高一上学期数学月考试卷及答案
高一上学期第一次月考数学试卷(含答案解析)
高一上学期第一次月考数学试卷(含答案解析)考试时间:120分钟;总分:150分学校:___________姓名:___________班级:___________考号:___________第I 卷(选择题)一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 若集合A ={x|x >2},B ={x|−2⩽x ⩽3},则A ∩B =( )A. (2,3)B. (2,3]C. [2,3]D. [−2,3]2. 如图所示的Venn 图中,已知A ,B 是非空集合,定义A ∗B 表示阴影部分的集合.若A ={x |0≤x <3},B ={y |y >2},则A ∗B =( )A. {x |x >3}B. {x |2≤x ≤3}C. {x |2<x <3}D. {x |x ≥3}3. 中国清朝数学家李善兰在859年翻译《代数学》中首次将“function ”译做“函数”,沿用至今.为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数.”这个解释说明了函数的内涵:只要有一个法则,使得取值范围中的每一个值x ,有一个确定的y 和它对应就行了,不管这个对应的法则是公式、图象、表格还是其它形式.已知函数f(x)由如表给出,则f(f(−2)+1)的值为( )A. 1B. 2C. 3D. 44. 命题“∀x >1,x −1>lnx ”的否定为( )A. ∀x ≤1,x −1≤lnxB. ∀x >1,x −1≤lnxC. ∃x ≤1,x −1≤lnxD. ∃x >1,x −1≤lnx5. 设M =2a(a −2)+7,N =(a −2)(a −3),则M 与N 的大小关系是( )A. M >NB. M =NC. M <ND. 无法确定6. f(2x −1)的定义域为[0,1),则f(1−3x)的定义域为( )A. (−2,4]B. (−2,12]C. (0,23]D. (0,16] 7. 已知x ∈R ,则“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的条件.( )A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要 8. 已知集合A ={x|3−x x ≥2)},则∁R A =( ) A. {x|x >1}B. {x|x ≤0或x >1}C. {x|0<x <1}D. {x|x <0或x >1}二、多选题(本大题共4小题,共20.0分。
重庆市2024-2025学年高一上学期10月月考试题 数学含答案
重庆高2027届高一上期月考数学试题卷(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名、准考证号码填写在答题卡上.2.作答时,务必将答案写在答题卡上.写在本试卷及草稿纸上无效.3.考试结束后,将答题卡交回.一、单项选择题.本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}432A B x x =≤=,,则A B = ()A.2163xx ⎧⎫<≤⎨⎬⎩⎭B.{}316x x ≤< C.223xx ⎧⎫<≤⎨⎬⎩⎭D.{}02x x ≤≤2.命题.“230,1x x x ∃<+>”的否定是()A.230,1x x x ∀≥+≤ B.230,1x x x ∀<+≤ C.230,1x x x ∃<+≤ D.230,1x x x ∃≥+≤3.已知函数()2f x +的定义域为()3,4-,则函数()1g x +=的定义域为()A.()4,3- B.()2,5- C.1,33⎛⎫⎪⎝⎭D.1,53⎛⎫ ⎪⎝⎭4.使得“[]21,2,0x x x a ∀∈+-≤”为真命题的一个充分不必要条件是()A.2a ≥ B.2a > C.6a > D.6a ≥5.若正实数,x y 满足3x y +=,且不等式22823m m x y+>-+恒成立,则实数m 的取值范围是()A.{31}m m -<<∣B.{3m m <-∣或1}m >C.{13}m m -<<∣D.{1mm <-∣或3}m >6.函数()()()245,2231,2x a x x f x a x x ⎧-++<⎪=⎨-+≥⎪⎩满足对12,R x x ∀∈且12x x ≠,都有()()()12120f x f x x x --<⎡⎤⎣⎦,则实数a 的取值范围是()A.30,2⎛⎫⎪⎝⎭B.30,2⎡⎫⎪⎢⎣⎭C.()0,1 D.[]0,17.已知,a b 均为正实数,且1a b +=,则下列选项错误的是()A.的B.34aa b++的最小值为7+C.()()11a b ++的最大值为94D.2232a b a b +++的最小值为168.含有有限个元素的数集,定义其“交替和”如下:把集合中的数按从小到大的顺序排列,然后从最大的数开始交替地加减各数,例如{}4,6,9的“交替和”是9647-+=;而{}5的交替和是5,则集合{}Z 54M x x =∈-≤≤∣的所有非空子集的“交替和”的总和为()A.2048B.2024C.1024D.512二、多项选择题.本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知,,a b c ∈R ;则下列不等式一定成立的有()A.若0ab ≠且a b <,则11a b >B.若0a b >>,则20242024b b a a +<+C.若,a b c d >>,则ac bd >D.()221222a b a b ++≥--10.下列说法正确的是()A.若p 是q 的必要不充分条件,p 是r 的充要条件,则q 是r 的充分不必要条件B.若关于x 的不等式2430kx kx k -++≥的解集为R ,则实数k 的取值范围是01k <≤C.若不等式()()30x ax b x c-+≤-的解集为[)[)2,13,∞-⋃+,则不等式2320ax ax b --≥的解集为[]1,4-D.“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题的充要条件为[]51,0,43x ⎡⎤∈-⋃⎢⎥⎣⎦11.已知函数()f x 的定义域为[)0,+∞,且满足当[)0,2x ∈时,()22f x x x =-+,当2x ≥时,恒有()()2f x f x λ=-,且λ为非零常数,则下列说法正确的有()A.()()101320272024f f λ+=B.当12λ=时,反比例函数()1g x x =与()f x 在()0,2024x ∈上的图象有且仅有6个交点C.当0λ<时,()f x 在区间[]2024,2025上单调递减D.当1λ<-时,()f x 在[]()*0,4n n ∈N上的值域为2122,n n λλ--⎡⎤⎣⎦三、填空题.本题共3小题,每小题5分,共15分.12.已知集合{}210A xx =-=∣,则集合A 有__________个子集.13.已知集合[]()(){}1,4,10A B x x a ax ==+-≤∣,若A B B = 且0a ≥,则实数a 的取值范围是__________.14.若正实数x ,y 满足()()332331423x y x y -+-=--,则2346y x x x y++的最小值为__________.四、解答题、本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()21,122,1x x f x x x ⎧->-⎪=⎨⎪--≤-⎩.(1)若()01f x =,求0x 的值;(2)若()3f a a <+,求实数a 的取值范围.16.已知函数()f x =A ,集合{}321B xx =->∣.(1)求A B ;(2)集合{}321M xa x a =-≤≤-∣,若M ()RA ð,求实数a 的取值范围.17.已知二次函数()f x 的图象过原点()0,0,且对任意x ∈R ,恒有()26231x f x x --≤≤+.(1)求()1f -的值;(2)求函数()f x 的解析式;(3)记函数()g x m x =-,若对任意(]11,6x ∈,均存在[]26,10x ∈,使得()()12f x g x >,求实数m 的取值范围.18.教材中的基本不等式可以推广到n 阶:n 个正数的算数平均数不小于它们的几何平均数.也即:若12,,,0n a a a >,则有*12,2n a a a n n n+++≥∈≥N ,当且仅当12n a a a === 时取等.利用此结论解决下列问题:(1)若,,0x y z >,求24y z xx y z++的最小值;(2)若10,2x ⎛⎫∈ ⎪⎝⎭,求()312x x -的最大值,并求取得最大值时的x 的值;(3)对任意*k ∈N ,判断11kk ⎛⎫+ ⎪⎝⎭与1111k k +⎛⎫+ ⎪+⎝⎭的大小关系并加以严格证明.19.已知定义在11,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭上的函数()f x 同时满足下列四个条件:①512f ⎛⎫=-⎪⎝⎭;②对任意12x >,恒有()()0f x f x -+=;③对任意32x >,恒有()0f x <;④对任意,0a b >,恒有111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求32f ⎛⎫-⎪⎝⎭的值;(2)判断()f x 在1,2⎛⎫+∞⎪⎝⎭上的单调性,并用定义法证明;(3)若对任意[]1,1t ∈-,恒有()()21232f t k t k -+-+≤,求实数k 的取值范围.重庆高2027届高一上期月考数学试题卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号码填写在答题卡上.2.作答时,务必将答案写在答题卡上.写在本试卷及草稿纸上无效.3.考试结束后,将答题卡交回.一、单项选择题.本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}432A B x x =≤=,,则A B = ()A.2163xx ⎧⎫<≤⎨⎬⎩⎭B.{}316x x ≤< C.223xx ⎧⎫<≤⎨⎬⎩⎭D.{}02x x ≤≤【答案】A 【解析】【分析】根据集合的交集运算法则运算即可.【详解】因为{}{}4016A x x =≤=≤≤,{}2323B x x x x ⎧⎫==>⎨⎩⎭,所以A B = 2163x x ⎧⎫<≤⎨⎬⎩⎭.故选:A .2.命题.“230,1x x x ∃<+>”的否定是()A.230,1x x x ∀≥+≤B.230,1x x x ∀<+≤ C.230,1x x x ∃<+≤ D.230,1x x x ∃≥+≤【答案】B 【解析】【分析】利用特称命题的否定形式回答即可.【详解】根据特称命题的否定形式可知命题.“230,1x x x ∃<+>”的否定是“230,1x x x ∀<+≤”.故选:B3.已知函数()2f x +的定义域为()3,4-,则函数()1g x +=的定义域为()A.()4,3- B.()2,5- C.1,33⎛⎫ ⎪⎝⎭D.1,53⎛⎫ ⎪⎝⎭【答案】D 【解析】【分析】根据抽象函数及具体函数的定义域求解即可.【详解】因为函数()2f x +的定义域为()3,4-,所以函数()f x 的定义域为()1,6-,则对于函数()1g x +=,需满足116310x x -<+<⎧⎨->⎩,解得153x <<,即函数()1g x +=的定义域为1,53⎛⎫⎪⎝⎭.故选:D.4.使得“[]21,2,0x x x a ∀∈+-≤”为真命题的一个充分不必要条件是()A.2a ≥B.2a >C.6a > D.6a ≥【答案】C 【解析】【分析】对于全称量词命题2[1,2],0x x x a ∀∈+-≤,我们需要先求出使得该命题为真时a 的取值范围,然后再根据充分不必要条件的定义来判断选项.【详解】令2()f x x x =+,[1,2]x ∈.对于二次函数2y ax bx c =++,其对称轴为122b x a =-=-.因为10a =>,所以函数()f x 在[1,2]上单调递增.那么()f x 在[1,2]上的最大值为2max ()(2)226f x f ==+=.因为2[1,2],0x x x a ∀∈+-≤为真命题,即2a x x ≥+在[1,2]上恒成立,所以max ()6a f x ≥=.A 是B 的充分而不必要条件,即值A B ⇒,B A ¿.当6a >时,一定满足6a ≥,所以6a >是6a ≥的充分不必要条件.而2a >时,不能保证一定满足6a ≥,2a ≥时,也不能保证一定满足6a ≥.故选:C.5.若正实数,x y 满足3x y +=,且不等式22823m m x y+>-+恒成立,则实数m 的取值范围是()A.{31}mm -<<∣ B.{3m m <-∣或1}m > C.{13}m m -<<∣ D.{1mm <-∣或3}m >【答案】C 【解析】【分析】利用基本不等式和常值代换法求得28x y+的最小值,依题得到不等式2236m m -+<,解之即得.【详解】因3x y +=,由28128()()3x y x y x y+=++1281(10)(10633y x x y =++≥+=,当且仅当28y x x y =时取等号,即当1,2x y ==时,28x y+取得最小值6.因不等式22823m m x y+>-+恒成立,故2236m m -+<,即2230m m --<,解得13m -<<.故选:C.6.函数()()()245,2231,2x a x x f x a x x ⎧-++<⎪=⎨-+≥⎪⎩满足对12,R x x ∀∈且12x x ≠,都有()()()12120f x f x x x --<⎡⎤⎣⎦,则实数a 的取值范围是()A.30,2⎛⎫ ⎪⎝⎭B.30,2⎡⎫⎪⎢⎣⎭C.()0,1 D.[]0,1【答案】D 【解析】【分析】根据题意,得到()f x 在定义域R 上为单调递减函数,结合分段函数的单调性的判定方法,列出不等式组,即可求解.【详解】由函数()()()245,2231,2x a x x f x a x x ⎧-++<⎪=⎨-+≥⎪⎩因为函数()y f x =任意12,R x x ∀∈且12x x ≠,都有()()()12120f x f x x x --<⎡⎤⎣⎦,所以函数()f x 在定义域R 上为单调递减函数,则满足()()242223024252321a a a a +⎧≥⎪⎪-<⎨⎪-+⨯+≥-⨯+⎪⎩,即0321a a a ≥⎧⎪⎪<⎨⎪≤⎪⎩,解得01a ≤≤,所以实数a 的取值范围是[]0,1.故选:D.7.已知,a b 均为正实数,且1a b +=,则下列选项错误的是()A.B.34a a b++的最小值为7+C.()()11a b ++的最大值为94D.2232a b a b +++的最小值为16【答案】B 【解析】【分析】利用基本不等式可判断AC 的正误,利用“1”的代换可判断B 的正误,利用换元法结合常数代换可判断D 的正误.【详解】选项A:2112,1a b a b +=+≤++===时取等,+A 对;选项B:3433443577a a b a b a b aa b a b a b+++++=+=++≥+,当且仅当35,22a b -==时取等,故34a a b ++的最小值为7+,故B 错选项C :()()2119111,242a b a b a b +++⎛⎫++≤=== ⎪⎝⎭时取等,故()()11a b ++的最大值为94,故C 对;选项D :换元,令3,2x a y b =+=+,则6x y +=,故()()222232941032x y a b x y a b x y x y--+=+=+-++++94194251413446666x y y x x y x y ⎛⎫⎛⎫+=+⋅-=++-≥-= ⎪ ⎪⎝⎭⎝⎭,当且仅当1812,55x y ==取等号,故2232a b a b +++的最小值为16,故D 正确;故选:B.8.含有有限个元素的数集,定义其“交替和”如下:把集合中的数按从小到大的顺序排列,然后从最大的数开始交替地加减各数,例如{}4,6,9的“交替和”是9647-+=;而{}5的交替和是5,则集合{}Z 54M x x =∈-≤≤∣的所有非空子集的“交替和”的总和为()A.2048B.2024C.1024D.512【答案】A 【解析】【分析】将集合M 的子集两两配对(),A B :使4,4A B ∈∉且{}4B A ⋃=,从而有集合A 与集合B 的交替和之和为4,再利用符合条件的集合对有92个,即可求解.【详解】由题知{}5,4,3,2,1,0,1,2,3,4M =-----,将集合M 的子集两两配对(),A B :使4,4A B ∈∉且{}4B A ⋃=,则符合条件的集合对有92个,又由题设定义有集合A 与集合B 的交替和之和为4,所以交替和的总和为9114222048⨯==.故选:A.二、多项选择题.本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知,,a b c ∈R ;则下列不等式一定成立的有()A.若0ab ≠且a b <,则11a b >B.若0a b >>,则20242024b b a a +<+C.若,a b c d >>,则ac bd >D.()221222a b a b ++≥--【答案】BD 【解析】【分析】利用特殊值验证AC 是错误的,利用作差法判断B 的真假,利用配方法证明D 是正确的.【详解】对A :令1a =-,1b =,则0ab ≠且a b <,但11a b>不成立,故A 错误;对B :当0a b >>时,()()()20242024202420242024b a a b b b a a a a +-++-=++()()202402024b a a a -=<+,所以20242024b b a a +<+成立,故B 正确;对C :令3a =-,4b =-,0c =,1d =-,则,a b c d >>,但ac bd >不成立,故C 错误;对D :因为()()()222212222144a b a b a b a b ++----++++=()()22120a b =-++≥,所以()221222a b a b ++≥--成立,故D 正确.故选:BD10.下列说法正确的是()A.若p 是q 的必要不充分条件,p 是r 的充要条件,则q 是r 的充分不必要条件B.若关于x 的不等式2430kx kx k -++≥的解集为R ,则实数k 的取值范围是01k <≤C.若不等式()()30x ax b x c-+≤-的解集为[)[)2,13,∞-⋃+,则不等式2320ax ax b --≥的解集为[]1,4-D.“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题的充要条件为[]51,0,43x ⎡⎤∈-⋃⎢⎥⎣⎦【答案】ACD 【解析】【分析】根据充分条件、必要条件的概念判断A ,分类讨论求出k 的范围判断B ,根据数轴穿根法及不等式的解集求出ba及0a <解不等式判断C ,由命题的否定转化为不等式恒成立,看作关于a 的不等式恒成立即可判断D.【详解】对A ,若p 是q 的必要不充分条件,p 是r 的充要条件,则q p r ⇒⇔,但是p 不能推出q ,所以q r ⇒,但是r 不能推出q ,所以q 是r 的充分不必要条件,故A 正确;对B ,当0k =时,原不等式为03≥,恒成立满足题意,当0k ≠时,由题意需满足()2Δ16430k k k k >⎧⎨=-⋅+≤⎩,解得01k <≤,综上,实数k 的取值范围是01k ≤≤,故B 错误;对C ,由不等式()()30x ax b x c-+≤-的解集为[)[)2,13,∞-⋃+,结合数轴穿根法知,1,2bc a==,且0a <,所以不等式2320ax ax b --≥可化为2340x x --≤,解得14x -≤≤,故C 正确;对D ,由题意知[]()21,3,2130a ax a x a ∀∈---+-≥为真命题,则()22130a x x x --++≥在[]1,3a ∈-时恒成立,令()2()213g a a x x x =--++,只需()()2213403350g x x g x x ⎧-=-++≥⎪⎨=-≥⎪⎩,则14503x x x -≤≤⎧⎪⎨≥≤⎪⎩或,解得[]51,0,43x ⎡⎤∈-⋃⎢⎥⎣⎦,故D 正确.故选:ACD11.已知函数()f x 的定义域为[)0,+∞,且满足当[)0,2x ∈时,()22f x x x =-+,当2x ≥时,恒有()()2f x f x λ=-,且λ为非零常数,则下列说法正确的有()A.()()101320272024f f λ+=B.当12λ=时,反比例函数()1g x x =与()f x 在()0,2024x ∈上的图象有且仅有6个交点C.当0λ<时,()f x 在区间[]2024,2025上单调递减D.当1λ<-时,()f x 在[]()*0,4n n ∈N 上的值域为2122,n n λλ--⎡⎤⎣⎦【答案】ABD 【解析】【分析】根据所给函数解析式直接求解判断A ,根据()f x 的性质及(),()g x f x 图象判断B ,归纳出()f x 在[]2024,2025上的解析式判断C ,根据规律,归纳值域特点判断D.【详解】选项A :()()()()()210121013101320272025202331f f f f f λλλλλ====== ,()()()()()210111012202420222020200f f f f f λλλλ====== ,则()()101320272024f f λ+=,所以选项A 正确;选项B :由()()122f x f x =-知,()0,2024x ∈时,()()()()()[)()()[)()()[)210112,0,2124,2,42146,4,62120222024,2022,20242x x x x x x f x x x x x x x ⎧-∈⎪⎪--∈⎪⎪⎪=--∈⎨⎪⎪⎪⎪--∈⎪⎩ ,由于()()()()()()1111111,33,553254g f g f g f ===<==<=,但()()()()31011111177,202320237220232g f g f =>==>= ,作,的图象,如图,结合图象可知()0,6x ∈上有2226++=个交点,在[)6,2024x ∈上无交点,故选项B 正确;选项C :[]2024,2025x ∈时,()()()1012120242026f x x x λ=--,故()f x 在[]2024,2025上单增,故C 错误;选项D :因为1λ<-,所以当[]0,4x ∈时,值域为[],1λ;当[]0,8x ∈时,值域为32,λλ⎡⎤⎣⎦;当[]0,12x ∈时,值域为54,λλ⎡⎤⎣⎦;当[]0,16x ∈时,值域为76,λλ⎡⎤⎣⎦;L 当[]0,4x n ∈时,值域为2122,n n λλ--⎡⎤⎣⎦,故D 正确.故选:ABD.【点睛】关键点点睛:根据所给函数解析式,可知函数类似周期特点,图象形状类似,振幅有规律变化,据此可归纳函数的性质是解题的关键所在.三、填空题.本题共3小题,每小题5分,共15分.12.已知集合{}210A xx =-=∣,则集合A 有__________个子集.【答案】4【解析】【分析】求出集合A ,列举出集合A 的子集即可.【详解】因2{10}{1,1}A x x =-==-∣,故集合A 的子集有,{1},{1},{1,1}∅--共4个.故答案为:4.13.已知集合[]()(){}1,4,10A B x x a ax ==+-≤∣,若A B B = 且0a ≥,则实数a 的取值范围是__________.【答案】10,4⎡⎤⎢⎥⎣⎦【解析】【分析】根据集合的包含关系,讨论0a =和0a >两种情况,求集合B ,再比较端点值,即可求解.【详解】因为A B B = ,所以A B ⊆,因为()(){}10B x x a ax =+-≤∣,且0a ≥:1 当0a =时,[)0,B ∞=+,符合题意;2当0a >时,1,B a a ⎡⎤=-⎢⎥⎣⎦,则11404a a ≥⇒<≤,综上,10,4a ⎡⎤∈⎢⎥⎣⎦.故答案为:10,4⎡⎤⎢⎣⎦14.若正实数x ,y 满足()()332331423x y x y -+-=--,则2346y x x x y++的最小值为__________.【答案】【解析】【分析】根据函数的单调性可知243x y =-,代入可得234386y x y xx x y x y++=+,根据基本不等式可得最值.【详解】由题可知()()()()3323231313x x y y -+-=-+-,因为3,y t y t ==在R 上单调递增,所以()3g t t t =+在R 上单增,所以上式可表示为()()2313g x g y -=-,则2313x y -=-,即243x y =-,因此()22433433866x y y x y y x x x x y x y x y -++=++=+≥=当且仅当38243y x x y x y⎧=⎪⎨⎪=-⎩即25x -=,2415y -=时等号成立,故答案为:.四、解答题、本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()21,122,1x x f x x x ⎧->-⎪=⎨⎪--≤-⎩.(1)若()01f x =,求0x 的值;(2)若()3f a a <+,求实数a 的取值范围.【答案】(1)02x =或3-(2)5,42⎛⎫-⎪⎝⎭【解析】【分析】(1)根据分段函数定义分类列方程求解;(2)根据分段函数定义分类列不等式求解.【小问1详解】由()01f x =可得:1∘>−1−1=1⇒0=20=−2舍去)0000123,,23;21x x x x ≤-⎧⇒=-=-⎨--=⎩ 综上或【小问2详解】由()3f a a <+可得:1∘>−11<+3⇒>−12−2−8<0⇒>−1−2<<4⇒∈−1,4;2∘≤−1−−2<+3⇒≤−1>−52⇒∈−52,−1综上可得5,42a ⎛⎫∈-⎪⎝⎭.16.已知函数()f x =A ,集合{}321B xx =->∣.(1)求A B ;(2)集合{}321M xa x a =-≤≤-∣,若M ()RA ð,求实数a 的取值范围.【答案】(1)3{|4A B x x =≤ 或1}x >(2)3,2⎛⎤-∞ ⎥⎝⎦【解析】【分析】(1)根据条件,先求出集合,A B ,再利用集合的运算,即可求解;(2)由(1)可得R 3,24A ⎛⎤= ⎥⎝⎦ð,再根据条件,分M =∅和M 蛊两种情况讨论,即可求解.【小问1详解】由5402x +≥-,即4302x x -≥-,得到2x >或34x ≤,所以3{|4A x x =≤或2}x >,又由321x ->,得到321x -<-或321x ->,即13x <或1x >,所以1{3B x =<或1}x >,所以3{|4A B x x =≤ 或1}x >.【小问2详解】因为3{|4A x x =≤或2}x >,所以R 3,24A ⎛⎤= ⎥⎝⎦ð,①当321a a ->-,即43a <时,此时M =∅()RA ð,所以43a <满足题意,②当43a ≥,即M 蛊时,由题有212334a a -≤⎧⎪⎨->⎪⎩,解得4332a ≤≤,综上,实数a 的取值范围是3,2a ⎛⎤∈-∞ ⎥⎝⎦.17.已知二次函数()f x 的图象过原点()0,0,且对任意x ∈R ,恒有()26231x f x x --≤≤+.(1)求()1f -的值;(2)求函数()f x 的解析式;(3)记函数()g x m x =-,若对任意(]11,6x ∈,均存在[]26,10x ∈,使得()()12f x g x >,求实数m 的取值范围.【答案】(1)4(2)()222f x x x=-(3)(],10-∞【解析】【分析】(1)令1x =-即可求出()1f -.(2)根据条件,先设出二次函数的解析式,再根据()26231x f x x --≤≤+恒成立,可求待定系数.(3)问题转化成()f x 在区间(]1,6的最小值不小于()g x 在[]6,10上的最小值求参数的取值范围.【小问1详解】在不等式()26231x f x x --≤≤+,令()()141414x f f =-⇒≤-≤⇒-=.【小问2详解】因为()f x 为二次函数且图象过原点()0,0,所以可设()()2,0f x ax bx a =+≠,由()1444f a b b a -=⇒-=⇒=-,于是()()24f x ax a x =+-,由题:()()262220,f x x ax a x x ≥--⇔+++≥∈R 恒成立⇔>0Δ≤0⇔>0+22−8=−22≤0⇒=2,=−2⇒=22−2,检验知此时满足()()223110,f x x x x ≤+⇔+≥∈R ,故()222f x x x =-.【小问3详解】函数()222f x x x =-,开口向上,对称轴12x =,所以()222f x x x =-在区间(]1,6上单调递增,因此,(]11,6x ∈时,()()()(11,6f x f f ⎤∈⎦,即()(]10,60f x ∈,而()g x m x =-在[]6,10上单调递减,所以[]26,10x ∈时,()[]210,6g x m m ∈--因为对任意(]11,6x ∈,均存在[]26,10x ∈,使得()()12f x g x >,等价于()()(]110010,10f g m m ∞≥⇒≥-⇒∈-18.教材中的基本不等式可以推广到n 阶:n 个正数的算数平均数不小于它们的几何平均数.也即:若12,,,0n a a a > ,则有*12,2n a a a n n n +++≥∈≥N ,当且仅当12n a a a === 时取等.利用此结论解决下列问题:(1)若,,0x y z >,求24y z x x y z++的最小值;(2)若10,2x ⎛⎫∈ ⎪⎝⎭,求()312x x -的最大值,并求取得最大值时的x 的值;(3)对任意*k ∈N ,判断11kk ⎛⎫+ ⎪⎝⎭与1111k k +⎛⎫+ ⎪+⎝⎭的大小关系并加以严格证明.【答案】(1)6(2)最大值为272048,38x =(3)1*1111,1kk k k k +⎛⎫⎛⎫+<+∈ ⎪ ⎪+⎝⎭⎝⎭N ,证明见解析【解析】【分析】(1)根据三阶基本不等式的内容直接可得解;(2)由()()32722212128333x x xx x x -=⋅⋅⋅⋅-,结合四阶基本不等式可得最值;(3)猜测111111kk k k +⎛⎫⎛⎫+<+ ⎪ ⎪+⎝⎭⎝⎭,*k ∈N 成立,验证1k =不等式成立;结合推广公式证明2k ≥结论成立.【小问1详解】因为,,0x y z >,所以由三阶基本不等式可得:246y z x x y z ++≥,当且仅当24y z xx y z==即2y z x ==时取等号,因此24y z x x y z++的最小值为6;【小问2详解】当10,2x ⎛⎫∈ ⎪⎝⎭时,由四阶基本不等式可得:()()()432221227222272733312128333842048x x x x x x x x x x ⎛⎫+++- ⎪-=⋅⋅⋅⋅-≤= ⎪⎝⎭,当且仅当2123xx =-即310,82x ⎛⎫=∈ ⎪⎝⎭时取等号,因此()312x x -的最大值为272048;【小问3详解】大小关系为111111kk k k +⎛⎫⎛⎫+<+ ⎪ ⎪+⎝⎭⎝⎭,*k ∈N ,证明如下:由条件可知:12,,,0n a a a > 时,*1212,,2nn n a a a a a a n n n +++⎛⎫⋅≤∈≥ ⎪⎝⎭N ,当1k =时,左边11121⎛⎫=+= ⎪⎝⎭,右边219124⎛⎫=+= ⎪⎝⎭,左边<右边,不等式成立;当2k ≥,*k ∈N 时,由1k +阶基本不等式,可知:不等式左边111111111kk k k k ⎛⎫⎛⎫⎛⎫⎛⎫=+=+⋅++⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()(1)1111111111(11)11()111k k k k k k k k k k k k k ++++⎛⎫⎛⎫⎛⎫⎛⎫++++++++++ ⎪⎪ ⎪⎪⎛⎫++⎝⎭⎝⎭⎝⎭ ⎪≤== ⎪+++ ⎪⎝⎭⎪⎝⎭个个1111k k +⎛⎫=+ ⎪+⎝⎭而111k ⎛⎫+≠ ⎪⎝⎭,因此上式的不等号取不到等号,于是1111111111kk k k k k k ++++⎛⎫⎛⎫⎛⎫+<=+ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭,综上,原不等式得证.19.已知定义在11,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭上的函数()f x 同时满足下列四个条件:①512f ⎛⎫=-⎪⎝⎭;②对任意12x >,恒有()()0f x f x -+=;③对任意32x >,恒有()0f x <;④对任意,0a b >,恒有111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求32f ⎛⎫- ⎪⎝⎭的值;(2)判断()f x 在1,2⎛⎫+∞⎪⎝⎭上的单调性,并用定义法证明;(3)若对任意[]1,1t ∈-,恒有()()21232f t k t k -+-+≤,求实数k 的取值范围.【答案】(1)0(2)()f x 在1,2⎛⎫+∞⎪⎝⎭上单调递减,证明见解析(3)3,4⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(1)令1a b ==可得302f ⎛⎫= ⎪⎝⎭,再由()()0f x f x -+=,即可得出答案;(2)由单调性的定义证明即可;(3)由单调性和奇偶性列出不等式,再结合二次函数的性质求解即可.【小问1详解】在111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中令333120222a b ff f ⎛⎫⎛⎫⎛⎫==⇒=⇒= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(或令53532,102222a b f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==⇒+=⇒=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭).而()()333000222f x f x f f f ⎛⎫⎛⎫⎛⎫-+=⇒-+=⇒-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【小问2详解】()f x 在1,2∞⎛⎫+ ⎪⎝⎭上单调递减.下证明:由④知:对任意,0a b >,恒有111222f ab f b f a ⎛⎫⎛⎫⎛⎫+-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.证一:任取2112x x >>,于是()()22211111111111122112222222x x f x f x f x f x f x x ⎛⎫⎛⎫-- ⎪ ⎪⎛⎫⎛⎫⎛⎫-=⋅-+--+=+⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪ ⎪--⎝⎭⎝⎭因为2112x x >>,所以2111022x x ->->221111132********x x x x --⇒>⇒+>--,而对任意32x >时恒有()0f x <,故211120122x f x ⎛⎫- ⎪+<⎪ ⎪-⎝⎭,即()()210f x f x -<,所以()f x 在1,2∞⎛⎫+⎪⎝⎭上单调递减,证毕;证二:任取2112x x >>,设2111,,1,022x mn x n m n =+=+>>()()21111222f x f x f mn f n f m ⎛⎫⎛⎫⎛⎫-=+-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为131.22m m >+>,所以102f m ⎛⎫+< ⎪⎝⎭,即()()21f x f x <,也即()f x 在1,2∞⎛⎫+⎪⎝⎭单调递减,证毕;【小问3详解】在111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中:令5599222222a b f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==⇒+=⇒=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,而()()0f x f x -+=,于是922f ⎛⎫-= ⎪⎝⎭令139339,402442242a b f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⇒+==⇒=-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,由(2)知()f x 在1,2∞⎛⎫+ ⎪⎝⎭上单调递减,又()()0f x f x -+=,可得()f x 在1,2∞⎛⎫-- ⎪⎝⎭上也单调递减,如图,可知不等式()()21232f t k t k -+-+≤等价于:对任意[]11t ,∈-,不等式()231234t k t k -+-+≥……①或者()29112322t k t k -≤-+-+<-恒成立,……②法一:令()()[]2123,1,1g t t k t k t =-+-+∈-立,因为()g t 开口向下,由()g t 图像可知:不等式①()()11313204;334144k g k g k ⎧⎧≥-≥⎪⎪⎪⎪⇔⇒⇒≥⎨⎨⎪⎪≥≥⎪⎪⎩⎩对于②,当1t =±时,由()()1391121022919112222k g k g k ∅⎧⎧-≤<-≤-<-⎪⎪⎪⎪⇒⇒∈⎨⎨⎪⎪-≤<--≤<-⎪⎪⎩⎩,即一定不存在k 满足②.综上取并,得3,4k ∞⎡⎫∈+⎪⎢⎣⎭法二:令()()[]()2123,1,1,g t t k t k t g t =-+-+∈-开口向下,对称轴为12t k =-,且()()211152,1,224g k g k g k k k ⎛⎫-=-=-=++ ⎪⎝⎭,1 当112k -<-即32k >时,问题等价于>321≥34或>32−1<−121≥−92,解得32k >;2 当1102k -≤-≤即1322k ≤≤时,等价于()1322314k g ⎧≤≤⎪⎪⎨⎪≥⎪⎩或()13221133,;2242912k g k k g ⎧≤≤⎪⎪⎪⎛⎫⎡⎤-<-⇒∈⎨ ⎪⎢⎥⎝⎭⎣⎦⎪⎪≥-⎪⎩3 当1012k <-≤即1122k -≤<时,问题等价于()1122314k g ⎧-≤<⎪⎪⎨⎪-≥⎪⎩或()11221122912k g k g ⎧-≤<⎪⎪⎪⎛⎫-<-⎨ ⎪⎝⎭⎪⎪-≥-⎪⎩,解得k ∈∅;4 当112k ->即12k <-时,问题等价于()12314k g ⎧<-⎪⎪⎨⎪-≥⎪⎩或()()12112912k g g ⎧<-⎪⎪⎪<-⎨⎪⎪-≥-⎪⎩,解得k ∈∅;综上,3,4k ∞⎡⎫∈+⎪⎢⎣⎭.。
2023-2024学年天津市南开中学高一上学期月考数学试卷+答案解析(附后)
2023-2024学年天津市南开中学高一上学期月考数学试卷一、单选题:本题共10小题,每小题4分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.设集合,,则( )A. B. C. D.2.设,且则( )A. B. C. D.3.若集合,,则的充要条件是( )A. B. C. D.4.设命题p:,,则为( )A. ,B. ,C. ,D. ,5.不等式中等号成立的条件是 ( )A. B. C. D.6.已知集合,,若,则a的取值范围为( )A. B.C. D.7.正实数a,b满足,,则的最小值为( )A. B. C. D.8.命题“任意,”为真命题的一个充分不必要条件是( )A. B. C. D.9.已知命题,,命题,,若命题p,q都是真命题,则实数a的取值范围是.( )A. B.C.或 D.10.若关于x的方程的两个实数根,,集合,,,,则关于x的不等式的解集为( )A. B.C. D.二、填空题:本题共6小题,每小题4分,共24分。
11.设a,,若集合,则__________.12.试用列举法表示集合:__________;13.不等式的解集为__________.14.已知实数,当取得最小值时,则的值为__________.15.若两个正实数x,y满足,且不等式有解,则实数m的取值范围是__________.16.若函数的最小值为0,则m的取值范围为__________.三、解答题:本题共3小题,共36分。
解答应写出文字说明,证明过程或演算步骤。
17.本小题10分设全集为,集合,,求,,;若,求实数a的取值范围.18.本小题12分解关于x的不等式:19.本小题14分已知且,记m为的最大值,记n为ab的最大值.求的值;若,且对任意,恒成立,求的最大值.答案和解析1.【答案】C 【解析】【分析】本题考查交集运算,属于基础题.根据交集的定义求解即可.【解答】解:因为 ,,所以.故选:2.【答案】D 【解析】【分析】本题考查不等式的性质,属于基础题.运用不等式的性质,结合特例法逐一判断即可.【解答】解:A :当 时,显然不成立,因此本选项不正确;B :当 时, 没有意义,因此本选项不正确;C :若 ,显然,但是不成立,因此本选项不正确;D :由 ,因此本选项正确,故选:D 3.【答案】D 【解析】【分析】本题考查充要条件及含参数的集合关系问题,属于基础题.利用充要条件及两个集合的关系即可得出答案.【解答】解:因为集合 ,,且,所以,故选:4.【答案】B 【解析】【分析】本题考查全称量词命题的否定,属于基础题.根据全称量词命题的否定是特称量词命题可得答案.【解答】解:命题p:,,则为, .故选:5.【答案】C【解析】【分析】本题考察基本不等式,属于基础题.易知取等时解出x即可.【解答】解:故选6.【答案】C【解析】【分析】本题考查交集及集合包含关系的判断,分类讨论含参数的集合包含关系,属于中档题.由可以得到,从而对集合B分类讨论即可求解参数a的范围.【解答】解:已知,又因为,,即,①当时,满足,此时,解得;②当时,由,得,解得;综上所述, .故选:7.【答案】A【解析】【分析】本题考查由基本不等式求最值,属于基础题.由题意可得,,再利用基本不等式求解即可.【解答】解:,,且,,当且仅当,即,时,等号成立,即的最小值为 .故选:8.【答案】C【解析】【分析】本题考查充分不必要条件的应用,属于中档题.求出命题“任意,”为真命题的充要条件,然后可选出答案.【解答】解:由可得,当时,,所以,所以命题“任意,”为真命题的充要条件是,所以命题“任意,”为真命题的一个充分不必要条件是C,故选:C9.【答案】C【解析】【分析】本题考查利用基本不等式解决恒成立及一元二次方程问题,属于中档题.若命题p为真命题,利用基本不等式求出的最小值即可得到a的取值范围,若命题q为真命题,则由即可求出a的取值范围,再取两者的交集即可.【解答】解:命题p:为真命题,对任意恒成立,又,,当且仅当,即时,等号成立,,命题,,为真命题,,或,命题p,q都是真命题,或 .故选:C10.【答案】A【解析】【分析】本题考查一元二次方程与一元二次不等式解集的关系,涉及集合的混合运算,属于中档题.根据一元二次不等式的解法,可知的解集在两根之外,讨论两根大小,然后根据集合的运算即可求解.【解答】解:当,则的解集为或,,,,,所以或 .当,则的解集为或,,,,,所以或,综上,故选:11.【答案】0【解析】【分析】本题考查集合相等,属于中档题.利用集合相等以及,可得,即,代入原式可得的值,进而求出答案.【解答】解:由题意可知:,因为,则,可得,则,可得,且满足,所以 .故答案为:12.【答案】【解析】【分析】本题考查集合的表示方法,属于基础题.求解x 的范围,然后表示成描述法即可.【解答】解:由题意可得: .故答案为: .13.【答案】【解析】【分析】本题考查分式不等式的解法,属于基础题.根据分式不等式求解方法进行求解即可.【解答】解:不等式等价于,解得,所以原不等式的解集为 .故答案为: .14.【答案】4 【解析】【分析】本题考查利用基本不等式求最值,属于中档题.先利用配凑法根据基本不等式求最值,根据取等条件得 ,即 即得.【解答】解:根据题意可得,,因 ,所以,,所以即,当且仅当时等号成立,此时,解得,则 .故答案为: 415.【答案】【解析】【分析】本题考查利用基本不等式解决有解问题,属于中档题.由已知结合基本不等式中“1”的代换求解的最小值,然后结合存在性问题与最值关系的转化,解一元二次不等式即可.【解答】解:因为两个正实数x,y满足,所以,所以,当且仅当即时,等号成立.因为有解,所以,即,解得或,即实数m的取值范围是 .故答案为: .16.【答案】【解析】【分析】本题考查由函数的最值求参,属于较难题.根据题意,讨论,求得时,取得最小值 0 ,去绝对值,结合二次函数的最值求法,即可得到所求范围.【解答】解:当时,,当时,取得最小值 0 ,满足条件;当时,,当时,可得,当时,,,当时,,当时,取得最小值0,此时;当时,,由题意可得恒成立,不满足.则m的取值范围为 .故答案为:17.【答案】解:因为,,根据并集、补集的概念可得,或,或,所以,或 .若,则,解得,若,则,且或,解得,所以实数a的取值范围是 .【解析】本题考查集合的运算,属于中档题.根据集合A、B利用集合的交集、并集、补集的运算即可求得结果.分集合C为空集和C不为空集两种情况分类讨论,利用交集运算的概念得到a的范围.18.【答案】解:,时,,解集为时,不等式无解;时,,解集为时,不等式为,解集为;时,不等式的解集为或,综上,时,不等式的解集是;时,不等式的解集是或;时,不等式的解集是;时,不等式无解;时,不等式的解集是【解析】本题考查了含有参数的一元二次不等式的解法,解题关键在于对参数的分类讨论,注意参数的正负情况对于解集的影响,属于中档题.分类讨论,进行求解即可.19.【答案】解:因为,所以,因为,所以,因为,当且仅当时取等号,所以,得,当且仅当时取等号,所以ab的最大值为1,即,因为,所以,所以,所以,当且仅当时取等号,所以的最大值为2,即,由题可得,令,则,故 .对任意,,则恒成立,因为a为正数,所以所以,此时,所以,当时,等号成立,此时成立,所以的最大值为第11页,共11页【解析】本题主要考查利用基本不等式求最值,一元二次不等式恒成立问题,属于难题.利用基本不等式结合已知可求得,则 ,从而可求出 n 的值,再结合完全平方公式可求出 m ;令,则 ,得 ,根据 时, ,求得 的关系,从而可得 的取值范围,根据 取最大值的的值检验不等式 恒成立,即可求得结果.。
高一数学第一次月考试卷及答案
高一数学第一次月考试卷及答案上学期第一次考试高一数学试卷一、选择题(每小题5分;共60分)1.在下列四个关系中,错误的个数是()A。
1个 B。
2个 C。
3个 D。
4个2.已知全集U=R;集合A={x|y=-x};B={y|y=1-x^2};那么集合(C U A)B=()A。
(-∞,0] B。
(0,1) C。
(0,1] D。
[0,1)3.已知集合M={x|x=2kπ,k∈Z};N={x|x=2kπ+π,k∈Z};则(M ∩ N)'=()A。
M' ∪ N' B。
M' ∩ N' C。
(M ∪ N)' D。
(M ∩ N)'4.函数f(x)=x+(3a+1)x+2a在(-∞,4)上为减函数;则实数a 的取值范围是()A。
a≤-3 B。
a≤3 C。
a≤5 D。
a=-3/55.集合A,B各有两个元素;AB中有一个元素;若集合C 同时满足:(1) C∩(AB)={}。
(2) C⊊(AB);则满足条件C的个数为()A。
1 B。
2 C。
3 D。
46.函数y=-|x-5||x|的递减区间是()A。
(5,+∞) B。
(-∞,0) U (5,+∞) C。
(-∞,0) U (0,5) D。
(-∞,0) U (0,5)7.设M,P是两个非空集合;定义M与P的差集为M-P={x|x∈M且x∉P};则(M- (M-P))'=()A。
P' B。
M' C。
M ∩ P D。
M ∪ P8.若函数y=f(x)的定义域是[0,2];则函数g(x)=f((x-1)/2)的定义域是()A。
[0,1) U (1,2] B。
[0,1) U (1,4] C。
[0,1) D。
(1,4]9.不等式(a-4)x+(a+2)x-1≥0的解集是空集;则实数a的范围为()A。
(-∞,-2) U (2,+∞) B。
(-∞,-2] U [2,+∞) C。
[-2,+∞) D。
[-2,+∞) - {2}10.已知函数f(x)=begin{cases}2b-1)x+b-1.& x>\frac{b-1}{2b-1}\\x+(2-b)x。
2024-2025学年上海市西中学高一上学期数学月考试卷及答案(2024.09)
1市西中学2024学年第一学期高一年级数学月考2024.09一、填空题(本大题满分36分)只要求直接填写结果,每题填对得3分,否则一律得零分. 1.已知集合{}1,a 与{}2,b 相等,则a b += .2.设全集U R =,集合{}|02A x x x ≤>或,则用区间表示A ,结果是 . 3.设x ,y R ∈,用列举法表示x y xy+所有可能取值组成的集合,结果是 .4.已知集合{}(,)|210A x y x y =+=,{}(,)|35B x y x y =−=,则A B = .5.已知α:素数都是奇数,则α的否定形式是 .6.设x ,y R ∈,已知33:x y β<,则β的一个充分必要条件是 . 7.设U 为全集,A ,B ,C U ⊆,用含有A 、B 、C 的运算式子表示如图的阴影部分,结果是 . 8.已知集合{}|A x y x Z ==∈,{}2|1,B y y x x A ==+∈,则AB = .9.设集合{},,,,,,A a b c d e f g =,{},B a c =,集合M 满足AM B M =,则这样的集合M 共有 个. 10.设集合(,0)(1,)A =−∞+∞,{}|(25)()0B x x x a =+−<,若{}2,1ABZ =−−,则实数a 的取值范围是 .11.设k R ∈,已知集合{}22|(1)(4)x x x k −−=恰有四个非零元素,且它们在数轴上等距排列,则k =________.12.若两个正整数的正公因数只有1,则称这两个正整数互素.将与105互素的所有正整数组成集合{}123,,,,,n a a a a ,且123n a a a a <<<<,则100a = .2二、选择题(本大题满分12分)本大题共4题,每题3分. 13.设x R ∈,则“1x ≠”是“2320x x −+≠”的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既非充分又非必要条件14.已知抛物线2y ax =与直线1x =、2x =、1y =、2y =围成的正方形有公共点,那么实数a 的取值范围是( ) A .1,14⎡⎤⎢⎥⎣⎦B .1,24⎡⎤⎢⎥⎣⎦C .1,12⎡⎤⎢⎥⎣⎦D .1,22⎡⎤⎢⎥⎣⎦15.已知非空集合{}|135A x a x a =+≤≤−,{}|116B x x =≤≤,则使得()A A B ⊆成立的实数a 的所有取值组成的集合是( ) A .{}|07a a ≤≤ B .{}|37a a ≤≤C .{}|7a a ≤D .∅16.定义集合运算{}|,A B x x A x B −=∈∉,将()()A B A B B A ∆=−−称为集合A 与B的对称差.命题甲:()()()A B C AB AC ∆=∆;命题乙:()()AB C AB ∆=∆()AC .则下列说法正确的是( )A .甲、乙都是真命题B .只有甲是真命题C .只有乙是真命题D .甲、乙都不是真命题三、解答题(本大题满分52分).17.(本题满分8分)已知集合{}2|8160,,A x kx x k R x R =−+=∈∈只有一个元素,求k 的值并用列举法表示集合A .318.(本题满分10分,第1小题满分5分,第2小题满分5分) 设a R ∈,已知集合{}|12A x x =−<<,{}22|20B x x ax a =−−=. (1)若{}1A B =,求a 的值;(2)若A B A =,求a 的取值范围.19.(本题满分10分,第1小题满分5分,第2小题满分5分)如图,在直角坐标系xOy 中,过点(0,1)F 的直线与抛物线24x y =相交于点11(,)M x y 、22(,)N x y 自M 、N 引直线l :1y =−的垂线,垂足分别为1M 、1N .(1)用1y 分别表示线段1MM 、MF 的长; (2)证明:11M F N F ⊥.420.(本题满分12分,第1小题满分6分,第2小题满分6分)设a R ∈,已知α:关于x 的一元二次方程220ax x a ++=有两个相异正根;β:对任意实数x ,不等式2(1)(1)10a x a x −−−−<恒成立. (1)若α为真命题,求实数a 的取值范围;(2)判断α⇒β、β⇒α是否成立?给出你的结论,并说明理由.21.(本题满分12分,第1小题满分6分,第2小题满分6分) 己知实数1x ,2x ,3x ,4x ,5x ,满足123455x x x x x ++++=. (1)证明:1x ,2x ,3x ,4x ,5x 中至少有一个不小于1;(2)设1x ,2x ,3x ,4x ,5x 两两互不相等,集合{}12345,,,,A x x x x x =,B 是A 的非空子集,记()M B 是B 中所有元素之和,对所有的B ,求()M B 的平均值.5参考答案一、填空题1.3;2.(](),02,−∞⋃+∞;3.{}2,0,2−;4.(){}3,4;5.存在一个素数不是奇数;6.x y <;7.A C B ⋂⋂;8.{}1,0,1,2−;9.32; 10.(]1,2−; 11.7412.202 11.设k R ∈,已知集合{}22|(1)(4)x x x k −−=恰有四个非零元素,且它们在数轴上等距排列,则k =________. 【答案】74【解析】设2x y =,原方程变为()2540y y k −+−=,设此方程有实根,(0)αβ<α<β,则原方程的四个实根为,(=即9β=α,又5,4k α+β=αβ=−, 由此求得74k =且满足254160Δk =+−>,7.4k ∴=故答案为:74.二、选择题13.B 14.B 15.C 16.B15.已知非空集合{}|135A x a x a =+≤≤−,{}|116B x x =≤≤,则使得()A A B ⊆成立的实数a 的所有取值组成的集合是( ) A .{}|07a a ≤≤ B .{}|37a a ≤≤ C .{}|7a a ≤ D .∅【答案】C【解析】由集合{}|135A x a x a =+≤≤−,{}116B x =≤≤当A =∅时,A B ⋂=∅,满足条件A A B ⊆⋂,此时135a a +>−,即26a <,解得3a <; 当A ≠∅时,若A A B ⊆⋂,则135113516a a a a +≤−⎧⎪+≥⎨⎪−≤⎩,等价于260321a a a ≥⎧⎪≥⎨⎪≤⎩,即30,7a a a ≥⎧⎪≥⎨⎪≤⎩解得37a ≤≤;6故a 的取值范围是{}|7a a ≤,综上所述,答案选择:C16.定义集合运算{}|,A B x x A x B −=∈∉,将()()A B A B B A ∆=−−称为集合A 与B的对称差.命题甲:()()()A B C AB AC ∆=∆;命题乙:()()AB C AB ∆=∆()AC .则下列说法正确的是( )A .甲、乙都是真命题B .只有甲是真命题C .只有乙是真命题D .甲、乙都不是真命题【答案】B【解析】对于甲:()()A B C A B C B C A ⋂∆=⋂⋃−⋂=⋂()()B C A B C ⋃−⋂⋂()()A B A C =⋂⋃⋂()()()()A B A C A B A C −⋂⋂⋂=⋂∆⋂,故甲是真命题;对于乙,如下图所示:所以,()()()A B C A B A C ⋃∆≠⋃∆⋃,故乙是假命题;.故选:B. 三.解答题17.当0k =时,{}2A =; 当1k =时,{}4A =; 18.(1)1a =−(2)1,12⎛⎫− ⎪⎝⎭19.(1)1MM =11MF y =+ (2)略 20.(1)()1,0− (2)α⇒β21.(本题满分12分,第1小题满分6分,第2小题满分6分) 己知实数1x ,2x ,3x ,4x ,5x ,满足123455x x x x x ++++=.7(1)证明:1x ,2x ,3x ,4x ,5x 中至少有一个不小于1;(2)设1x ,2x ,3x ,4x ,5x 两两互不相等,集合{}12345,,,,A x x x x x =,B 是A 的非空子集,记()M B 是B 中所有元素之和,对所有的B ,求()M B 的平均值. 【答案】(1)见解析 (2)8031【解析】(1)证明:12245,,,,x x x x x 中的每一个数都小于1, 可得122455x x x x x ++++<,这与123455x x x x x ++++=矛盾, 故12245,,,,x x x x x 中至少有一个实数不小于1;(2)集合{}12345A x ,x ,x ,x ,x =的非空子集个数为32131−=,由于()M B 是B 中所有元素之和,可得()()1234516165M B x x x x x =++++=⨯80= 则()M B 的平均值为8031.。
高一数学 第一次月考试卷(含答案)
高一数学 第一次月考试卷班级______姓名________ 命题教师——一、选择题(本题12小题,每题5分,共60分)1、函数1y x=+ D ) A. [)4,-+∞ B .()()4,00,-+∞ C .()4,-+∞ D. [)()4,00,-+∞2、若集合{}{}21,02,A x x B x x =-<<=<<则集合A B 等于(D )A 、{}11x x -<<B 、{}21x x -<<C 、{}22x x -<<D 、{}01x x <<3、若集合{}2228x A x Z +=∈<≤,{}220B x R x x =∈->,则()R A C B 所含的元素个数为( C )A 、0B 、1C 、2D 、34、函数1()f x x x=-的图像关于( C )。
A. y 轴对称 B .直线y x =-对称 C .坐标原点对称 D.直线y x =对称5、已知函数()f x 为奇函数,且当0x >时,21()f x x x=+,则(1)f -= (D) A.2 B.1 C.0 D.-26、若)(x f 是偶函数,其定义域为),(+∞-∞,且在[)+∞,0上是减函数,则)23(-f 与)252(2++a a f 的大小关系是 ( C ) A 、)252()23(2++>-a a f f B 、)252()23(2++<-a a f f C 、)252()23(2++≥-a a f f D 、)252()23(2++≤-a a f f 7、若)(x f ,)(x g 都是奇函数,且2)()()(++=x bg x af x F 在),0(+∞上有最大值8,则)(x F 在)0,(-∞上有 ( D )A 、最小值8-B 、最大值8-C 、最小值6-D 、最小值4-8、设253()5a =,352()5b =,252()5c =,则,,a b c 的大小关系是 ( A ) A 、a c b >> B 、a b c >> C 、c a b >> D 、b c a >>9、函数1()(0,1)x f x a a a +=>≠的值域为[)1,+∞,则(4)f -与(1)f 的关系是( A )A 、(4)(1)f f ->B 、(4)(1)f f -=C 、(4)(1)f f -<D 、不能确定10、若函数234y x x =--的定义域为[]0,m ,值域为25,44⎡⎤--⎢⎥⎣⎦,则m 的取值范( B )A. 3(,3)2 B. 3,32⎡⎤⎢⎥⎣⎦ C. (]0,3 D. 3,32⎡⎫⎪⎢⎣⎭11、已知[]1,1-∈x 时,02)(2>+-=a ax x x f 恒成立,则实数a 的取值范围是( A ) A.(0,2) B.),(∞+2 C. ),(∞+0 D.(0,4) 12、奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f += ( D ) A 、2- B 、1- C 、0 D 、1二、填空题(本题共4小题,每题5分,共20分)13、设集合{}{}21,1,3,2,4,A B a a =-=++{}3A B =,则实数a 的值为_1____ 。
高一上学期第一次月考数学试卷(含答案解析)
高一上学期第一次月考数学试卷(含答案解析)第I 卷(选择题)一、单选题(本大题共10小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 若集合{0,1}A =,{|0}B x x =,则下列结论正确的是( ) A. {0}B ∈B. A B ⋂=∅C. A B ⊆D. A B R ⋃=2. 已知集合,{2,1,0,1,2,4}B =--,则A B ⋂=( ) A. {1,0,1,2}-B. {2,0,4}-C. {0,1,2}D. {0,1}3. 已知命题p :x R ∃∈,2 1.x x +则命题p 的否定是( ) A. x R ∃∈,21x x >+ B. x R ∃∈,21x x + C. x R ∀∈,21x x +D. x R ∀∈,21x x >+4. 已知a R ∈,则“2a >”是“4a >”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件5. “A B ⊆“是“A B B ⋂=“的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件D. 既不充分也不必要条件6. 如果0a <,0b >,那么下列不等式中正确的是( )A.11a b< B. <C. 22a b <D. ||||a b >7. 已知集合M 满足{1,2}{1,2,3}M ⋃=,则集合M 的个数是( ) A. 1B. 2C. 3D. 48. 对于任意实数x ,不等式2(2)2(2)40m x m x ---+>恒成立,则m 的取值范围是( ) A. {|22}m m -<< B. {|22}m m -< C. {|2m m <-或2}m >D. {|2m m <-或2}m9. 已知a ,b R ∈,且0ab ≠,则在下列四个不等式中,不恒成立的是( )A.222a b ab +B.2b a a b+ C. 2()2a b ab +D. 222()22a b a b ++10. 设S 为实数集R 上的非空子集.若对任意x ,y S ∈,都有x y +,x y -,xy S ∈,则称S 为封闭集.下面是关于封闭集的4个判断:(1)自然数集N 为封闭集; (2)整数集Z 为封闭集;(3)若S 为封闭集,则一定有0S ∈; (4)封闭集一定是无限集.则其中正确的判断是( )A. (2)(3)B. (2)(4)C. (3)(4)D. (1)(2)第II 卷(非选择题)二、填空题(本大题共5小题,共25.0分)11. 已知函数21()ln log f x a x b x =+,若(2017)1f =,则1()2017f =______ . 12. 若0x >,则12x x+的最小值为______,此时x 的取值为______. 13. 一元二次不等式220ax bx ++>的解集是11(,)23-,则a b +的值是__________.14. 设2{|340}A x x x =+-=,{|10}.B x ax =-=若B A ⊆,则a 的值为______.15. 某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润(y 万元)与机器运转时间(x 年数,*)x N ∈的关系为21825.y x x =-+-则当每台机器运转______ 年时,年平均利润最大,最大值是______ 万元.三、解答题(本大题共6小题,共85.0分。
北京市中学2024-2025学年高一上学期9月月考数学试卷含答案
北京市2024-2025学年高一上学期9月月考数学试卷班级______姓名______学号______2024.09.30(答案在最后)一、选择题(共8个小题,每题5分,共40分.每小题只有一个正确选项,请选择正确答案.......填在答题纸相应的题号处...........)1.已知集合{10}A xx =-≤≤∣,集合{1,0,1,2}B =-,则A B = ()A.RB.{10}x x -≤≤∣C.{1,0}- D.{1,0,1}-【答案】C【解析】【分析】根据交集运算求解即可.【详解】因为集合{10}A xx =-≤≤∣,集合{1,0,1,2}B =-,所以{}1,0A B ⋂=-.故选:C2.下列命题中,正确的是()A.若a b >,则22ac bc > B.若,a b c d >>,则a c b d +>+C.若,a b c d >>,则ac bd> D.若a b >,则11a b >【答案】B【解析】【分析】利用不等式的性质及举反例即可判断.【详解】对A 选项,当0c =时不等式不成立,故A 选项错误;B 选项,满足不等式的同向可加性,故B 选项正确;C 选项,当2,1,1,2a b c d ===-=-,则ac bd =,故C 选项错误;D 选项,当1,2a b =-=-时,11a b<,故D 选项错误.故选:B 3.方程组2202x y x y +=⎧⎨+=⎩的解集是()A.{(1,1),(1,1)}-- B.{(1,1),(1,1)}--C.{(2,2),(2,2)}-- D.{(2,2),(2,2)}--【答案】B【解析】【分析】根据消元法求得不等式组的解,结合集合的表示方法,即可求解.【详解】由题意,将y x =-代入222x y +=,可得21x =,即1x =±,当1x =时,1y =-;当1x =-时,1y =,所以方程组的解集为{(1,1),(1,1)}--.故选:B.4.下列不等式中,解集为{1xx <∣或3}x >的不等式是()A .2430x x -+≥ B.2430x x -+< C.103x x -≥- D.|2|1x ->【答案】D【解析】【分析】根据一元二次不等式的解法、分式不等式的解法和绝对值不等式的解法分别解各选项不等式即可求解.【详解】由2430x x -+≥可得()()130x x --≥,解得1x ≤或3x ≥,故A 错误;由2430x x -+<可得13x <<,故B 错误;由103x x -≥-可得()()()13030x x x --≥-≠,解得1x ≤或3x >,故C 错误;由|2|1x ->可得21x ->或21x -<-,即1x <或3x >,故D 正确.故选:D5.“0a b >>”是“22a b >”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】【分析】根据充分不必要条件的概念判断即可.【详解】当0a b >>时,22a b >;当22a b >时,a b >,不一定0a b >>,所以“0a b >>”是“22a b >”的充分不必要条件.故选:A.6.平流层是指地球表面以上10km (不含)到50km (不含)的区域,下述不等式中,x 能表示平流层高度的是A.|10|50x +< B.|10|50x -< C.|30|20x +< D.|30|20x -<【答案】D【解析】【分析】根据绝对值的几何意义即可得解|30|20x -<.【详解】解析:如图:设(10),(50)A B ,则AB 的中点为(30)M ,由距离公式可得|30|20x -<.答案:D【点睛】此题考查根据绝对值的几何意义解决实际问题,关键在于正确理解绝对值的几何意义.7.若不等式04x <<是||x a <成立的充分条件,则a 的取值范围是()A.1a ≥ B.4a ≥ C.1a ≤ D.4a ≤【答案】B【解析】【分析】由题意知()()0,41,1a a ⊆-+可得1014a a -≤⎧⎨+≥⎩,解不等式即可得出答案.【详解】由题设,不等式a x a -<<且>0成立的充分条件是04x <<,则()()0,4,a a ⊆-,所以4a ≥,所以实数a 的取值范围是4a ≥.故选:B.8.已知集合{}{}2221,N ,21,N P yy x x x Q y y x x x ==+-∈==-+-∈∣∣,则P Q = ()A.{}1- B.{0} C.∅ D.N 【答案】A【解析】【分析】由两个方程相等可求得两曲线交点的横坐标,根据集合的几何意义求出纵坐标的值即为交集的结果.【详解】由222121x x x x +-=-+-,解得0x =,当0x =时,2221211x x x x +-=-+-=-,所以1{}P Q ⋂=-.故选:A二、填空题(共6个小题,每题5分,共30分.请将正确答案填在答题卡相应的题号处.................).9.命题2R,230x x x ∀∈-+>的否定是______.【答案】R x ∃∈,2230x x -+≤【解析】【分析】根据全称量词命题的否定求解.【详解】命题2R,230x x x ∀∈-+>的否定是R x ∃∈,2230x x -+≤.故答案为:R x ∃∈,2230x x -+≤10.已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则(U P ð)∪Q =____.【答案】{1,2,4,6},【解析】【分析】由已知,先求出U P ð,再求(U P ð)∪Q .【详解】∵U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},∴U P ð={2,4,6},∴(U P ð)∪Q ={1,2,4,6},故答案为:{1,2,4,6},11.已知集合{1,2,3}A ⊆,集合A 可以为______(写出符合要求的所有A )【答案】{}{}{}{}{}{}{},1,2,3,1,2,1,3,2,3,1,2,3∅【解析】【分析】写出集合的子集即可得解.【详解】因为集合{1,2,3}A ⊆,所以集合A 可以为{}{}{}{}{}{}{},1,2,3,1,2,1,3,2,3,1,2,3∅.故答案为:{}{}{}{}{}{}{},1,2,3,1,2,1,3,2,3,1,2,3∅12.已知12,x x 是关于x的一元二次方程210x -+=的两根,则12x x +=______;1211x x +=______.【答案】①.②.【解析】【分析】根据一元二次方程根与系数的关系求解.【详解】由一元二次方程根与系数的关系可知,12x x +=,121x x ⋅=,所以12121211x x x x x x ++==⋅.故答案为:;13.若2{{1,2,4,}a ⊆,则a =________________________【答案】4,16,0【解析】【分析】依题意有{}21,2,4,a,逐个列方程求解,并检验元素的互异性.【详解】依题意有{}21,2,4,a1≠,2=时,216a =,满足题意,则4a =;4=时,2256a =,满足题意,则16a =;2a =时,0a =或1a =,0a =时满足题意,1a =时与元素的互异性矛盾.综上,4a =或16a =或0a =时满足题意,故答案为:4,16,014.若对2R,230x ax ax ∀∈-+>恒成立是真命题,则实数a 的取值范围是______【答案】[)0,3【解析】【分析】分0,0a a =≠讨论,根据一元二次不等式恒成立求解.【详解】当0a =时,原不等式为30>,对任意实数都成立,满足题意;当0a ≠时,2R,230x ax ax ∀∈-+>恒成立,需满足()202120a a a >⎧⎪⎨--<⎪⎩,即003a a >⎧⎨<<⎩,解得0<<3a .综上,实数a 的取值范围是[)0,3.故答案为:[)0,3三、解答题(共3个小题,每题10分,其30分,请将解题过程和答案写在规定的区域内...................)15.已知a ,b 为正数,且a b ≠,比较33+a b 与22a b ab +的大小.【答案】3322a b a b ab +>+【解析】【分析】通过作差,提取公因式便可得出33222()()()a b a b ab a b a b +-+=-+,并根据条件可以判断2()()0a b a b -+>,这样即可得出所比较两个式子的大小关系【详解】33223322()()a b a b ab a b a b ab +-+=+-- 22()()a ab b a b =---22()()a b a b =--2()()a b a b =-+;0a > ,0b >且a b ≠;2()0a b ∴->,0a b +>;2()()0a b a b ∴-+>;即3322()()0a b a b ab +-+>;3322a b a b ab ∴+>+.【点睛】本题主要考查作差法比较两个代数式的大小关系,分解因式法的运用,以及平方差公式,属于基础题.16.一元二次方程210ax bx ++=的解集是12,23⎧⎫-⎨⎬⎩⎭,求实数a ,b 的值,并求方程230bx ax b +--=的解集.【答案】13,2a b =-=,{}1,7-【解析】【分析】根据一元二次方程根与系数的关系求,a b ,再解一元二次方程得解.【详解】因为一元二次方程210ax bx ++=的解集是12,23⎧⎫-⎨⎬⎩⎭,所以122312123b a a⎧-+=-⎪⎪⎨⎪-⋅=⎪⎩,解得13,2a b =-=,所以方程230bx ax b +--=为2670x x --=,解得7x =或1x =-,所以方程的解集为{}1,7-.17.已知集合{}22,(,1)A x a x a B ∞=<<-=-∣.(1)若A B ⊆,求实数a 的取值范围;(2)若U B A ⊆ð,求实数a 的取值范围.【答案】(1)2⎡⎤⎣⎦(2)[)1,-+∞【解析】【分析】(1)分类讨论,根据子集列出不等式求解;(2)分集合是否为空集讨论,根据子集关系列不等式得解.【小问1详解】当22a a -≤时,即12a -≤≤时,A =∅,满足A B ⊆;当A ≠∅时,若A B ⊆,则需22221a a a ⎧<-⎨-≤⎩,解得1a ≤<-,综上,实数a的取值范围2⎡⎤⎣⎦.【小问2详解】由(1)知,当12a -≤≤时,A =∅,所以R U A =ð,满足U B A ⊆ð;当1a <-或2a >时,(])2,2,U A a a ⎡=-∞-+∞⎣ ð,由U B A ⊆ð可得1a ≤,又2a >,所以2a >.综上,实数a 的取值范围[)1,-+∞.。
重庆市中学2024~2025学年高一上学期第一次月考数学试题含答案
重庆市2024~2025学年高一上学期第一次月考数学试题(命题人:)(答案在最后)考试说明:1.考试时间120分钟2.试题总分150分3.试卷页数2页一、单项选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U =R ,3{|ln}3x M x y x -==+,}2{|2,1xx y y N =≤≤=,如图阴影部分所表示的集合为()A.{}23x x ≤< B.{}34x x <≤C.{|2x x ≤或3}x > D.{}33x x -≤≤【答案】B 【解析】【分析】由题意知,阴影部分表示的为M N ⋂,算出集合,M N 表示的范围,根据集合的交集的运算,即可得到本题答案.【详解】全集U =R ,集合M 中函数满足303x x ->+,解得3x <-或3x >,M ={|3x x <-或3}x >,集合N 中指数函数2x y =在上单调递增,则24222=x ≤≤,}|24{y N y =≤≤,由图可得阴影部分所表示的集合为{|34}M N x x ⋂=<≤,故选:B.2.若函数()y f x =的一个正零点用二分法计算,零点附近函数值的参考数据如下:(1)2f =-,(1.25)0.984f =-,(1.375)0.260f =-,(1.40625)0.054f =-,(1.4375)0.162f =,(1.6)0.625f =,那么方程()0f x =的一个近似根(精确度0.1)为()A.1.2 B.1.3C.1.4D.1.5【答案】C【解析】【分析】由参考数据可得(1.4375)(1.375)0f f <,区间(1.375,1.4375)满足题干要求精确到0.1,结合选项可得答案.【详解】因为1.6 1.43750.16250.1-=>,所以不必考虑端点1.6;因为1.40625 1.250.156250.1-=>,所以不必考虑端点1.25和1;因为(1.4375)0f >,(1.375)0f <,所以(1.4375)(1.375)0f f <,所以函数()f x 在(1.375,1.4375)内有零点,因为1.4375 1.3750.06250.1-=<,所以满足精确度0.1;所以方程()0f x =的一个近似根(精确度0.1)是区间(1.375,1.4375)内的任意一个值(包括端点值),根据四个选项可知:1.4[1.375,1.4375]∈.故选:C.3.“1sin 2x =”是“2()6x k k Z ππ=+∈”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】首先根据1sin 2x =可得:2()6x k k Z ππ=+∈或52()6x k k Z ππ=+∈,再判断即可得到答案.【详解】由1sin 2x =可得:2()6x k k Z ππ=+∈或52()6x k k Z ππ=+∈,即2()6x k k Z ππ=+∈能推出1sin 2x =,但1sin 2x =推不出2()6x k k Z ππ=+∈“1sin 2x =”是“2()6x k k Z ππ=+∈”的必要不充分条件故选:B【点睛】本题主要考查必要不充分条件的判断,同时考查根据三角函数值求角,属于简单题.4.函数21π()sin 212x xf x x -⎛⎫=⋅+ ⎪+⎝⎭在区间ππ,22⎡⎤-⎢⎥⎣⎦上的图象大致为()A.B.C.D.【答案】D 【解析】【分析】先得到函数的奇偶性,再计算出当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0f x >,判断出答案.【详解】化简函数()f x 解析式可得21()cos 21x x f x x -=⋅+,定义域为R ,112121212()()cos cos()cos cos 121212112xxxx x x x x f x f x x x x x------+-=⋅+-=⋅+⋅++++ 01212cos 11cos 22x x x x x x -=⋅+⋅+=+-,()f x ∴为奇函数,AC 错误;又因为当π0,2x ⎛⎫∈ ⎪⎝⎭时,21()cos 021x x f x x -=⋅>+,B 错误,D 正确.故选:D.5.已知π0,4α⎛⎫∈ ⎪⎝⎭,π,02β⎛⎫∈- ⎪⎝⎭,πsin 43α⎛⎫+= ⎪⎝⎭,πsin 423β⎛⎫-= ⎪⎝⎭,则sin 2βα⎛⎫+ ⎪⎝⎭的值为()A.9 B.69-C.9D.9【答案】A 【解析】【分析】先根据已知条件及同角三角函数基本关系求出π1cos 43α⎛⎫+= ⎪⎝⎭,π3cos 423β⎛⎫-= ⎪⎝⎭;再利用已知角π4α+和π42β-来配凑2βα+;最后利用两角差的正弦公式即可求解.【详解】π0,4α⎛⎫∈ ⎪⎝⎭ ,π,02β⎛⎫∈- ⎪⎝⎭,πππ,442α⎛⎫∴+∈ ⎪⎝⎭,πππ,4242β⎛⎫-∈ ⎪⎝⎭,πsin 43α⎛⎫+=⎪⎝⎭,πsin 423β⎛⎫-= ⎪⎝⎭,π1cos 43α⎛⎫∴+= ⎪⎝⎭,πcos 423β⎛⎫-= ⎪⎝⎭.ππsin sin 2442ββαα⎡⎤⎛⎫⎛⎫⎛⎫∴+=+-- ⎪ ⎪ ⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ππππsin cos cos sin 442442ββαα⎛⎫⎛⎫⎛⎫⎛⎫=+--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭13333=⨯-⨯9=.故选:A.6.酒驾是严重危害交通安全的违法行为,为了保障安全,根据国家规定,驾驶人员每100毫升血液酒精含量大于或等于20毫克,并每100毫升血液酒精含量小于80毫克为饮酒后驾车;每100毫升血液酒精含量大于或等于80毫克为醉酒驾车.某驾驶员喝了一定量的酒后,其血液中酒精含量上升到了每毫升血液含酒精0.8毫克,如果停止饮酒后,他的血液中的酒精会以每小时25%的速度减少,那么他想要驾车至少要经过(参考数据:lg 20.301≈,lg 30.477≈)()A.3hB.4hC.5hD.7h【答案】C 【解析】【分析】先根据题意表示出经过t 小时后,该驾驶员体内的酒精含量;再列出不等式求解即可.【详解】经过t 小时后,该驾驶员体内的酒精含量为:30.8mg /ml 4t⎛⎫⨯ ⎪⎝⎭.只需30.80.24t⎛⎫⨯< ⎪⎝⎭,即3144t⎛⎫< ⎪⎝⎭,341log 43344t ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭.因为函数34x y ⎛⎫= ⎪⎝⎭在R 上为减函数,所以341lg 42lg 20.602log 4.8164lg 4lg 32lg 2lg 30.6020.477t >==≈=---,故他至少要经过5个小时后才能驾车.故选:C.7.定义在R 上的奇函数()f x 满足,当(0,2)x ∈时,()cos((1))2f x x π=-,且2x ≥时,有1()(2)2f x f x =-,则函数2()()F x x f x x =-在[2,5]-上的零点个数为A.9B.8C.7D.6【答案】B 【解析】【分析】先由奇函数性质求出函数()f x 在[]2,2-上的解析式,再利用1()(2)2f x f x =-.得到[2,5]-的图象,2()()F x x f x x =-的零点个数,等价于求1()f x x =的解的个数.根据两函数交点个数即可求解.【详解】当(0,2)x ∈时,()cos((1))cos(sin()2222f x x x x ππππ=-=-=,()f x 是奇函数,()00f ∴=,当2x ≥时,有1()(2)2f x f x =-,()()12002f f ∴==,()()14202f f ==,若()2,0x ∈-,则()0,2x -∈,则()sin()(in ()22)s x f x f x x ππ-=-=-=-,即()sin()2f x x π=,()2,0x ∈-即当22x -≤≤时,()sin()2f x x π=,当24x ≤≤时,022x ≤-≤,此时1111()(2)sin[(2)]sin()sin()2222222f x f x x x x ππππ=-=-=-=-,当45x ≤≤时,223x ≤-≤,此时1111()(2)sin[(2)]sin()sin(44)24222f x f x x x x ππππ=-=--=--=,由2()()0F x x f x x =-=,得:当0x =时,由(0)0F =,即0x =是()F x 的一个零点,当0x ≠时,由2()0f x xx -=得1()xf x =,即1()f x x=,作出函数()f x 与1()g x x=在,[2,5]-上的图象如图:由图象知两个函数在[2,5]-上共有7个交点,加上一个0x =,故函数2()()F x x f x x =-在[2,5]-上的零点个数为8个,故选:B.【点睛】本题主要考查函数与方程的应用.判断函数零点个数的方法:直接法:即直接求零点,令()0f x =,如果能求出解,则有几个不同的解就有几个零点定理法:即利用零点存在性定理,不仅要求函数的图象在区间[]a b ,上是连续不断的曲线,且()()0f a f b < ,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点图象法:即利用图象交点的个数,画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数()h x 和()g x 的差,根据()0()()f x h x g x Û==,则函数f(x)的零点个数就是函数()y h x =和()y g x =的图象的交点个数性质法:即利用函数性质,若能确定函数的单调性,则其零点个数不难得到;若所考查的函数是周期函数,则只需解决在一个周期内的零点的个数.8.已知()f x 是定义在R 上的奇函数,若对任意120x x <<,均有()()2112120x f x x f x x x ->-且(3)3f =,则不等式()0f x x ->的解集为()A.(3,0)(3,)-⋃+∞B.()3,3-C.(,3)(3,)-∞-⋃+∞D.(3,0)(0,3)-⋃【答案】A 【解析】【分析】先变形得到()()1212f x f x x x <,令()()f x g x x =,得到()()f x g x x=在(0,)+∞上单调递增,结合(3)(3)13f g ==,得到3x >,再结合函数的奇偶性和单调性得到30x -<<,从而求出答案.【详解】因为120x x <<,所以()()21120x f x x f x -<,所以()()1212f x f x x x <.设函数()()f x g x x =,则函数()()f x g x x =在(0,)+∞上单调递增,且(3)(3)13f g ==.当0x >时,不等式()0f x x ->等价于()f x x >,即()1f x x>,即()(3)g x g >,解得3x >,又因为()f x 是定义在上的奇函数,所以(0)0f =,所以,当0x =时,不等式()0f x x ->无解.因为()f x 是定义在上的奇函数,所以−=−,()()f x g x x=的定义域为()(),00,∞∞-⋃+,又()()()()()f x f x f x g x g x x x x---====--,故()()f x g x x=为偶函数,且在(,0)-∞单调递减,当0x <时,不等式()0f x x ->等价于()f x x >,即()1f x x<,因为(3)(3)13f g --==-,故()(3)g x g <-,解得30x -<<,综上,不等式()0f x x ->的解集为(3,0)(3,)-⋃+∞.故选:A.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.对于实数a ,b ,c ,下列说法正确的是()A.若1a b <<,则11b a< B.若22ac bc >,则a b>C.若0a b >>,0c >,则b b c a a c+<+ D.若c a b >>,a b c a c b<--【答案】ABC 【解析】【分析】AB 选项,可利用不等式性质进行判断;CD 选项,利用作差法比较出大小.【详解】A 选项,若1a b <<,则0ab >,不等式两边同除以ab 得11b a<,A 正确;B 选项,若22ac bc >,则0c ≠,故20c >,不等式两边同除以2c 得a b >,B 正确;C 选项,()()()b a cb bc ab bc ab ac a a c a a c a a c -++---==+++,因为0a b >>,0c >,所以0,0b a a c -<+>,故()()0b a c b b c a a c a a c -+-=<++,所以b b ca a c+<+,C 正确;D 选项,()()()a b c a b c a c b c a c b --=----,因为c a b >>,所以0c a ->,0c b ->,0a b ->,但c 的正负不确定,故无法判断()()()c a b c a c b ---的正负,从而无法判断a c a -与bc b-的大小关系,D 错误.故选:ABC.10.已知函数()sin()f x x ωϕ=+(0ω>,π2ϕ<)的最小正周期为π,将该函数的图象向左平移π3个单位后,得到的图象对应的函数为偶函数,则下列说法正确的是()A.函数()y f x =的图象关于直线π6x =对称B.函数()y f x =在区间5π4π,63⎛⎫⎪⎝⎭上单调递增C.1(0)2f =-D.函数()y f x =的图象关于点π,012⎛⎫⎪⎝⎭对称【答案】BCD 【解析】【分析】由三角函数的周期性与奇偶性,结合三角函数图象平移法则求得,ωϕ,再利用代入检验法与整体代入法逐一分析各选项即可得解.【详解】因为函数()sin()f x x ωϕ=+的最小正周期为2ππω=,则2ω=,故()sin(2)f x x ϕ=+,将该函数的图象向左平移π3个单位后,得到2πsin 23y x ϕ⎛⎫=++ ⎪⎝⎭的图象,因为得到的图象对应的函数2πsin 23y x ϕ⎛⎫=++ ⎪⎝⎭为偶函数,所以2πππ(Z)32k k ϕ+=+∈,即ππ(Z)6k k ϕ=-+∈,因为π2ϕ<,所以π6ϕ=-,故π()sin 26f x x ⎛⎫=- ⎪⎝⎭,对于A ,当π6x =时,则πππ1sin 6362f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,故A 错误;对于B ,令πππ2π22π262k x k -+<-<+,Z k ∈,得ππππ(Z)63k x k k -+<<+∈,当1k =时,()y f x =在区间5π4π,63⎛⎫⎪⎝⎭上单调递增,故B 正确;对于C ,π1(0)sin 62f ⎛⎫=-=- ⎪⎝⎭,故C 正确;对于D ,πππsin 01266f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,故D 正确.故选:BCD.11.设函数()()12,1log 1,1x x f x x x ⎧≤⎪=⎨->⎪⎩,若()()()()1234f x f x f x f x ===,且1234x x x x <<<,则()1243412x x x x ++++的值可以是()A.4B.5C.163D.6【答案】AB 【解析】【分析】画出函数图象,数形结合得到120x x +=,3322x ≤<,423x <≤,结合交点关系得到()12344444222111x x x x x x +++=++++-,构造函数42()2(23)11g x x x x =++<≤+-,根据函数单调性得到取值范围,求出答案.【详解】函数()f x的图象如图所示,设()()()()1234f x f x f x f x t ====,由图可知,当01t <≤时,直线y t =与函数()f x 的图象有四个交点,交点的横坐标分别为1234,,,x x x x ,且1234x x x x <<<,1x >时,令12()log (1)1f x x =-=,解得32x =或3x =.由图可知,120x x +=,3322x ≤<,423x <≤,由()()34f x f x =,可得34111x x -=-,则有34111x x =+-,所以()1233444444422221111x x x x x x x x +++=+=+++++-.令42()2(23)11g x x x x =++<≤+-,易知()g x 在(2,3]上为减函数,且16(2)3g =,(3)4g =,故()12344164213x x x x ≤+++<+,且1644,3⎡⎫∈⎪⎢⎣⎭,1654,3⎡⎫∈⎪⎢⎣⎭,AB 正确;又1616164,,64,333⎡⎫⎡⎫∉∉⎪⎪⎢⎢⎣⎭⎣⎭,CD 错误.故选:AB.【点睛】将函数零点问题或方程解的问题转化为两函数的图象交点问题,将代数问题几何化,借助图象分析,大大简化了思维难度,首先要熟悉常见的函数图象,包括指数函数,对数函数,幂函数,三角函数等,还要熟练掌握函数图象的变换,包括平移,伸缩,对称和翻折等,涉及零点之和问题,通常考虑图象的对称性进行解决.三、填空题:本题共3小题,每小题5分,共15分.12.若1()2xf x ⎛⎫= ⎪⎝⎭的反函数为1()f x -,且11()()4f a f b --+=-,则11a b +的最小值为__________.【答案】12【解析】【分析】先利用指、对数式的互化得到函数1()2xf x ⎛⎫= ⎪⎝⎭的反函数,再利用对数的运算性质化简11()()4f a f b --+=-,最后由基本不等式求得最值即可.【详解】因为x y a =和log a y x =(0a >,1a ≠)互为反函数,若1()2xf x ⎛⎫= ⎪⎝⎭,则112()log f x x -=,又因为11()()4f a f b --+=-,所以111222log log log ()4a b ab +==-,所以16ab =,且0a >,0b >,又11116162a b a b a b ab +++==≥=,当且仅当4a b ==时等号成立,所以11a b +的最小值为12.故答案为:12.13.如果函数()f x 的图象可以通过()g x 的图象平移得到,则称函数()f x 为函数()g x 的“同形函数”,下面几对函数是“同形函数”的是__________.(填上正确选项的序号即可)①()sin f x x =,()cos g x x =;②()2sin cos f x x x =,()cos 2g x x =;③44()sin cos f x x x =-,()cos 2g x x =;④()sin 2tan f x x x =⋅,()cos 2g x x =.【答案】①②③【解析】【分析】①②③,结合三角恒等变换及平移变换法则求出答案;④由两函数定义域不同,故④错误.【详解】①()cos g x x =的图象向右平移π2个单位得到()sin f x x =的图象,①正确;②π()2sin cos sin 2cos 22f x x x x x ⎛⎫===-⎪⎝⎭,故()f x 的图象可由()cos 2g x x =的图象向右平移π4个单位得到,故②正确;③()()44222222()sin cos sin cos sincos sin cos f x x x x xx x x x =-=-+=-cos 2cos(2π)x x =-=+,故()f x 的图象可由()cos 2g x x =的图象向左平移π2个单位得到,故③正确;④2sin ()sin 2tan 2sin cos 2sin 1cos 2cos(2)1co πs xf x x x x x x x x x=⋅=⋅==-=++,因为()sin 2tan f x x x =⋅的定义域不是,而()cos 2g x x =的定义域是,所以不可能由()cos 2g x x =的图象平移得到()sin 2tan 2f x x x =⋅的图象,故④错误.故答案为:①②③14.定义域为R 的函数()f x 的图象关于直线1x =对称,当[0,1]x ∈时,()f x x =,且对任意x ∈R ,有(2)()f x f x +=-,2024(),0()log (),0f x xg x x x ≥⎧=⎨--<⎩,则方程()()0g x g x --=实数根的个数为__________.【答案】2027【解析】【分析】由于题意可得函数()f x 以4为周期,分0x >,0x <,0x =三种情况讨论,把问题转化函数图象交点个数问题,作出函数图象,结合函数的周期性即可得解.【详解】对任意∈有(2)()f x f x +=-,得(4)(2)()f x f x f x +=-+=,则函数()f x 以4为周期,由于函数()f x 的图象关于直线1x =对称,则()(2)f x f x =-,又(2)()f x f x +=-,所以(2)(2)0f x f x ++-=,则函数()f x 的图象关于(2,0)对称.当0x >时,0x -<,由()()0g x g x --=得()()g x g x =-,则2024()log f x x =-,作出()y f x =与2024log y x =-的大致图象如图,令2024log 1x -=-,则2024x =,而20244506=⨯,由图可知,在第一个周期内有三个交点,后面每个周期内有两个交点,所以()y f x =与2024log y x =-的图象在(0,)+∞上有350521013+⨯=个交点;当0x <时,0x ->,由()()g x g x =-得:2024log ()()x f x --=-,令x t -=,0t >,得2024()log f t t =-,由上述可知,()y f t =与2024log y t =-的图象在(0,)+∞上有1013个交点,故()y f x =-与2024log ()y x =--的图象在(,0)-∞上有1013个交点,又0x =时,()()0g x g x --=成立,所以方程()()0g x g x --=实数根的个数为2101312027⨯+=.故答案为:2027.【点睛】思路点睛:由题分析可得函数()f x 以4为周期,图象关于(2,0)中心对称,把问题转化函数图象交点个数问题,数形结合可得解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.设集合{}11ee x A x -=≤≤,若关于x 的不等式20x mx n ++≤的解集为A .(1)求函数()2f x x mx n =++的解析式;(2)求关于x 的不等式()()2322f x x λλ+>-+的解集,其中λ∈R .【答案】(1)详见解析;(2){|x x λ<-或}3x λ>-.【解析】【分析】(1)先化简集合A ,再根据关于x 的不等式20x mx n ++≤的解集为A ,利用根与系数的关系求解;(2)由(1)化简不等式为()()30x x λλ++->求解.【小问1详解】解:集合{}11ee x A x -=≤≤{}|12x x =≤≤,因为关于x 的不等式20x mx n ++≤的解集为A ,所以3,2m n =-=,则()232f x x x =-+;【小问2详解】由(1)知:关于x 的不等式()()2322f x x λλ+>-+即为:()2232322x x x λλ-++>-+,即为()222330x x λλλ+-+->,即为()()30x x λλ++->,解得:3x λ>-或x λ<-,所以不等式的解集为:{|x x λ<-或}3x λ>-.16.若函数()y f x =对任意实数x ,y 都有()()()f xy f x f y =,则称其为“保积函数”.现有一“保积函数”()f x 满足(1)1f -=-,且当01x <<时,()(0,1)f x ∈.(1)判断“保积函数”()f x 的奇偶性;(2)若“保积函数”()f x 在区间(0,)+∞上总有()0f x >成立,试证明()f x 在区间(0,)+∞上单调递增;(3)在(2)成立的条件下,若(2)2f =,求()211log sin 2f x +≤,[0,2π]x ∈的解集.【答案】(1)()f x 为奇函数(2)证明见解析(3)π3π0,,π44⎛⎤⎡⎫⎪⎥⎢⎝⎦⎣⎭【解析】【分析】(1)赋值,结合(1)1f -=-,进而得到()f x 为奇函数;(2)()f x 在(0,)+∞上单调递增,利用定义法得到函数的单调性;(3)赋值法得到1122f ⎛⎫=⎪⎝⎭,结合函数单调性得到211log sin 2x +≤,[0,2π]x ∈,数形结合,结合定义域,得到不等式,求出解集.【小问1详解】()f x 为奇函数,理由如下:根据题意,令1y =-,得()()(1)f x f x f -=-,因为(1)1f -=-,所以()()f x f x -=-,故结合定义域可知,()f x 为奇函数.【小问2详解】证明:任取1x ∀,2(0,)x ∈+∞,且12x x >,则2101x x <<,因此()()()()()2212111111x x f x f x f x f x f x f x f x x ⎛⎫⎛⎫-=-⋅=- ⎪ ⎪⎝⎭⎝⎭()2111x f x f x ⎛⎫⎛⎫=-⎪ ⎪ ⎪⎝⎭⎝⎭,因为2101x x <<,且当01x <<时,()(0,1)f x ∈,所以2110x f x ⎛⎫-> ⎪⎝⎭,因为(0,)∀∈+∞x ,()0f x >恒成立,所以()10f x >,所以()()()2121110x f x f x f x f x ⎛⎫⎛⎫-=-> ⎪ ⎪⎪⎝⎭⎝⎭,即()()12f x f x >,又因为120x x >>,所以()f x 在(0,)+∞上单调递增;【小问3详解】(1)1f -=-Q ,又()f x 为奇函数,(1)(1)1f f ∴=--=,()()()f xy f x f y = ,112(2)22f f f⎛⎫⎛⎫∴⨯= ⎪ ⎪⎝⎭⎝⎭,(2)2f = ,1122f ⎛⎫∴= ⎪⎝⎭,故原不等式等价于()211log sin 2f x f ⎛⎫+≤⎪⎝⎭,[0,2π]x ∈,()f x 在(0,)+∞上单调递增且(0,)∀∈+∞x ,()0f x >恒成立,又()f x 为奇函数,()f x ∴在上单调递增,故211log sin 2x +≤,[0,2π]x ∈,则221log sin log 22x ≤-=,[0,2π]x ∈,∴sin 0sin 2x x >⎧⎪⎨≤⎪⎩,解得π04x <≤或3ππ4x ≤<,综上,()211log sin 2f x +≤,[0,2π]x ∈的解集为π3π0,,π44⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭.17.已知函数())f x x =ω+ϕ(0ω>,ππ22ϕ-≤≤)的图象关于直线π3x =对称,且图象上相邻两个最高点的距离为π.(1)求ω和ϕ的值;(2)当π0,2⎡⎤∈⎢⎥⎣⎦x 时,求函数()y f x =的最大值和最小值;(3)设()()(0)g x f cx c =>,若()g x 图象的任意一条对称轴与x 轴的交点的横坐标不属于区间(π,2π),求c 的取值范围.【答案】(1)2ω=,π6ϕ=-(22-(3)1150,,6312⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦【解析】【分析】(1)根据最小正周期求出ω,再根据对称轴求出ϕ;(2)由(1)可得()f x 解析式,再由x 的取值范围求出π26x -的范围,最后由正弦函数的性质计算可得;(3)首先得到()g x 的解析式,由12ππ22c⨯≥求出c 的大致范围,再求出()g x 图象的某一条对称轴与x 轴的交点的横坐标属于区间(π,2π)时c 的取值范围,即可得解.【小问1详解】因为()f x 的图象上相邻两个最高点的距离为π,所以()f x 的最小正周期πT =,所以2π2Tω==,又因为()f x 的图象关于直线π3x =对称,所以232ππkπϕ⨯+=+,k ∈Z ,所以ππ6k ϕ=-,k ∈Z ,又ππ22ϕ-≤≤,所以π6ϕ=-,综上可得2ω=,π6ϕ=-.【小问2详解】由(1)知π()26f x x ⎛⎫=- ⎪⎝⎭,当π0,2⎡⎤∈⎢⎥⎣⎦x 时,ππ5π2666x -≤-≤,所以当ππ262x -=(即π3x =)时,max ()f x =当ππ266x -=-(即0x =)时,min 3()2f x =-,所以函数()y f x =在π0,2⎡⎤∈⎢⎣⎦x 2-.【小问3详解】由题意π()()26g x f cx cx ⎛⎫==- ⎪⎝⎭()0c >,()g x 图象的任意一条对称轴与x 轴的交点的横坐标都不属于区间(π,2π),12ππ22c ∴⨯≥且0c >,解得102c <≤,令ππ2π62cx k -=+,k ∈Z ,解得ππ23k x c c=+,k ∈Z ,若()g x 图象的某一条对称轴与x 轴的交点的横坐标属于区间(π,2π),则πππ2π23k c c <+<,解得114623k k c +<<+,当1k =-时,112c -<且16c <-(矛盾),故解集为空集;当0k =时,1163c <<;当1k =时,55126c <<,故c 的取值范围为1150,,6312⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦.18.已知函数2()43f x x x =-+,()(4)3g x a x =+-,a ∈R .(1)若[1,0]x ∃∈-,使得方程()20m f x -=有解,求实数m 的取值范围;(2)若对任意的1[1,5]x ∈-,总存在2[1,5]x ∈-,使得()()12f x g x ≤,求实数a 的取值范围;(3)设()()()h x f x g x =+,记()M a 为函数()h x 在[0,1]上的最大值,求()M a 的最小值.【答案】(1)[]2log 3,3(2){15a a ≤-或9}5a ≥-(3)3-【解析】【分析】(1)根据二次函数的单调性,结合存在性的定义、对数的单调性进行求解即可;(2)根据存在性和任意性的定义,结合函数的对称性分类讨论进行求解即可;(3)根据函数的对称性、单调性分类讨论进行求解即可.【小问1详解】[1,0]x ∃∈-,2()20243m m f x x x -=⇔=-+,因为函数2()43f x x x =-+的图象的对称轴是直线2x =,所以()y f x =在[1,0]-上为减函数,max ()(1)8f x f =-=,min ()(0)3f x f ==,故2[3,8]m ∈,所以m 的取值范围为[]2log 3,3.【小问2详解】对任意的1[1,5]x ∈-,总存在2[1,5]x ∈-,使得()()12f x g x ≤,∴即在区间[1,5]-上,()()12max max f x g x ≤,函数2()43f x x x =-+图象的对称轴是直线2x =,又[1,5]x ∈-,∴当5x =时,函数()f x 有最大值为2(5)54538f =-⨯+=,①当4a =-时,()3g x =-,不符合题意,舍去;②当4a >-时,()g x 在[1,5]-上的值域为[7,517]a a --+,5178a ∴+≥,得95a ≥-;③当4a <-时,()g x 在[1,5]-上的值域为[517,7]a a +--,78a ∴--≥,得15a ≤-,综上,a 的取值范围为{15a a ≤-或9}5a ≥-;【小问3详解】函数2()h x x ax =+图象的对称轴为2a x =-,①当2a ≤-或0a ≥时,()h x 在[0,1]上单调递增,则()(1)|1|M a f a ==+;②当20a -<<时,2()max ,(1)max ,124a a M a ff a ⎧⎫⎧⎫⎛⎫=-=+⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭,解不等式组22014a a a -<<⎧⎪⎨>+⎪⎩,得(221a -<<-,故当20a -<<,()((2,22141,210a a M a a a ⎧-<<-⎪=⎨⎪+-≤<⎩,综上,()((2,22141,221a a M a a a a ⎧-<<-⎪=⎨⎪+≤-≥-⎩或,()M a ∴在((),21∞--上单调递减,在()21,∞⎡+⎣上单调递增,(21a ∴=-时,()M a取最小值为(2113+=-.【点睛】关键点睛:本题的关键是根据函数的对称轴与所给区间的相位位置进行分类讨论.19.已知()()()sin22sin cos 8f m θθθθ=---+.(1)当1m =时,求π12f ⎛⎫⎪⎝⎭的值;(2)若()fθ的最小值为7-,求实数m 的值;(3)对任意的π,π4θ⎛⎫∈⎪⎝⎭,不等式()816sin cos m f θθθ->-恒成立.求m 的取值范围.【答案】(1)172+(2)5m =或1m =-(3)722,6⎛⎫++∞ ⎪ ⎪⎝⎭【解析】【分析】(1)利用辅助角公式,化简函数,再代入求π12f ⎛⎫⎪⎝⎭;(2)首先设sin cos t θθ=-,利用三角恒等变换,将函数表示成关于t 的二次函数,讨论对称轴,结合定义域求函数的最小值,列式求解m ;(3)根据(2)的结果,不等式参变分离为128m t t t->+-,在(t ∈恒成立,转化为判断函数的单调性,求函数的最值,即可求解m 的取值范围.【小问1详解】()()())πsin22sin cos 8sin22sin 84f m m θθθθθθ⎛⎫=---+=--+ ⎪⎝⎭,当1m =时,ππππ1ππsin 881261242124f ⎛⎫⎛⎫⎛⎫=-+=--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1178262π+=+=;【小问2详解】设πsin cos 4t θθθ⎛⎫=-=- ⎪⎝⎭,则t ⎡∈⎣,22sin cos 1=-+t θθ,()()()229,f Q t t m t t θ⎡==---+∈⎣,其对称轴为12m t =-+,当102m-+≥,即2m ≥时,()f θ的最小值为(77Q =+=-,则5m =;当102m-+<,即2m <时,()f θ的最小值为77Q =-=-1m =-;综上,5m =或1m =-;【小问3详解】由()816sin cos m f θθθ->-,对所有π,π4θ⎛⎫∈ ⎪⎝⎭都成立.设πsin cos 4t θθθ⎛⎫=-=- ⎪⎝⎭,则(t ∈,()281629m t m t t-∴>---+,(t ∈恒成立,280t -> ,128m t t t∴-+->,在(t ∈恒成立,当(t ∈时,8t t -递减,则18t t t+-在(递增,t ∴=时18t t t +-取得最大值726得2m ->2∴>m 所以存在符合条件的实数m ,且m的取值范围为2,6∞⎛⎫++ ⎪ ⎪⎝⎭.【点睛】关键点点睛:本题的关键利用公式()22sin cos 1sin cos θθθθ=--,从而利用换元法转化为关于t 的函数问题.。
高一(上)第一次月考数学试卷(附答案解析)
高一(上)第一次月考数学试卷(附答案解析)班级:___________姓名:___________考号:____________一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 已知集合A={2,3,4,5,6},B={x|x2−8x+12≥0},则A∩∁RB=()A. {2,3,4,5}B. {2,3,4,5,6}C. {3,4,5}D. {3,4,5,6}2. 命题“∀x>0,都有x2−x≤0”的否定是()A. ∃x>0,使得x2−x≤0B. ∃x>0,使得x2−x>0C. ∀x>0,都有x2−x>0D. ∀x≤0,都有x2−x>03. 已知a是实数,则“a<−1”是“a+1a<−2”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4. 下列各组函数中,表示同一个函数的是()A. y=1,y=xxB. y=x,y=3x3C. y=x−1×x+1,y=x2−1D. y=|x|,y=(x)25. 若集合A={1,2,3,4,5},集合B={x|(x+2)(x−3)<0},则图中阴影部分表示()A. {3,4,5}B. {1,2,3}C. {1,4,5}D. {1,2}6. 已知不等式ax2−5x+b>0的解集为{x|−3<x<2},则不等式bx2−5x+a>0的解集为()A. {x|−13<x<12}B. {x|x<−13或x>12}C. {x|−3<x<2}D. {x|x<−3或x>2}7. 函数f(x)=ex+ln(2x+1)的定义域为()A. (−∞,+∞)B. (0,+∞)C. (−12,+∞)D. (12,+∞)8. 设函数f(x)=x+2,g(x)=x2−x−1.用M(x)表示f(x),g(x)中的较大者,记为M(x)=max{f(x),g(x)},则M(x)的最小值是()A. 1B. 3C. 0D. −54二、多选题(本大题共4小题,共20.0分。
2024-2025学年河北省唐山市高一上学期10月月考数学质量检测试题(含解析)
2024-2025学年河北省唐山市高一上学期10月月考数学质量检测试题考生注意:1.本试卷分第I 卷和第Ⅱ卷两部分,共120分.考试时间90分钟.2.将第I 卷答案用2B 铅笔涂在答题卡上,第Ⅱ卷用蓝黑钢笔或圆珠笔答在答题卡上.第I 卷(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1. 集合,,则( ){1,4,5}A ={21,Z}B xx n n ==+∈∣A B = A. B. C. D. {1,5}{1,4,5}{4}{1}2. 命题“”的否定是2,220x x x ∃∈++≤R A.B.2,220x x x ∀∈++>R 2,220x R x x ∀∈++≤C.D.2,220x x x ∃∈++>R 2,220x x x ∃∈++≥R 3. 使 “”成立的必要不充分条件是()2101x x +≥-A .B. 112x -≤≤112x -≤<C.或 D.或12x ≤-1x ≥12x ≤-1x >4. 下列说法正确的为()A.12x x+≥B. 函数4y =C. 若则最大值为10,x >(2)x x -D. 已知时,,当且仅当即时,取得3a >43+≥-a a 43=-a a 4a =43+-a a 最小值85. 已知,则下列说法正确的是( )()0,,a b c a b c >>->∈R A. B. ac bc>c c a b <C.D. a c ab c b +>+a b b c a c<--6. 已知实数m ,n ,p 满足,且,则下列说法正确的是244m n m p ++=+210m n ++=()A.B.C. D. n p m≥>p n m≥>n p m >>p n m>>7. 设,集合.则“”是“”的( ),R a b ∈{}{}22,1,,1A a a B b b =+=+A B =a b =A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件8. 已知不等式对满足的所有正实数a ,b 都成立,则22211612xx a b +≥+-()410a b a +-=正数x 的最小值为()A. B. 1C. D. 21232二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 如图,全集为U,集合A ,B 是U 的两个子集,则阴影部分可表示为()A. B. ()()U A B A B ⋂⋃⋃ð()()U A B A B ⋃⋂⋂ðC .D.()()()U U A B A B ⎡⎤⋂⋃⋂⎣⎦ðð()()()U U A B A B ⎡⎤⋃⋂⋃⎣⎦ðð10. 对于给定的实数,关于实数的一元二次不等式的解集可能为(a x ()()10a x a x -+>)A. B.∅{}1-C. D. ,或{1}xa x <<-∣{1xx <-∣}x a >11. 若关于的不等式的解集为,则x ()2020ax bx c a ≤++≤>{x |−1≤x ≤3}的值可以是( )32a b c ++A. B. C. 2 D. 11232第II 卷三、填空题:本题共3小题,每小题5分,共15分.12. 已知集合或,,若B A ,则实数a 的取值范围是{|1A x x =≥2}x £-{}|B x x a =≥________.13. 若关于的方程至少有一个负实根,则实数的取值范围是x 2220mx x ++=m ________.14.对于任意正实数x 、y成立,则k 的范围为______.≤四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知,或.{}3A x a x a =≤≤-+∣{1B xx =<-∣5}x >(1)若,求的取值范围;A B =∅ a (2)若,求的取值范围.A B =R a 16. 已知正数满足.,a b 2a b ab +=(1)求的最小值;ab (2)求的最小值;a b +(3)求的最小值.2821a ba b +--17. 设函数.()21f x mx mx =--(1)若命题:是假命题,求的取值范围;()R,0x f x ∃∈>m (2)若存在成立,求实数的取值范围.()()()24,0,13x f x m x ∈-≥++m18. 某蛋糕店推出两款新品蛋糕,分别为薄脆百香果蛋糕和朱古力蜂果蛋糕,已知薄脆百香果蛋糕单价为x 元,朱古力蜂果蛋糕单位为y 元,现有两种购买方案:方案一:薄脆百香果蛋糕购买数量为a 个,朱古力蜂果蛋糕购买数量为b 个,花费记为;1S 方案二:薄脆百香果蛋糕购买数量为b 个,朱古力蜂果蛋糕购买数量为a 个,花费记为.2S (其中)4,4y x b a >>>>(1)试问哪种购买方案花费更少?请说明理由;(2)若a ,b ,x ,y 同时满足关系,求这两种购买方案花4224y x b a a =-=+-费的差值S 最小值(注:差值花费较大值-花费较小值).S =19. 已知集合,,,若,,或{}12,,,n A x x x = *N n ∈3n ≥x A ∈y A Îx y A +∈,则称集合A 具有“包容”性.x y A -∈(1)判断集合和集合是否具有“包容”性;{}1,1,2,3-{}1,0,1,2-(2)若集合具有“包容”性,求的值;{}1,,B a b =22a b +(3)若集合C 具有“包容”性,且集合C 的子集有64个,,试确定集合C .1C ∈2024-2025学年河北省唐山市高一上学期10月月考数学质量检测试题考生注意:1.本试卷分第I 卷和第Ⅱ卷两部分,共120分.考试时间90分钟.2.将第I 卷答案用2B 铅笔涂在答题卡上,第Ⅱ卷用蓝黑钢笔或圆珠笔答在答题卡上.第I 卷(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1. 集合,,则( ){1,4,5}A ={21,Z}B xx n n ==+∈∣A B = A. B. C. D. {1,5}{1,4,5}{4}{1}【正确答案】A【分析】根据集合的含义以及交集的概念即可得到答案.B 【详解】集合,其表示所有的奇数,{21,Z}B xx n n ==+∈∣则.{1,5}A B = 故选:A.2. 命题“”的否定是2,220x x x ∃∈++≤R A.B.2,220x x x ∀∈++>R 2,220x R x x ∀∈++≤C. D.2,220x x x ∃∈++>R 2,220x x x ∃∈++≥R 【正确答案】A【分析】根据特称命题的否定是全称命题的知识,选出正确选项.【详解】特称命题的否定是全称命题,注意到要否定结论,故A 选项正确.故选A.本小题主要考查全称命题与特称命题的否定,属于基础题.3. 使 “”成立的必要不充分条件是()2101x x +≥-A. B. 112x -≤≤112x -≤<C. 或 D.或12x ≤-1x ≥12x ≤-1x >【正确答案】A【分析】解不等式,求得,根据必要不充分条件的定义即可得出结果.2101x x +≥-112x -≤<【详解】不等式可化为解得2101x x +≥-(1)(21)0,10,x x x -+≤⎧⎨-≠⎩11.2x -≤<则成立,反之不可以.112x -≤<⇒112x -≤≤所以是成立的必要不充分条件.112x -≤≤2101x x +≥-故选:A4. 下列说法正确的为()A.12x x+≥B. 函数4y =C. 若则最大值为10,x >(2)x x -D. 已知时,,当且仅当即时,取得3a >43+≥-a a 43=-a a 4a =43+-a a最小值8【正确答案】C【分析】利用基本不等式及其对勾函数的性质分别判断即可.【详解】对于选项,只有当时,才满足基本不等式的使用条件,则不正确;A 0x >A 对于选项,,By ===+(t t =≥即在上单调递增,则最小值为,(22y t t t =+≥)+∞min y ==则不正确;B 对于选项,,则正确;C ()()22(2)211111x x x x x -=--++=--+≤C 对于选项,当时,,当且仅当D 3a >44333733a a a a +=-++≥=--时,即,等号成立,则不正确.433a a -=-5a =D 故选.C 5. 已知,则下列说法正确的是( )()0,,a b c a b c >>->∈R A. B.ac bc>c c a b <C.D. a c ab c b +>+a bb c a c<--【正确答案】C【分析】对于AB :根据不等式性质分析判断;对于CD :利用作差法分析判断.【详解】对于选项A :因为,则,所以,故A 错()0,,a b c a b c >>->∈R 0c <ac bc <误;对于选项B :因为,且,()0,,a b c a b c >>->∈R 0c <可得,所以,故B 错误;11a b <c c a b >对于选项C :因为,()()()b a ca c a ab bc ab ac b c b b c b b c b-++---==+++且,,则,()0,,a b c a b c >>->∈R 0c <0,0b a b c -<+>可得,所以,故C 正确;()()0b a ca c abc b b c b-+-=>++a c ab c b +>+对于选项D :因为,()()()()()()22a b a b c a b a ac b bc b c a c b c a c b c a c -+---+-==------且,,则,()0,,a b c a b c >>->∈R 0c <0,0,0,0a b a b c b c a c ->+->->->可得,即,故D 错误;()()()()0a b a b c a bb c a c b c a c -+--=>----a bb c a c >--故选:C.6. 已知实数m ,n ,p 满足,且,则下列说法正确的是244m n m p ++=+210m n ++=()A.B.C. D. n p m≥>p n m≥>n p m >>p n m>>【正确答案】D【分析】根据题意,将所给等式变形,得到,推导出,然后利用作差法2(2)0p n m -=->p n >比较大小,结合二次函数的性质证出,从而得出正确结论.n m >【详解】由,得,210m n ++=211m n =--≤-因为,244m n m p ++=+移项得,244m m p n -+=-所以,2(2)0p n m -=->可得,p n >由,得,210m n ++=21m n =--可得,()2221311024n m n n n n n ⎛⎫-=---=++=++> ⎪⎝⎭可得.n m >综上所述,不等式成立,p n m >>故选:D.7. 设,集合.则“”是“”的( ),R a b ∈{}{}22,1,,1A a a B b b =+=+A B =a b =A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【正确答案】C【分析】利用集合相等的定义得到关于的方程组,推得充分性成立;再简单证得必要性,a b 也成立即可得解.【详解】因为,{}{}22,1,,1A a a B b b =+=+当时,则有,或,A B =2211a ba b =⎧⎨+=+⎩2211a b a b ⎧=+⎨+=⎩若,显然解得;2211a ba b =⎧⎨+=+⎩a b =若,则,整理得,2211a b a b⎧=+⎨+=⎩()2211b b ++=()()22012b b b b -+++=因为,,22131024b b b ⎛⎫+=-+ ⎝⎭->⎪22172024b b b ⎛⎫+=++ ⎝⎭+>⎪所以无解;()()22012bb b b -+++=综上,,即充分性成立;a b =当时,显然,即必要性成立;a b =A B =所以“”是“”的充分必要条件.A B =a b =故选:C.8. 已知不等式对满足的所有正实数a ,b 都成立,则22211612x x a b +≥+-()410a b a +-=正数x 的最小值为()A. B. 1C. D. 21232【正确答案】B【分析】先利用基本不等式证得(此公式也可背诵下来),从而由题()()2222m n m n +≥+设条件证得,结合题意得到,利用二次不等式的解法解之即可得2211612a b +≥21212xx ≥+-到正数的最小值.x 【详解】因为()()()22222222222m n m n m n m n mn +-+=+-++,当且仅当时,等号成立,()22220m n mn m n =+-=-≥m n =所以,()()2222m n m n +≥+因为为正实数,所以由得,即,,a b ()410a b a +-=4a b ab +=411b a +=所以,222221161441221a b a b b a ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+≥+=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦当且仅当,且,即时,等号成立,41b a =4a b ab +=2,8a b ==所以,即,2211621a b ⎛⎫+≥ ⎪⎝⎭2211612a b +≥因为对满足的所有正实数a ,b 都成立,22211612x x a b +≥+-()410a b a +-=所以,即,整理得,2n 2mi 211612x x a b ⎛⎫ ⎪⎝⎭+≥+-21212x x ≥+-2021x x --≥解得或,由为正数得,1x ≥12x ≤-x 1x ≥所以正数的最小值为.x 1故选:B.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 如图,全集为U ,集合A ,B 是U 的两个子集,则阴影部分可表示为()A. B. ()()U A B A B ⋂⋃⋃ð()()U A B A B ⋃⋂⋂ðC.D.()()()U U A B A B ⎡⎤⋂⋃⋂⎣⎦ðð()()()U U A B A B ⎡⎤⋃⋂⋃⎣⎦ðð【正确答案】AC【分析】由已知韦恩图分析出了阴影部分所表示的集合的元素满足的条件,进而根据集合运算的定义可得答案.【详解】根据图中阴影可知,符合题意,()()U A B A B ð又,∴也符合题意.()()()U U U A B A B ⋃=⋂ððð()A B ()()U U A B ⎡⎤⎣⎦ ðð故选:AC10. 对于给定的实数,关于实数的一元二次不等式的解集可能为(a x ()()10a x a x -+>)A .B.∅{}1-C. D. ,或{1}xa x <<-∣{1xx <-∣}x a >【正确答案】ACD【分析】根据二次方程根的大小分类讨论,即可求解二次不等式的解集.【详解】对于一元二次不等式,则;()()10a x a x -+>0a ≠当时,函数开口向上,与轴的交点为,0a >()()1y a x a x =-+x ,1a -故不等式的解集为,故D 正确;()(),1,x a ∈-∞-+∞ 当时,函数开口向下,若,不等式解集为,故A 正确;0a <()()1y a x a x =-+1a =-∅若,不等式的解集为,10a -<<()1,a -若,不等式的解集为,故C 正确.1a <-(),1a -故选:ACD11. 若关于的不等式的解集为,则x ()2020ax bx c a ≤++≤>{x |−1≤x ≤3}的值可以是( )32a b c ++A. B. C. 2 D. 11232【正确答案】BC【分析】先根据一元二次不等式的解集得到对称轴,然后根据端点得到两个等式和一个不等式,求出的取值范围,最后都表示成的形式即可.a 32a b c ++a 【详解】因为不等式的解集为,()2020ax bx c a ≤++≤>{x |−1≤x ≤3}所以二次函数的对称轴为直线,()2f x ax bx c=++1x =且需满足,即,解得,()()()123210f f f ⎧-=⎪=⎨⎪≥⎩29320a b c a b c a b c -+=⎧⎪++=⎨⎪++≥⎩232b ac a =-⎧⎨=-+⎩所以,所以,123202a b c a a a a ++=--+≥⇒≤10,2a ⎛⎤∈ ⎥⎝⎦所以,故的值可以是和,332326445,42a b c a a a a ⎡⎫++=--+=-∈⎪⎢⎣⎭32a b c ++322故选:BC关键点睛:一元二次不等式的解决关键是转化为二次函数问题,求出对称轴和端点的值,继而用同一个变量来表示求解.第II 卷三、填空题:本题共3小题,每小题5分,共15分.12. 已知集合或,,若B A ,则实数a 的取值范围是{|1A x x =≥2}x £-{}|B x x a =≥________.【正确答案】[)1,+∞【分析】由为的真子集,列出关于的不等式,求出不等式的解集即可.B A a 【详解】因为B A ,所以.1a ≥故[)1,+∞13. 若关于的方程至少有一个负实根,则实数的取值范围是x 2220mx x ++=m ________.【正确答案】1,2⎛⎤-∞⎥⎝⎦【分析】对和分类讨论求解,结合一元二次方程的根与系数的关系即可求解.0m =0m ≠【详解】当时,方程为,有一个负根,0m =220x +=当时,为一元二次方程,0m ≠2220mx x ++=关于的方程至少有一个负根,设根为,,x 2220mx x ++=1x 2x 当时,即时,方程为,解得,满足题意,480m ∆=-=12m =212202x x ++=2x =-当,即时,且时,480m ∆=->12m <0m ≠若有一个负根,则,解得,1220=<x x m 0m <若有两个负根,则,解得,12122020x x m x x m ⎧+=-<⎪⎪⎨⎪=>⎪⎩102m <<综上所述,则实数的取值范围是,,m (-∞1]2故,.(-∞1214.对于任意正实数x 、y 成立,则k 的范围为______.≤【正确答案】⎫+∞⎪⎪⎭≤2k ≥最大值即可.【详解】易知,,k>k≤.2k ∴≥令,分式上下同除y ,0t =>则,则即可,222221141121221t t t k t t +++⎛⎫≥=+ ⎪++⎝⎭22max 1411221t k t +⎛⎫≥+ ⎪+⎝⎭令,则.411u t =+>14u t -=可转化为:,24121t t ++()28829292u s u u u u u ==≤-++-于是,.()21411311222122t t +⎛⎫+≤+= ⎪+⎝⎭∴,即时,不等式恒成立(当时等号成立).232k ≥k ≥40x y =>故⎫+∞⎪⎪⎭四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知,或.{}3A x a x a =≤≤-+∣{1B xx =<-∣5}x >(1)若,求的取值范围;A B =∅ a (2)若,求的取值范围.A B =R a 【正确答案】(1)[)1,-+∞(2)(],2-∞-【分析】(1)分和两种情况讨论求解即可;A =∅A ≠∅(2)由题意得,从而可求出的取值范围.351a a -+≥⎧⎨≤-⎩a 【小问1详解】①当时,,∴,∴.A =∅AB =∅ 3a a >-+32a >②当时,要使,必须满足,解得.A ≠∅A B =∅ 32351a a a ⎧≤⎪⎪-+≤⎨⎪≥-⎪⎩312a -≤≤综上所述,的取值范围是.a [)1,-+∞【小问2详解】∵,,或,A B =R {}3A x a x a =≤≤-+∣{1B xx =<-∣5}x >∴,解得,351a a -+≥⎧⎨≤-⎩2a ≤-故所求的取值范围为.a (],2-∞-16. 已知正数满足.,ab 2a b ab +=(1)求的最小值;ab (2)求的最小值;a b +(3)求的最小值.2821a ba b +--【正确答案】(1)8 (2)3+(3)18【分析】(1)根据题意直接利用基本不等式即可得最值;(2)由题意可得,利用乘“1”法结合基本不等式运算求解;211a b +=(3)由题意可得,化简整理结合基本不等式运算求解.()()212a b --=【小问1详解】因为,且,0,0a b >>2a b ab +=则.2ab a b =+≥8ab ≥≥当且仅当,即时等号成立,24a b ==4,2a b ==所以的最小值为8.ab 【小问2详解】因为,且,则,0,0a b >>2a bab +=211a b +=可得,()2122133b a a b a b a b a b ⎛⎫+=++=+++≥+=+ ⎪⎝⎭当且仅当,即,即时等号成立,2b aa b =a=21a b =+=+所以的最小值为.a b +3+【小问3详解】因为,且,所以,0,0a b >>2a b ab +=()()212a b --=可得,()()2248182848101018212121a b a b a b a b a b -+-++=+=++≥+=------当且仅当,即时等号成立,4821a b =--3a b ==所以的最小值为18.2821a ba b +--17. 设函数.()21f x mx mx =--(1)若命题:是假命题,求的取值范围;()R,0x f x ∃∈>m (2)若存在成立,求实数的取值范围.()()()24,0,13x f x m x ∈-≥++m 【正确答案】(1)[]4,0-(2)4≥m 【分析】(1)依题意可得是真命题,分和两种情况讨论;()R,0x f x ∀∈≤0m =0m ≠(2)依题意参变分离可得存在使得成立,则只需,()4,0x ∈-4m x x ≥--min 4m x x ⎛⎫≥-- ⎪⎝⎭,利用基本不等式求出即可得解.()4,0x ∈-min 4x x ⎛⎫-- ⎪⎝⎭【小问1详解】若命题:是假命题,则是真命题,()R,0x f x ∃∈>()R,0x f x ∀∈≤即在上恒成立,210mxmx -≤-R 当时,,符合题意;0m =10-<当时,需满足,解得;0m ≠20Δ40m m m <⎧⎨=+≤⎩40m -≤<综上所述,的取值范围为.m []4,0-【小问2详解】若存在成立,()()()24,0,13x f x m x ∈-≥++即存在使得成立,故只需,,()4,0x ∈-4m x x ≥--min 4m x x ⎛⎫≥-- ⎪⎝⎭()4,0x ∈-因为,所以,则,()4,0x ∈-()0,4x -∈()444x x x x--=-+≥=-当且仅当,即时取等号,4x x -=-2x =-所以,所以.min44x x ⎛⎫- ⎪⎝⎭=-4≥m 18. 某蛋糕店推出两款新品蛋糕,分别为薄脆百香果蛋糕和朱古力蜂果蛋糕,已知薄脆百香果蛋糕单价为x 元,朱古力蜂果蛋糕单位为y 元,现有两种购买方案:方案一:薄脆百香果蛋糕购买数量为a 个,朱古力蜂果蛋糕购买数量为b 个,花费记为;1S 方案二:薄脆百香果蛋糕购买数量为b 个,朱古力蜂果蛋糕购买数量为a 个,花费记为.2S (其中)4,4y x b a >>>>(1)试问哪种购买方案花费更少?请说明理由;(2)若a ,b ,x ,y 同时满足关系,求这两种购买方案花4224y x b a a =-=+-费的差值S 最小值(注:差值花费较大值-花费较小值).S =【正确答案】(1)采用方案二;理由见解析 (2)24【分析】(1)列出两种方案的总费用的表达式,作差比较,即可求解;(2)根据题意,得到,利用换元法和基本不等式,即可214((4S S x a a -=-⋅+-求解.【小问1详解】解:方案一的总费用为(元);1S ax by =+方案二的总费用为(元),2S bx ay =+由,21()()()()()S S bx ay ax by a y x b x y y x a b -=+-+=-+-=--因为,可得,所以,4,4y x b a >>>>0,0y x a b ->-<()()0y x a b --<即,所以,所以采用方案二,花费更少.210S S -<21S S <【小问2详解】解:由(1)可知,()()(1244S S y x b a x a a ⎛⎫-=--=-⋅+ ⎪-⎝⎭令,t =24x t =+所以,当时,即时,等号成立,2224(1)33x t t t -=-+=-+≥1t =5x =又因为,可得,4a >40a ->所以,44(4)44844a a a a +=-++≥=--当且仅当时,即时,等号成立,444a a -=-6,14a b ==所以差的最小值为,当且仅当时,等号成立,S 2483=⨯5,8,6,14x y a b ====所以两种方案花费的差值最小为24元.S 19. 已知集合,,,若,,或{}12,,,n A x x x = *N n ∈3n ≥x A ∈y A Îx y A +∈,则称集合A 具有“包容”性.x y A -∈(1)判断集合和集合是否具有“包容”性;{}1,1,2,3-{}1,0,1,2-(2)若集合具有“包容”性,求的值;{}1,,B a b =22a b +(3)若集合C 具有“包容”性,且集合C 的子集有64个,,试确定集合C .1C ∈【正确答案】(1)集合不具有“包容”性,集合具有“包容”性{}1,1,2,3-{}1,0,1,2-(2)1(3),,,{}2,1,0,1,2,3--1131,,0,,1,222⎧⎫--⎨⎬⎩⎭2112,,0,,,13333⎧⎫--⎨⎬⎩⎭或.{}3,2,1,0,1,2---311,1,,0,,1222⎧⎫---⎨⎬⎩⎭【分析】(1)根据“包容”性的定义,逐一判断即可;(2)根据“包容”性的定义,能得到,分类讨论,得出a 和b 的值,即可得出结{}01,,a b ∈果;(3)由集合C 的子集有64个,推出集合C 中共有6个元素,且,再由条件,推0C ∈1C ∈出集合中有正数也有负数,将这几个元素设出来,再通过对正数负数个数的讨论,即可求出结果.【小问1详解】(Ⅰ)集合中的,,{}1,1,2,3-{}3361,1,2,3+=∉-{}3301,1,2,3-=∉-所以集合不具有“包容”性.{}1,1,2,3-集合中的任何两个相同或不同的元素,相加或相减,得到的两数中至少有一个属{}1,0,1,2-于集合,所以集合具有“包容”性.{}1,0,1,2-{}1,0,1,2-【小问2详解】(Ⅱ)已知集合具有“包容”性,记,则,{}1,,B a b ={}max 1,,m a b =1m ≥易得,从而必有,{}21,,m a b ∉{}01,,a b ∈不妨令,则,且,0a ={}1,0,B b =0b ≠1b ≠则,{}{}1,11,0,b b b +-⋂≠∅且,{}{}1,11,0,b b b +-⋂≠∅①当时,若,得,此时具有包容性;{}11,0,b b +∈10b +=1b =-{}1,0,1B =-若,得,舍去;若,无解;11b +=0b =1b b +=②当时,则,由且,可知b 无解,{}11,0,b b +∉{}{}1,11,0,b b b --⊆0b ≠1b ≠故.{}1,0,1B =-综上,.221a b +=【小问3详解】(Ⅲ)因为集合C 的子集有64个,所以集合C 中共有6个元素,且,又,且C 0C ∈1C ∈中既有正数也有负数,不妨设,{}1112,,,,0,,,,k k l C b b b a a a ---- 其中,,,5k l +=10l a a <<< 10k b b <<<L 根据题意,1111{,,}{,,,}l l l k k a a a a b b b ----⊆---L L且,1112112{,,,}{,,,}k k l b b b b b b a a a ----⊆L L 从而或.()(),2,3k l =()3,2①当时,,()(),3,2k l ={}{}313212,,b b b b a a --=并且由,得,由,得,313212{,}{,}b b b b b b -+-+=--312b b b =+2112{,}a a a a -∈212a a =由上可得,并且,2131322111(,)(,)(,)(2,)b b b b b b a a a a =--==31213b b b a =+=综上可知;{}111113,2,,0,,2C a a a a a =---②当时,同理可得.()(),2,3k l =11111{2,,0,,2,3}C a a a a a =--综上,C 中有6个元素,且时,符合条件的集合C 有5个,1C ∈分别是,,,{}2,1,0,1,2,3--1131,,0,,1,222⎧⎫--⎨⎬⎩⎭2112,,0,,,13333⎧⎫--⎨⎬⎩⎭或.{}3,2,1,0,1,2---311,1,,0,,1222⎧⎫---⎨⎬⎩⎭关键点点睛:本题是新定义题型,对于此类问题,要先弄清楚新定义的性质,按照其要求,严格“照章办事”,逐条分析验证。
2024-2025学年高一上第一次月考数学试卷附答案解析(9月份)
2024-2025学年高一上第一次月考数学试卷(9月份)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x∈N|1<x<6},B={x|4﹣x>0},则A∩B=()A.{2,3,4}B.{2,3}C.{2}D.{3}2.(5分)下列说法正确的是()A.∅∈{0}B.0⊆N C.D.{﹣1}⊆Z3.(5分)命题“∀x∈(0,1),x3<x2”的否定是()A.∀x∈(0,1),x3>x2B.∀x∉(0,1),x3≥x2C.∃x0∈(0,1),D.∃x0∉(0,1),4.(5分)“a>b”是“a2>b2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(5分)若集合A={x|2mx﹣3>0,m∈R},其中2∈A且1∉A,则实数m的取值范围是()A.B.C.D.6.(5分)满足集合{1,2}⫋M⊆{1,2,3,4,5}的集合M的个数是()A.6B.7C.8D.157.(5分)设集合A={x|1<x≤2},B={x|x<a},若A⊆B,则实数a的取值范围是()A.{a|a<1}B.{a|a≤1}C.{a|a>2}D.{a|a≥2}8.(5分)已知集合A={1,2},B={0,2},若定义集合运算:A*B={z|z=xy,x∈A,y∈B},则集合A*B 的所有元素之和为()A.6B.3C.2D.0二、选择题:本题共3小题,每小题6分,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,有选错的得0分,部分选对的得部分分。
(多选)9.(6分)已知命题p:x2﹣4x+3<0,那么命题p成立的一个充分不必要条件是()A.x≤1B.1<x<2C.x≥3D.2<x<3(多选)10.(6分)集合A={x|ax2﹣x+a=0}只有一个元素,则实数a的取值可以是()A.0B.C.1D.(多选)11.(6分)设S是实数集R的一个非空子集,如果对于任意的a,b∈S(a与b可以相等,也可以不相等),都有a+b∈S且a﹣b∈S,则称S是“和谐集”,则下列命题中为真命题的是()A.存在一个集合S,它既是“和谐集”,又是有限集B.集合{x|x=3k,k∈Z}是“和谐集”C.若S1,S2都是“和谐集”,则S1∩S2≠∅D.对任意两个不同的“和谐集”S1,S2,总有S1∪S2=R三、填空题:本题共3小题,每小题5分,共15分。
2024-2025学年福州市一中高一数学上学期10月考试卷及答案解析
2024-2025学年第一学期福州第一中学第一次月考高一数学(完卷时间:120分钟;满分:150分)一、单项选择题:本题共8小题,每小题5分,共40分.1. 已知全集(](]0,4,2,4U U A B A C B =⋃=⋂=,则集合B =( )A. (],2∞- B. (),2∞- C. (]0,2 D. ()0,2【答案】C【解析】【分析】集合运算可得()=I U U B C A C B ,即可求出结果【详解】(0,4]A B = ,(2,4]=I U A C B 所以()(0,2]==I U U B C A C B 故选:C2. 某城新冠疫情封城前,某商品的市场需求量y 1(万件),市场供应量y 2(万件)与市场价格x (百元/件)分别近似地满足下列关系:150y x =-+,2210y x =-,当12y y =时的需求量称为平衡需求量,解封后,政府为尽快恢复经济,刺激消费,若要使平衡需求量增加6万件,政府对每件商品应给予消费者发放的消费券补贴金额是( )A. 6百元B. 8百元C. 9百元D. 18百元【答案】C【解析】【分析】求出封城前平衡需求量,可计算出解封后的需求量,利用需求量计算价格差距即为补贴金额.【详解】封城前平衡需求量时的市场价格x 为5021020x x x -+=-⇒=,平衡需求量为30,平衡价格为20,解封后若要使平衡需求量增加6万件,则11365014x x =-+⇒=,223621023x x =-⇒=,则补贴金额为23149-=.故选:C.3. 设[]x 表示不超过x 的最大整数,对任意实数x ,下面式子正确的是( )A. []x = |x|B. []xC. []x >-xD. []x > 1x -【答案】D 的【解析】【详解】分析:[]x 表示不超过x 最大整数,表示向下取整,带特殊值逐一排除.详解:设 1.5x =,[]1x =, 1.5x =1.5=,10.5x -=,排除A 、B ,设 1.5x =-,[]2x =-, 1.5x -=,排除C .故选D点睛:比较大小,采用特殊值法是常见方法之一.4. 已知函数2943,0()2log 9,0x x x f x x x ⎧+≤=⎨+->⎩,则函数(())y f f x =的零点所在区间为( )A. (1,0)- B. 73,2⎛⎫ ⎪⎝⎭ C. 7,42⎛⎫ ⎪⎝⎭ D. (4,5)【答案】B【解析】【分析】当0x …时,()43(())43430x f x f f x +=+=+=无解,此时,(())y f f x =无零点;当0x >时,根据()f x 为增函数,且(3)0f =可得函数(())y f f x =的零点为3()2log 12x g x x =+-的零点,根据零点存在性定理可得结果.【详解】当0x …时,()430x f x =+>,()43(())43430x f x f f x +=+=+=无解,此时,(())y f f x =无零点;当0x >时,293()2log 92log 9x x f x x x =+-=+-为增函数,且(3)0f =.令(())0(3)f f x f ==,得3()2log 93x f x x =+-=,即32log 120x x +-=,令3()2log 12x g x x =+-,则函数(())y f f x =的零点就是3()2log 12x g x x =+-的零点,因为()3332log 31230g =+-=-<,72377()2log 1222g =+-37log 1202=+->,所以函数(())y f f x =的零点所在区间为73,2⎛⎫ ⎪⎝⎭.故选:B.【点睛】本题考查了分段函数的零点问题,考查了根据零点存在性定理判断零点所在的区间,考查了根据的解析式判断函数的单调性,属于中档题.5. 设函数()2,11,1x a x f x x x -⎧≤⎪=⎨+>⎪⎩,若()1f 是f(x)的最小值,则实数a 的取值范围为( )A [)1,2- B. []1,0- C. []1,2 D. [)1,+∞【答案】C【解析】【分析】由1x >,求得()f x 的范围;再求得||()2x a f x -=的单调性,讨论1a <,1a …时函数()f x 在1x …的最小值,即可得到所求范围.【详解】解:函数2,1()1,1x a x f x x x -⎧⎪=⎨+>⎪⎩…,若1x >,可得()12f x x =+>,由()1f 是()f x 的最小值,由于||()2x a f x -=可得在x a >单调递增,在x a <单调递减,若1a <,1x …,则()f x 在x a =处取得最小值,不符题意;若1a …,1x …,则()f x 在1x =处取得最小值,且122a -…,解得12a ……,综上可得a 的范围是[1,2].故选:C .【点睛】本题考查分段函数的最值的求法,注意运用分类讨论思想方法,以及指数函数的单调性,考查运算能力,属于中档题.6. 已知函数()f x 的定义域为R ,且()()()()0f x y f x y f x f y ++--=,()11f -=,则( )A. ()00f = B. ()f x 为奇函数C. ()81f =- D. ()f x 的周期为3【答案】C【解析】【分析】令 0x y ==,则得(0)2f =,再令0x =即可得到奇偶性,再令1y =-则得到其周期性,最后根.据其周期性和奇偶性则得到()8f 的值.【详解】令 0x y ==, 得()()22000f f -=得 (0)0f = 或 (0)2f =,当 (0)0f = 时,令0y =得 ()0f x = 不合题意, 故 (0)2f =, 所以 A 错误 ;令 0x = 得 ()()f y f y =-, 且()f x 的定义域为R ,故 ()f x 为偶函数, 所以B 错误 ;令 1y =-, 得 (1)(1)()f x f x f x -++=, 所以 ()(2)(1)f x f x f x ++=+,所以 (2)(1)f x f x +=--, 则(3)()f x f x +=-,则()(6)(3)f x f x f x +=-+=,所以 ()f x 的周期为 6 , 所以 D 错误 ;令 1x y ==, 得 2(2)(0)(1)f f f +=, 因为()()111f f -==所以 (2)1f =-,所以 ()(8)21f f ==-, 故C 正确.故选:C 【点睛】关键点点睛:本题的关键是利用赋值法得到其奇偶性和周期性,并依此性质求出函数值即可.7. 函数()(),f x g x 的定义域均为R ,且()()()()4488f x g x g x f x +-=--=,,()g x 关于4x =对称,()48g =,则()1812m f m =∑的值为( )A. 24- B. 32- C. 34- D. 40-【答案】C【解析】【分析】利用已知、方程、函数的对称性、周期性进行计算求解.【详解】因为()()44f xg x +-=①, ()()88g x f x --=②,对于②式有:()()88g x f x +-=③,由①+③有:()()8412g x g x ++-=,即()()1212g x g x +-=④,又()g x 关于4x =对称,所以()()8g x g x =-⑤,由④⑤有:()()81212g x g x -+-=,即()()81212g x g x +++=,()()4812g x g x +++=,两式相减得:()()1240g x g x +-+=,即()()124g x g x +=+,即()()8g x g x +=,因为函数()g x 的定义域为R ,所以()g x 的周期为8,又()48g =,所以()()()412208g g g ==== ,由④式()()1212g x g x +-=有:()66g =,.所以()()()614226g g g ==== ,由()48g =,()()1212g x g x +-=有:()84g =,所以()()()816244g g g ==== ,由⑤式()()8g x g x =-有:()()266g g ==,又()()8g x g x +=,所以()()1026g g ==,由②式()()88g x f x --=有:()()88f x g x =+-,所以()()()()()()()18122436101244818m f m f f f g g g ==+++=+++-⨯∑ ()686446881834=+++⨯++-⨯=-,故A ,B ,D 错误.故选:C.8. 已知函数()()()lg 2240f x x a x a a =+--+>,若有且仅有两个整数1x 、2x 使得()10f x >,()20f x >,则a 的取值范围是( )A. (]0,2lg 3- B. (]2lg 3,2lg 2--C. (]2lg 2,2- D. (]2lg 3,2-【答案】A【解析】【分析】由题意可知,满足不等式()lg 224x a x a >-+-的解中有且只有两个整数,即函数lg y x =在直线()224y a x a =-+-上方的图象中有且只有两个横坐标为整数的点,然后利用数形结合思想得出()20lg 33224a a a ->⎧⎨≤-+-⎩以及0a >,由此可得出实数a 的取值范围.【详解】由()()lg 2240f x x a x a =+--+>,得()lg 224x a x a >-+-.由题意可知,满足不等式()lg 224x a x a >-+-的解中有且只有两个整数,即函数lg y x =在直线()224y a x a =-+-上方的图象中有且只有两个横坐标为整数的点.如下图所示:由图象可知,由于()()()22422y a x a a x =-+-=--,该直线过定点()2,0.要使得函数lg y x =在直线()224y a x a =-+-上方的图象中有且只有两个横坐标为整数的点,则有()20lg 33224a a a ->⎧⎨≤-+-⎩,即22lg 3a a <⎧⎨-≥⎩,解得2lg 3a ≤-,又0a >,所以,02lg 3a <≤-,因此,实数a 的取值范围是(]0,2lg 3-.故选A.【点睛】本题考查函数不等式的求解,解题的关键利用数形结合思想找到一些关键点来得出不等关系,考查数形结合思想的应用,属于难题.二、多项选择题:本题共3小题,每小题6分,共18分.9. 下列命题正确的是( )A. “1a >”是“21a >”的充分不必要条件B. “M N >”是“lgM lgN >”的必要不充分条件C. 命题“2,10x R x ∀∈+<”的否定是“x R ∃∈,使得210x +<”D. 设函数()f x 的导数为()f x ',则“0()0f x '=”是“()f x 在0x x =处取得极值”的充要条件【答案】AB【解析】【分析】根据定义法判断是否为充分、必要条件,由全称命题的否定是∀→∃,否定结论,即可知正确的选项.【详解】A 选项中,211a a >⇒>,但211a a >⇒>或1a <-,故A 正确;B 选项中,当0M N >>时有lgM lgN >,而lgM lgN >必有0M N >>,故B 正确;C 选项中,否定命题为“x R ∃∈,使得210x +≥”,故C 错误;D 选项中,0()0f x '=不一定有()f x 在0x x =处取得极值,而()f x 在0x x =处取得极值则0()0f x '=,故D 错误;故选:AB【点睛】本题考查了充分、必要条件的判断以及含特称量词命题的否定,属于简单题.10. 若函数()f x 的定义域为R ,且()()2()()f x y f x y f x f y ++-=,(2)1f =-,则( )A. (0)0f =B. ()f x 为偶函数C. ()f x 的图象关于点(1)0,对称 D. 301()1i f i ==-∑【答案】BCD【解析】【分析】对于A ,令2,0x y ==,可得(0)1f =;对于B ,令0,x y x ==,可得()()f x f x =-,即可判断;对于C ,令1x y ==得f (1)=0,再令1,x y x ==即可判断;对于D ,根据条件可得()()2f x f x =--,继而()()2f x f x =-+,进一步分析可得函数周期为4,分析求值即可.【详解】对于A ,令2,0x y ==,则()()()22220f f f =⋅,因为(2)1f =-,所以()220f -=-,则(0)1f =,故A 错误;对于B ,令0,x y x ==,则()()()2(0)()2f x f x f f x f x +-==,则()()f x f x =-,故B 正确;对于C ,令1x y ==得,()()()220210f f f +==,所以f (1)=0,令1,x y x ==得,(1)(1)2(1)()0f x f x f f x ++-==,则()f x 的图象关于点(1)0,对称,故C 正确;对于D ,由(1)(1)0f x f x ++-=得()()2f x f x =--,又()()f x f x =-,所以()()2f x f x -=--,则()()2f x f x =-+,()()24f x f x +=-+,所以()()4f x f x =+,则函数()f x 的周期为4,又f (1)=0,(2)1f =-,则()()()3310f f f =-==,()()401f f ==,则f (1)+f (2)+f (3)+f (4)=0,所以()()301()12701i f i f f ==++⨯=-∑,故D 正确,故选:BCD.11. 已知函数()y f x =是R 上的奇函数,对于任意x R ∈,都有(4)()(2)f x f x f +=+成立,当[)0,2x ∈时,()21=-x f x ,给出下列结论,其中正确的是( )A. (2)0f =B. 点(4,0)是函数()y f x =的图象的一个对称中心C. 函数()y f x =在[6,2]--上单调递增D. 函数()y f x =在[6,6]-上有3个零点【答案】AB【解析】【分析】由(4)()(2)f x f x f +=+,赋值2x =-,可得(4)()f x f x +=,故A 正确;进而可得(4,0)是对称中心,故B 正确;作出函数图象,可得CD 不正确.【详解】在(4)()(2)f x f x f +=+中,令2x =-,得(2)0f -=,又函数()y f x =是R 上的奇函数,所以(2)(2)0f f =-=,(4)()f x f x +=,故()y f x =是一个周期为4的奇函数,因(0,0)是()f x 的对称中心,所以(4,0)也是函数()y f x =的图象的一个对称中心,故A 、B 正确;作出函数()f x 的部分图象如图所示,易知函数()y f x =在[6,2]--上不具单调性,故C 不正确;函数()y f x =在[6,6]-上有7个零点,故D 不正确.故选:AB【点睛】本题考查了函数的性质,考查了逻辑推理能力,属于基础题目.三、填空题:本大题共3小题,每小题5分,共15分12. 设函数()()x x f x e ae a R -=+∈,若()f x 为奇函数,则a =______.【答案】-1【解析】【分析】利用函数为奇函数,由奇函数的定义即可求解.【详解】若函数()x xf x e ae -=+为奇函数,则()()f x f x -=-,即()x x x x ae ae e e --+=-+,即()()10x x e a e -++=对任意的x 恒成立,则10a +=,得1a =-.故答案为:-1【点睛】本题主要考查函数奇偶性的应用,需掌握奇偶性的定义,属于基础题.13. 422log 30.532314964log 3log 2225627--⎛⎫⎛⎫⎛⎫⋅-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=______【答案】1-【解析】【分析】利用指数幂的运算性质和对数的运算性质计算即可求解.【详解】原式=4123232log 3494122563-⨯⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭=42log 379121616-++131=-+1=-.故答案为:1-.14. 设m 为实数,若{}22250()|{30()|250x y x y x x y x y mx y -+≥⎧⎫⎪⎪-≥⊆+≤⎨⎬⎪⎪+≥⎩⎭,,,则m 的取值范围是 .【答案】403m ≤≤【解析】【详解】如图可得440033m m -≤-≤∴≤≤四、解答题:本题共5小题,共77分.15. 阅读下面题目及其解答过程.已知函数23,0()2,0x x f x x x x +⎧=⎨-+>⎩…,(1)求f (-2)与f (2)的值;(2)求f(x)的最大值.解:(1)因为-2<0,所以f (-2)= ① .因为2>0,所以f (2)= ② .(2)因为x≤0时,有f(x)=x +3≤3,而且f (0)=3,所以f(x)在(,0]-∞上的最大值为 ③ .又因为x >0时,有22()2(1)11f x x x x =-+=--+…,而且 ④ ,所以f(x)在(0,+∞)上最大值为1.综上,f(x)的最大值为 ⑤ .以上题目的解答过程中,设置了①~⑤五个空格,如下的表格中为每个空格给出了两个选项,其中只有一个正确,请选出你认为正确的选项,并填写在答题卡的指定位置(只需填写“A”或“B”).空格序号选项①A .(-2)+3=1 B .2(2)2(2)8--+⨯-=-②A.2+3=5 B .22220-+⨯=③A.3B.0④A .f (1)=1 B .f (1)=0的⑤ A.1 B.3【答案】(1)①A ; ②B ;(2)③A ; ④A ; ⑤B .【解析】【分析】依题意按照步骤写出完整的解答步骤,即可得解;【详解】解:因为23,0()2,0x x f x x x x +⎧=⎨-+>⎩…,(1)因为20-<,所以()2231f -=-+=,因为20>,所以()222220f =-+⨯=(2)因为0x ≤时,有()33f x x =+≤,而且()03f =,所以()f x 在(,0]-∞上的最大值为3.又因为0x >时,有22()2(1)11f x x x x =-+=--+…,而且()11f =,所以()f x 在(0,+∞)上的最大值为1.综上,()f x 的最大值为3.16. 如图,某小区要在一个直角边长为30m 的等腰直角三角形空地上修建一个矩形花园.记空地为ABC V ,花园为矩形DEFG .根据规划需要,花园的顶点F 在三角形的斜边BC 上,边DG 在三角形的直角边AC 上,顶点G 到点C 的距离是顶点D 到点A 的距离的2倍.(1)设花园的面积为S (单位:2m ),AD 的长为x (单位:m ),写出S 关于x 的函数解析式;(2)当AD 的长为多少时,花园的面积最大?并求出这个最大面积.【答案】(1)()()2303,010S x x x =-<<(2)当AD 的长为5m 时,花园的面积最大,最大面积为1502m .【解析】【分析】(1)根据矩形面积即可求解,(2)根据基本不等式即可求解.【小问1详解】,AD x =则2CG GF x ==,302303GD x x x =--=-,所以()()2303,010S GD GF x x x =⋅=-<<【小问2详解】()()()233032223033303150332x x S x x x x +-⎡⎤=-=⋅-≤=⎢⎥⎣⎦,当且仅当3303x x =-,即5x =时等号成立,故当AD 的长为5m 时,花园的面积最大,最大面积为1502m .17. 已知定义在R 上的奇函数f (x )满足:0x ≥时,21()21x x f x -=+.(1)求()f x 的表达式;(2)若关于x 的不等式()2(23)10f ax f ax ++->恒成立,求a 的取值范围.【答案】(1)21()21x x f x -=+ (2)(]4,0-【解析】【分析】(1)根据函数的奇偶性求得当0x <时的解析式,即可得到结果;(2)根据定义证明函数()f x 在R 上单调递增,然后再结合()f x 是定义在R 上的奇函数,化简不等式,求解即可得到结果.【小问1详解】设0x <,则0x ->,因为0x ≥时,21()21x x f x -=+,所以()21122112x xx xf x -----==++又因为()f x 是定义在R 上的奇函数,即()()12211221x x x x f x f x --=--=-=++所以当0x <时,21()21x x f x -=+综上,()f x 的表达式为21()21x x f x -=+【小问2详解】由(1)可知,212()12121x x x f x -==-++,设在R 上任取两个自变量12,x x ,令12x x <则()()121222112121⎛⎫⎛⎫-=--- ⎪ ⎪++⎝⎭⎝⎭x x f x f x ()()()1221212222221212121x x x x x x -=-=++++因为12x x <,则12220x x -<,所以()()()()12120f x f x f x f x -<⇒<所以函数()f x 在R 上单调递增.即()()22(23)10(23)1f ax f ax f ax f ax ++->⇒+>--,由()f x 是定义在R 上的奇函数,可得()()2211f ax f ax ---=即()21(23)f ax f ax >-+,由函数()f x 在R 上单调递增,可得22231240ax ax ax ax +>-⇒--<恒成立,当0a =时,即40-<,满足;当0a ≠时,即20Δ4160a a a <⎧⎨=+<⎩,解得40a -<<综上,a 的取值范围为(]4,0-18. 已知0,a b a c d >≥≥≥,且ab cd ≥.(1)请给出,,,a b c d 的一组值,使得2()a b c d ++≥成立;(2)证明不等式a b c d ++≥恒成立.【答案】(1)2,1,1,1a b c d ====-(答案不唯一)(2)证明见解析【解析】【分析】(1)找到一组符合条件的值即可;(2)由a c d ≥≥可得()()0a c a d --≥,整理可得2()a cd c d a ++≥,两边同除a 可得cd a c d a ++≥,再由ab cd ≥可得cd b a ≥,两边同时加a 可得cd a b a a+≥+,即可得证.【详解】解析:(1)2,1,1,1a b c d ====-(答案不唯一)(2)证明:由题意可知,0a ≠,因为a c d ≥≥,所以()()0a c a d --≥.所以2()0a c d a cd -++≥,即2()a cd c d a ++≥.因为0a b >≥,所以cd a c d a++≥,因为ab cd ≥,所以cd b a≥,所以cd a b a c d a +++≥≥.【点睛】考查不等式的证明,考查不等式的性质的应用.19. 对于非负整数集合S (非空),若对任意,x y S ∈,或者x y S +∈,或者x y S -∈,则称S 为一个好集合.以下记S 为S 的元素个数.(1)给出所有的元素均小于3的好集合.(给出结论即可)(2)求出所有满足4S =的好集合.(同时说明理由)(3)若好集合S 满足2019S =,求证:S 中存在元素m ,使得S 中所有元素均为m 的整数倍.【答案】(1){0},{0,1},{0,2},{0,1,2}.(2){0,,,}b c b c +;证明见解析.(3)证明见解析.【解析】【分析】(1)根据好集合的定义列举即可得到结果;(2)设{},,,S a b c d =,其中a b c d <<<,由0S ∈知0a =;由0d c S <-∈可知d c c -=或d c b -=,分别讨论两种情况可的结果;(3)记1009n =,则21S n =+,设{}1220,,,,n S x x x =⋅⋅⋅,由归纳推理可求得()1i x im i n =≤≤,从而得到22n M x nm ==,从而得到S ,可知存在元素m 满足题意.【详解】(1){}0,{}0,1,{}0,2,{}0,1,2.(2)设{},,,S a b c d =,其中a b c d <<<,则由题意:d d S +∉,故0S ∈,即0a =,考虑,c d ,可知:0d c S <-∈,d c c ∴-=或d c b -=,若d c c -=,则考虑,b c ,2c b c c d <+<= ,c b S ∴-∈,则c b b -=,{},,2,4S a b b b ∴=,但此时3b ,5b S ∉,不满足题意;若d c b -=,此时{}0,,,S b c b c =+,满足题意,{0,,,}S b c b c ∴=+,其中,b c 为相异正整数.(3)记1009n =,则21S n =+,首先,0S ∈,设{}1220,,,,n S x x x =⋅⋅⋅,其中1220n x m x x M <=<<⋅⋅⋅<=,分别考虑M 和其他任一元素i x ,由题意可得:i M x -也在S 中,而212210,n n M x M x M x M --<-<-<⋅⋅⋅<-<,()21i n i M x x i n -∴-=≤≤,2n M x ∴=,对于1i j n ≤<≤,考虑2n i x -,2n j x -,其和大于M ,故其差22n i n j j i x x x x S ---=-∈,特别的,21x x S -∈,2122x x m ∴==,由31x x S -∈,且1313x x x x <-<,3213x x x m ∴=+=,以此类推:()1i x im i n =≤≤,22n M x nm ∴==,此时(){}0,,2,,,1,,2S n m nm n m nm =⋅⋅⋅+⋅⋅⋅,故S 中存在元素m ,使得S 中所有元素均为m 的整数倍.【点睛】本题考查集合中的新定义问题的求解,关键是明确已知中所给的新定义的具体要求,根据集合元素的要求进行推理说明,对于学生分析和解决问题能力、逻辑推理能力有较高的要求,属于较难题.。
高一上学期第一次月考数学试卷(附带答案)
高一上学期第一次月考数学试卷(附带答案)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.单选题。
(本题共8小题,共40分,每小题只有一个正确选项。
)1.直线√3x -y +2=0的倾斜角是( )A.150°B.120°C.60°D.30°2.过点P (﹣2,m )和Q (m ,4)的直线斜率等于1,那么m 的值等于( )A.1或3B.1C.4D.1或43.直线l 经过直线x -2y+4=0和直线x + y -2=0的交点,且与直线x+3y+5=0垂直,则直线l 的方程为( )A.3x -y+2=0B.3x+y+2=0C.x -3y+2=0D.x+3y+2=04.已知直线l 1:mx+y -1=0,l 2:(4m -3)x+my -1=0,若l 1⊥l 2,则实数m 的值为( )A.0B.12C.2D.0或125.对于圆C :x 2+y 2-4x+1=0,下列说法正确的是( )A.点4(1,﹣1)在圆C 的内部B.圆C 的圆心为(﹣2,0)C.圆C 的半径为3D.圆C 与直线y=3相切6.在平面直角坐标系xOy 中,以点(0,1)为圆心且与直线x -y -1=0相切的圆的标准方程为( )A.(x -1)2+y 2=4B.(x -1)2+y 2=1C.x 2+(y -1)2=√2D.x 2+(y -1)2=27.已知直线l 1:x+2y+t 2=0,l 2:2x+4y+2t -3=0,则当l 1与l 2间的距离最短时,求实数t 的值为( )A.1B.12C.13D.28.已知点A(2,﹣3),B(﹣3,﹣2),若直线l:mx+y -m -1=0与线段AB 相交,则实数m 的取值范围是( )A.[﹣34,4]B.[15,+∞)C.(﹣∞,﹣34]∪[4,+∞)D.[﹣4,34]二.多选题.(每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,错选的得0分。
高一上册数学第一次月考试卷及答案
高一上册数学第一次月考试卷及答案高一上册数学第一次月考试卷及答案一、选择题(每小题5分,共60分)1.在① ≠ ② ≠ ③ ≠ ④四个关系中,错误的个数是()A。
1个B。
2个C。
3个D。
4个2.已知全集 U,集合 A,B,C,那么集合A∩B∩C 的补集是()A.U-B-CB.A∪B∪CC.U-A∪B∪CD.A∩B∩C3.已知集合 A={x|x2},则A∩B 的元素个数是()A.0B.1C.∞D.不确定4.函数 f(x)在 R 上为减函数,则实数的取值范围是()A.(-∞,a]B.(-∞,a)C.[a,∞)D.(a,∞)5.集合 A、B 各有两个元素,A∩B 有一个元素 x,若集合A、B 同时满足:(1)x>0,(2)A∪B 的元素和小于 5,则满足条件的 A、B 的组数为()A。
0B。
1C。
2D。
36.函数 f(x)=x^2-4x+3 的递减区间是()A。
(-∞,1]B。
[1,2]C。
[2,+∞)D。
[1,+∞)7.设 A、B 是两个非空集合,定义 A 与 B 的差集为 A-B={x|x∈A且x∉B},则 A-(B-A) 等于()A。
A∩BB。
A∪BC。
A-BD。
B-A8.若函数f(x)=√(x-1) 的定义域是[1,∞),则函数 g(x)=f(3-x) 的定义域是()A.(-∞,2]B.(-∞,3)C.[0,∞)D.[1,∞)9.不等式 x^2-2x+1<0 的解集是空集,则实数 x 的范围为()A.x∈RB.x∈(0,1)C.x∈(1,2)D.x∈(2,3)10.若函数 f(x)在 [a,b] 上为增函数,则实数的取值范围为()A.[f(a),f(b)]B.(f(a),f(b))C.[f(b),f(a)]D.(f(b),f(a))11.设集合 A={1,2,3},B={4,5},且 A、B 都是集合C={1,2,3,4,5} 的子集合,如果把 A、B 叫做集合的“长度”,那么集合的“长度”的最小值是()A。
高一上学期第一次月考数学试题(附答案解析)
高一上学期第一次月考数学试题(附答案解析)学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、单选题(本大题共12小题,共48.0分。
在每小题列出的选项中,选出符合题目的一项)1. 已知全集U=Z,集合A={−1,2,3},B={3,4},则(∁U A)∩B=( )A. {4}B. {3}C. {1,2}D. ⌀2. 已知a,b,c,d∈R,则下列不等式中恒成立的是( )A. 若a>b,c>d,则ac>bdB. 若a>b,则ac2>bc2C. 若a>b>0,则(a−b)c>0D. 若a>b,则a−c>b−c3. 已知集合A={x|(x−2)(x+1)≤0},B={−2,0,1},则A∩B中元素的个数为( )A. 0B. 1C. 2D. 34. 已知p:0<x<2,q:−1<x<3,则p是q的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件5. 下列命题正确的是( )A. 若数列{a n}、{b n}的极限都存在,且c n=a n bn (b n≠0),则数列{cn}的极限存在B. 若数列{a n}、{b n}的极限都不存在,则数列{a n+b n}的极限也不存在C. 若数列{a n+b n}、{a n−b n}的极限都存在,则数列{a n}、{b n}的极限也都存在D. 设S n=a1+a2+⋯+a n,若数列{a n}的极限存在,则数列{S n}的极限也存在6. 设全集U=R,集合A={x|x2−2x−3<0},B={x|x−2≥0},则图中阴影部分所表示的集合为( )A. {x|x≤−1或x≥3}B. {x|x<2或x≥3}C. {x|x≤2}D. {x|x≤−1}7. 设集合A={1,2,3,4},B={3,4,5},全集U=A∪B,则集合∁U(A∩B)的元素个数为( )A. 1个B. 2个C. 3个D. 4个8. 若集合A={−1,1},B={x|mx=2},且B⊆A,则实数m的值( )A. −2B. 2C. 2或−2D. 2或−2或09. 若P=√a+√a+7,Q=√a+3+√a+4(a≥0),则P,Q的大小关系是( )A. P>QB. P=QC. P<QD. 由a的取值确定10. 已知正实数a,b,满足a+2b=1,则1a +2b的最小值为( )A. 8B. 9C. 10D. 1111. 已知实数a,b,c,若a>b,则下列不等式成立的是( )A. 1a >1bB. a2>b2C. ac2+1>bc2+1D. a|c|>b|c|12. 若集合A={−1,1},B={x|x+m=0},且A∪B=A,则m的值为( )A. 1B. −1C. 1或−1D. 1或−1或0第II卷(非选择题)二、填空题(本大题共8小题,共32.0分)13. 已知集合A={x|0<x<4},集合B={x|x<a},若A⊆B,则实数a的取值范围是______.14. 已知x>1,函数y=x+4x−1的最小值为______.15. 已知集合A={−1,2,4},B={0,2,6},则A∩B=______ .16. 已知集合A={m+2,2m2+m},若3∈A,则m的值为______.17. 若集合{a,ba,1}={a2,a+b,0},则a2021+b2021=______.18. 不等式的解集为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.选择题(每小题5分,共50分)
1.已知集合M ={}
2x y y =,用自然语言描述M 应为
A .函数2y x =的值域
B .函数2y x =的定义域
C .函数2y x =的图象上的点组成的集合
D .以上说法都不对. 2.下列关系中正确的个数为( );
①R ∈2
1
②Q ∉2 ③*|3|N ∉- ④Q ∈-|3| A .1 个 B .2 个 C .3 个 D .4 个 3.设集合A={x |-1≤x ≤2},B={x |0≤x ≤4},则A ∩B=( )
A .[0,2]
B .[1,2]
C .[0,4]
D .[1,4] 4.集合A={x|x 2-2x-1=0,x ∈R}的所有子集的个数为( )
A .2
B .3
C .4
D .1 5.函数
2
1)(--=
x x x f 的定义域为( )
A .[1,2)∪(2,+∞)
B .(1,+∞)
C .[1,2)
D .[1,+∞) 6.下列各组中的两个函数是同一函数的为 ( )
A .2()y x =与y x =
B .2y x =与2()y x =
C .3
3
y x =与2
x y x
=
D .33()y x =与y x =
7.二次函数342+-=x x y 在区间(]41,
上的值域是 A .[)∞+-,
1 B .(]30, C .[]31,- D .(]31,- 8.已知集合{239}A ⊆,,且A 中至少有一个奇数,则这样的集合有( )。
A .2个
B .6个
C .5个
D .4个
9.下列集合A 到集合B 的对应f 是映射的是( )
A .A f
B A :},1,0,1{},1,0,1{-=-=中的数的平方 B .A f B A :},1,0,1{},1,0{-==中的数的开方
C .A f Q B Z A :,,==中的数的倒数
D .A f B R A :},{,正实数==中的数取绝对值
10.某学生离家去学校,由于怕迟到,所以一开始就匀速跑步,等跑累了再匀速走余下的路程. 在下图中纵轴表示离学校的距离d ,横轴表示出发后的时间t ,则下图中的四个图形中较符合该学生走法的是( )
A B C D
二.填空题(每小题5分,共25分)11.用列举法表示集合(){}N y N x y x y x ∈∈=+,,3,:________ .
12.已知{}菱形=A ,{}正方形=B ,{}平行四边形=C ,则C B A ,,之间的关系为________
13.已知函数f(x)=⎩⎨⎧<-≥+,
0,4,
0,12x x x x 则f(f(-4))= ___________________14.设全集U=R ,集合{}|214,M x a x a a R =-<<∈,{}|12N x x =<<,若N M ⊆,则实数a
的取值范围是________
15.若函数)(x f 的定义域是[)2,2-,则函数)12(+=x f y 的定义域是________ 三.解答题(每小题9分,共45分) 16. 求函数21
()21
f x x x x =--++的定义域.
17.已知集合A={x|
5
3
2+-x x <0}, B={x|x 2-3x+2<0}, U=R ,求(1)A ∩B ;(2)A ∪B ;(3)B A C U I )(.
18.已知.,},51|{}32|{的取值范围求若或,a B A x x x B a x a x A φ=⋂>-<=+≤≤=
19.已知{}3≥=x x
M ,{}5≤=x x
N ,{}0≥-=a x x
Q ,令N M P I =
(1)求集合P ;
(2)若{}Q P x x I =≤≤54,求实数a 的值; (3)若Q P ⊆,求实数a 的取值范围.
20.已知二次函数()f x 的二次项系数为a ,且不等式()2f x x >的解集为(1,3). (1)若方程()60f x a +=有两个相等的根,求()f x 的解析式;
(2)若函数()
f x的最大值不小于8,求实数a的取值范围。
参考答案
一.选择题(每小题5分,共50分)1. A 2. B 3、 A4. C 5、 A 6. D 7.C 8. B 9. A 10.D 二.填空题:本大题共4个小题,每小题5分,共25分。
11.{(0,3),(1,2),(2,1),(3,0)} 12.C A B ⊆⊆ 13. 13 14.
1
12
a ≤≤ 15.[)2
1
,23[-
三.解答题(每小题9分,共45分)
16. 依题意得220(1)
10(2)x x x ⎧--+≥⎨+≠⎩
由(1)得 21x -≤≤ 由(2)得1x ≠-
则()f x 的定义域为[2,1)(1,1]--U 。
17.解:A={x|
532+-x x <0}={x|-5<x <2
3
} B={x|x 2
-3x+2<0}={x|1<x<2}
(Ⅰ)A ∩B={x|1<x <2
3
}
(Ⅱ)A ∪B={x|-5<x<2} (Ⅲ)(
uA )={x|x ≤-5或x ≥2
3
}
(uA )∩B={x|
2
3
≤x<2} 18. 3,32>∴+>=a a a A ,则若φ,此时
符合题意;
22
1
531
232≤≤-
∴⎪⎩
⎪
⎨⎧≤+-≥+≤≠a a a a a A ,则若φ,此时亦符合题意。
}3,22
1
|{>≤≤-
∴a a a a 或的取值范围是 19.(1)P=[3,5] (2) a=4 (3)a ≤3
20、解:f(x)=ax 2+bx +c ,则f(x)>2x ⇔ax 2+(b -2)x +c>0.
已知共解集为(1,3),
0242432a b b a a c
c a a
⎧
⎪<⎪
-⎪-
=⇒=-⎨⎪⎪=⇒=⎪⎩∴, ∴f(x)=ax 2+(2-4a)x +3a . (1)若f(x)+6a=0有两个相等实根,故ax 2-(4a -2)x +9a=0
△=4+16a 2-16a -36a 2=0,解得
a=-1或1
5
(舍去正值)
∴a=-1
即f(x)=-x 2+6x -3 (
2
)
由
以
上
可
知
222141
()()a a a f x a x a A
--+-=-+
, ∵a<0,
2max
2241
()41841232.0,
(,2][23,0).
a a f x a
a a a a a a a a a -+-∴=-+-⇔++-+-<-∞--+Q Q U ≥8得
≥≥0解得≥≤3又的取值范围是3。