平面的法向量,,,设平面的法向量为,则,则可取,则,由图可知:二面角为锐二面角,所以二面角的余弦值【解析】根据,,利用余弦定理可得,结合已知条件,建立空间直角坐标系,设,写出相应点的坐标,求出平面的法向量和AD的方向向量,线面角即可求解;结合的结论和平面的法向量,再求出平面的法向量,利用空间向量的夹角公式即可求解.本题考查空间向量在立体几何中的运用,考查空间想象能力,推理论证能力和运算求解能力,考查直观想象和数学运算等核心素养,属于中档题.21.【答案】解:由已知得,,,即①又因为的面积为1,所以,即②联立①②解得,,所以椭圆C的方程为;根据题意,直线l的斜率存在,且l不过C的上、下顶点,故可设其方程为,,设Q点的横坐标为,AB与QN的交点为T,其横坐标为,由得,,则,即,又,由已知直线MB的方程为,直线AB的方程为,直线QN的方程为,联立,解得,即,联立,解得,即,因为AB平分线段QN,所以T为线段QN的中点,所以,即,整理得,把代入上式整理得,因为,所以,化简得,又由得,解得,,设,则,所以,当时,,单调递增,当时,,单调递减,所以,当时,有最大值,即d有最大值,所以,所以直线MN的方程为【解析】根据已知条件列出关于a,b的方程组求解即可;设l的方程为,,Q点的横坐标为,AB与QN的交点为T,其横坐标为,由已知可得,结合韦达定理可得出,从而可求点到l的距离d,再通过构造函数,利用函数单调性求出d取最大值时的条件,从而可求直线MN 的方程.本题主要考查了椭圆性质在椭圆方程求解中的应用,还考查了直线与椭圆位置关系的应用,属于中档题.22.【答案】解:将代入的解析式得:,,令,显然是增函数,,,使得,此时,当时,,单调递减,当时,,单调递增,,显然是关于得减函数,,由,,得,,,即,是增函数;令,,,令,令,则有,,,显然是增函数,第21页,共21页,,使得,当时,,单调递减,当时,,单调递增,,,时,,即,是增函数,时,,即是减函数,时,是增函数,所以在处,有极大值,在处有极小值,的大致图像如下:欲使得原函数有3个零点,a 得取值范围是,综上,a 得取值范围是【解析】将代入函数解析式,求导,求出导函数的极小值即可;参数分离,构造函数,求出其单调区间以及函数的大致图像即可.本题主要考查了导数与单调性关系的应用,还考查了函数性质在零点个数判断中的应用,特殊值是解决本题的一个关键,对于导函数的研究的一个原则是多次求导直到导函数能够比较清晰的观察出其单调性为好,属于中档题.。

【衡水金卷】河北省衡水中学2024届高考模拟押题卷(一)语文(含解析)

【衡水金卷】河北省衡水中学2024届高考模拟押题卷(一)语文(含解析)

【衡水金卷】河北省衡水中学2024届高考模拟押题卷(一)语文留意事项:1.本试卷分第I卷(阅读题)和第Ⅱ卷(表达题)两部分,答卷前,考生务必将自己的姓名、准考证号填写在答题卡上2.作答时,请仔细阅读答题卡上的留意事项,将答案写在答题卡上。

写在本试卷上无效3.考试结束后,将本试卷和答题卡一并交回第I卷阅读题甲必考题一、现代文阅读(9分,每小题3分)阅读下面的文字,完成l~3题。

百年中国,再没有其他学说像儒家思想这样,经验了如此长时间的反复跌宕和严峻拷问。

读经和反对读经,曾成为学界和舆论界争吵不休的一桩公案。

反对者明显占上风,连鲁迅也站出来发声,指责提倡读经者即使是真正的醇厚人也不过是“笨牛”而已。

文革十年,儒家思想成为众矢之的,必欲清除扫尽而快之。

改革开放后,把历史还给历史成为思想学术界共同呼声,孔子由被幼童也参加唾骂的斯文扫地变而为正常的文化古人。

由于所经验的“毁圣弃知”的时间实在太长,难免积非成是,变更世人乃至学界部分人士的成见尚需时日。

儒学产生之初,即春秋战国时期,儒家只是诸子百家中的一家,其影响比之墨家或犹有未及。

所以孟子颇为焦虑地说:“圣王不作,诸侯放恣,处士横议,杨朱、墨翟之言盈天下。

天下之言不归杨,则归墨。

”他因此想起而矫正此种“仁义充塞”的时代风气,欲以承继虞舜、周公、孔子的圣道为己任。

汉代中期汉武帝实施“独尊儒术,罢黜百家”的政策,使儒学地位隧然提升,成为社会主流意识形态。

但儒学以外的学说仍有存在空间。

东汉佛教的传入和道教的兴起,即为明证。

而到魏晋南北朝时期,释、道、玄之风大炽,其思想所宗更非只有儒学一家。

隋唐佛教发展的势头,亦不在儒学之下。

但假如认为隋唐时期的思想主潮是佛而非儒,轻忽儒家地位,又有误读古人之嫌。

直承郑康成而撰《五经正义》的孔颖达,即是当时继往开来的儒学健将。

明清以还,儒学的地位日趋稳固,但佛、道两家在民间社会的影响也起先定式成型儒家思想在宋代呈现变易之势。

二程和朱子等宋代大儒,诚然是承继了先秦以孔子、孟子为代表的儒家思想,但朱子的理学实为思想大汇流的产物,道家和道教的思想,佛教特殊是禅宗的思想,一起参加进来成为理学的助发资源。

河北省衡水2022-2023学年高考仿真模拟语文试卷含解析

河北省衡水2022-2023学年高考仿真模拟语文试卷含解析

2023年高考语文模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

1、下面是某位高三同学在毕业典礼上的发言,有五处用语不当,请找出并做修改。

能作为学生代表在高三年级毕业典礼上发言,我十分荣幸。

三年前,我作为一名莘莘学子来到这里,怀揣梦想;今天,作为恩师的高足即将腾飞。

但今后无论走到哪里,我都会垂念师恩,挂念母校,如果母校需要,我一定会鼎力相助。

最后,希望母校光辉历程更辉煌,人才辈出代代强。

2、下列各句中,没有语病的一句是()A.日前,河北省政府办公厅出台的相关意见提出,河北省将鼓励和引导民间资本参与公路、铁路、市政公用设施等重点领域和重大项目。

B.据中国气象局应急减灾与公共服务司司长介绍,今年夏季,我国平均气温为21.8℃以上,较常年同期偏高0.9℃,为1961年以来最高。

C.2016年9月3日,二十国集团工商峰会先期开幕,出席开幕式并发表演讲,阐述对中国经济、世界经济和全球经济治理的主张。

D.刚刚开放的清华大学艺术博物馆展厅总面积约9000平方米,现有藏品包括书画、染织、陶瓷、家具、青铜器及综合艺术品等六大类在内。

3、阅读下面的文字,完成下列小题。

国画是以墨色的变化、线条组织和色彩搭配进行绘制的,墨分五色又是国画艺术发展中的一大。

历朝历代画家对于墨色的使用和研究到了的地步,但描绘出的作品显得单一苍素。

若盖上红印效果就非同一般了,有了红印的衬托,就会更加突出主体,墨色的浑厚感和层次感也更趋丰富。

最初,印章的使用只是一种为了构图完整的补救,后来逐渐演变成为画面点睛的作用。

自元代以后,印章在国画中的地位显著提高。

由于画家不断地探索,墨色和印章的红色的结合是的,使之成为国画作品中不可或缺的组成部分,体现了很高的审美价值和社会价值。

2024届河北省衡水市部分高中高三一模数学试题(解析版)

2024届河北省衡水市部分高中高三一模数学试题(解析版)

2024年普通高等学校招生全国统一考试模拟试题数学(一)(考试时间:120分钟,满分:150分)注意事项:1.答题前,先将自己的姓名、准考证号等填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接写在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集{}0,1,2,3,4,5U =,集合{}1,3,4M =,{}0,3,5N =,则N ()U M = ð()A.{}0,5B.{}1,2,3,4C.{}1,2,3,4,5 D.U【答案】B 【解析】【分析】根据集合并补运算即可求得.【详解】{}0,1,2,3,4,5U =,{}0,3,5N =,所以{}1,2,4U N =ð,所以(){}1,2,3,4U M N = ð,故选:B.2.已知复数z 满足(43i)i z +=-,则z 的虚部为()A.425-B.425 C.4i 25-D.4i 25【答案】A 【解析】【分析】由复数除法运算法则直接计算,结合复数的虚部的概念即可求解.【详解】因为(43i)i z +=-,所以()()()i 43i i 34i 43i 43i 43i 2525z ---===--++-,所以z 的虚部为425-.故选:A.3.将函数()sin 2f x x =的图象向左平移ϕ个单位后得到函数()g x 的图象,若函数()()y f x g x =+的最大值为a ,则a 的值不可能为()A.1B.1C.2D.1【答案】D 【解析】【分析】根据图象的平移变换得到()()sin 22g x x ϕ=+,然后根据和差公式和辅助角公式整理得到()()()2y f x g x x α=+=+,最后根据三角函数的性质求a 的范围即可.【详解】由题意得()()sin 22g x x ϕ=+,则()()()sin 2sin 22y f x g x x x ϕ=+=++sin 2cos 2sin 2sin 2cos 2x x xϕϕ=++()1cos 2sin 2sin 2cos 2x x ϕϕ=++()2x α=+()2x α=+,sin 2tan 1cos 2ϕαϕ=+,因为[]cos 21,1ϕ∈-[]0,2,所以[]0,2a ∈.故选:D.4.在等比数列{}n a 中,若1512a a a ⋅⋅为一确定的常数,记数列{}n a 的前n 项积为n T .则下列各数为常数的是()A.7TB.8T C.10T D.11T 【答案】D 【解析】【分析】根据已知条件判断出6a 为确定常数,再由此确定正确答案.【详解】设等比数列{}n a 的公比为q ,依题意,()3411511111512a a q a a a a q q a =⋅⋅=⋅⋅为确定常数,即6a 为确定常数.7712674T a a a a a == 不符合题意;()48127845T a a a a a a == 不符合题意;()5101291056T a a a a a a == 不符合题意;11111210116T a a a a a == 为确定常数,符合题意.故选:D 5.关于函数4125x y x -=-,N x ∈,N 为自然数集,下列说法正确的是()A.函数只有最大值没有最小值B.函数只有最小值没有最大值C.函数没有最大值也没有最小值D.函数有最小值也有最大值【答案】D 【解析】【分析】先对函数整理化简,根据反比例函数的性质,结合复合函数单调性的“同增异减”,即可求出函数的最小值与最大值.【详解】()22594192252525x x y x x x -+-===+---,52x ¹,由反比例函数的性质得:y 在5,2⎛⎫+∞ ⎪⎝⎭上单调递减,此时2y >,y 在5,2⎛⎫-∞ ⎪⎝⎭上单调递减,此时2y <,又因为N x ∈,N 为自然数集,所以min y 在5,2⎛⎫-∞ ⎪⎝⎭上取到,2x =时,min 7y =-,同理max y 在5,2⎛⎫+∞⎪⎝⎭上取到,3x =时,max 11y =,所以当N x ∈,N 为自然数集时,函数有最小值也有最大值.故选:D .6.已知函数()πcos 12f x x ⎛⎫=-⎪⎝⎭,()πsin 46g x x ⎛⎫=+ ⎪⎝⎭,则“曲线()y f x =关于直线x m =对称”是“曲线()y g x =关于直线x m =对称”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】分别求出两个函数的对称轴的集合,利用两个集合的关系即可判断.【详解】令()11ππ12m k k -=∈Z ,得()11ππ12m k k =+∈Z ,所以曲线()y f x =关于直线()11ππ12x k k =+∈Z 对称.令()22ππ4π62m k k +=+∈Z ,得()22ππ124k m k =+∈Z ,所以曲线()y g x =关于直线()22ππ124k x k =+∈Z 对称.因为()11π{|π}12m m k k =+∈Z ()22ππ{|}124k m m k =+∈Z 所以“曲线()y f x =关于直线x m =对称”是“曲线()y g x =关于直线x m =对称”的充分不必要条件.故选:A.7.O 为坐标原点,F 为抛物线2:8C y x =的焦点,M 为C 上一点,若||6=MF ,则MOF △的面积为()A. B. C. D.8【答案】C 【解析】【分析】首先根据焦半径公式求点M 的坐标,再代入面积公式,即可求解.【详解】设点()00,Mxy ,()2,0F ,所以026MF x =+=,得04x =,0y =±,所以MOF △的面积011222S OF y =⨯=⨯⨯故选:C8.,,a b c 为三个互异的正数,满足2ln 0,31ba cc a a-=>=+,则下列说法正确的是()A.2c a b ->-B.2c b a -≤-C.2c a b +<+D.2c a b+≤+【答案】A 【解析】【分析】对于2ln 0cc a a-=>可构造函数()2ln f x x x =-,利用导函数可求出其单调性,利用数形结合可得02a c <<<,对于31ba =+,可在同一坐标系下画出函数x y =及31x y =+的图象,可得02a b <<<,再由不等式性质可知A 正确.【详解】由2ln0cc a a-=>得2ln 2ln c c a a -=-且c a >,构造函数()2ln f x x x =-,所以()21f x x'=-,易得()f x 在()0,2上单调递减,在()2,+∞上单调递增,其函数图象如下图所示:由图可得02a c <<<,易知函数x y =及31x y =+交于点()2,10,作出函数x y =及31x y =+的图象如下图所示:由图知02a b <<<所以02a b c <<<<,即,2a b c <<,由此可得2a b c +<+,即2c a b ->-.故选:A【点睛】方法点睛:在求解不等式比较大小问题时,经常利用同构函数进行构造后通过函数单调单调性比较出大小,画出函数图象直接由图象观察得出结论.二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有两个或两个以上选项符合题目要求,全部选对的得6分,选对但不全的得3分,有选错的得0分)9.已知10个数据的第75百分位数是31,则下列说法正确的是()A.这10个数据中至少有8个数小于或等于31B.把这10个数据从小到大排列后,第8个数据是31C.把这10个数据从小到大排列后,第7个与第8个数据的平均数是31D.把这10个数据从小到大排列后,第6个与第7个数据的平均数是31【答案】AB 【解析】【分析】由百分位数的概念可判断.【详解】因为这10个数据的第75百分位数是31,由100.757.5⨯=,可知把这10个数据从小到大排列后,第8个数为31,可知,选项A ,B 正确,C ,D 错误.故选:AB .10.函数()2,3,x D x x ∈⎧=⎨∉⎩QQ ,则下列结论正确的是()A.()()3.14D D π>B.()D x 的值域为[]2,3C.()()D D x 是偶函数 D.a ∀∈R ,()()D x a D a x +=-【答案】AC 【解析】【分析】根据函数解析式,结合分段函数的性质,逐项判断即可.【详解】()3D π=,()3.142D =,()()3.14D D π>,A 正确;()2,3,x D x x ∈⎧=⎨∉⎩QQ,则()D x 的值域为{}2,3,B 错误;x ∈Q 时,x -∈Q ,()()()22D D x D ==,()()()22D D x D -==,所以()()()()D D x D D x =-,x ∉Q 时,x -∉Q ,()()()32D D x D ==,()()()32D D x D -==,()()()()D D x D D x =-,所以()()D D x 为偶函数,C正确;x =时,取1a =()()12D x a D +==,()(13D a x D -=-=,则()()D x a D a x +≠-,D 错误.故选:AC11.某班级到一工厂参加社会实践劳动,加工出如图所示的圆台12O O ,轴截面ABCD 为等腰梯形,且满足2224cm CD AB AD BC ====.下列说法正确的是()A.该圆台轴截面ABCD 的面积为2B.该圆台的表面积为211πcmC.该圆台的体积为3cmD.【答案】AB 【解析】【分析】求出圆台的高12O O 可判断A ;由圆台的表面积和体积公式可判断B ,C ;由内切圆的性质以及切线长定理易知轴截面ABCD 不存在内切圆可判断D .【详解】对于A ,由2224cm CD AB AD BC ====,可得高12O O ==则圆台轴截面ABCD 的面积为()214m 22⨯+=,故A 正确;对于B ,圆台的侧面积为()()2π1226πcm S =⋅+⨯=侧,又()22ππm1c S =⨯=上,()22π24πcm S=⋅=下,所以()26ππ41cm π1πS =++=表,故B 正确;对于C ,圆台的体积为()()3173π142πcm 33V =++=,故C 错误;对于D ,若圆台存在内切球,则必有轴截面ABCD 存在内切圆,由内切圆的性质以及切线长定理易知轴截面ABCD 不存在内切圆,故D 错误,故选:AB.三、填空题(本题共3小题,每小题5分,共15分)12.已知()12f x x=在点()()1,1f 处的切线为直线20x y t -+=,则=a __________.【答案】12-##-0.5【解析】【分析】结合题目条件,列出方程求解,即可得到本题答案.【详解】因为()12f xx =-,所以21()f x x'=+,因为()f x 在点()()1,1f 处的切线为直线20x y t -+=,所以1(1)12f a '=+=,解得12a =-.故答案为:12-13.已知力123,,F F F ,满足1231N ===F F F ,且123++=F F F 0,则12-=F F ________N.【解析】【分析】将123++=F F F 0变形后平方得到相应结论,然后将12-F F 平方即可计算对应的值.【详解】由123++=F F F 0,可得123+=-F F F ,所以()()22312-=+F F F ,化简可得222312122F =++⋅F F F F ,因为1231===F F F ,所以1221⋅=-F F ,所以12-====F F【点睛】本题考查向量中的力的计算,难度较易.本题除了可以用直接分析计算的方式完成求解,还可以利用图示法去求解.14.已知双曲线C :()222210,0x y a b a b -=>>的左右焦点分别为1F ,2F ,过1F 作x 轴的垂线交C 于点P﹒2OM PF ⊥于点M (其中O 为坐标原点),且有223PF MF =,则C 的离心率为______.【答案】622【解析】【分析】由向量垂直的坐标表示得出关于,,a b c 的齐次式后可得离心率.【详解】如图,易得2(,)b P c a -,2(,0)F c ,22(2,b PF c a=- ,设(,)M x y ,2(,)MF c x y =-- ,由223PF MF = 得2(2,3(,)b c c x y a-=--,223()3c c x b y a =-⎧⎪⎨-=-⎪⎩,解得2133x c b y a ⎧=⎪⎪⎨⎪=⎪⎩,即21(,)33b M c a ,21(,33b OM c a = ,又2OM PF ⊥,∴42222033b OM PF c a⋅=-= ,c e a =,222b c a =-代入得2222(1)0e e --=,因为1e >故解得622e +=,故答案为:2+.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15.在ABC 中,内角,,A B C 所对的边分别是,,a b c ,三角形面积为S ,若D 为AC 边上一点,满足,2AB BD BD ⊥=,且223cos 3a S ab C =-+.(1)求角B ;(2)求21AD CD+的取值范围.【答案】(1)2π3(2)3,12⎛⎤ ⎥⎝⎦【解析】【分析】(1)结合面积公式、正弦定理及两角和的正弦公式化简可得tan B =,进而求解即可;(2)在BCD △中由正弦定理可得1sin DC C=,在Rt △ABD 中,可得2sin AD A =,进而得到21sin sin A C AD CD +=+,结合三角恒等变化公式化简可得21πsin 3C AD CD ⎛⎫+=+ ⎪⎝⎭,进而结合正弦函数的图象及性质求解即可.【小问1详解】2cos 3a S ab C =-+ ,23sin cos 3a ab C ab C ∴=-+,即sin cos 3a b C b C =-+,由正弦定理得,3sin sin sin sin cos 3A B C B C =-+,()3sin sin sin sin cos 3B C B C B C ∴+=-+,cos sin sin sin 3B C B C ∴=-,sin 0C ≠,tan B ∴=由0πB <<,得2π3B =.【小问2详解】由(1)知,2π3B =,因为AB BD ⊥,所以π2ABD ∠=,π6DBC ∠=,在BCD △中,由正弦定理得sin sin DC BDDBC C=∠,即π2sin16sin sin DC C C==,在Rt △ABD 中,2sin sin AD A BD A==,sin sin 21sin si 22n 11A CC CA A D D∴++=+=,2π3ABC ∠=,π3A C ∴+=,21ππππsin sin sin sin sin cos cos sin sin sin 3333A C C C C C C C AD CD ⎛⎫⎛⎫∴+=+=-+=-+=+ ⎪ ⎪⎝⎭⎝⎭,π03C << ,ππ2π,333C ⎛⎫∴+∈ ⎪⎝⎭,πsin ,132C ⎛⎤⎛⎫∴+∈ ⎥ ⎪ ⎝⎭⎝⎦,所以21AD CD +的取值范围为3,12⎛⎤ ⎥ ⎝⎦.16.已知数列{}n a 的前n 项和为,0n n S a >,且2241n n n a a S +=-.(1)求{}n a 的通项公式;(2)设1n n n n S b a a +=的前n 项和为n T ,求n T .【答案】(1)21n a n =-(2)242n n n T n +=+【解析】【分析】(1)先用()1n +替换原式中的n ,然后两式作差,结合n a 与n S 的关系,即可得到{}n a 为等差数列,从而得到其通项.(2)由(1)的结论,求得n S 及1n a +,代入1n n n n S b a a +=化简,得到n T 的式子,裂项相消即可.【小问1详解】2241n n n a a S +=-Q ,2111241n n n a a S ++++=-,两式作差得:()()1120n n n n a a a a +++--=,102n n n a a a +>∴-=Q ,{}n a ∴成等差数列,又当1n =时,()2110a -=,所以11a =即()11221n a n n =+-⨯=-【小问2详解】由(1)知21n a n =-,则()()1212122n n n a a n n S n ++-===,即()()()()21111212142121n n n n S n b a a n n n n +⎡⎤===+⎢⎥-+-+⎢⎥⎣⎦1111482121n n ⎛⎫=+- ⎪-+⎝⎭,故1111111483352121n n T n n ⎛⎫=+-+-++- -+⎝⎭L 2111482148442n n n n n n n n +⎛⎫=+-=+= ⎪+++⎝⎭.17.已知椭圆2222:1(0)x y C a b a b +=>>过31,2⎛⎫ ⎪⎝⎭和62⎫⎪⎪⎭两点.12,F F 分别为椭圆的左、右焦点,P 为椭圆上的点(P 不在x 轴上),过椭圆右焦点2F 的直线l 与椭圆交于A B 、两点.(1)求椭圆的标准方程;(2)求AB 的范围.【答案】(1)22143x y +=(2)[]3,4【解析】【分析】(1)将点3(1,2代入椭圆方程,即可求出椭圆C 的标准方程;(2)分类讨论直线斜率是否为0,从而假设直线方程,与椭圆方程联立,利用韦达定理与弦长公式得到关于m 的关系式,再分析即可得解;【小问1详解】由题意可知,将点3(1,2代入椭圆方程,得222291416241a ba b⎧⎪+=⎪⎪⎨⎪⎪+=⎪⎩,解得224,3a b==,所以椭圆的标准方程为22143x y+=.【小问2详解】由(1)知()11,0F-,()21,0F,当直线l的斜率为0时,24AB a==,当直线l的斜率不为0时,设直线l的方程为1x my=+,()11,A x y,()22,B x y,联立221431x yx my⎧+=⎪⎨⎪=+⎩,消去x,得22(34)690m y my++-=,易得()22Δ636(34)0m m=++>,则12122269,3434my y y ym m--+==++,所以AB==2221212443434mm m+===-++,因为20m≥,所以2344m+≥,所以240134m<≤+,所以34AB≤<,综上,34AB≤≤,即AB的范围是[]3,4.18.《中国制造2025》提出“节能与新能源汽车”作为重点发展领域,明确了“继续支持电动汽车、燃料电池汽车发展,掌握汽车低碳化、信息化、智能化核心技术,提升动力电池、驱动电机、高效内燃机、先进变速器、轻量化材料、智能控制等核心技术的工程化和产业化能力,形成从关键零部件到整车的完成工业体系和创新体系,推动自主品牌节能与新能源汽车与国际先进水平接轨的发展战略,为我国节能与新能源汽车产业发展指明了方向.某新能源汽车制造企业为了提升产品质量,对现有的一条新能源零部件产品生产线进行技术升级改造,为了分析改造的效果,该企业质检人员从该条生产线所生产的新能源零部件产品中随机抽取了1000件,检测产品的某项质量指标值,根据检测数据整理得到频率直方图(如图):(1)从质量指标值在[)55,75的两组检测产品中,采用分层抽样的方法再抽取5件.现从这5件中随机抽取2件作为样品展示,求抽取的2件产品恰好都在同一组的概率.(2)经估计知这组样本的平均数为61x =,方差为2241s =.检验标准中55n x ns a ⎧⎫-=⨯⎨⎬⎩⎭,55n x ns b ⎡⎤+=⨯⎢⎥⎣⎦,N n *∈,其中[]x 表示不大于x 的最大整数,{}x 表示不小于x 的最小整数,s 值四舍五入精确到个位.根据检验标准,技术升级改造后,若质量指标值有65%落在[]11,a b 内,则可以判断技术改造后的产品质量初级稳定,但需要进一步改造技术;若有95%落在[]22,a b 内,则可以判断技术改造后的产品质量稳定,认为生产线技术改造成功.请问:根据样本数据估计,是否可以判定生产线的技术改造成功?【答案】(1)25;(2)详见解析;【解析】【分析】(1)根据分层抽样确定抽取比例,然后运用组合求解即可;(2)根据题中公式,计算出区间并判段数据落在该区间的概率,然后与题中条件比较即可得出结论.【小问1详解】由题意可知[)[)55,6565,750.330.22P P ==,所以抽取的2件产品恰好都在同一组的概率为:223225C C 42C 105P +===;【小问2详解】因为2241s =,知16s ,则11611661165455755 5a b -+⎧⎫⎡⎤=⨯==⨯=⎨⎬⎢⎥⎩⎭⎣⎦,,该抽样数据落在[]45,75内的频率约为0.160.30.266%65%++=>,又22612166121653059055a b -⨯+⨯⎧⎫⎡⎤=⨯==⨯=⎨⎬⎢⎥⎩⎭⎣⎦,,该抽样数据落在[]30,90内的频率约为10.030.040.9393%95%--==<,,所以可以判断技术改造后的产品质量初级稳定,但不能判定生产线技术改造成功.19.如图,//AD BC ,且AD =2BC ,AD ⊥CD ,//EG AD 且EG =AD ,//CD FG 且CD =2FG ,DG ⊥平面ABCD ,DA =DC =DG =2.(1)若M 为CF 的中点,N 为EG 的中点,求证:MN //平面CDE ;(2)求平面EBC 和平面BCF 所夹角的正弦值;【答案】(1)证明见解析(2)1010【解析】【分析】(1)以D 为坐标原点,分别以DA 、DC 、DG 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,根据空间向量可证MN //平面CDE ;(2)利用平面的法向量可求出结果.【小问1详解】证明:依题意,以D 为坐标原点,分别以DA 、DC 、DG 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,如图:可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2),3(0,,1)2M ,N (1,0,2).依题意,DC =(0,2,0),DE =(2,0,2).设0n =(x ,y ,z )为平面CDE 的法向量,则0020220n DC y n DE x z ⎧⋅==⎪⎨⋅=+=⎪⎩ ,得0y =,令z =-1,得1x =,则0(1,0,1)n =- ,又3(1,,1)2MN =- ,可得00MN n ⋅= ,直线MN ⊄平面CDE ,所以MN //平面CDE .【小问2详解】依题意,可得(1,0,0)BC =- ,(1,2,2)BE =- ,(0,1,2)CF =- ,设111(,,)n x y z = 为平面BCE 的法向量,则11110220n BC x n BE x y z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩ ,得10x =,令11z =,得11y =,则(0,1,1)n =,设222(,,)m x y z = 为平面BCF 的法向量,则222020m BC x m CF y z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩ ,得20x =,令21z =,得22y =,则(0,2,1)m =,因此有cos ,||||m n m n m n ⋅<>=⋅ 2152=⨯31010=.于是10sin ,10m n <>= .所以平面EBC 和平面BCF 所夹角的正弦值为1010.。

河北省衡水中学2024届高三下学期高考冲刺物理试卷(一) (含解析)

河北省衡水中学2024届高三下学期高考冲刺物理试卷(一) (含解析)

2023~2024学年度河北衡水中学冲刺高考物理密卷(一)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

共100分。

考试时间75分钟。

第Ⅰ卷(选择题共46分)一、单项选择题(本题共7小题,每小题4分,共28分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.采用图甲所示的装置研究光电效应现象,电流表和电压表不测量时指针均指在表盘的正中间。

分别用a、b、c三束单色光照光电管的阴极K,得到光电管两端的电压与相应的光电流的关系。

如图乙所示。

下列说法正确的是( )A.测量遏止电压时开关S应扳向1B、a光的光子能量比b光的小C.a光照射时光电子的最大初动能比c光照射的大D.c光的强度比a光的大2、两辆汽车A、B在相邻车道以不同的速度匀速行驶,前方十字路口红灯,两车刹车过程中并排行驶时,如图甲所示,车头到前方停车线的距离均为20m,最终两车头均恰好到达停车线前。

以两车并排行驶时车头所在处为位移0点并开始计时,以汽车运动方向为正方向建立x轴,汽车A整个过程的x-t图像如图乙所示,是开口向下的抛物线的一部分,汽车B 整个过程的y-t图像为如图丙所示的直线,下列说法正确的是( )A.两汽车同时到达停车线前B.汽车A的初速度大小为6m/sC .汽车B 的加速度大小为1m/s 2D.两车头沿运动方向的最大距离为3、半径为R 的半圆弧金属丝均匀带+Q 的电荷时,在其圆心处产生的电场强度大小为,k 为静电力常量。

若让一根半径为R 的圆弧金属丝均匀带+Q 的电荷,则在其圆心处产生的电场强度大小为( )A .B .C .D . 4、今年冬天,南海公园、赛罕塔拉、包头乐园为吸引游客,兴建了滑雪游乐场,某公园的滑雪场设置了如图所示滑道跳雪游戏项目:滑道由高为H 的斜面滑道AB 、水平滑道BC 和高为h 的斜面滑道CD 三部分组成,AC 水平距离为L ,CD 滑道的倾角固定,为45°,游客脚上的滑雪板与三段滑道之间的动摩擦因数均为μ=0.25,游客从A 点由静止开始下滑,经过水平滑道BC 过渡后由C 点水平飞出,若不计在B 点的机械能损失,下列说法正确的是( )A .只要H 和L 一定,不管滑道AB 的倾角有多大,游客从C 点飞出的速度一定B .若游客落在滑道CD 的不同点上,则落在滑道的各点速度方向不相同C .其他条件不变,为保证游客落在滑道CD 上,L 可以设计适当短一些D . 当3H =L +h 时,游客恰好落在 D 点5、2023年11月 16 日,中国北斗系统正式加入国际民航组织标准,成为全球民航通用的卫星导航系统。

2024届河北省衡水十三中高考模拟最后十套:数学试题(一)考前提分仿真卷

2024届河北省衡水十三中高考模拟最后十套:数学试题(一)考前提分仿真卷

2024届河北省衡水十三中高考模拟最后十套:数学试题(一)考前提分仿真卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.将一张边长为12cm 的纸片按如图(1)所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥模型,如图(2)放置,如果正四棱锥的主视图是正三角形,如图(3)所示,则正四棱锥的体积是( )A .33263cm B .36463cm C .33223cm D .36423cm 2.如图,将两个全等等腰直角三角形拼成一个平行四边形ABCD ,将平行四边形ABCD 沿对角线BD 折起,使平面ABD ⊥平面BCD ,则直线AC 与BD 所成角余弦值为( )A .23B 6C 3D .133.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向右平移5π6个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向左平移5π12个长度单位4.已知函数()2943,02log 9,0x x x f x x x ⎧+≤=⎨+->⎩,则函数()()y f f x =的零点所在区间为( ) A .73,2⎛⎫ ⎪⎝⎭B .()1,0-C .7,42⎛⎫ ⎪⎝⎭D .()4,55.一个几何体的三视图如图所示,则该几何体的表面积为( )A .48122+B .60122+C .72122+D .846.若x ,y 满足约束条件103020x y x y x +-≤⎧⎪-+≤⎨⎪+≥⎩,则22x y +的最大值是( )A .92B .322C .13D .137.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为 ( )A .B .C .D .8.已知m ∈R ,复数113z i =+,22z m i =+,且12z z ⋅为实数,则m =( ) A .23-B .23C .3D .-39.某歌手大赛进行电视直播,比赛现场有6名特约嘉宾给每位参赛选手评分,场内外的观众可以通过网络平台给每位参赛选手评分.某选手参加比赛后,现场嘉宾的评分情况如下表,场内外共有数万名观众参与了评分,组织方将观众评分按照[)70,80,[)80,90,[]90,100分组,绘成频率分布直方图如下: 嘉宾 A BC D EF评分969596 89 9798嘉宾评分的平均数为1x ,场内外的观众评分的平均数为2x ,所有嘉宾与场内外的观众评分的平均数为x ,则下列选项正确的是( ) A .122x x x +=B .122x x x +>C .122x x x +<D .12122x x x x x +>>>10.已知(cos ,sin )a αα=,()cos(),sin()b αα=--,那么0a b =是()4k k Z παπ=+∈的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件11.要得到函数312y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数323y x π⎛⎫=- ⎪⎝⎭图象上所有点的横坐标( )A .伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移4π个单位长度 B .伸长到原来的2倍(纵坐标不变),再将得到的图像向左平移4π个单位长度 C .缩短到原来的12倍(纵坐标不变),再将得到的图象向左平移524π个单位长度 D .缩短到原来的12倍(纵坐标不变),再将得到的图象向右平移1124π个单位长度12.已知双曲线()2222:10,0x y C a b a b-=>>的实轴长为2,离心率为2,1F 、2F 分别为双曲线C 的左、右焦点,点P 在双曲线C 上运动,若12F PF △为锐角三角形,则12PF PF +的取值范围是( )A .()27,8B .()25,7C .()25,8D .()27,7二、填空题:本题共4小题,每小题5分,共20分。

2023年河北省衡水中学高考语文模拟试卷

2023年河北省衡水中学高考语文模拟试卷

2023年河北省衡水中学高考语文模拟试卷·学生版一、现代文阅读(一)现代文阅读11.(19分)阅读下面的文字,完成下面小题。

材料一:中国说唱文学对三迭式叙事的使用较早可追溯到唐代的敦煌变文,如韩擒虎三战定南陈。

《三国志平话》的出现标志三迭式叙事在说唱文学中确立并逐渐得到发扬,其图上标题体现三迭式叙事的有“三战吕布”“张飞三出小沛”等。

而后,三迭式叙事逐渐进入章回体小说,《三国志通俗演义》等受到口头文学孕育演化而成的章回体小说对三迭式叙事的运用蔚为大观。

在《水浒传》中,宋江与高俅展开了三次交锋,是由同一人物对同一受动者实施同一性质的行动构成的三迭式叙事。

三败高俅在纵向叙事的链条上每次聚合扩展了一些新的要素,使三次战斗场景在行动和细节上各有不同。

作者充分发挥了三迭式结构框架蕴含的变异势能,使每一次击败高俅的方式和战果都呈现不同程度的差异,同时三迭式结构又使三败高俅的故事单纯而集中,叙事完整紧凑,避免生出枝节散漫和有首无尾的弊端。

“文之长者,连叙则惧其累赘,故必叙别事以间之,而后文势乃错综尽变。

”某些三迭式叙事在每一次行为动作之间会插入对其他事件的描叙,如“三气周瑜”便使用了所谓“横云断岭”的叙事技巧。

在“一气”与“二气”之间插入了刘备攻取长沙四郡、过江娶亲等诸多事件,在“二气”与“三气”之间插叙了曹操大宴铜雀台,避免连续叙事可能产生“累赘”的弊端,形成曲折变化的叙事态势,达到一种跌宕回旋的叙事效果。

由不同人物对同一受动者实施同一性质的行动构成的三迭式叙事也不少,同样呈现出变异势能和环环相扣的特征。

《说岳全传》中余化龙、何元庆、董先轮番与金弹子交战等情节依循这种三迭式的叙事结构,给读者呈现了细节各异而又兴会淋漓的沙场血拼。

三迭式叙事大多以二元对立的原则组织故事情节。

一些三迭式叙事体现的是强的二元对立关系,一方试图将另一方置于死地,每一次重复都在进一步强化双方的对立,直至其中一方死亡。

岳飞在校场与小梁王较量的场景出现三次,分别是比试作兵器论、比箭、比兵器,每一次出现都包含出题、比试、分出胜负三个可变通的部分,每一次比试都朝着更为凶险的趋势发展,直至岳飞枪挑小梁王为终结。

河北省衡水市联考卷2025届高考仿真卷数学试卷含解析

河北省衡水市联考卷2025届高考仿真卷数学试卷含解析

河北省衡水市联考卷2025届高考仿真卷数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若复数z 满足()1i z i +=(i 是虚数单位),则z 的虚部为( ) A .12B .12-C .12i D .12i -2.我国著名数学家陈景润在哥德巴赫猜想的研究中取得了世界瞩目的成就,哥德巴赫猜想内容是“每个大于2的偶数可以表示为两个素数的和”( 注:如果一个大于1的整数除了1和自身外无其他正因数,则称这个整数为素数),在不超过15的素数中,随机选取2个不同的素数a 、b ,则3a b -<的概率是( ) A .15B .415C .13D .253.已知非零向量a ,b 满足||a b |=|,则“22a b a b +=-”是“a b ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解:4.已知()A ,)B,P 为圆221x y +=上的动点,AP PQ =,过点P 作与AP 垂直的直线l 交直线QB于点M ,若点M 的横坐标为x ,则x 的取值范围是( )A .1x ≥B .1x >C .2x ≥D .x ≥5.已知全集U =R ,集合{|lg(1)}A x y x ==-,|B x y⎧==⎨⎩则()U A B =( ) A .(1,)+∞ B .(0,1) C .(0,)+∞D .[1,)+∞6.地球上的风能取之不尽,用之不竭.风能是淸洁能源,也是可再生能源.世界各国致力于发展风力发电,近10年来,全球风力发电累计装机容量连年攀升,中国更是发展迅猛,2014年累计装机容量就突破了100GW ,达到114.6GW ,中国的风力发电技术也日臻成熟,在全球范围的能源升级换代行动中体现出大国的担当与决心.以下是近10年全球风力发电累计装机容量与中国新增装机容量图. 根据所给信息,正确的统计结论是( )A .截止到2015年中国累计装机容量达到峰值B .10年来全球新增装机容量连年攀升C .10年来中国新增装机容量平均超过20GWD .截止到2015年中国累计装机容量在全球累计装机容量中占比超过137.已知椭圆22221x y a b +=(a >b >0)与双曲线222212x y a b -=(a >0,b >0)的焦点相同,则双曲线渐近线方程为( )A .33y x =±B .3y x =±C .22y x =±D .2y x =±8.已知函数()2ln 2xx f x ex a x=-+-(其中e 为自然对数的底数)有两个零点,则实数a 的取值范围是( ) A .21,e e⎛⎤-∞+ ⎥⎝⎦B .21,e e ⎛⎫-∞+⎪⎝⎭ C .21,e e⎡⎫-+∞⎪⎢⎣⎭D .21,e e⎛⎫-+∞ ⎪⎝⎭9.已知函数()y f x =是定义在R 上的奇函数,函数()f x 满足()()4f x f x =+,且(]0,1x ∈时,()2()log 1f x x =+,则()()20182019f f +=( ) A .2B .2-C .1D .1-10.当0a >时,函数()()2xf x x ax e =-的图象大致是( )A .B .C .D .11.五行学说是华夏民族创造的哲学思想,是华夏文明重要组成部分.古人认为,天下万物皆由金、木、水、火、土五类元素组成,如图,分别是金、木、水、火、土彼此之间存在的相生相克的关系.若从5类元素中任选2类元素,则2类元素相生的概率为( )A .12B .13C .14D .1512.设,则"是""的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。

2025届衡水中学高考英语全真模拟密押卷含解析

2025届衡水中学高考英语全真模拟密押卷含解析

2025届衡水中学高考英语全真模拟密押卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

第一部分(共20小题,每小题1.5分,满分30分)1.—Thank you very much for everything .You've been so helpful .—_ _.Just let me know if there is anything else I can do for you.A.With pleasure B.The pleasure is mine.C.Please don't say so D.No, thanks2.—Could you check my list to see I have forgotten anything?—No problem.A.whether B.whichC.that D.what3.I’m not sure of the reason for the dog’s illness, but it ____ by eating too much.A.may have been caused B.need have been causedC.should have been caused D.must have been caused4.I felt like giving up. I probably ________,but my Dad whispered, “Come on! You can make it.”A.would have B.would C.should D.should have5.Pandas are _____ to the mountains of central China and only about 1,000 remain in the wild.A. native B.sensitive C.relate D.familiar6.—— David should lie to his best friend in order to get the well-paid job!—— It is typical of him because he ________.A.is facing his Waterloo B.is visually challengedC.has cast-iron nerves D.worships the golden calf7.They are smiling. There ______ much trouble solving the problem.A.couldn’t be B.mustn’t beC.can’t have been D.mustn’t have been8.—Did you enjoy your journey to Beijing last weekend?—. We had driven more than 3 hours before we found the right way.A.Absolutely B.No way C.Not at all D.With pleasure9.The statement of One Foundation helps you ____ where your money is going.A.keep track of B.put up withC.come up with D.fit in with10.—What do you do, Rita?—I’m a clerk in a foreign company now.But I _____ English in a high school for 10 years.A.teach B.have taughtC.taught D.am teaching11._______ many Chinese holidays are directed towards services remembering ancestors, the Ching Ming Festival is beyond doubt the largest.A.Unless B.SinceC.Once D.While12.—My computer is out of function again.—You need to go to the customer service center and have it ________.A.to repair B.repairC.repairing D.repaired13.In order to satisfy the needs of the market, the electric company has ______ its focus to tablet computers and smart mobile phones.A.switched B.shapedC.directed D.discovered14.---What do you do, Susan?---I am a clerk in a foreign company now. But I __________English in a high school for 8 years.A.teach B.had taughtC.have taught D.taught15.It's always a good idea to have a second key somewhere________ you lose the first one.A.in case B.now thatC.even though D.as long as16.—I’m burnt out as I’ve been working on my essay all the time.— ____________. You’ll surely make it.A.Don’t put on airs B.Give me a breakC.Don’t get on my nerve D.Hang in there17._____________equal opportunities, both Frank and Billy may accomplish the task.A.Given B.GivingC.To give D.to be given18.The affairs of each country should be by its own people.A.elected B.settledC.developed D.contained19.The art historians tried to figure out how the temple __________ when built around 15 B.C.A.might look B.might have looked C.must look D.must have looked20.The businessman studied the market in his hometown to find the____ for investment.A.potential B.reservation C.criterion D.allowance第二部分阅读理解(满分40分)阅读下列短文,从每题所给的A、B、C、D四个选项中,选出最佳选项。

2023-2024学年河北省衡水市衡水中学高考仿真卷物理试卷含解析

2023-2024学年河北省衡水市衡水中学高考仿真卷物理试卷含解析

2023-2024学年河北省衡水市衡水中学高考仿真卷物理试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、单项选择题:本题共6小题,每小题4分,共24分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、如图所示,在直角坐标系xOy 平面内存在一正点电荷Q ,坐标轴上有A 、B 、C 三点,OA =OB =BC =a ,其中A 点和B 点的电势相等,O 点和C 点的电势相等,静电力常量为k ,则下列说法正确的是( )A .点电荷Q 位于O 点B .O 点电势比A 点电势高C .C 点的电场强度大小为22kQ a D .将某一正试探电荷从A 点沿直线移动到C 点,电势能一直减小2、关于原子能级跃迁,下列说法正确的是( )A .处于n =3能级的一个氢原子回到基态时可能会辐射三种频率的光子B .各种气体原子的能级不同,跃迁时发射光子的能量(频率)不同,因此利用不同的气体可以制成五颜六色的霓虹灯C .氢原子的核外电子由较高能级跃迁到较低能级时,会辐射一定频率的光子,同时氢原子的电势能减小,电子的动能减小D .已知氢原子从基态跃迁到某一激发态需要吸收的能量为12.09eV ,则动能等于12.09eV 的另一个氢原子与这个氢原子发生正碰,可以使这个原来静止并处于基态的氢原子跃迁到该激发态3、如图所示,在以R 0为半径,O 为圆心的圆形区域内存在磁场,直径MN 左侧区域存在一匀强磁场,方向垂直于纸面向外,磁感应强度大小为B 1;MN 右侧区域也存在一匀强磁场,方向垂直于纸面向里,磁感应强度大小为B 2,有一质量为m ,电荷量为+q 的带电粒子(不计重力)沿垂直于MN 的方向从P 点射入磁场,通过磁场区域后自Q 点离开磁场,离开磁场时其运动方向仍垂直于MN 。

河北省衡水市重点2024年高考仿真模拟语文试卷含解析

河北省衡水市重点2024年高考仿真模拟语文试卷含解析

河北省衡水市重点2024年高考仿真模拟语文试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

1、阅读下面的文字,完成下面小题。

在西安大雁塔南边的大唐不夜城中,游客________,他们扎堆在一个个临时搭建的工坊前,看得出神。

麦草工艺工坊里,陕西渭南一位村民将麦草剪成细细的"牛毛"拼贴在画纸上,一幅牛耕图________,在日光下熠熠闪光,他的麦草工艺品已成为陕西"一村一品"特色产品……各具特色的工坊组成了本届匠人大会的核心活动--"守艺长安·大唐工坊"。

活动以西安本地匠人展示为主,通过技艺工坊的形式零距离与游客进行互动,向来自各地的世界游客表现中国的匠人精神。

对于工匠精神,《诗经·国风》中这样描述:"如切如磋,如琢如磨。

"在已出土的中央官府烧制的秦代瓦当上,常会发现有一两厘米大小的不起眼的印文,包括编号、机构、工匠名等。

难道2000年前匠人的产权意识就已觉醒?答案并非如此。

秦始皇统一中国之前,吕不韦要求器物的制造者在产品上刻下己名,方便管理者检验产品质量、考核工匠技艺。

这种制度客观上造就了中国工匠精益求精的精神,之后的历朝历代,不管工料、工艺如何________,不管是玉器、青铜器,还是瓷器丝绸,( )。

"纵观中外历史,当物质文明发展到一定阶段,人们对文化艺术的审美需求就会强烈。

今天改革开放已经走过了40年,工匠精神被标举,是必然结果。

一个强大的国家需要一群________的人,需要一个具有匠心的群体。

"参会的复旦大学历史系教授钱文忠说。

1.文中画横线的句子有语病,下列修改最恰当的一项是A.活动以西安本地匠人展示为主,通过技艺工坊的形式零距离与游客进行互动,向来自世界各地的游客展示中国的匠人精神。

2025届河北省衡水市衡水中学高考仿真模拟英语试卷含解析

2025届河北省衡水市衡水中学高考仿真模拟英语试卷含解析

2025届河北省衡水市衡水中学高考仿真模拟英语试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

第一部分(共20小题,每小题1.5分,满分30分)1.—Oh, my God! What’s wrong with you?—I was going the normal speed limit when a truck appeared in front of me ________ and I didn't have time to stop. A.between the lines B.around the clockC.out of the blue D.over the moon2.I am sorry I am very busy now. If I time, I would certainly go to the movies with you.A.have B.hadC.have had D.had had3.—Have you watched the film “Avatar”?— Not yet. But I the film is worth watching.A.am told B.was told C.have told D.have been told4.Simply raise your hand,and a taxi appears ________A.at no time B.at one timeC.in no time D.for the time being5.Some business owners are keen on public welfare. This is local services have been funded.A.whether B.what C.where D.how6.—Why are you in such a hurry, Bob?—Mother told me I ________ be home by 9:00 pm, or she will be worried.A.must B.mightC.can D.may7.---Can you tell us your ________ for happiness and a long life?---Living every day to the fullest,definitely.A.recipe B.effortC.content D.demand8.Passengers _____ talk to the driver while the bus is moving, because it will take his focus off the road.A.would not B.must notC.may not D.need not9.What an unforgettable experience! I'll write it down__________it is still fresh in my memory.A.since B.while C.after D.until10.---But for your timely warning, we into great trouble.---Well, you know we’re friends.A.would get B.must have got C.would have got D.can’t have got11.—There aren’t any toys in our suitcase.Where have you put them?—Oh, no.That old lady sitting next to us ______ have taken ours by mistake.A.must B.could C.should D.would12.I broke my relationship with Peter because he always found _______ with me.A.error B.failureC.mistake D.fault13.Thanks to the efforts in environmental protection, the wetland has been _____ to its original appearance. A.restored B.deliveredC.transferred D.drafted14.What you said doesn’t ________ what the police have told us, so we have to find more evidence.A.agree with B.make upC.contribute to D.show off15.—-What difference will it make _____we shall go to the concert on Tuesday or Saturday?—They offer a discount on weekdays.A.that B.whenC.if D.why16.---There are probably aliens living here on earth.---_____! I can’t believe you said that.A.Come on B.Forget itC.Go ahead D.Allow me17.Some women a good salary in a job instead of staying home,but they decided not to work for the sake of the family.A.must make B.should have made C.would make D.could have made18.It is said that the only survivor in the car crash was badly injured. However, somehow the doctors managed to help him ______.A.pull through B.put through C.look through D.break through19.It is immediately clear ______ the financial crisis will soon be over.A.since B.whatC.when D.whether20.—I felt it very difficult to carry on the work all by myself.—I could have helped you, but you _____me to.A.hadn’t asked B.didn’t ask C.haven’t asked D.don’t ask第二部分阅读理解(满分40分)阅读下列短文,从每题所给的A、B、C、D四个选项中,选出最佳选项。

河北省衡水中学2024届高三下学期新高考数学押题卷数学(二)

河北省衡水中学2024届高三下学期新高考数学押题卷数学(二)

河北省衡水中学2024届高三下学期新高考数学押题卷数学(二)一、单选题1.已知集合{0M x x =<∣或2},{2}x N >=,则()M N ⋃=R ð( )A .{02}xx <<∣ B .{02}xx ≤<∣ C .{04}xx ≤<∣ D .{04}xx <<∣ 2.若1iiz a +=+为纯虚数,R a ∈,则1z +=( ) ABC .2D .33.“角,αβ的终边在同一条直线上”是“()sin 0αβ-=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.在ABC V 中,D 是BC 的中点,直线l 分别与,,AB AD AC 交于点,,M E N ,且43AB A M =u u u r u u u u r ,2,AE ED AC AN λ==u u u r u u u r u u u r u u u r,则λ=( )A .85B .53C .74D .525.8(1的展开式中2x 的系数是( ) A .70-B .70C .1-D .16.已知点()()0,1,A B ,动点P 满足120APB ∠=o ,若点P的轨迹与直线y b +有两个公共点,则b 的值可以是( ) A1 B .45-C .65D1- 7.已知双曲线2222:1(0,0)x y E a b a b-=>>的右焦点为F ,过点F 作直线l 与渐近线0bx ay -=垂直,垂足为点P ,延长PF 交E 于点Q .若3FQ PF =u u u r u u u r,则E 的离心率为( ) A .65B .54C .43D8.已知函数()()ln ,0,1,0,ln 2,0.x x x f x x x x x ⎧>⎪=-=⎨⎪--<⎩若关于x 的方程()1f x ax =-有5个不同的实数根,则a 的取值范围是( )A .()1,+∞B .()2,+∞C .()1,eD .()2,2e二、多选题9.已知函数()cos (0,0π)f x x x ωω=><<,则下列结论正确的是( ) A .若()f x 单调递减,则1ω≥ B .若()f x 的最小值为1-,则1ω> C .若()f x 仅有两个零点,则5722ω<≤ D .若()f x 仅有两个极值点,则23ω<≤10.已知抛物线2:2(0)E x py p =>的焦点为F ,准线为l ,过点F 且与坐标轴不垂直的直线与E 交于,A B 两点,过AB 的中点M 作y 轴的平行线交l 于点N .设MN 的中点为P ,直线,,PA AB PB 的斜率分别为123,,k k k ,则( )A .点P 在E 上B .过点P 且与E 相切的直线m 与直线AB 平行C .3AB PF =D .1322k k k +=11.已知正三棱柱111ABC A B C -的棱长均为2,M 为棱1CC 上靠近点C 的四等分点,N 为棱AC 的中点,则( )A .平面BMN ⊥平面1A BNB .直线MN 与1BC 所成角的正切值为3C .点N 到平面1A BMD .以M 为球心,2为半径的球面与该棱柱的棱公共点的个数为6三、填空题12.分子是1的分数叫做单位分数,古代埃及人在进行分数运算时,只使用分子是1的分数,因此这种分数也叫做埃及分数.从1111,,,,34515L 这13个分数中,取出3个不同的分数组成空间直角坐标系内的一个点的坐标,则满足这3个分数的和为12的不同对应点的个数是.(用数字作答)13.如图,已知正四面体ABCD 的棱长为2,,M N 分别为棱,BC AD 的中点.若该正四面体有一内接圆锥NO ,其中N 为圆锥的顶点,底面圆心O 在线段MN 上,则该圆锥体积的最大值为.14.已知()f x 是定义在R 上的函数,且对任意的x ∈R ,同时满足下列条件:①()()()221x f x f x a a +-≤-;②()()()441x f x f x a a +-≥-,其中a 是大于1的常数.记()()x g x f x a =-,且对任意的x ∈R ,存在常数()*l l ∈N ,恒有()()g x l g x +=,则l 的一个值是;若()01f a =+,则()2g k =()k ∈N .(用a 表示)四、解答题15.记各项均为正数的数列{}n a 的前n 项和为n S12n a -与32n a +的等差中项. (1)求{}n a 的通项公式;(2)设211n n n n a b S S ++={}n b 的前n 项和为n T ,证明:42n T n -<. 16.如图,在六棱锥P ABCDEF -中,平面ABCDEFPA ⊥平面,ABCDEF G 为棱PE 上一点,且2PG GE =.(1)证明:FG P 平面PAC ;(2)若1PA =,求平面DFG 与平面PCF 夹角的余弦值. 17.已知函数()log (0a axf x a x =>且1)a ≠. (1)当2a =时,判断()f x 的单调性; (2)若()1f x ≥-恒成立,求a 的值.18.已知甲口袋有()*1,m m m ≥∈N 个红球和2个白球,乙口袋有()*1,n n n ≥∈N 个红球和2个白球,小明从甲口袋有放回地连续摸球2次,每次摸出一个球,然后再从乙口袋有放回地连续摸球2次,每次摸出一个球. (1)当4,2m n ==时,(i )求小明4次摸球中,至少摸出1个白球的概率;(ii )设小明4次摸球中,摸出白球的个数为X ,求X 的数学期望;(2)当m n =时,设小明4次摸球中,恰有3次摸出红球的概率为P ,则当m 为何值时,P 最大?19.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为()12,,1,1F F M 是C 上一点,且点M到点12,F F 的距离之和为(1)求C 的方程;(2)斜率为12的直线l 与C 交于,A B 两点,则MAB △的外心是否在一条定直线上?若在,求出该直线的方程;若不在,请说明理由.。

河北省衡水市第二中学2024届高三高考模拟一数学试题(含答案解析)

河北省衡水市第二中学2024届高三高考模拟一数学试题(含答案解析)

河北省衡水市第二中学2024届高三高考模拟一数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{}2120,{23},P xx x Q x m x m P Q =--≤=≤≤-=∅ ∣∣,则实数m 的取值范围是().A .{0m m <∣或4}m >B .{04}m m <<∣C .{3mm <∣或4}m >D .{34}mm <<∣2.某同学统计最近5次考试成绩,发现分数恰好组成一个公差不为0的等差数列,设5次成绩的平均分数为x ,第60百分位数为m ,当去掉某一次的成绩后,4次成绩的平均分数为y ,第60百分位数为n .若y x =,则()A .m n >B .m n=C .m n<D .m 与n 大小无法判断3.吹气球时,气球的体积V (单位:L )与半径r (单位:dm )之间的关系是343V r π=.当4L 3V π=时,气球的瞬时膨胀率为()A .1dm /L 4πB .1dm /L3C .3L /dmD .4L /dmπ4.设实数x ,y 满足22154x y +=)A .B .2-C .D .前三个答案都不对5.记数列{}n a 的前n 项和为n S ,设甲:{}n a 是公比不为1的等比数列;乙:存在一个非零常数t ,使1n S t ⎧⎫+⎨⎬⎩⎭是等比数列,则()A .甲是乙的充要条件B .甲是乙的充分不必要条件C .甲是乙的必要不充分条件D .甲是乙的既不充分也不必要条件6.六氟化硫,化学式为6SF ,在常压下是一种无色、无臭、无毒、不燃的稳定气体,有良好的绝缘性,在电器工业方面具有广泛用途.六氟化硫分子结构为正八面体结构(正八面体每个面都是正三角形,可以看作是将两个棱长均相等的正四棱锥将底面粘接在一起的几何体).如图所示,正八面体E ABCD F --的棱长为a ,下列说法中正确的个数有()①此八面体的表面积为2;②异面直线AE 与BF 所成的角为45 ;③此八面体的外接球与内切球的体积之比为④若点P 为棱EB 上的动点,则AP CP +的最小值为.A .1个B .2个C .3个D .4个7.在ABC V 中,2AB AC =,AD 是A ∠的平分线,交BC 于点D ,且AC tAD =,则t 的取值范围是A .3,4⎛⎫+∞ ⎪⎝⎭B .3,14⎛⎫⎪⎝⎭C .1,2⎛⎫+∞ ⎪⎝⎭D .1,12⎛⎫⎪⎝⎭8.已知,,(1,)a b c ∈+∞,且e 9ln11,e 10ln10,e 11ln 9a b c a b c ===,则,,a b c 的大小关系为()A .a b c >>B .c a b >>C .b c a>>D .c b a>>二、多选题9.下列四个命题正确的是()A .若1i 1z +-=,则1i z --的最大值为3B .若复数12,z z满足12122,2,1z z z z ==+=,则12z z -=C .若()sin sin C A AB A AB B AC C P λλ⎛⎫ ⎪=+∈ ⎪⎝⎭R,则点P 的轨迹经过ABC V 的重心D .在ABC V 中,D 为ABC V 所在平面内一点,且1132+= AD AB AC ,则16BCD ABDS S =△△10.由倍角公式2cos 22cos 1x x =-可知,cos 2x 可以表示为cos x 的二次多项式.一般地,存在一个()*n n ∈N 次多项式()110n n n n n P t a t a t a --=+++ (0a ,1a ,…,n a ∈R ),使得()cos cos n nx P x =,这些多项式()n P t 称为切比雪夫(P .L .Tschebyscheff )多项式.运用探究切比雪夫多项式的方法可得()A .()3343P t t t=-+B .()424881P t t t =-+C.1sin 544+︒=D.1cos546︒=11.已知n S 是数列{}n a 的前n 项和,且21n n S S n +=-+,则下列选项中正确的是().A .121n n a a n ++=-(2n ≥)B .22n n a a +-=C .若10a =,则1004950S =D .若数列{}n a 单调递增,则1a 的取值范围是11,43⎛⎫- ⎪⎝⎭三、填空题12.已知:平面l αβ= ,A l ∈,B l ∈,4AB =,C β∈,CA l ⊥,3AC =,D α∈,DB l ⊥,3.DB =直线AC 与BD 的夹角是60︒,则线段CD 的长为.13.数列{}满足()2*114,13n n n a a a a n N +==-+∈,则122017111a a a +++ 的整数部分是.14.极线是高等几何中的重要概念,它是圆锥曲线的一种基本特征.对于圆222x y r +=,与点()00,x y 对应的极线方程为200x x y y r +=,我们还知道如果点()00,x y 在圆上,极线方程即为切线方程;如果点()00,x y 在圆外,极线方程即为切点弦所在直线方程.同样,对于椭圆22221x y a b +=,与点()00,x y 对应的极线方程为00221x x y y a b +=.如上图,已知椭圆C :22143x y +=,()4,P t -,过点P 作椭圆C 的两条切线PA ,PB ,切点分别为A ,B ,则直线AB 的方程为;直线AB 与OP 交于点M ,则sin PMB ∠的最小值是.四、解答题15.在数列{}n a 中,已知321212222n n a a a a n -++++= .(1)求数列{}n a 的通项公式;(2)在数列{}n a 中的1a 和2a 之间插入1个数11x ,使1112,,a x a 成等差数列;在2a 和3a 之间插入2个数2122,x x ,使221223,,,a x x a 成等差数列;…;在n a 和1n a +之间插入n 个数12,,,n n nn x x x ,使121,,,,,n n n nn n a x x x a + 成等差数列,这样可以得到新数列{}1112212233132334:,,,,,,,,,,,n n b a x a x x a x x x a a ,设数列{}n b 的前n 项和为n S ,求55S (用数字作答).16.已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,左顶点为A ,短轴长为点31,2⎛⎫ ⎪⎝⎭.(1)求椭圆C 的方程;(2)过点F 的直线l (不与x 轴重合)与C 交于,P Q 两点,直线,AP AQ 与直线4x =的交点分别为,M N ,记直线,MF NF 的斜率分别为12,k k ,证明:12k k ⋅为定值.17.在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,E 是BC 的中点,点F 在棱AD 上,且PA AD ⊥,2cos5PAE ∠=-,PA =(1)若平面PAB ⋂平面PCD l =,证明://l 平面ABCD ;(2)求平面PEF 与平面PCD 的夹角的余弦值的最大值.18.近年来,购买盲盒成为当下年轻人的潮流之一,为了引导青少年正确消费,国家市场监管总局提出,盲盒经营行为应规范指引,经营者不能变相诱导消费.盲盒最吸引人的地方,是因为盒子上没有标注,只有打开才会知道自己买到了什么,这种不确定性的背后就是概率.几何分布是概率论中非常重要的一个概率模型,可描述如下:在独立的伯努利(Bernoulli )试验中,若所考虑事件首次出现,则试验停止,此时所进行的试验次数X 服从几何分布,事件发生的概率p 即为几何分布的参数,记作()~X G p .几何分布有如下性质:分布列为()()11k P X k p p -==-,1,2,,,k n =⋅⋅⋅⋅⋅⋅,期望()()1111k k E X k p p p+∞-==-⋅=∑.现有甲文具店推出四种款式不同、单价相同的文具盲盒,数量足够多,购买规则及概率规定如下:每次购买一个,且买到任意一种款式的文具盲盒是等可能的.(1)现小嘉欲到甲文具店购买文具盲盒.①求他第二次购买的文具盲盒的款式与第一次购买的不同的概率;②设他首次买到两种不同款式的文具盲盒时所需要的购买次数为Y ,求Y 的期望;(2)若甲文具店的文具盲盒的单价为12元,乙文具店出售与甲文具店款式相同的非盲盒文具且单价为18元.小兴为了买齐这四种款式的文具,他应选择去哪家文具店购买更省钱,并说明理由.19.牛顿在《流数法》一书中,给出了代数方程的一种数值解法——牛顿法.具体做法如下:如图,设r 是()0f x =的根,首先选取0x 作为r 的初始近似值,若()f x 在点00(,())x f x 处的切线与x 轴相交于点1(,0)x ,称1x 是r 的一次近似值;用1x 替代0x 重复上面的过程,得到2x ,称2x 是r 的二次近似值;一直重复,可得到一列数:012,,,,,n x x x x .在一定精确度下,用四舍五入法取值,当()*1,N n n x x n -∈近似值相等时,该值即作为函数()f x 的一个零点r .(1)若32()33f x x x x =++-,当00x =时,求方程()0f x =的二次近似值(保留到小数点后两位);(2)牛顿法中蕴含了“以直代曲”的数学思想,直线常常取为曲线的切线或割线,求函数()e 3x g x =-在点(2,(2))g 处的切线,并证明:23ln31e <+;(3)若()(1ln )h x x x =-,若关于x 的方程()h x a =的两个根分别为1212,()x x x x <,证明:21e e x x a ->-.参考答案:题号12345678910答案C CACBBADABCBC题号11答案AC1.C【分析】化简集合A 后,根据P Q =∅ 分类讨论即可.【详解】由{}2120[3,4]P xx x =--≤=-∣,P Q =∅ ,当Q =∅时,需满足23m m >-,解得3m <;当Q ≠∅时,需满足34m m ≥⎧⎨>⎩,解得4m >,综上3m <或4m >.故选:C 2.C【分析】依题意不妨设这5次的分数从小到大分别为a 、a d +、2a d +、3a d +、4a d +()0,0a d >>,即可求出x 、m ,要使去掉一个数据之后平均数不变,则去掉的一定是2a d +,从而求出n ,即可判断.【详解】依题意不妨设这5次的分数从小到大分别为a 、a d +、2a d +、3a d +、4a d +()0,0a d >>,所以()123425x a a d a d a d a d a d =++++++++=+,又560%3⨯=,所以第60百分位数为23522a d a d m a d +++==+,要使4次成绩的平均分数为y 且y x =,则去掉的数据一定是2a d +,即还剩下a 、a d +、3a d +、4a d +()0,0a d >>,又460% 2.4⨯=,所以第60百分位数为3n a d =+,因为0d >,所以n m >.故选:C 3.A【分析】气球膨胀率指的是气球体积变化的值与半径变化值之间的比值,即rV∆∆,但此题所求的时瞬时变化率,故需要利用导数求解.【详解】因为343V r π=,所以r =,所以12333143r π-⎛⎫'=⨯ ⎪⎝⎭,所以,当43V π=时,12123333314313131433434344r ππππππ-⎛⎫⎛⎫⎛⎫⎛⎫'=⨯=⨯=⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭dm /L .故选:A 4.C【分析】转化为动点到两定点之间距离和,再利用焦点三角形的性质可求最小值.,点(,)P x y 是椭圆22:154x y C +=上的点,设(1,0),(1,0),(0,1)E F A -,如图.记题中代数式为M ,则||||||||||M PA PF PA PE AE =+=+≥=等号当点E ,A ,P 依次共线时取得.因此所求最小值为故选:C.5.B【分析】利用等比数列前n 项和公式,结合充分条件、必要条件的定义判断即得.【详解】设数列{}n a 的首项和公比分别为1a ,(1)≠q q ,则111n n q S a q -=⋅-,取11a t q =-,得1n n S q t +=,显然数列{1}n S t +是等比数列;反之,取1t =,0n a =,此时11n S +=,数列{1}nS t+为等比数列,而{}n a 不是等比数列,所以甲是乙的充分不必要条件.故选:B 6.B【分析】对①:计算出一个三角形面积后乘8即可得;对②:借助等角定理,找到与AE 平行,与BF 相交的线段,计算即可得;对③:借助外接球与内切球的性质计算即可得;对④:空间中的距离和的最值问题可将其转化到同意平面中进行计算.【详解】对①:由题意可得2284S =⨯=表,故①正确;对②:连接AC ,取AC 中点O ,连接OE 、OF ,由题意可得OE 、OF 为同一直线,A 、E 、C 、F 四点共面,又AE EC CF FA ===,故四边形AECF 为菱形,故//AE CF ,故异面直线AE 与BF 所成的角等于直线CF 与BF 所成的角,即异面直线AE 与BF 所成的角等于60CFB ∠=,故②错误;对③:由四边形ABCD 为正方形,有2222222AC BC AB EC AE a =+=+=,故四边形AECF 亦为正方形,即点O 到各顶点距离相等,即此八面体的外接球球心为O,半径为2aR =,设此八面体的内切球半径为r ,则有2112233E ABCD F E ABCD V S r V a ---=⨯==⨯⨯⨯表r =,则此八面体的外接球与内切球的体积之比为33R r ⎛⎫⎪⎛⎫== ⎪⎝⎭对④:将AEB 延EB 折叠至平面EBC中,如图所示:则在新的平面中,A 、P 、C 三点共线时,AP CP +有最小值,则()min 22AP CP a +=⨯=,故④错误.故选:B.【点睛】关键点点睛:本题④中,关键点在于将不共面的问题转化为同一平面的问题.7.A【解析】在ABC V 中,2AB AC =,AD 是A ∠的平分线,由角平分线性质可得2BD ABCD AC==,利用cos cos BAD CAD ∠=∠结合余弦定理化简可得22212CD AC AD =-,再代入cos CAD ∠的式子中消去CD ,通过AC tAD =,化简整理得出3cos 4CAD t∠=,即可得到t 的取值范围.【详解】在ABC V 中,2AB AC =,AD 是A ∠的平分线,∴由角平分线的性质可得2BD ABCD AC==,BAD CAD ∠=∠,在ABD △中,由余弦定理得222cos 2AB AD BD BAD AB AD +-∠=⋅,在ACD 中,由余弦定理得222cos 2AC AD CD CAD AC AD +-∠=⋅,∴22222222AB AD BD AC AD CD AB AD AC AD+-+-=⋅⋅,化简得22222AD AC CD =-,即22212CD AC AD =-,∴22223332cos 2244AD AC AD CD AD CAD AC AD AC AD AC t+-∠===⋅⋅而0,2CAD π⎛⎫∠∈ ⎪⎝⎭,故()3cos 0,14CAD t ∠=∈,∴3,4t ⎛⎫∈+∞ ⎪⎝⎭.故选:A.【点睛】本题考查了三角形内角平分线的性质以及余弦定理在解三角形中的应用,考查了转化能力与计算能力,属于中档题.8.D【分析】构造函数()()e ,1,xf x x x∞=∈+,利用导数讨论其单调性,将问题转化为比较,,,再转化为比较9ln11,10ln10,11ln 9,构造函数()()20ln g x x x =-,利用导数讨论其单调性,利用单调性即可得答案.【详解】由题知,e e e 9ln11,10ln10,11ln 9a b ca b c ===,记()()e ,1,x f x x x ∞=∈+,则()()21e x x f x x-'=,当()1,x ∈+∞时,()0f x '>,()f x 单调递增,故比较,,a b c 的大小关系,只需比较,,的大小关系,即比较9ln11,10ln10,11ln 9的大小关系,记()()20ln ,1g x x x x =->,则()20ln 1g x x x=-+-',记()20ln 1h x x x =-+-,则()21200h x x x=--<',所以()h x 在()1,+∞上单调递减,又()220338ln 81ln 8ln e 0822h =-+-=-<-<,所以,当()8,x ∈+∞时,()0h x <,()g x 单调递减,所以()()()11109g g g <<,即9ln1110ln1011ln 9<<,所以()()()f a f b f c <<,所以a b c <<.故选:D【点睛】本题难点在于构造函数()()e ,1,xf x x x∞=∈+,将问题转化成比较,,的大小关系后,需要再次构造函数()()20ln ,1g x x x x =->,对学生观察问题和分析问题的能力有很高的要求,属于难题.9.ABC【分析】A 根据复数模的几何意义及圆的性质判断;B 利用复数的运算和模的运算求解即可;C 结合重心的性质进行判断;D 利用平面向量基本定理,判断出D 点位置,进而可求.【详解】对A ,由1i 1z +-=的几何意义,知复数z 对应的动点Z 到定点(1,1)-的距离为1,即动点Z 的轨迹以(1,1)-为圆心,1为半径的圆,1i z --表示动点点Z 的轨迹以(1,1)的距离,由圆的性质知:max |i |z --==113,A 正确;对B ,设i,i,(,,,R)z m n z c d m n c d =+=+∈12,因为12122,2,1z z z z ==+=,所以,m n c d +=+=222244,,m c n d +=+=1,所以mc nd +=-2,所以12()()i z z m c n d -=-+-====,B 正确;对C ,由正弦定理的sin sin AC C AB B ⋅=⋅,即||sin ||sin AC C AB B =,()sin sin sin AB AC AP AB AC AB B AC C AB B λλ⎛⎫ ⎪∴==+ ⎪⎝⎭,设BC 中点为E ,如图:则AB +AC =2AE,则||sin AP AE AB Bλ=2 ,由平面向量的共线定理得,,A P E 三点共线,即点P 在边BC 的中线上,故点P 的轨迹经过ABC V 的重心,C 正确;对D ,如图由已知点D 在ABC V 中与AB 平行的中位线上,且靠近BC 的三等分点处,故有,,ABD ABC ACD ABC BCD S S S S S ===1123 1111236ABC ABC S S ⎛⎫--= ⎪⎝⎭ ,所以13BCD ABDS S =△△,D 错误.故选:ABC 10.BC【分析】根据两角和的余弦公式,以及二倍角的正余弦公式化简可得3cos34cos 3cos x x x =-,根据定义即可判断A 项;根据二倍角公式可推得()424cos 8cos 8cos 1P x x x =-+,即可得出B 项;根据诱导公式以及A 的结论可知,3cos544cos 183cos18︒=︒-︒,2sin 54cos 362cos 181︒=︒=︒-.平方相加,即可得出25cos 188︒+=,进而求出C 项;假设D 项成立,结合C 项,检验即可判断.【详解】对于A 项,()cos3cos 2cos 2cos sin 2sin =+=-x x x x x x x ()222cos 1cos 2cos sin x x x x=--()()222cos 1cos 2cos 1cos x x x x =---34cos 3cos x x =-.由切比雪夫多项式可知,()3cos3cos x P x =,即()33cos 4cos 3cos P x x x =-.令cos t x =,可知()3343P t t t =-,故A 项错误;对于B 项,()cos 4cos 22x x =⨯()2222cos 2122cos 11x x =-=⨯--428cos 8cos 1x x =-+.由切比雪夫多项式可知,()4cos 4cos x P x =,即()424cos 8cos 8cos 1P x x x =-+.令cos t x =,可知()424881P t t t =-+,故B 项正确;对于C 项,因为36218︒=⨯︒,54318︒=⨯︒,根据A 项3cos34cos 3cos x x x =-,可得3cos 544cos 183cos18︒=︒-︒,2cos 362cos 181︒=︒-.又cos 36sin 54︒=︒,所以2222cos 36cos 54sin 54cos 541︒+︒=︒+︒=,所以,()()22324cos 183cos182cos 1811︒-︒+︒-=.令cos180t =︒>,可知()()223243211t tt -+-=,展开即可得出642162050t t t -+=,所以42162050t t -+=,解方程可得258t ±=.因为cos18cos320t =︒>︒,所以258t =,所以,2cos 362cos 181︒=︒-512184=⨯=,所以,sin 54cos36︒=︒=C 项正确;对于D 项,假设1cos546︒=,因为1sin 544︒=,则22221si c s n o 5445⎫︒=+≠⎪⎪⎝⎭⎝⎭︒+,显然不正确,故假设不正确,故D 项错误.故选:BC.【点睛】方法点睛:根据题意多项式的定义,结合两角和以及二倍角的余弦公式,化简可求出()()34cos ,cos P x P x ,换元即可得出()()34,P t P t .11.AC【分析】对于A ,由21n n S S n +=-+,多写一项,两式相减即可得出答案.对于B ,由121n n a a n ++=-(2n ≥),多递推一项,两式相减即可得出答案少了条件2n ≥.对于C ,由分析知22n n a a +-=,所以{}n a 奇数项是以10a =为首项,2为公差的等差数列,偶数项是以21a =为首项,2为公差的等差数列,由等差数列得前n 项和公式即可得出答案.对于D ,因为数列{}n a 单调递增,根据1234n a a a a a <<<<< ,即可求出1a 的取值范围.【详解】对于A ,因为21n n S S n +=-+,当()2121n n n S S n -≥=-+-,,两式相减得:121n n a a n ++=-(2n ≥),所以A 正确.对于B ,因为121n n a a n ++=-(2n ≥),所以()+122+11=21n n a a n n ++=-+,两式相减得:22n n a a +-=(2n ≥),所以B 不正确.对于C ,21n n S S n +=-+ ,令1n =,则211S S =-+,1211a a a +=-+,因为10a =,所以21a =.令2n =,则324S S =-+,112324a a a a a ++=--+,所以32a =.因为22n n a a +-=(2n ≥),而312a a -=,所以22n n a a +-=.所以{}n a 奇数项是以10a =为首项,2为公差的等差数列.偶数项是以21a =为首项,2为公差的等差数列.则:()()10012399100139924100=+++S a a a a a a a a a a a =+++++++++ 5049504950025012=495022⨯⨯⎛⎫⎛⎫=⨯+⨯+⨯+⨯ ⎪ ⎪⎝⎭⎝⎭,所以C 正确.对于D ,21n n S S n +=-+,令1n =,则211S S =-+,1211a a a +=-+,则2121a a =-+又因为+12=21n n a a n +++,令1n =则23=3a a +,所以()3211=332122a a a a -=--+=+,同理:()4311=552223a a a a -=-+=-+,()5411=772324a a a a -=--+=+,因为数列{}n a 单调递增,所以1234n a a a a a <<<<< ,解12a a <得:113a <,解23a a <得:114a >-,解34a a <得:114a <,解45a a <得:114a >-,解56a a <得:114a <,所以1a 的取值范围是11,44⎛⎫- ⎪⎝⎭,所以D 不正确.故选:AC.【点睛】本题考查的是等差数列的知识,解题的关键是利用121n n a a n ++=-,得出{}n a 的奇数项、偶数项分别成等差数列,考查学生的逻辑推理能力和运算求解能力,属于难题.12.5【分析】作//AE BD 且AE BD =,连接,ED EC ,则CAE ∠(或其补角)为异面直线,AC BD 所成的角,所以60CAE ∠=︒或120CAE ∠=︒,证明DE EC ⊥,先求出EC ,再得CD .【详解】如图,作//AE BD 且AE BD =,连接,ED EC ,则CAE ∠(或其补角)为异面直线,AC BD 所成的角,所以60CAE ∠=︒或120CAE ∠=︒,因为//AE BD 且AE BD =,所以ABDE 是平行四边形,所以//DE AB ,4DE AB ==,因为,AB AC AB BD ⊥⊥,所以,ED AC ED AE ⊥⊥,AC AE A ⋂=,所以BD ⊥平面AEC ,CE ⊂平面AEC ,所以ED CE ⊥,3AC AE ==,若60CAE ∠=︒,则3CE =,5CD ==,若120CAE ∠=︒,则23sin 60CE =⨯︒=,CD =故答案为:5【点睛】本题考查异面直线所成角的应用,都可空间两点间的距离.解题关键是作出异面直线所成的角.构造三角形,在三角形中求线段长.13.2【详解】因为()2*114,13n n n a a a a n N +==-+∈,所以211(1)0n n n n n a a a a a ++-=->⇒>,数列{}单调递增,所以1(11)0n n n a a a +-=->,所以111(1)1111n n n n na a a a a +--=--=,所以121122111111111111()()()11111n n n n n S a a a a a a a a a a a =+++=-+-++-=------ ,所以20172017131m S a ==--,因为143a =,所以22223444131313133133133()1,()1,()12,33999818181a a a =-+==-+==-+> ,所以20172016201542a a a a >>>>> ,所以201711a ->,所以20171011a <<-,所以201512331a <-<-,因此m 的整数部分是2.点睛:本题考查了数列的综合应用问题,其中解答中涉及到数列的通项公式,数列的裂项求和,数列的单调性的应用等知识点的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定的难度,属于难题,本题的借助数列递推关系,化简数列为111111n n na a a +=---,再借助数列的单调性是解答的关键.14.103tyx -+-=(或330x ty -+=);【分析】(1)根据已知直接写出直线AB 的方程;(2)求出cos ,OP n →→〈〉=sin PMB ∠利用基本不等式求解.【详解】解:(1)由题得AB :4143x ty-+=,即103ty x -+-=,(2)()4,OP t →=-,3k AB t→=,∴AB →的方向向量(),3n t = ,所以cos ,OP nOP n OP n→→→→→→⋅〈〉==sin PMB ∠==,即()min sin PMB ∠=.故答案为:103tyx -+-=.15.(1)2n n a =(2)14337【分析】(1)根据数列的前n 项和求数列的通项公式,一定要分1n =和2n ≥讨论.(2)首先弄清楚新数列前55项的构成,再转化为错位相减法求和.【详解】(1)当1n =时,12a =;当2n ≥时,3312211121222222222n n n n n n a a a a a a a a a ----⎛⎫⎛⎫=++++-++++ ⎪ ⎪⎝⎭⎝⎭()2212n n =--=,所以122nn a -=⇒2n n a =,2n ≥.当1n =时,上式亦成立,所以:2n n a =.(2)由()123155n n ⎡⎤+++++-=⎣⎦ ⇒10n =.所以新数列前55项中包含数列的前10项,还包含,11x ,21x ,22x ,31x ,32x ,L ,98x ,99x .且12112a a x +=,()23212222a a x x ++=,()3431323332a a x x x +++=,()91091929992a a x x x ++++=.所以()()()239101255121029222a a a a a a S a a a +++=+++++++123910357191122a a a a a ++++=+ .设123935719T a a a a =++++ 1239325272192=⨯+⨯+⨯++⨯ 则234102325272192T =⨯+⨯+⨯++⨯ ,所以()1239102322222192T T T -=-=⨯+⨯+++-⨯ 101722=-⨯-.故:101722T =⨯+.所以1010955172211228211433722S ⨯+=+⨯=⨯+=.【点睛】关键点点睛:本题的关键是要弄清楚新数列前55项的构成.可先通过列举数列的前几项进行观察得到规律.16.(1)22143x y +=;(2)证明见解析.【分析】(1)由题意得b =,将点3(1,)2代入椭圆的方程可求得2a 的值,进而可得椭圆的方程;(2)设:1l x ty =+,1(P x ,1)y ,2(Q x ,2)y ,联立直线l 和椭圆的方程,可得122634ty y t +=-+,122934y y t =-+,直线PA 的方程为11(2)2y y x x =++,令4x =,得116(4,2y M x +,同理226(4,)2y N x +,由斜率公式计算即可.【详解】(1)因为2b =b =,再将点31,2⎛⎫ ⎪⎝⎭代入22213x y a +=得21314a +=,解得24a =,故椭圆C 的方程为22143x y +=;(2)由题意可设()()1122:1,,,,l x ty P x y Q x y =+,由221143x ty x y =+⎧⎪⎨+=⎪⎩可得()2234690t y ty ++-=,易知0∆>恒成立,所以12122269,3434t y y y y t t +=-=-++,又因为−2,0,所以直线PA 的方程为=+2,令4x =,则1162=+y y x ,故1164,2y M x ⎛⎫⎪+⎝⎭,同理2264,2y N x ⎛⎫⎪+⎝⎭,从而()()111212126266,413333y x y y k k ty ty +===-++,故()()()212121222212121222363643419189333993434y y y y t k k t t ty ty t y y t y y t t -+====-+++++--+++为定值.17.(1)证明见解析(2)14【分析】(1)证明出//CD 平面PAB ,利用线面平行的性质可得出//CD l ,再利用线面平行的判定定理可证得结论成立;(2)计算出cos PAB ∠的值,以A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴,建立空间直角坐标系,设()0,,0F a ()02a ≤≤,利用空间向量法结合二次函数的基本性质可求得平面PEF 与平面PCD 的夹角的余弦值的最大值.【详解】(1)证明:因为四边形ABCD 正方形,所以//AB CD .因为CD ⊂/平面PAB ,AB ⊂平面PAB ,所以//CD 平面PAB .又因为CD ⊂平面PCD ,平面PAB ⋂平面PCD l =,所以//CD l .因为l ⊂/平面ABCD ,CD ⊂平面ABCD ,所以//l 平面ABCD .(2)解:由题意可得AE ==,PE =因为四边形ABCD 是正方形,所以AB AD ⊥.又因为PA AD ⊥,PA AB A = ,PA 、AB ⊂平面PAB ,所以AD ⊥平面PAB .因为//AD BC ,所以⊥BC 平面PAB ,因为PB ⊂平面PAB ,所以,BC PB⊥.则PB ===.所以,222cos 2PA AB PB PAB PA AB +-∠==⋅以A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴,建立如图所示的空间直角坐标系.点P 到平面yAz的距离为()cos π1AP PAB -∠=,点P 到平面xAy2==.则()1,0,2P -,()2,2,0C ,()0,2,0D ,()2,1,0E ,设()0,,0F a ()02a ≤≤,则()3,2,2PC =-,()2,0,0CD =- ,设平面PCD 的法向量为()111,,x n y z = ,则1111322020PC n x y z CD n x ⎧⋅=+-=⎪⎨⋅=-=⎪⎩,取11y =,可得()0,1,1n = .设平面PEF 的法向量为()222,,m x y z = ,()3,1,2PE =-,()1,,2PF a =- ,则22222232020PE m x y z PF m x ay z ⎧⋅=+-=⎪⎨⋅=+-=⎪⎩,取24y =,可得()22,4,31m a a =-- .设平面PEF 与平面PCD 的夹角为α,则cos m n m nα⋅==⋅ 令[]11,3a t +=∈,则cosα==.当1512t =时,211484013t t ⎛⎫-⨯+⎪⎝⎭取得最小值,最小值为143,所以cos α75a =.故平面PEF 与平面PCD 的夹角的余弦值的最大值为14.18.(1)①34;②73(2)应该去乙店购买非盲盒文具,理由见解析【分析】(1)①明确第二次只需买到其余的三种文具盲盒的任意一款即可求解;②结合已知由几何分布的性质即可求解.(2)由随机变量以及相应的均值结合几何分布的性质即可求解.【详解】(1)①由题意可知,当第一次购买的文具盲盒已经确定时,第二次只需买到其余的三种文具盲盒的任意一款即可,所以34p =;②设从第一次购买文具后直到购买到两种不同款式的文具盲盒所需要的购买次数为X ,则由题意可知3~4X G ⎛⎫ ⎪⎝⎭,又1Y X =+,所以()()()4711133E Y E X E X =+=+=+=.(2)由题意,在乙店买齐全部文具盲盒所花费的费用为18472⨯=元,设从甲店买齐四种文具盲盒所需要的购买次数为Z ,从第一次购买到1i -种不同款式的文具开始,到第一次购买到i 种不同款式的文具盲盒所需要的购买次数为随机变量i Z ,则5~4i i Z G -⎛⎫ ⎪⎝⎭,其中1,2,3,4i =,而1234Z Z Z Z Z =+++,所以()()()441234114425124533i i i E Z E Z Z Z Z E Z i===+++===+++=-∑∑,所以在甲店买齐全部文具盲盒所需费用的期望为()1210072E Z =>,所以应该去乙店购买非盲盒文具.19.(1)1.83(2)22e e 30x y ---=,证明见解析(3)证明见解析【分析】(1)根据题意分别计算出12,x x ,取2x 得近似值即为方程()0f x =的二次近似值;(2)分别求出(2)g ,(2)g ',即可写出函数()g x 在点(2,(2))g 处的切线方程;设2()ln 1,1ex m x x x =-->,证明出2()(e )m x m ≤,得出2(3)(e )m m <,即可证明;(3)先判断出1201e x x <<<<,然后辅助证明两个不等式()()()1e 1e 1e h x x x ≥-≤≤-和()(01)h x x x ≥<≤即可.【详解】(1)2()361f x x x '=++,当00x =时,(0)1f '=,()f x 在点(0,3)-处的切线方程为3y x +=,与x 轴的交点横坐标为(3,0),所以13x =,(3)46f '=,()f x 在点(3,54)处的切线方程为5446(3)y x -=-,与x 轴的交点为42(,0)23,所以方程()0f x =的二次近似值为1.83.(2)由题可知,2(2)e 3g =-,()e x g x '=,2(2)e g '=,所以()g x 在(2,(2))g 处的切线为22(e 3)e (2)y x --=-,即22e e 30x y ---=;设2()ln 1,1e x m x x x =-->,则211()em x x '=-,显然()m x '单调递减,令()0m x '=,解得2e x =,所以当2(1,e )x ∈时,()0m x '>,则()m x 在2(1,e )单调递增,当2(e ,)x ∈+∞时,()0m x '<,则()m x 在2(e ,)+∞单调递减,所以2222e ()(e )ln e 10em x m ≤=--=,所以2(3)(e )m m <,即2233ln 310ln 31e e --<⇔<+.(3)由()ln h x x x x =-,得()ln h x x '=-,当01x <<时,ℎ′>0;当1x >时,ℎ′<0,所以ℎ在0,1上单调递增,在1,+∞上单调递减,所以1x =是ℎ的极大值点,也是ℎ的最大值点,即()max ()11h x h ==,又0e x <<时,()0h x >,e x >时,()0h x <,所以当方程()h x a =有两个根时,必满足1201e x x <<<<;曲线()y h x =过点()1,1和点()e,0的割线方程为1(e)1e y x =--,下面证明()()()1:e 1e 1e h x x x ≥-≤≤-,设()()()()1e 1e 1eu x h x x x =--≤≤-,则()1e 11ln ln lne e 1u x x x -⎛⎫=-+=-'- ⎪-⎝⎭,所以当1e 11e x -<<时,()0u x '>;当1e 1e e x -<<时,()0u x '<,所以()u x 在1e 11,e -⎛⎫ ⎪⎝⎭上单调递增,()()10u x u ≥=;在1e 1e ,e -⎛⎫ ⎪⎝⎭上()u x 单调递减,()()e 0u x u ≥=,所以当1e x ≤≤时,()0u x ≥,即()1()e (1e)1ef x x x ≥-≤≤-(当且仅当1x =或e x =时取等号),由于21e x <<,所以()()221e 1e a f x x =>--,解得2e e x a a >-+;①下面证明当01x <≤时,()h x x ≥,设()()ln ,01n x h x x x x x =--<≤=,因为ln 0x ≤,所以当01x <≤时,()f x x ≥(当且仅当1x =时取等号),由于101x <<所以()11a h x x =>,解得1x a ->-,②①+②,得21e e x x a ->-.【点睛】关键点睛:第三问的难点在于辅助构造出两个函数不等式,这样再利用函数单调性,得到相关不等式,然后进行估计21x x -的范围.。

2023-2024学年河北省衡水市衡水金卷高三第一次模拟考试语文试卷含解析

2023-2024学年河北省衡水市衡水金卷高三第一次模拟考试语文试卷含解析

2023-2024学年河北省衡水市衡水金卷高三第一次模拟考试语文试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

1、阅读下面的文字,完成下面小题。

当年那个意气风发的书生,如今立于皇帝身旁。

他铿锵有力的奏折,直言不讳的进谏,妙语连珠的回答,令皇帝,令天下为之一振。

迎来皇帝的宠爱,百姓的辉煌仕途的苏轼,是的一代豪杰。

他胸怀抱负,心似江涛澎湃,欲大有作为。

于是,那时的他便成为“弄潮儿”,光环围绕。

但当苏轼遇到小人,当他的“出言不逊”遇上奸佞的巧言令色,他被抛弃了。

“乌台诗案”之后,他被一贬再贬,如离群的鸿雁,甚至感到了死亡的威胁。

苏轼惊恐不安,心如死水,那时苦闷的苏轼留给世人的是灰黑的模糊的身影。

如果苏轼仅是仕途顺畅,那么,他也许只能成为一名历史政客。

如果苏轼被贬后就一直苦闷,那世间也只多了一只蜉蝣而已。

,苏轼却以其豁达成了后世的楷模。

这时的苏轼应该想通了一个问题:快乐之道,不在于做自己喜欢做的事,而在于喜欢自己不得不做的事。

于是,便有了泽被后世的苏堤,有了被人津津乐道的东坡肉,他以“古之立大事者,不惟有超世之才,亦必有坚忍不拔之志”自勉,尽己所能造福百姓。

那穿芒鞋、执竹杖、戴蓑笠的老翁将文学史开辟了新天地,摇身一变成为经典,这实是“文学之大幸”。

这时的苏轼,轻装上阵,( )。

1.依次填人文中横线上的词语,全都恰当的一项是( )A.耳目一新爱戴当之无愧然而B.焕然一新爱护当之无愧固然C.耳目一新爱戴当仁不让固然D.焕然一新爱护当仁不让然而2.文中画横线的句子有语病,下列修改最恰当的一项是( )A.那穿芒鞋、执竹杖、戴蓑笠的老翁将文学史开辟了新天地,让其诗文摇身一变成为经典,这实是“文学之大幸”。

2025届河北省衡水市第十三中学高考考前模拟语文试题含解析

2025届河北省衡水市第十三中学高考考前模拟语文试题含解析

2025届河北省衡水市第十三中学高考考前模拟语文试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

1、补写出下列句子中的空缺部分。

(1)李贺的《雁门太守行》中分别从听觉和视觉两方面铺写阴寒惨切的战地气氛的句子是“______,______。

”(2)荀子《劝学》中“______,______”两句用“行路”形象地论述了积累的重要性。

(3)苏轼《赤壁赋》中“______,______”两句侧面描写出箫声的悲伤感人。

2、阅读下面的文字,完成下面小题。

人类经济发展的历史,就是一部全球产业转移史。

在全球范围来看,就像有一只看不见的手,指引着全球资本在不同国家和地区间进行产业转移,而反过来看,()。

随着中国经济成长为全球第二大经济体,劳动力成本快速上升,中国在全球产业链中的优势开始发生变化,全球迎来第四次产业转移浪潮。

和前三次_____________,这一次全球产业转移的复杂性前所未有。

原先中国以低成本优势获得的世界工厂地位出现下降,部分低端制造产业开始向外转移。

同时,中国的高端制造业开始迎来内生性成长。

在东南部沿海地区,很多高端制造业已经悄然兴起,即使和发达国家相比,很多公司都已经______________甚至还要更加领先。

从长远来看,如果中国的低端产业向外转移,而高端制造业又不能及时崛起,中国将面临产业空心化的风险。

人教版河北衡水高考专题语文高考模拟试卷及解析

人教版河北衡水高考专题语文高考模拟试卷及解析

人教版河北衡水高考专题语文高考模拟1.解答题第1题.下面是某中学疫情期间错时开学学生返校流程图,请把这个图转换成文字介绍,要求内容完整,表述准确,语言连贯,不超过100字。

【答案】①家长及不符合进校要求的学生及时离开;②其他学生有序进入返校通道进行红外测温,体温正常的学生按指定路线前往教室完成报到;③体温异常的学生用手持测温仪二次测温,仍异常的前往学校侧门医务隔离室。

【解答】解答时,注意区分学生和学生家长两种身份。

学生又分为符合进校要求和不符合进校要求。

符合进校要求的学生经过红外测温后,又分为两种情况。

注意分类别并按照箭头方向介绍,不要超过100字。

第2题.(一)文言文阅读阅读下面的文言文,完成10~13题。

陈汤字子公,少好书,博达善属文。

家贫丐贷无节,不为州里所称。

西至长安求官,富平侯张勃与汤交,高其能,举茂材。

父死不奔丧,下狱论。

后复荐为郎,数求使外国。

久之,迁西域副校尉,与甘延寿俱出西域。

时匈奴郅支单于背畔礼义,留杀汉使者吏士。

常与延寿谋郅支单于虽所在绝远,蛮夷无金城强弩之守,如发屯田吏士,驱从乌孙众兵,直指城下,彼亡则无所之,守则不足自保,千载之功可一朝而成也。

延寿亦以为然,欲奏请之。

汤曰:国家与公卿议,大策非凡所见,事必不从。

延寿犹与不听。

会延寿病,汤独矫制即日引军分行,发温宿国,从北道入赤谷,过乌孙,涉康居界,至阗池西,杀郅支单于。

于是上疏曰:臣闻天下之大义,当混为一,昔有唐虞,今有强汉。

臣将义兵,行天诛,赖陛下神灵,陷陈克敌,斩郅支首。

宜县头槁街9,以示万里,明犯强汉者,虽远必诛。

既至,论功。

刘向曰:论大功者不录小过,举大美者不疵细瑕。

元帝乃封延寿为义成侯,赐汤关内侯,为射声校尉。

汤上书言康居王侍子非王子也,按验,实王子也,汤下狱当死,太中大夫谷永上疏讼汤:昔白起为秦将,南拔郢都,北坑赵括,以纤芥之过,赐死杜邮。

今若庸臣遇汤,卒从吏议,使百姓介然有秦民之恨,非所以厉死难之臣也。

成帝出汤,夺爵为士伍。

人教版河北衡水高考专题语文高考模拟试卷及解析

人教版河北衡水高考专题语文高考模拟试卷及解析

人教版河北衡水高考专题语文高考模拟1.解答题第1题.下面是某中学疫情期间错时开学学生返校流程图,请把这个图转换成文字介绍,要求内容完整,表述准确,语言连贯,不超过100字。

【答案】①家长及不符合进校要求的学生及时离开;②其他学生有序进入返校通道进行红外测温,体温正常的学生按指定路线前往教室完成报到;③体温异常的学生用手持测温仪二次测温,仍异常的前往学校侧门医务隔离室。

【解答】解答时,注意区分学生和学生家长两种身份。

学生又分为符合进校要求和不符合进校要求。

符合进校要求的学生经过红外测温后,又分为两种情况。

注意分类别并按照箭头方向介绍,不要超过100字。

第2题.阅读下面的文字,完成17~19题。

《应物兄》是几十年中国当代文学发展中的一部重要作品。

如果从文学谱系来讨论《应物兄》的话,这个庞然大物几乎是难以_______________的。

长久以来,我们祝愿中国文学能够让世人_______________,能够有一部不负我们伟大文学传统、不负我们百年来对中外文学经验积累的一部小说,经过漫长的等待,现在,它终于_______________。

《应物兄》发表之后,首先在上海批评界引发了近乎海啸般的震动,除了郜元宝温和地提出了少许质疑和批评之外,几乎_______________地给予了极高的评价。

小说封面有一句寄语或提示曰:虚己应物,恕而后行。

其出自《晋书·外戚传·王濛》,意在说待人接物应有的态度和要求,顺应事物谨慎行事。

这是作家对个人叙事和处理人物的自我提示,我不但更愿意从创作的方法上理解应物的含义。

作者在塑造摹写应物兄等一干人物及其关系的时候,()。

在这样的意义上,作者将小说命名为应物兄。

而应物对小说而言,不仅是一个人物,而且是作者的创作方法和其白我如许(1)依次填人文中横线上的词语,全都恰当的一项是()A: 理清刮目相看如期而至众口一词B: 理清另眼相看如约而至异口同声C: 厘清刮目相看如期而至众口一词D: 厘清另眼相看如约而至异口同声(2)文中画横线的部分有语病,下列修改最恰当的一项是()A: 不但我更愿意从创作的方法上理解应物的含义B: 不但我更愿意在创作的方法上理解应物的含义C: 但我更愿意在创作的方法上理解应物的含义D: 但我更愿意从创作的方法上理解应物的含义(3)下列在文中括号内补写的语句,最恰当的一项是()A: 作者的主观愿望是力求达到应物象形的艺术效果B: 其主观愿望是力求达到应物象形的艺术效果C: 作者的主观愿望是力求做到应物象形的艺术效果D: 其主观愿望是力求做到应物象形的艺术效果(4)在下面一段文字横线处补写恰当的语句,使整段文字语意完整连贯,内容贴切,逻辑严密。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档