苏教版初二数学动点问题练习含答案
苏教版初二数学动点问题练习含答案
动态问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 数形结合思想 转化思想1、如图1,梯形ABCD 中,AD ∥ BC ,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P 从A 开始沿AD 边以1cm/秒的速度移动,点Q 从C 开始沿CB 向点B 以2 cm/秒的速度移动,如果P ,Q 分别从A ,C 同时出发,设移动时间为t 秒。
当t= 时,四边形是平行四边形;6 当t= 时,四边形是等腰梯形. 82、如图2,正方形ABCD 的边长为4,点M 在边DC 上,且DM=1,N 为对角线AC 上任意一点,则DN+MN 的最小值为 53、如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ;②当α= 度时,四边形EDBC 是直角梯形,此时AD 的长为 ; (2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由. 解:(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC 是菱形.∵∠α=∠ACB=900,∴BC //ED . ∵CE //AB , ∴四边形EDBC 是平行四边形 在Rt △ABC 中,∠ACB =900,∠B =600,BC =2, ∴∠A =300.∴AB =4,AC∴AO =12AC.在Rt △AOD 中,∠A =300,∴AD =2.∴BD =2. ∴BD =BC . 又∵四边形EDBC 是平行四边形,∴四边形EDBC 是菱形4、在△ABC 中,∠ACB =90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E.(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明. 解:(1)① ∵∠ACD=∠ACB=90° ∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90° ∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB ② ∵△ADC ≌△CEB ∴CE=AD ,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE 又∵AC=BC(备用图) C B E D 图1 N M A B C D E M 图2A CB E D N M 图3∴△ACD ≌△CBE ∴CE=AD ,CD=BE ∴DE=CE-CD=AD-BE(3) 当MN 旋转到图3的位置时,DE=BE-AD(或AD=BE-DE ,BE=AD+DE 等) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE , 又∵AC=BC , ∴△ACD ≌△CBE , ∴AD=CE ,CD=BE , ∴DE=CD-CE=BE-AD.5、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由. 解:(1)正确. 证明:在AB 上取一点M ,使AM EC =,连接ME . BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°. CF 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°. AME ECF ∴∠=∠. 90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠. AME BCF ∴△≌△(ASA ). AE EF ∴=. (2)正确.证明:在BA 的延长线上取一点N .使AN CE =,连接NE .BN BE ∴=. 45N PCE ∴∠=∠=°. 四边形ABCD 是正方形, AD BE ∴∥. DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). AE EF ∴=. 6、如图, 射线MB 上,MB=9,A 是射线MB 外一点,AB=5且A 到射线MB 的距离为3,动点P 从M 沿射线MB方向以1个单位/秒的速度移动,设P 的运动时间为t. 求(1)△ PAB 为等腰三角形的t 值;(2)△ PAB 为直角三角形的t 值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB 为直角三角形的t 值7、如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠.求:(1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.①当点N 在线段AD 上时(如图2),P M N △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所A D F C G EB 图1 AD F C GE B 图3A D FC GE B 图2A D F C G EB M A D FC G E B N有满足要求的x 的值;若不存在,请说明理由解(1)如图1,过点E 作EG BC ⊥于点G . ∵E 为AB 的中点, ∴122BE AB ==.在Rt EBG△中,60B =︒∠, ∴30BEG =︒∠.∴112BG BE EG ====,即点E 到BC(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变.∵PM EF EG EF ⊥⊥,, ∴PM EG ∥. ∵EF BC ∥, ∴EP GM =,PM EG == 同理4MN AB ==. 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥,∴6030NMC B PMH ==︒=︒∠∠,∠.∴12PH PM == ∴3cos302MH PM =︒=. 则35422NH MN MH =-=-=.在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++=.②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形. 当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =.∴23MN MR ==. ∵MNC △是等边三角形,∴3MC MN ==.此时,6132x EP GM BC BG MC ===--=--=.当MP MN=时,如图3A DE B FCPN M 图4A D E BFCP MN 图5A DEBF (P ) CMN GGR G图1A D EB F CG图2A D EB FCPNMG HA D E BFC图4(备A D E BF C图5(备A D E BF C 图1图2A DE BF C PN M图3A D EBFCP N M (第25题)图4,这时MC MN MP ===此时,615x EP GM ===-= 当NP NM =时,如图5,30NPM PMN ==︒∠∠. 则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠. 因此点P 与F 重合,PMC △为直角三角形. ∴tan301MC PM =︒=. 此时,6114x EP GM ===--=. 综上所述,当2x =或4或(5时,PMN △为等腰三角形.8、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇? 解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米, ∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△. ②∵P Qv v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQ v t===厘米/秒。
(完整版)初二动点问题(含答案)
动态问题一、所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 数形结合思想 转化思想类型:1。
利用图形想到三角形全等,相似及三角函数2.分析题目,了解有几个动点,动点的路程,速度(动点怎么动)3.结合图形和题目,得出已知或能间接求出的数据4。
分情况讨论,把每种可能情况列出来,不要漏5.动点一般在中考都是压轴题,步骤不重要,重要的是思路6。
动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论二、例题:1、如图1,梯形ABCD中,AD∥ BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。
当t= 时,四边形是平行四边形;当t= 时,四边形是等腰梯形.2、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为.的长为 ;的长为 ;4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E。
(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD—BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.5、数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BCEFCF于点F,求证:AE=EF.AB的中点M,连接ME,则AM=EC在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点"改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.ACBAED图1NMA BCDEMN图2ACBEDNM图36、如图, 射线MB上,MB=9,A是射线MB外一点,AB=5且A到射线MB的距离为3,动点P从M沿射线MB方向以1个单位/秒的速度移动,设P的运动时间为t.求(1)△ PAB为等腰三角形的t值;(2)△ PAB为直角三角形的t值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB为直角三角形的t值(1)如果点P在线段BC上以3cm/s的速度由B点向CCA上由C点向A点运动①若点Q的运动速度与点P的运动速度相等,经过1②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能(2)若点Q以②中的运动速度从点C来的运动速度从点B边运动,求经过多长时间点P与点Q第一次哪条边上相遇?A DFC GEB图1A DFC GEB图3A DFC GEB图2。
(完整版)初二动点问题(含答案)
动态问题一、所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 数形结合思想 转化思想类型:1。
利用图形想到三角形全等,相似及三角函数2.分析题目,了解有几个动点,动点的路程,速度(动点怎么动)3.结合图形和题目,得出已知或能间接求出的数据4。
分情况讨论,把每种可能情况列出来,不要漏5.动点一般在中考都是压轴题,步骤不重要,重要的是思路6。
动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论二、例题:1、如图1,梯形ABCD中,AD∥ BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。
当t= 时,四边形是平行四边形;当t= 时,四边形是等腰梯形.2、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为.的长为 ;的长为 ;4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E。
(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD—BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.5、数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BCEFCF于点F,求证:AE=EF.AB的中点M,连接ME,则AM=EC在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点"改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.ACBAED图1NMA BCDEMN图2ACBEDNM图36、如图, 射线MB上,MB=9,A是射线MB外一点,AB=5且A到射线MB的距离为3,动点P从M沿射线MB方向以1个单位/秒的速度移动,设P的运动时间为t.求(1)△ PAB为等腰三角形的t值;(2)△ PAB为直角三角形的t值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB为直角三角形的t值(1)如果点P在线段BC上以3cm/s的速度由B点向CCA上由C点向A点运动①若点Q的运动速度与点P的运动速度相等,经过1②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能(2)若点Q以②中的运动速度从点C来的运动速度从点B边运动,求经过多长时间点P与点Q第一次哪条边上相遇?A DFC GEB图1A DFC GEB图3A DFC GEB图2。
(完整版)初二动点问题(含答案)
动态问题一、所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想数形结合思想转化思想类型:1.利用图形想到三角形全等,相似及三角函数2.分析题目,了解有几个动点,动点的路程,速度(动点怎么动)3.结合图形和题目,得出已知或能间接求出的数据4.分情况讨论,把每种可能情况列出来,不要漏5.动点一般在中考都是压轴题,步骤不重要,重要的是思路6.动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论二、例题:1、如图1,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。
当t= 时,四边形是平行四边形;当t= 时,四边形是等腰梯形.2、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为3、如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ;②当α= 度时,四边形EDBC 是直角梯形,此时AD 的长为 ;(2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由.4、在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E.(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.OE CDα lC B AE D 图1 N M A B C D E M N 图2A CB E D N M 图35、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.6、如图, 射线MB 上,MB=9,A 是射线MB 外一点,AB=5且A 到射线MB 的距离为3,动点P 从M 沿射线MB 方向以1个单位/秒的速度移动,设P 的运动时间为t. 求(1)△ PAB 为等腰三角形的t 值;(2)△ PAB 为直角三角形的t 值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB 为直角三角形的t 值A D F C G EB 图1 A D FG E B 图3A D FC G E B 图28、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?。
苏教版八年级第3章 勾股定理与三角形动点题型练习(答案版)
练习:勾股定理与等腰三角形综合学生姓名:年级:科目:得分:练习内容1.如图,在Rt△ABC中,∠ACB=90°,BC=30cm,AC=40cm,点D在线段AB上从点B出发,以2cm/s 的速度向终点A运动,设点D的运动时间为t0.(1)AB=50 cm,AB边上的高为24 cm;(2)点D在运动过程中,当△BCD为等腰三角形时,求t的值.【分析】(1)在Rt△ABC中,由勾股定理即可求出AB;由直角三角形的面积即可求出斜边上的高;(2)分三种情况:①当BD=BC=30cm时,得出2t=30,即可得出结果;②当CD=CB=30cm时,作CE⊥AB于E,则BE=DE=BD=t,由(1)得出CE=24,由勾股定理求出BE,即可得出结果;③当DB=DC时,∠BCD=∠B,证明DA=DC,得出AD=DB=AB,即可得出结果.【解答】解:(1)∵在Rt△ABC中,∠ACB=90°,BC=30cm,AC=40cm,∴AB===50(cm);作AB边上的高CE,如图1所示:∵Rt△ABC的面积=AB•CE=AC•BC,∴CE===24(cm);故答案为:50,24;(2)分三种情况:①当BD=BC=30cm时,2t=30,∴t=15(s);②当CD=CB=30cm时,作CE⊥AB于E,如图2所示:则BE=DE=BD=t,由(1)得:CE=24,在Rt△BCE中,由勾股定理得:BE===18(cm),∴t=18s;③当DB=DC时,∠BCD=∠B,∵∠A=90°﹣∠B,∠ACD=90°﹣∠BCD,∴∠ACD=∠A,∴DA=DC,∴AD=DB=AB=25(cm),∴2t=25,∴t=12.5(s);综上所述:t的值为15s或18s或12.5s.【点评】本题考查了勾股定理、等腰三角形的判定与性质、三角形面积的计算;本题综合性强,有一定难度,特别是(2)中,需要进行分类讨论,运用勾股定理和等腰三角形的性质才能得出结果.2.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)当t=2秒时,求PQ的长;(2)求出发时间为几秒时,△PQB是等腰三角形?(3)若Q沿B→C→A方向运动,则当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.【分析】(1)根据点P、Q的运动速度求出AP,再求出BP和BQ,用勾股定理求得PQ即可;(2)由题意得出BQ=BP,即2t=8﹣t,解方程即可;(3)当点Q在边CA上运动时,能使△BCQ成为等腰三角形的运动时间有三种情况:①当CQ=BQ时(图1),则∠C=∠CBQ,可证明∠A=∠ABQ,则BQ=AQ,则CQ=AQ,从而求得t;②当CQ=BC时(图2),则BC+CQ=12,易求得t;③当BC=BQ时(图3),过B点作BE⊥AC于点E,则求出BE,CE,即可得出t.【解答】(1)解:(1)BQ=2×2=4cm,BP=AB﹣AP=8﹣2×1=6cm,∵∠B=90°,PQ===2(cm);(2)解:根据题意得:BQ=BP,即2t=8﹣t,解得:t=;即出发时间为秒时,△PQB是等腰三角形;(3)解:分三种情况:①当CQ=BQ时,如图1所示:则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ∴BQ=AQ,∴CQ=AQ=5,∴BC+CQ=11,∴t=11÷2=5.5秒.②当CQ=BC时,如图2所示:则BC+CQ=12∴t=12÷2=6秒.③当BC=BQ时,如图3所示:过B点作BE⊥AC于点E,则BE===4.8(cm)∴CE==3.6cm,∴CQ=2CE=7.2cm,∴BC+CQ=13.2cm,∴t=13.2÷2=6.6秒.由上可知,当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.【点评】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.3.如图1,在6×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位,当点P运动到点C时,两个点都停止运动.(1)请在6×8的网格纸图2中画出运动时间t为2秒时的线段PQ并求其长度;(2)在动点P、Q运动的过程中,△PQB能否成为PQ=BQ的等腰三角形?若能,请求出相应的运动时间t;若不能,请说明理由.【分析】(1)根据点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位,和运动时间t为2秒,分别求出PE、QE,再利用勾股定理即可求出PQ其长度.(2)设时间为t,则在t秒钟,P运动了2t格,Q运动了t格,由题意得PQ=BQ,然后根据勾股定理列出关于t的方程,解得t即可.【解答】解:(1)∵点Q的运动速度为每秒1个单位,和运动时间t为2秒,运动时间t为2秒,∴由图中可知PQ的位置如下图2,则由已知条件可得PD=4,AQ=2,QE=2,PE=6,∴PQ===2,(2)能.设时间为t,则在t秒钟,P运动了2t格,Q运动了t格,由题意得PQ=BQ(2t﹣t)2+62=(8﹣t)2解得t=.答:(1)PQ的长为2;(2)能,运动时间t为.【点评】此题主要考查勾股定理和等腰三角形的性质等知识点,此题涉及到动点问题,有一定的拔高难度,属于难题.4.如图,已知在Rt△ABC中,∠ACB=90°,AC=8,BC=16,D是AC上的一点,CD=3,点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动.设点P的运动时间为t.连结AP.(1)当t=3秒时,求AP的长度(结果保留根号);(2)当△ABP为等腰三角形时,求t的值;(3)过点D做DE⊥AP于点E.在点P的运动过程中,当t为何值时,能使DE=CD?【分析】(1)根据动点的运动速度和时间先求出PC,再根据勾股定理即可求解;(2)根动点运动过程中形成三种等腰三角形,分情况即可求解;(3)根据动点运动的不同位置利用勾股定理即可求解.【解答】解:(1)根据题意,得BP=2t,PC=16﹣2t=16﹣2×3=10,AC=8,在Rt△APC中,根据勾股定理,得AP===2.答:AP的长为2.(2)在Rt△ABC中,AC=8,BC=16,根据勾股定理,得AB===8若BA=BP,则2t=8,解得t=4;若AB=AP,则BP=32,2t=32,解得t=16;若PA=PB,则(2t)2=(16﹣2t)2+82,解得t=5.答:当△ABP为等腰三角形时,t的值为4、16、5.【分析】(1)①先根据∠B=∠C,BD=CE,AB=DC,判定△ABD≌DCE,得出AB=DC,进而得到△ADE 为等腰三角形;②根据△ABD≌△DCE,得出∠BAD=∠CDE,再根据∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC,得到∠ADE=∠B=60°,最后判定等腰△ADE为等边三角形;(2)分三种情况讨论:∠CPD为直角顶点;∠PCD是直角顶点;∠PDC是直角顶点,分别进行画图即可.第一种情况:使得AP=BD,BP=AC;第二种情况:使得AC=AB,CE=AP,BD=AE;第三种情况:使得BD=AB,DF=BP,AC=BF.【解答】解:(1)①证明:∵∠B=∠C,BD=CE,AB=DC,∴△ABD≌DCE,∴AB=DC,∴△ADE为等腰三角形;②∵△ABD≌△DCE,∴∠BAD=∠CDE,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∵∠ADC=∠ADE+∠EDC,又∵∠BAD=∠CDE.∴∠ADE=∠B=60°,∴等腰△ADE为等边三角形.(2)有三种结果,如图所示:2.如图,△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别在AB、BC边上匀速移动,它们的速度分别为2cm/s和lcm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为ts,则当运动时间t为多少秒时,△PBQ为直角三角形。
苏科版八年级数学上册第6章 一次函数的应用——动点问题(解析版)
一次函数的应用——动点问题一、单选题1.在平面直角坐标系中,已知一次函数y=﹣34x+6与x,y轴分别交于A,B两点,点C (0,n)是y轴上一点,把坐标平面沿直线AC折叠,点B刚好落在x轴上,则点C的坐标是()A. (0,3)B. (0,43) C. (0,83) D. (0,73)【答案】C【解析】【解答】解:过C作CD⊥AB于D,如图,对于直线y=﹣34x+6,当x=0,得y=6;当y=0,x=8,∴A(8,0),B(0,6),即OA=8,OB=6,∴AB=10,又∵坐标平面沿直线AC折叠,使点B刚好落在x轴上,∴AC平分∠OAB,∴CD=CO=n,则BC=6﹣n,∴DA=OA=8,∴DB=10﹣8=2,在Rt△BCD中,DC2+BD2=BC2,∴n2+22=(6﹣n)2,解得n= 83,∴点C的坐标为(0,83).故答案为:C.2.如图,函数y=mx﹣4m(m是常数,且m≠0)的图象分别交x轴、y轴于点M,N,线段MN上两点A,B(点B在点A的右侧),作AA1⊥x轴,BB1⊥x轴,且垂足分别为A1,B1,若OA1+OB1>4,则△OA1A的面积S1与△OB1B的面积S2的大小关系是()A. S1>S2B. S1=S2C. S1<S2D. 不确定的【答案】A【解析】【解答】解:由题意可得,m<0,设A(a,ma﹣4m),B(b,mb﹣4m),a<b,∵S1= 12a×(ma﹣4m),S2= 12b(mb﹣4m)∴S1﹣S2= 12(ma2﹣mb2)﹣124m(a﹣b)=(a﹣b){ 12m(a+b)﹣124m}.又∵OA1+OB1>4,∴12m(a+b)﹣124m= 12m(a+b﹣4)<0,∴S1﹣S2>0,故选A.3.如图,正方形ABCD的边长为4,P为正方形边上一动点,沿A→D→C→B→A 的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映y与x的函数关系的是()A. B.C. D.【答案】B【解析】【解答】解:①当点P由点A向点D运动时,y的值为0;②当点P在DC上运动时,y随着x的增大而增大;③当点p 在CB 上运动时,y=AB•AD ,y 不变; ④当点P 在BA 上运动时,y 随x 的增大而减小. 故选B .二、填空题4.如图,直线y=﹣ 12 x+3与坐标轴分别交于点A 、B ,与直线y=x 交于点C ,线段OA 上的点Q 以每秒1个长度单位的速度从点O 出发向点A 作匀速运动,运动时间为t 秒,连接CQ .若△OQC 是等腰直角三角形,则t 的值为________.【答案】2或4【解析】【解答】∵由 {y =−12x +3y =x,得 {x =2y =2 , ∴C (2,2);如图1,当∠CQO=90°,CQ=OQ ,∵C (2,2), ∴OQ=CQ=2, ∴t=2;如图2,当∠OCQ=90°,OC=CQ , 过C 作CM ⊥OA 于M ,∵C (2,2), ∴CM=OM=2, ∴QM=OM=2, ∴t=2+2=4,即t的值为2或4,故答案为:2或4.5.如图,已知点C为直线y=x上在第一象限内一点,直线y=2x+1交y轴于点A,交x轴于B,将直线AB沿射线OC方向平移√2个单位,则平移后直线的解析式为________。
(完整版)初二数学动点问题练习(含答案)
eandr动态问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想数形结合思想转化思想1、如图1,梯形ABCD中,AD∥ BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。
当t= 时,四边形是平行四边形;6当t= 时,四边形是等腰梯形. 82、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为53、如图,在Rt ABC△中,9060ACB B∠=∠=°,°,2BC=.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE AB∥交直线l于点E,设直线l的旋转角为α.(1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为;②当α=度时,四边形EDBC是直角梯形,此时AD的长为;(2)当90α=°时,判断四边形EDBC是否为菱形,并说明理由.解:(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC是菱形.∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC是平行四边形在Rt△ABC中,∠ACB=900,∠B=600,BC=2, ∴∠A=300.∴AB=4,AC∴AO=12AC.在Rt△AOD中,∠A=300,∴AD=2.∴BD=2. ∴BD=BC. 又∵四边形EDBC是平行四边形,∴四边形EDBC是菱形4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等AA(备用图)CBAED图1NMA BCDEMN图2ACBEDNM图3量关系,并加以证明.解:(1)① ∵∠ACD=∠ACB=90° ∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90° ∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB② ∵△ADC ≌△CEB ∴CE=AD ,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE 又∵AC=BC ∴△ACD ≌△CBE ∴CE=AD ,CD=BE ∴DE=CE-CD=AD-BE(3) 当MN 旋转到图3的位置时,DE=BE-AD(或AD=BE-DE ,BE=AD+DE 等)∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE , 又∵AC=BC ,∴△ACD ≌△CBE , ∴AD=CE ,CD=BE , ∴DE=CD-CE=BE-AD.5、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠= ,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.解:(1)正确.证明:在AB 上取一点M ,使AM EC =,连接ME .BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°.CF 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°. AME ECF ∴∠=∠.90AEB BAE ∠+∠= °,90AEB CEF ∠+∠=°,∴BAE CEF ∠=∠. AME BCF ∴△≌△(ASA ). AE EF ∴=.(2)正确.证明:在BA 的延长线上取一点N .使AN CE =,连接NE .BN BE ∴=. 45N PCE ∴∠=∠=°.四边形ABCD 是正方形, AD BE ∴∥.DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ).AE EF ∴=.6、如图, 射线MB 上,MB=9,A 是射线MB 外一点,AB=5且A 到射线MB 的距离为3,动点P 从M 沿射线MB 方向以1个单位/秒的速度移动,设P 的运动时间为t.求(1)△ PAB 为等腰三角形的t 值;(2)△ PAB 为直角三角形的t 值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB 为直角三角形的t 值AD F C GB图1ADFC GEB图3A DFC GB 图2AD FC GE B MADFGE BNAllthisinth7、如图1,在等腰梯形ABCD中,AD BC∥,E是AB的中点,过点E作EF BC∥交CD于点F.46AB BC==,,60B=︒∠.求:(1)求点E到BC的距离;(2)点P为线段EF上的一个动点,过P作PM EF⊥交BC于点M,过M作MN AB∥交折线ADC于点N,连结PN,设EP x=.①当点N在线段AD上时(如图2),PMN△的形状是否发生改变?若不变,求出PMN△的周长;若改变,请说明理由;②当点N在线段DC上时(如图3),是否存在点P,使PMN△为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由解(1)如图1,过点E作EG BC⊥于点G.∵E为AB的中点,∴122BE AB==.在Rt EBG△中,60B=︒∠,∴30BEG=︒∠.∴112BG BE EG====,.即点E到BCA DA DEBFC图4(备用)A DEBFC图5(备用)A DEBFC图1图2A DEBFCPNM图3A DEBFCPNM(第25题)si(2)①当点N在线段AD上运动时,PMN△的形状不发生改变.∵PM EF EG EF⊥⊥,,∴PM EG∥.∵EF BC∥,∴EP GM=,PM EG==同理4MN AB==.如图2,过点P作PH MN⊥于H,∵MN AB∥,∴6030NMC B PMH==︒=︒∠∠,∠.∴12PH PM==∴3cos302MH PM=︒=A.则35422NH MN MH=-=-=.在Rt PNH△中,PN===∴PMN△的周长=4PM PN MN++=++.②当点N在线段DC上运动时,PMN△的形状发生改变,但MNC△恒为等边三角形.当PM PN=时,如图3,作PR MN⊥于R,则MR NR=.类似①,32MR=∴23MN MR==.∵MNC△是等边三角形,∴3MC MN==.此时,6132x EP GM BC BG MC===--=--=.当MP MN=时,如图4,这时MC MN MP===此时,615x EP GM===--=当NP NM=时,如图5,30NPM PMN==︒∠∠.则120PMN=︒∠,又60MNC=︒∠,∴180PNM MNC+=︒∠∠.因此点P与F重合,PMC△为直角三角形.∴tan301MC PM=︒=A.此时,6114x EP GM===--=.综上所述,当2x=或4或(5时,PMN△为等腰三角形.8、如图,已知ABC△中,10AB AC==厘米,8BC=厘米,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD△与CQP△是否全等,请说明理由;图3A DEBFCPNM图4A DEBFCPMN图5A DEBF(PCMNGGRG图2A DEBFCPNMGH②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米,∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =.又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△.②∵P Qv v ≠,∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQ v t===厘米/秒。
苏教版初二上学期动点问题
如图,确定△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.假如点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时点Q在线段CA 上由C点向A点运动.当一个点停顿运动时时,另一个点也随之停顿运动.设运动时间为t.〔1〕用含有t的代数式表示CP.〔2〕假设点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP 是否全等,请说明理由;〔3〕假设点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?如图,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B启程,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:(1)PC=_________cm〔用t的代数式表示〕(2)当t为何值时,△ABP≌△DCP?〔3〕当点P从点B起先运动,同时,点Q从点C启程,以v cm/秒的速度沿CD向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?假设存在,恳求出v的值;假设不存在,请说明理由.如图,△ABC中,∠ACB=90°,AC=12,BC=16.点P从A点启程沿A-C-B路径向终点运动,终点为B点;点Q从B点启程沿B-C-A路径向终点运动,终点为A点.点P和Q分别以2和6的运动速度同时起先运动,两点都要到相应的终点时才能停顿运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.问:点P运动多少时间时,△PEC与QFC全等?请说明理由.1.如图,确定正方形ABCD中,边长为10厘米,点E在AB边上,BE=6厘米.〔1〕假如点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q 在线段CD上由C点向D点运动.①假设点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP 是否全等,请说明理由;②假设点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPE与△CQP全等?〔2〕假设点Q以②中的运动速度从点C启程,点P以原来的运动速度从点B同时启程,都逆时针沿正方形ABCD四边运动,求经过多长时间点P与点Q第一次在正方形ABCD边上的何处相遇?(1)操作发觉:如图①,D是等边△ABC边BA上一动点〔点D与点B不重合〕,连接DC,以DC为边在BC上方作等边△DCF,连接AF.你能发觉线段AF与BD之间的数量关系吗?并证明你发觉的结论.〔2〕类比猜测:如图②,当动点D运动至等边△ABC边BA的延长线上时,其他作法与〔1〕一样,猜测AF与BD在〔1〕中的结论是否仍旧成立?〔3〕深化探究:Ⅰ.如图③,当动点D在等边△ABC边BA上运动时〔点D与点B不重合〕连接DC,以DC为边在BC上方、下方分别作等边△DCF和等边△DCF′,连接AF、B F′,探究AF、B F′与AB有何数量关系?并证明你探究的结论.Ⅱ.如图④,当动点D在等边△边BA的延长线上运动时,其他作法与图③一样,Ⅰ中的结论是否成立?假设不成立,是否有新的结论?并证明你得出的结论.如图,确定△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.〔1〕假如点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①假设点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②假设点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?〔2〕假设点Q以②中的运动速度从点C启程,点P以原来的运动速度从点B同时启程,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?如图,在等边△ABC中,AB=9cm,点P从点C启程沿CB边向点B点以2cm/s 的速度移动,点Q点从B点启程沿BA边向A点以5cm/s速度移动.P、Q两点同时启程,它们移动的时间为t秒钟.〔1〕你能用t表示BP和BQ的长度吗?请你表示出来.〔2〕请问几秒钟后,△PBQ为等边三角形?〔3〕假设P、Q两点分别从C、B两点同时启程,并且都按顺时针方向沿△ABC 三边运动,请问经过几秒钟后点P与点Q第一次在△ABC的哪条边上相遇?问题情境:如图1,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,可知:∠BAD=∠C〔不须要证明〕;特例探究:如图2,∠MAN=90°,射线AE在这个角的内部,点B、C在∠MAN 的边AM、AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.证明:△ABD≌△CAF;归纳证明:如图3,点B,C在∠MAN的边AM、AN上,点E,F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.确定AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF;拓展应用:如图4,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.假设△ABC的面积为15,那么△ACF 与△BDE的面积之和为.如图①,确定△ABC是等腰直角三角形,∠BAC=90°,BC=2,AD是BC边上的高.作正方形DEFG,使点A、C分别在DG和DE上,且DE=BC,且连接AE、BG.〔1〕试猜测线段BG和AE的数量关系,请干脆写出你得到的结论;〔2〕将正方形DEFG绕点D逆时针方向旋转必须角度后〔旋转角度大于0°,或小于90°〕,DG、DE分别交AB、AC于点M和N〔如图②〕,那么〔1〕中的结论是否仍旧成立?假如成立,请予以证明;假如不成立,请说明理由.〔3〕在〔2〕的状况下,当AE∥BC时,求AM的值.如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,假设点B,P 在直线a的异侧,BM⊥直线a于点M.CN⊥直线a于点N,连接PM,PN.〔1〕延长MP交CN于点E〔如图2〕.①求证:△BPM≌△CPE;②求证:PM=PN;〔2〕假设直线a绕点A旋转到图3的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?假设成立,请赐予证明;假设不成立,请说明理由;〔3〕假设直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请干脆判定四边形MBCN的形态及此时PM=PN还成立吗?不必说明理由.如图〔1〕,在等边的顶点B、C处各有一只蜗牛,它们同时启程△ABC分别以每分钟1各单位的速度油B向C和由C向A爬行,其中一只蜗牛爬到终点s时,另一只也停顿运动,经过t分钟后,它们分别爬行到D,P处,请问:〔1〕在爬行过程中,BD和AP始终相等吗?为什么?〔2〕问蜗牛在爬行过程中BD与AP所成的∠DQA大小有无改变?请证明你的结论.〔3〕假设蜗牛沿着BC和CA的延长线爬行,BD与AP交于点Q,其他条件不变,如图〔2〕所示,蜗牛爬行过程中的∠DQA大小改变了吗?假设无改变,请证明.假设有改变,请干脆写出∠DQA的度数.。
苏教版八年级上册复习专题练习一:动点问题压轴题(含答案)
初二数学期中复习专题一:动点问题3、动点中的旋转问题1、如图,在等边△ABC 中,AC=9,点O 在AC 上,且AO=3,点P 是AB 上一动点,连接OP,将线段OP 绕点O 逆时针旋转60°得到线段OD.要使点D 恰好落在BC 上,则AP 的长是.2、如图所示:一副三角板如图放置,等腰直角三角板ABC 固定不动,另一块三角板的直角顶点放在等腰直角三角形的斜边中点D 处,且可以绕点D 旋转,在旋转过程中,两直角边的交点G、H 始终在边AB、BC 上.(1)在旋转过程中线段BG 和CH 大小有何关系?证明你的结论.(2)若AB=BC=4cm,在旋转过程中四边形GBHD 的面积是否改变?若不变,求出它的值;若改变,求出它的取值范围.(3)若交点G、H 分别在边AB、BC 的延长线上,则(1)中的结论仍然成立吗?请画出相应的图形,直接写出结论.3、如图1,已知△ABC 是等腰直角三角形,∠BAC=90°,点D 是BC 的中点.作正方形DEFG,使点A、C 分别在DG 和DE 上,连接AE,BG.(1)试猜想线段BG 和AE 的数量关系是;(2)将正方形DEFG绕点D逆时针方向旋转α(0°<α≤360°),①判断(1)中的结论是否仍然成立?请利用图2 证明你的结论;②若BC=DE=4,当AE 取最大值时,求AF 的值.4、点的移动问题4、如图1,在△ABC 中,点P 为BC 边中点,直线a 绕顶点A 旋转,若B、P 在直线a 的异侧,BM⊥直线a 于点M,CN⊥直线a 于点N,连接PM、PN;(1)延长MP交CN于点E(如图2),①求证:△BPM≌△CPE;②求证:PM=PN;(2)若直线a 绕点A 旋转到图3 的位置时,点B、P 在直线a 的同侧,其它条件不变,此时PM=PN 还成立吗?若成立,请给予证明;若不成立,请说明理由.5、在△ABC 中,∠BAC=90°,AB=AC.点D 从点B 出发沿射线BC 移动,以AD 为边在AB 的右侧作△ADE,且∠DAE=90°,AD=AE.连接CE.(1)如图1,若点D 在BC 边上,则∠BCE=°;(2)如图2,若点D 在BC 的延长线上运动.①∠BCE 的度数是否发生变化?请说明理由;②若BC=3,CD=6,则△ADE 的面积为.6、在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D 在线段BC 上,如果∠BAC=90°,则∠BCE=度;(2)设∠BAC=α,∠BCE=β.①如图2,当点D 在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D 在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.7、一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH 的边长为1 米,∠B=90°,BC=4 米,AC=8 米,当正方形DEFH 运动到什么位置时,即当AE=米时,有DC2=AE2+BC2.8、【新知学习】如果一个三角形有一边上的中线等于这条边的一半,那么我们就把这样的三角形叫做“智慧三角形”.【简单运用】(1)下列三个三角形,是智慧三角形的是(填序号);(2)如图1,已知等边三角形ABC,请用刻度尺在该三角形边上找出所有满足条件的点D,使△ABD 为“智慧三角形”,并写出作法;【深入探究】(3)如图2,在正方形ABCD 中,点E 是BC 的中点,F 是CD 上一点,且CF=CD,试判断△AEF 是否为“智慧三角形”,并说明理由;【灵活应用】(4)如图3,等边三角形ABC 边长5cm.若动点P 以1cm/s 的速度从点A 出发,沿△ABC 的边AB ﹣BC﹣CA 运动.若另一动点Q 以2cm/s 的速度从点B 出发,沿边BC﹣CA﹣AB 运动,两点同时出发,当点Q首次回到点B时,两点同时停止运动.设运动时间为t(s),那么t为.(s)时,△PBQ为“智慧三角形”.动点问题压轴题1、【解答】解:∵∠A+∠APO=∠POD+∠COD,∠A=∠POD=60°,∴∠APO=∠COD,在△APO 和△COD 中,,∴△APO≌△COD(AAS),即AP=CO,∵CO=AC﹣AO=6,∴AP=6.故答案为6.2、【解答】解:(1)BG和CH为相等关系,如图1,连接BD,∵等腰直角三角形ABC,D 为AC 的中点,∴DB=DC=DA,∠A=∠DBH=45°,BD⊥AC,∵∠EDF=90°,∴∠ADG+∠GDB=90°,∴∠BDG+∠BDH=90°,∴∠ADG=∠HDB,∴在△ADG 和△BDH 中,,∴△ADG≌△BDH(ASA),∴AG=BH,∵AB=BC,∴BG =HC ,(2) ∵等腰直角三角形 ABC ,D 为 AC 的中点,∴DB =DC =DA ,∠DBG =∠DCH =45°,BD ⊥AC ,∵∠GDH =90°,∴∠GDB +∠BDH =90°,∴∠CDH +∠BDH =90°,∴∠BDG =∠HDC ,∴在△BDG 和△CDH 中,,∵△BDG ≌△CDH (ASA ),∴S 四边形 DGBH =S △BDH +S △GDB =S △ABD ,∵DA =DC =DB ,BD ⊥AC ,∴S △ABD = S △ABC ,∴S 四边形 DGBH =S △ABC =4cm 2,∴在旋转过程中四边形 GBHD 的面积不变,(3) 当三角板 DEF 旋转至图 2 所示时,(1)的结论仍然成立,如图 2,连接 BD ,∵BD ⊥AC ,AB ⊥BH ,ED ⊥DF ,∴∠BDG =90°﹣∠CDG ,∠CDH =90°﹣∠CDG ,∴∠BDG =∠CDH ,∵等腰直角三角形 ABC ,∴∠DBC =∠BCD =45°,∴∠DBG =∠DCH =135°,∴在△DBG 和△DCH 中,,∴△DBG ≌△DCH (ASA ),∴BG =CH .3、.【分析】(1)由等腰直角三角形的性质及正方形的性质就可以得出△ADE≌△BDG 就可以得出结论;(2)①如图2,连接AD,由等腰直角三角形的性质及正方形的性质就可以得出△ADE≌△BDG 就可以得出结论;②由①可知BG=AE,当BG 取得最大值时,AE 取得最大值,由勾股定理就可以得出结论.【解答】解:(1)BG=AE.理由:如图1,∵△ABC 是等腰直角三角形,∠BAC=90°,点D 是BC 的中点,∴AD⊥BC,BD=CD,∴∠ADB=∠ADC=90°.∵四边形DEFG 是正方形,∴DE=DG.在△BDG 和△ADE 中,,∴△ADE≌△BDG(SAS),∴BG=AE.故答案为:BG=AE;(2)①成立BG=AE.理由:如图2,连接AD,∵在Rt△BAC 中,D 为斜边BC 中点,∴AD=BD,AD⊥BC,∴∠ADG+∠GDB=90°.∵四边形EFGD 为正方形,∴DE=DG,且∠GDE=90°,∴∠ADG+∠ADE=90°,∴∠BDG=∠ADE.在△BDG 和△ADE 中,,∴△BDG≌△ADE(SAS),∴BG=AE;②∵BG=AE,∴当BG 取得最大值时,AE 取得最大值.如图3,当旋转角为270°时,BG =AE.∵BC=DE=4,∴BG=2+4=6.∴AE=6.在Rt△AEF 中,由勾股定理,得AF==,∴AF=2 .4、【解答】证明:(1)①如图2:∵BM⊥直线a 于点M,CN⊥直线a 于点N,∴∠BMA=∠CNM=90°,∴BM∥CN,∴∠MBP=∠ECP,又∵P 为BC 边中点,∴BP=CP,在△BPM 和△CPE 中,,∴△BPM≌△CPE,(ASA)②∵△BPM≌△CPE,∴PM=PE∴PM=ME,∴在Rt△MNE 中,PN=ME,∴PM=PN;(2)成立,如图3.延长MP 与NC 的延长线相交于点E,∵BM⊥直线 a 于点M,CN⊥直线a 于点N,∴∠BMN=∠CNM=90°∴∠BMN+∠CNM=180°,∴BM∥CN∴∠MBP=∠ECP,又∵P 为BC 中点,∴BP=CP,在△BPM 和△CPE 中,,∴△BPM≌△CPE,(ASA)∴PM=PE,∴PM=ME,则Rt△MNE 中,PN=ME,∴PM=PN.5、【解答】解:(1)∵△ABC和△ADE都是等腰Rt△,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAD=∠CAE.在△ACE 和△ABD 中,,∴△ACE≌△ABD(SAS);∴∠ACE=∠ABD=45°,∴∠BCE=∠BCA+∠ACE=45°+45°=90°;故答案为:90;(2)①不发生变化.∵AB=AC,∠BAC=90°∴∠ABC=∠ACB=45°,∵∠BAC=∠DAE=90°∴∠BAC+∠DAC=∠DAE+∠DAC∴∠BAD=∠CAE,在△ACE 和△ABD 中∴△ACE≌△ABD(SAS)∴∠ACE=∠ABD=45°∴∠BCE=∠BCA+∠ACE=45°+45°=90°∴∠BCE 的度数不变,为90°;② 11746、【解答】解:(1)90°.理由:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.即∠BAD=∠CAE.在△ABD 与△ACE 中,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB,∴∠BCE=∠B+∠ACB,又∵∠BAC=90°∴∠BCE=90°;(2)①α+β=180°,理由:∵∠BAC=∠DAE,∴∠BAD+∠DAC=∠EAC+∠DAC.即∠BAD=∠CAE.在△ABD 与△ACE 中,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB.∴∠B+∠ACB=β,∵α+∠B+∠ACB=180°,∴α+β=180°;②当点D 在射线BC 上时,α+β=180°;理由:∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵在△ABD 和△ACE 中∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠BAC+∠ABD+∠BCA=180°,∴∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°,∴α+β=180°;当点D 在射线BC 的反向延长线上时,α=β.理由:∵∠DAE=∠BAC,∴∠DAB=∠EAC,∵在△ADB 和△AEC 中,∴△ADB≌△AEC(SAS),∴∠ABD=∠ACE,∵∠ABD=∠BAC+∠ACB,∠ACE=∠BCE+∠ACB,∴∠BAC=∠BCE,即α=β.7、【解答】解:如图,连接CD,假设AE=x,可得EC=8﹣x.∵正方形DEFH 的边长为1 米,即DE=1 米,∴DC2=DE2+EC2=1+(8﹣x)2,AE2+BC2=x2+16,∵DC2=AE2+BC2,∴1+(8﹣x)2=x2+16,解得:x=,所以,当AE=米时,有DC2=AE2+BC2.故答案是:.8、【解答】解:(1)因为直角三角形的斜边上的中线等于斜边的一半,所以①是“智慧三角形”.故答案为①(2)用刻度尺分别量取AC、BC 的中点D、D′.点D、D′即为所求.(3)结论:△AEF 是“智慧三角形“.理由如下:如图,设正方形的边长为4a∵E 是BC 的中点∴BE=EC=2a,∵CF=CD∴FC=a,DF=4a﹣a=3a,在Rt△ABE 中,AE2=(4a)2+(2a)2=20a2在Rt△ECF 中,EF2=(2a)2+a2=5a2在Rt△ADF 中,AF2=(4a)2+(3a)2=25a2∴AE2+EF2=AF2∴△AEF 是直角三角形,∠AEF=90°∵直角三角形斜边AF 上的中线等于AF 的一半∴△AEF为“智慧三角形”.(4)如图3 中,①当点P 在线段AB 上,点Q 在线段BC 上时,若∠PQB=90°,则BP=2BQ,∴5﹣t=4t,解得t=1.若∠BPQ=90°,则BQ=2PB,∴2t=2(5﹣t)∴t=.②当点Q在线段AC上时,不存在“智慧三角形”.③当点P 在线段BC 上,点Q 在线段AB 上时,若∠PQB=90°,则BP=2BQ,∴t﹣5=2(15﹣2t),∴t=7,若∠QPB=90°,则BQ=2PB,∴15﹣2t=2(t﹣5),∴t=,综上所述,满足条件的t 的值为1 或或或7.故答案为1 或或或7.。
(完整版)初二数学动点问题练习(含答案)
lEODCM C EDN 图 3动态问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 数形结合思想 转化思想1、如图 1,梯形 ABCD 中,AD ∥ BC ,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点 P 从A 开始沿 AD 边以 1cm/秒的速度移动,点 Q 从 C 开始沿 CB 向点 B 以 2 cm/秒的速度移动, 如果 P ,Q 分别从 A ,C 同时出发,设移动时间为 t 秒。
当 t= 时,四边形是平行四边形;6当 t=时,四边形是等腰梯形. 82、如图 2,正方形 ABCD 的边长为 4,点 M 在边 DC 上,且 DM=1,N 为对角线 AC 上任意一点,则 DN+MN 的最小值为 53、如图,在Rt △ABC 中, ∠ACB = 90°,∠° B = 60 , BC = 2 .点O 是 AC 的中点, 过点O 的直线l 从与 AC 重合的位置开始,绕点O 作逆时针旋转,交 AB 边于点 D .过点 C 作CE ∥ AB 交直线l 于点 E ,设直线l 的旋转角为.(1) ①当= 度时,四边形 EDBC 是等腰梯形,此时 AD 的长为 ; ②当= 度时,四边形 EDBC 是直角梯形,此时 AD 的长为 ;(2) 当= 90° 时,判断四边形 EDBC 是否为菱形,并说明理由.解:(1)①30,1;②60,1.5;(2)当∠α=900 时,四边形 EDBC 是菱形.∵∠α=∠ACB=900,∴BC //ED . ∵CE //AB , ∴四边形 EDBC 是平行四边形在 Rt △ABC 中,∠ACB =900,∠B =600,BC =2, ∴∠A =300.∴AB =4,AC =2 1AC . ∴AO = 2 = AB.在 Rt △AOD 中,∠A =300,∴AD =2.∴BD =2. ∴BD =BC . 又∵四边形 EDBC 是平行四边形, ∴四边形 EDBC 是菱形4、在△ABC 中,∠ACB=90°,AC=BC ,直线 MN 经过点 C ,且 AD ⊥MN 于AD ,BE ⊥MN 于 E.B(备用图)M DCE N ABAB图 1图 2N(1)当直线 MN 绕点 C 旋转到图 1 的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ; (2)当直线 MN 绕点 C 旋转到图 2 的位置时,求证:DE=AD-BE ;(3)当直线 MN 绕点 C 旋转到图 3 的位置时,试问 DE 、AD 、BE 具有怎样的等量关系?请写出这个等3 3 CO M CD ABED F图 2FD DF FD量关系,并加以证明.解:(1)① ∵∠ACD=∠ACB=90°∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90°∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB② ∵△ADC ≌△CEB ∴CE=AD ,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE 又∵AC=BC ∴△ACD ≌△CBE ∴CE=AD ,CD=BE ∴DE=CE-CD=AD-BE(3) 当 MN 旋转到图 3 的位置时,DE=BE-AD(或 AD=BE-DE ,BE=AD+DE 等)∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE , 又∵AC=BC , ∴△ACD ≌△CBE , ∴AD=CE ,CD=BE , ∴DE=CD-CE=BE-AD.5、数学课上,张老师出示了问题:如图 1,四边形 ABCD 是正方形,点 E 是边 BC 的中点.∠AEF = 90 ,且 EF 交正方形外角∠DCG 的平行线 CF 于点 F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取 AB 的中点 M ,连接 ME ,则 AM =EC ,易证 △≌AM △E ECF ,所以 AE = EF .在此基础上,同学们作了进一步的研究: (1) 小颖提出:如图 2,如果把“点 E 是边 BC 的中点”改为“点 E 是边 BC 上(除 B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2) 小华提出:如图 3,点 E 是 BC 的延长线上(除 C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理 由.解:(1)正确. A证明:在 AB 上取一点 M ,使 AM = EC ,连接 ME . A ∴ BM = BE .∴∠BME = 45° ,∴∠AME = 135° . M CF 是外角平分线,∴∠DCF = 45° ,∴∠ECF = 135° . ∴∠AME = ∠ECF . B ∠AEB + ∠BAE = 90° , ∠AEB + ∠CEF = 90° , E C G B G 图 1 A ∴ ∠BAE = ∠CEF . (2) 正确.∴△≌A M △EBCF (ASA ). ∴ AE = EF .证明:在 BA 的延长线上取一点 N .使 AN = CE ,连接 NE . B E CG∴ BN = BE . ∴∠N = ∠PCE = 45° . N四边形 ABCD 是正方形, ∴ AD ∥ BE . AA∴∠DAE = ∠BEA . ∴∠NAE = ∠CEF . ∴△≌A N △E ECF (ASA ). ∴ AE = EF .BC E GBC E G图 36、如图, 射线 MB 上,MB=9,A 是射线 MB 外一点,AB=5 且 A 到射线 MB 的距离为 3,动点 P 从 M 沿射 线 MB 方向以 1 个单位/秒的速度移动,设 P 的运动时间为 t. 求(1)△ PAB 为等腰三角形的 t 值;(2)△ PAB 为直角三角形的 t 值;(3) 若 AB=5 且∠ABM=45 °,其他条件不变,直接写出△ PAB 为直角三角形的 t 值D F22 -12A D EFAD E FA D E F A E PD N F7、如图 1,在等腰梯形 ABCD 中, AD ∥ BC , E 是 AB 的中点,过点 E 作 EF ∥ BC 交CD 于 点 F . AB = 4,BC = 6 ,∠B = 60︒.求:(1)求点 E 到 BC 的距离;(2)点 P 为线段 EF 上的一个动点,过 P 作 PM ⊥ EF 交 BC 于点 M ,过 M 作 MN ∥ AB 交折线ADC 于点 N ,连结 PN ,设 EP = x .①当点 N 在线段 AD 上时(如图 2), △PMN 的形状是否发生改变?若不变,求出△PMN 的周长;若改变,请说明理由;②当点 N 在线段 DC 上时(如图 3),是否存在点 P ,使△PMN 为等腰三角形?若存在,请求出所有满足要求的 x 的值;若不存在,请说明理由BCBMC BCM图 1 图 2图 3 (第 25 题) ADEFBC图 4(备用)B图 5(备用)CBE = 1AB = 2解(1)如图 1,过点E 作 EG ⊥ BC 于点G . ∵ E 为 AB 的中点, ∴ 2 BG = 1BE = 1,.E G ==在R t 即点E 到 BC 的距离为 3.3A NDE PF3NH 2+PH 2⎛5 ⎫2⎝2 ⎭⎪+⎛ 3 ⎫ 2⎝2 ⎭⎪ 73 73 3AE PDNFRA N DEPFH(2)①当点N 在线段AD 上运动时,△PMN 的形状不发生改变.∵PM⊥EEG ⊥EF ∴PM ∥.EG∵EF ∥,BC ∴EP =GM ,PM =EG =同理MN =AB = 4.如图 2,过点P 作PH ⊥MN 于H,∵ MN ∥,AB1∴∠∠N M,C∠=.B=60︒3 PMH = 30︒ ∴PH = PM =2 23 5∴MH =PM cos 30︒=2则NH =MN -MH = 4 -=2 2BG M C在Rt△PNH 中,PN ===图2∴△PMN 的周长= PM +PN +MN =++ 4.②当点N 在线段DC 上运动时,△PMN 的形状发生改变,但△MNC 恒为等边三角形.当PM =PN 时,如图 3,作PR ⊥MN 于R ,则MR =NR3类似①,MR =∴MN = 2MR = 32∵△MNC 是等边三角形,∴ MC =MN = 3 此时,x =EP =GM =BC -BG -MC = 6 -1- 3 = 2A DE P FNA DE F(PNBG M C BG MC BG MC图3 图4 图5当MP =MN 时,如图4,这时MC =MN =MP =此时,x =EP =GM = 6 -1-= 5 -当NP =NM 时,如图 5,∠∠N P.M = PMN = 30︒ 则∠,PMN=120︒又∠M,NC = 60︒∴∠P∠N.M + MNC = 180︒ 因此点P 与F 重合,△PMC 为直角三角形.∴MC =PM tan 30︒=1 此时,x =EP =GM = 6 -1-1 = 4综上所述,当x = 2 或 4 或(5 - 3 )时,△PMN 为等腰三角形.8、如图,已知△ABC 中,AB =AC = 10 厘米,BC = 8 厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动①若点Q 的运动速度与点P 的运动速度相等,经过1 秒后,△BPD 与△CQP是否全等,请说明理由;33DQ②若点 Q 的运动速度与点 P 的运动速度不相等,当点 Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(2)若点 Q 以②中的运动速度从点 C 出发,点 P 以原来的运动速度从点 B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点 P 与点 Q 第一次在△ABC 的哪条边上相遇?解:(1)①∵t = 1秒, ∴ BP = CQ = 3⨯1 = 3 厘米, ∵ AB = 10 厘米,点 D 为 AB 的中点, ∴ BD = 5 厘米.又∵ PC = BC - BP ,BC = 8 厘米, ∴ PC = 8 - 3 = 5 厘米, ∴ PC = BD .又∵AB = AC , ∴ ∠B = ∠C , ∴△≌B P △D CQP .BCP②∵ v P≠ v Q,∴ BP ≠ CQ , 又∵△≌B P △D CQP , ∠B = ∠C ,则BP = PC = 4,CQ = BD = 5 ,v = CQ = 5 = 15∴点 P ,点Q 运动的时间 t = BP =4 Qt 3 3 秒, ∴ 4 4 3 厘米/秒。
苏教版初二八下期中复习平行四边形动点问题含答案(非常好)
教学主题 特殊平行四边形动点问题教学目标重 要 知识点 1. 2. 3. 易错点教学过程特殊四边形:动点问题题型一:1.已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当PA +PD 取最小值时,△APD 中边AP 上的高为( )A 、17172B 、17174C 、 17178D 、32.如图,在梯形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间t=秒时,以点P,Q,E,D 为顶点的四边形是平行四边形.3.如图,在梯形ABCD中,AD∥BC,E是BC的中点,AD=5,BC=12,CD=42,∠C=045,点P是BC边上一动点,设PB长为x.(1)当x的值为时,以点P、A、D、E为顶点的四边形为平行四边形.(2)点P在BC边上运动的过程中,以点P、A、D、E为顶点的四边形能否构成菱形?试说明理由.4. 如图,在等腰梯形ABCD中,AB∥CD,其中AB=12 cm,CD=6cm ,梯形的高为4,点P从开始沿AB 边向点B以每秒3cm的速度移动,点Q从开始沿CD边向点D以每秒1cm的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达终点时运动停止。
设运动时间为t秒。
(1)求证:当t为何值时,四边形APQD是平行四边形;(2)PQ是否可能平分对角线BD?若能,求出当t为何值时PQ平分BD;若不能,请说明理由;5. 已知,矩形ABCD中,4=,AC的垂直平分线EF分别交AD、BC于点E、F,垂BC cm=,8AB cm足为O.(1)如图1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;(2)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿AFB ∆和CDE ∆各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.A B CD E F图1O图2ABCD E FPQ备用图ABCD E FPQ6、如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度运动,动点Q从点A出发,在线段AD上以每秒1cm的速度向点D运动,点P,Q分别从点B,A同时出发,当点Q运动到点D时,点P随之停止运动,设运动的时间为t(秒).①当t为何值时,四边形PQDC是平行四边形;②当t为何值时,以C,D,Q,P为顶点的梯形面积等于60cm2?题型二:1.如图,正方形ABCD的边长为4cm,两动点P、Q分别同时从D、A出发,以1cm/秒的速度各自沿着DA、AB边向A、B运动。
苏教版初二数学动点问题练习含答案
动态问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 数形结合思想 转化思想1、如图1,梯形ABCD 中,AD ∥ BC ,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P 从A 开始沿AD 边以1cm/秒的速度移动,点Q 从C 开始沿CB 向点B 以2 cm/秒的速度移动,如果P ,Q 分别从A ,C 同时出发,设移动时间为t 秒。
当t= 时,四边形是平行四边形;6 当t= 时,四边形是等腰梯形. 82、如图2,正方形ABCD 的边长为4,点M 在边DC 上,且DM=1,N 为对角线AC 上任意一点,则DN+MN 的最小值为 53、如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ;②当α= 度时,四边形EDBC 是直角梯形,此时AD 的长为 ; (2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由. 解:(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC 是菱形.∵∠α=∠ACB=900,∴BC //ED . ∵CE //AB , ∴四边形EDBC 是平行四边形 在Rt △ABC 中,∠ACB =900,∠B =600,BC =2, ∴∠A =300.∴AB =4,AC∴AO =12AC.在Rt △AOD 中,∠A =300,∴AD =2.∴BD =2. ∴BD =BC . 又∵四边形EDBC 是平行四边形,∴四边形EDBC 是菱形4、在△ABC 中,∠ACB =90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E.(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明. 解:(1)① ∵∠ACD=∠ACB=90° ∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90° ∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB ② ∵△ADC ≌△CEB ∴CE=AD ,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE 又∵AC=BC(备用图) C B E D 图1 N M A B C D E M 图2A CB E D N M 图3∴△ACD ≌△CBE ∴CE=AD ,CD=BE ∴DE=CE-CD=AD-BE(3) 当MN 旋转到图3的位置时,DE=BE-AD(或AD=BE-DE ,BE=AD+DE 等) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE , 又∵AC=BC , ∴△ACD ≌△CBE , ∴AD=CE ,CD=BE , ∴DE=CD-CE=BE-AD.5、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由. 解:(1)正确. 证明:在AB 上取一点M ,使AM EC =,连接ME . BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°. CF 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°. AME ECF ∴∠=∠. 90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠. AME BCF ∴△≌△(ASA ). AE EF ∴=. (2)正确.证明:在BA 的延长线上取一点N .使AN CE =,连接NE .BN BE ∴=. 45N PCE ∴∠=∠=°. 四边形ABCD 是正方形, AD BE ∴∥. DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). AE EF ∴=. 6、如图, 射线MB 上,MB=9,A 是射线MB 外一点,AB=5且A 到射线MB 的距离为3,动点P 从M 沿射线MB 方向以1个单位/秒的速度移动,设P 的运动时间为t. 求(1)△ PAB 为等腰三角形的t 值;(2)△ PAB 为直角三角形的t 值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB 为直角三角形的t 值7、如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠.求:(1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.①当点N 在线段AD 上时(如图2),P M N △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由;A D F C GE B 图1 AD FC GE B 图3A D F CGE B 图2A D F C G EB M A D FC G E B N②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由解(1)如图1,过点E 作EG BC⊥于点G . ∵E 为AB 的中点,∴122BE AB ==.在Rt EBG△中,60B =︒∠, ∴30BEG =︒∠.∴112BG BE EG ====,即点E 到BC(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变.∵PM EF EG EF ⊥⊥,, ∴PM EG ∥. ∵EF BC ∥, ∴EP GM =,PM EG == 同理4MN AB ==. 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥,∴6030NMC B PMH ==︒=︒∠∠,∠.∴12PH PM == ∴3cos302MH PM =︒=. 则35422NH MN MH =-=-=.在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++=.②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形. 当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =.∴23MN MR ==. ∵MNC △是等边三角形,∴3MC MN ==.此时,6132x EP GM BC BG MC ===--=--=.当A DE B FCPN MA D E BFCP MN A D EBF (P ) CMN G GR G图1A D EB F CG图2A D EB FCPNMG HA D E BFC图4(备A D E BF C图5(备A D E BF C 图1图2A DE BF C PN M图3A D EBFCP N M (第25题)MP MN =时,如图4,这时MC MN MP ===此时,615x EP GM ===--= 当NP NM =时,如图5,30NPM PMN ==︒∠∠. 则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠. 因此点P 与F 重合,PMC △为直角三角形. ∴tan301MC PM =︒=. 此时,6114x EP GM ===--=. 综上所述,当2x =或4或(5时,PMN △为等腰三角形.8、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇? 解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米, ∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△. ②∵P Qv v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQ v t===厘米/秒。
初二数学动点问题练习(含问题详解)
动态问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目•解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题•关键:动中求静•数学思想:分类思想数形结合思想转化思想1、如图1,梯形ABCD 中,AD // BC,/ B=90 ° , AB=14cm,AD=18cm,BC=21cm,点P 从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P, Q 分别从A , C同时出发,设移动时间为t秒。
当t= _____ 时,四边形是平行四边形;6当t= _____ 时,四边形是等腰梯形• 82、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1 , N为对角线AC上任意一点,则DN+MN的最小值为 _________ 53、如图,在Rt△ABC中,/ACB =9°°乙B =6°, BC =2 •点°是AC的中点,过点°的直线l从与AC重合的位置开始,绕点。
作逆时针旋转,交AB边于点D •过点C作CE // AB交直线1于点E,设直线1的旋转角为〉.(1)①当'二_____________ 度时,四边形EDBC是等腰梯形,此时AD的长为____________②当-= 度时,四边形EDBC是直角梯形,此时AD的长为____________(2)当〉=90°时,判断四边形EDBC是否为菱形,并说明理由.解:(1 [① 30, 1 :② 60, 1.5;(2)当/ a =90°时,四边形EDBC是菱形••••/ a =/ACB=90 0,A BC//ED. T CE//AB,二四边形EDBC 是平行四边形在Rt△ABC 中,/ ACB=900,/ B=600,BC=2, /./ A=300.32AC/3 0••• AB=4,AC=22 • .•. A°= 2= 3•在Rt△ A°D 中,/ A=30,- AD=2.••• BD=2.• BD=BC. 又•••四边形EDBC是平行四边形,•四边形EDBC是菱形4、在△ ABC 中,/ ACB=90°, AC=BC,直线MN 经过点C,且AD 丄MN 于D,B(1) 当直线 MN 绕点C 旋转到图1的位置时,求证:①△ ADC ◎△ CEB •,②DE=AD + BE ; ⑵当直线 MN 绕点C 旋转到图2的位置时,求证: DE=AD-BE ; ⑶当直线MN 绕点C 旋转到图3的位置时,试问 DE 、AD 、BE 具有怎样的等量关系?请写出这个等量 关系,并加以证明• 解:(1 [① •••/ ACD= / ACB=90 •••/ CAD+ / ACD=90 /-Z BCE+ / ACD=90 •••/ CAD= Z BCE •/ AC=BC ADC ◎△ CEB ② •/△ ADC ◎△ CEB • CE=AD , CD=BE • DE=CE+CD=AD+BE (2) T Z ADC= Z CEB= Z ACB=90° ACD= Z CBE 又 ■: AC=BC ACD ◎△ CBE • CE=AD , CD=BE • DE=CE-CD=AD-BE (3) 当 MN 旋转至U 图 3 的位置时,DE=BE-AD(或 AD=BE-DE , BE=AD+DE 等) •/Z ADC= Z CEB= Z ACB=90°/Z ACD= Z CBE , 又 ■: AC=BC , ACD ◎△ CBE , • AD=CE , CD=BE , • DE=CD-CE=BE-AD.5、数学课上,张老师出示了问题: 如图1,四边形ABCD 是正方形,点E 是边BC 的中点..AEF =90:, 且EF 交正方形外角.DCG 的平行线CF 于点F ,求证:AE=EF. 经过思考,小明展示了一种正确的解题思路:取 AB 的中点 M 连接 ME 则 AM =EC,易证 △AME ECF ,所以 AE =EF . 在此基础上,同学们作了进一步的研究: (1 )小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点 E 是边BC 上(除B, C 外)的任意 一点”,其它条件不变,那么结论“ AE=EF'仍然成立,你认为小颖的观点正确吗?如果正确,写出证明 过程;如果不正确,请说明理由; (2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE=EF' 仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程; 解:(1)正确. 证明:在 AB 上取一点M ,使AM -EC ,连接ME .二 BM =BE •二N BME =45° :上 AME =135° . ?CF 是外角平分线,二/ DCF =45。
2022-2023学年八年级数学常考点精练(苏科版):专题07 动点中的全等(解析版)
专题07动点中的全等1.如图,在长方形ABCD 中,4AB ,6AD ,延长BC 到点E ,使2CE .动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA 方向向终点A 运动.设点P 的运动时间为t 秒,当ABP △和DCE 全等时,t 的值是()A .1B .1或3C .1或7D .3或7【答案】C【解析】【分析】分两种情况进行讨论,根据题意得出22BP t 和1622AP t 即可求得.【详解】解:因为AB CD ,若90ABP DCE ,2BP CE ,根据SAS 证得ABP DCE ,由题意得:22BP t ,所以1t ,因为AB CD ,若90BAP DCE ,2AP CE ,根据SAS 证得BAP DCE ,由题意得:1622AP t ,解得7t .所以,当t 的值为1或7秒时.ABP 和DCE 全等.故选:C .【点睛】本题考查了全等三角形的判定,解题的关键是掌握判定方法有:ASA ,SAS ,AAS ,SSS ,HL .2.如图,在正方形ABCD 中,AB =4,E 是BC 上的一点且CE =3,连接DE ,动点M 从点A 以每秒2个单位长度的速度沿AB -BC -CD -DA 向终点A 运动,设点M 的运动时间为t 秒,当△ABM 和△DCE 全等时,t的值是()A.3.5B.5.5C.6.5D.3.5或6.5【答案】D【解析】【分析】分两种情况进行讨论,根据题意得出BM=2t-4=3和AM=16-2t=3即可求得.【详解】解:如图,当点M在BC上时,∵△ABM′和△DCE全等,∴BM=CE,由题意得:BM′=2t-4=3,所以t=3.5(秒);当点M在AD上时,∵△ABM″和△CDE全等,∴AM″=CE,由题意得:AM″=16-2t=3,解得t=6.5(秒).所以,当t的值为3.5秒或6.5秒时.△ABM和△DCE全等.故选:D.【点睛】本题考查了正方形的性质、全等三角形的判定,解题的关键是掌握正方形的性质.3.如图,在△ABC中,AC=BC,∠ACB=90°,M是AB边上的中点,点D、E分别是AC、BC边上的动点,DE与CM相交于点F且∠DME=90°.则下列5个结论:(1)图中共有两对全等三角形;(2)△DEM 是等腰三角形;(3)∠CDM=∠CFE;(4)AD+BE=AC;(5)四边形CDME的面积发生改变.其中正确的结论有个()A.2B.3C.4D.5【答案】B【解析】【分析】根据等腰三角形的性质,三角形内角和定理,得出,△AMC≌△BMC、△AMD≌△CME、△CMD≌△BME,根据全等三角形的性质得出DM=ME得出△DEM是等腰三角形,及∠CDM=∠CFE,AD+BE=AC,进而根据12CEM CDM ADM CDM ACM ABCCDMES S S S S S S四边形可得出结论.【详解】解:如图在R t△ABC中,∠ACB=90°,M为AB中点,AB=BC∴AM=CM=BM,∠A=∠B=∠ACM=∠BCM=45°,∠AMC=∠BMC=90°∵∠DME=90°∴∠1+∠2=∠2+∠3=∠3+∠4=90°∴∠1=∠3,∠2=∠4在△AMC和△BMC中AM BM MC MC AC BC∴△AMC ≌△BMC在△AMD 和△CME 中13A MCE AM CM∴△AMD ≌△CME在△CDM 和△BEM ∠퐷� =∠�� =� ∠2=∠4∴△CMD ≌△CME共有3对全等三角形,故(1)错误∵△AMD ≌△BME∴DM =ME∴△DEM 是等腰三角形,(2)正确∵∠DME =90°.∴∠EDM =∠DEM =45°,∴∠CDM =∠1+∠A =∠1+45°,∴∠CFE =∠3+∠DEM =∠3+45°,∴∠CDM =∠CFE故(3)正确∵CE =AD ,BE =CD∴AD +BE =AD DC AC ;故(4)正确(5)∵△ADM ≌△CEM∴ADM CEMS S ∴12CEM CDM ADM CDM ACM ABC CDME S S S S S S S 四边形不变,故(5)错误故正确的有3个故选B【点睛】本题主要考查了等腰直角三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识,通过推理论证每个命题的正误是解决此类题目的关键.4.如图,在矩形ABCD中,AB=8cm,AD=12cm,点P从点B出发,以2cm/s的速度沿BC边向点C 运动,到达点C停止,同时,点Q从点C出发,以vcm/s的速度沿CD边向点D运动,到达点D停止,规定其中一个动点停止运动时,另一个动点也随之停止运动.当v为______时,△ABP与△PCQ全等.【答案】2或8 3【解析】【详解】可分两种情况:①△ABP≌△PCQ得到BP=CQ,AB=PC,②△ABP≌△QCP得到BA=CQ,PB=PC,然后分别计算出t的值,进而得到v的值.【解答】解:①当BP=CQ,AB=PC时,△ABP≌△PCQ,∵AB=8cm,∴PC=8cm,∴BP=12﹣8=4(cm),∴2t=4,解得:t=2,∴CQ=BP=4cm,∴v×2=4,解得:v=2;②当BA=CQ,PB=PC时,△ABP≌△QCP,∵PB=PC,∴BP=PC=6cm,∴2t=6,解得:t=3,∵CQ =AB =8cm ,∴v ×3=8,解得:v =83,综上所述,当v =2或83时,△ABP 与△PQC 全等,故答案为:2或83.【点睛】此题考查了动点问题,全等三角形的性质的应用,解一元一次方程,正确理解全等三角形的性质得到相等的对应边求出t 是解题的关键.5.如图,在△ABC 中,90ACB ,AC =8cm ,BC =10cm .点C 在直线l 上,动点P 从A 点出发沿A →C 的路径向终点C 运动;动点Q 从B 点出发沿B →C →A 路径向终点A 运动.点P 和点Q 分别以每秒1cm 和2cm 的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,分别过点P 和Q 作PM ⊥直线l 于M ,QN ⊥直线l 于N .则点P 运动时间为____秒时,△PMC 与△QNC 全等.【答案】2或6##6或2【解析】【分析】设点P 运动时间为t 秒,根据题意化成两种情况,由全等三角形的性质得出C P C Q ,列出关于t 的方程,求解即可.【详解】解:设运动时间为t 秒时,△PMC ≌△CNQ ,∴斜边C P C Q ,分两种情况:①如图1,点P 在AC 上,点Q 在BC 上,图1∵AP t ,2BQ t ,∴8CP AC AP t ,102CQ BC BQ t ,∵C P C Q ,∴8102t t ,∴2t ;②如图2,点P 、Q 都在AC 上,此时点P 、Q 重合,图2∵8CP AC AP t ,210CQ t ,∴8210t t ,∴6t ;综上所述,点P 运动时间为2或6秒时,△PMC 与△QNC 全等,故答案为:2或6.【点睛】本题考查了全等三角形的性质和判定的应用,根据题意判断两三角形全等的条件是解题关键,同时要注意分情况讨论,解题时避免遗漏答案.6.如图,直线PQ 经过Rt △ABC 的直角顶点C ,△ABC 的边上有两个动点D 、E ,点D 以1cm /s 的速度从点A 出发,沿AC →CB 移动到点B ,点E 以3cm /s 的速度从点B 出发,沿BC →CA 移动到点A ,两动点中有一个点到达终点后另一个点继续移动到终点.过点D 、E 分别作DM ⊥PQ ,EN ⊥PQ ,垂足分别为点M 、N ,若AC =6cm ,BC =8cm ,设运动时间为t ,则当t =__________s 时,以点D 、M 、C 为顶点的三角形与以点E、N、C为顶点的三角形全等.【答案】1或72或12【解析】【分析】由以点D、M、C为顶点的三角形与以点E、N、C为顶点的三角形全等.可知CE=CD,而CE,CD的表示由E,D的位置决定,故需要对E,D的位置分当E在BC上,D在AC上时或当E在AC上,D在AC上时,或当E到达A,D在BC上时,分别讨论.【详解】解:当E在BC上,D在AC上,即0<t≤83时,CE=(8-3t)cm,CD=(6-t)cm,∵以点D、M、C为顶点的三角形与以点E、N、C为顶点的三角形全等.∴CD=CE,∴8-3t=6-t,∴t=1s,当E在AC上,D在AC上,即83<t<143时,CE=(3t-8)cm,CD=(6-t)cm,∴3t-8=6-t,∴t=72s,当E到达A,D在BC上,即143≤t≤14时,CE=6cm,CD=(t-6)cm,∴6=t-6,∴t=12s,故答案为:1或72或12.【点睛】本题主要考查了三角形全等的性质,解决问题的关键是对动点所在的位置进行分类,分别表示出每种情况下CD和CE的长.三、解答题(共0分)7.如图,已知四边形ABCD中,AB=BC=8cm,CD=6cm,∠B=∠C,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速运动,点Q运动的速度是每秒2cm,点P运动的速度是每秒a cm(a≤2),当点Q到达点C时,P、Q两点都停止运动,设运动时间为t秒,(1)BQ=;BP=;(用含a或t的代数式表示)(2)运动过程中,连接PQ、DQ,△BPQ与△CDQ是否全等?若能,请求出相应的t和a的值;若不能,请说明理由.【答案】(1)2t cm,(8﹣at)cm;(2)a=2,t=3或a=1,t=2【解析】【分析】(1)根据路程=速度×时间求解;(2)分2种情况,根据全等三角形的性质列方程求解;【详解】解:(1)由题意得,AP =atcm ,BP =(8﹣at )cm ,BQ =2tcm ,故答案为:2tcm ,(8﹣at )cm ;(2)△BPQ 与△CDQ 能全等;∵∠B =∠C ,∴△BPQ 与△CDQ 全等存在两种情况:①当△PBQ ≌△QCD 时,PB =CQ ,BQ =CD ,∴2t =6,8﹣at =8﹣2t ,∴a =2,t =3;②当△PBQ ≌△DCQ 时,PB =DC ,BQ =CQ ,∴8﹣at =6,2t =8﹣2t ,∴a =1,t =2;综上,△BPQ 与△CDQ 能全等,此时a =2,t =3或a =1,t =2.【点睛】本题考查了全等三角形的性质,分类讨论是解答本题的关键.8.如图①,线段6BC ,过点B 、C 分别作垂线,在其同侧取4AB ,另一条垂线上任取一点D .动点P 从点B 出发,以每秒2个单位的速度沿BC 向终点C 运动;同时动点Q 从点C 出发,以每秒a 个单位的速度沿射线CD 运动,当点P 停止时,点Q 也随之停止运动.设点P 的运动的时间为 s t .(1)当1t ,CP ________,用含a 的代数式表示CQ 的长为_______.(2)当2,1a t 时,①求证:ABP PCQ △≌△.②求证:AP PQ .(3)如图②,将“过点B 、C 分别作垂线”改为“在线段BC 的同侧作ABC DCB ”,其它条件不变.若ABP △与PCQ △全等,直接写出对应的a 、t 的值.【答案】(1)4,a ;(2)①见解析;②见解析;(3)a =2,t =1或83a ,32t【解析】【分析】(1)根据题意得:212BP ,CQ a ,即可求解;(2)①根据题意可得BP =CQ =2,从而得到CP =AB ,即可求证;②根据全等三角形的对应角相等,三角形的外角性质,即可求解;(3)分两种情况讨论,即可求解.【详解】解:(1)根据题意得:212BP ,CQ a ,∴624CP BC BP ;(2)①∵AB ⊥BC ,CD ⊥BC ,∴∠B =∠C =90°.∵2,1a t ,∴BP =CQ =2,∵BC =6,∴CP =AB =4,∴△ABP ≌△PCQ ;②∵△ABP ≌△PCQ ,∴∠A =∠CPQ ,∵∠APC =∠CPQ +∠APQ ,∠APC =∠A +∠B ,∴∠APQ =∠B =90°.∴AP ⊥PQ ;(3)当△ABP ≌△PCQ 时,即PC =AB =4,QC =BP =2t ,∴BP =BC -PC =2,∴2t =2,解得:t =1,∴QC =2,∴2QC a t,当△ABP ≌△QCP 时,即QC =AB =4,BP =CP =132BC ,∴322BP t,∴48332QC a t ,综上所述,当ABP △与PCQ △全等时,a =2,t =1或83a ,32t .【点睛】本题主要考查了全等三角形的判定和性质,动点问题,明确题意,准确得到全等三角形是解题的关键.9.如图,ABC 中,AB AC ,90BAC ,6BC cm ,过点C 作直线l BC ,动点P 从点C 开始沿射线CB 的方向以2cm /s 的速度运动,动点Q 也同时从点C 出发在直线l 上以1cm /s 的速度向上或向下运动,连接AP ,AQ ,设运动时间为 s t.(1)写出CP 、CQ 的长度;(用含t 的关系式表示)(2)当t 为多少时,ABP △与ACQ 全等.【答案】(1)2CP tcm ,CQ tcm ;(2)2s 或6s【解析】【分析】(1)由路程=速度×时间,可得CP 、CQ 的长度;(2)分两种情况讨论,第一种是当点P 在线段BC 上,Q 在点C 的上方;第二种是当点P 在线段CB 的延长线上,Q 在点C 的下方,由全等三角形的判定可得BP =CQ 时,两三角形全等,即可求解.【详解】解:(1)因为动点P 从点C 开始沿射线CB 的方向以2cm /s 的速度运动,动点Q 也同时从点C 出发在直线l 上以1cm /s 的速度向上或向下运动,所以2CP tcm ,CQ tcm ;(2)分两种情况:①如图①,当点P 在线段BC 上,Q 在点C 的上方,BP CQ 时,ABP ACQ ,理由如下:因为AB AC ,90BAC ,所以45ABC ACB ,因为l BC ,所以90BCQ ,所以904545ACQ BCQ ACB ,在ABP △和ACQ 中,因为AB AC ,45ABP ACQ ,BP CQ ,所以 ABP ACQ SAS △△.因为2CP tcm ,6BC cm ,所以(62)BP BC CP t cm ,因为CQ tcm ,当BP CQ 时,62t t ,解得2t ;②如图②当点P 在线段CB 的延长线上,Q 在点C 的下方,BP CQ 时,ABP ACQ ,理由如下:因为AB AC ,90BAC ,所以45ABC ACB ,所以180********ABP ABC ,因为l BC ,所以90BCQ ,所以9045135ACQ BCQ ACB ,在ABP △和ACQ 中,因为AB AC ,135ABP ACQ ,BP CQ ,所以 ABP ACQ SAS △△.因为2CP tcm ,6BC cm ,所以(26)BP PC BC t cm ,因为CQ tcm ,当BP CQ 时,26t t ,解得6t ;综上所述,当t 的值为2s 或6s 时,ABP △与ACQ 全等.【点睛】本题考查了全等三角形的判定,等腰直角三角形的性质,利用分类讨论思想解决问题是本题的关键.10.如图,在△ABC 中,AB =24cm ,AC =16cm ,∠BAD =∠CAD ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,动点P 以每秒2cm 的速度从A 点向B 点运动,动点Q 以每秒1cm 的速度从C 点向A 点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t 秒.(1)求证:△AED ≌△AFD ;(2)若AE =10cm ,当t 取何值时,△DEP 与△DFQ 全等.【答案】(1)见解析;(2)t =4或163【解析】【分析】(1)利用AAS 直接证明△AED ≌△AFD 即可;(2)先求解10,6,AF CF ==再分三种情况讨论,①当0<t <5时,点P 在线段AE 上,点Q 在线段CF 上,②当5≤t<6时,点P在线段BE上,点Q在线段CF上,③当6≤t<12时,点P在线段BE上,点Q在线段AF上,再利用全等三角形的对应边相等建立方程,解方程即可得到答案.【详解】解:(1)∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°.∵∠BAD=∠CAD,AD=AD.∴△AED≌△AFD(AAS).(2)∵△AED≌△AFD∴DE=DF,AF=AE=10.∴CF=6若△DEP与△DFQ全等,且DE=DF,∠DEP=∠DFQ=90°,∴EP=FQ,①当0<t<5时,点P在线段AE上,点Q在线段CF上,∴EP=10﹣2t,FQ=6﹣t∴10﹣2t=6﹣t,∴t=4;②当5≤t<6时,点P在线段BE上,点Q在线段CF上,∴EP=2t-10,FQ=6﹣t∴2t-10=6﹣t,∴t=163③当6≤t<12时,点P在线段BE上,点Q在线段AF上,∴EP=2t-10,FQ=t﹣6∴2t-10=t-6,∴t=4(不合题意,舍去).综上所述,当t=4或163时,△DEP与△DFQ全等.【点睛】本题考查的是全等三角形的判定与性质,动态三角形全等问题,清晰的分类讨论是解题的关键. 11.如图,长方形ABCD中,AB=4cm,BC=6cm,现有一动点P从A出发以2cm/秒的速度,沿矩形的边A—B—C—D—A返回到点A停止,点P的运动时间为t秒.(1)当t=3秒时,BP=cm;(2)Q为AD边上的点,且DQ=5,当t为何值时,以长方形的两个顶点及点P为顶点的三角形与△DCQ 全等.【答案】(1)2;(2)2.5或4.5或7.5或9.5【解析】【分析】(1)当t=3秒时,点P运动到线段BC上,即可得到BP的长度;(2)根据题意,要使一个三角形与△DCQ全等,则点P的位置可以有四个,根据点P运动的位置,即可计算出时间.【详解】解:(1)当t=3秒时,点P走过的路程为:2×3=6,∵AB=4,∴点P运动到线段BC上,∴BP=6−4=2cm,故答案是:2;(2)根据题意,如图,连接CQ,则AB=CD=4,∠A=∠B=∠C=∠D=90 ,DQ=5,∴要使一个三角形与△DCQ 全等,则另一条直角边必须等于DQ ,①当点P 运动到1P 时,C 1P =DQ =5,此时△DCQ ≌△CD 1P ,∴点P 的路程为:AB +B 1P =4+1=5,∴t =5÷2=2.5s ,②当点P 运动到2P 时,B 2P =DQ =5,此时△CDQ ≌△AB 2P ,∴点P 的路程为:AB +B 2P =4+5=9,∴t =9÷2=4.5s ,③当点P 运动到3P 时,A 3P =DQ =5,此时△CDQ ≌△AB 3P ,∴点P 的路程为:AB +BC +CD +D 3P =4+6+4+1=15,∴t =15÷2=7.5s ,④当点P 运动到4P 时,即P 与Q 重合时,D 4P =DQ =5,此时△CDQ ≌△CD 4P ,∴点P 的路程为:AB +BC +CD +D 4P =4+6+4+5=19,∴t =19÷2=9.5s ,综上所述,时间的值可以是:t =2.5s ,4.5s ,7.5s 或9.5s .【点睛】本题考查了全等三角形的判定与性质,矩形的性质,线段的动点问题,等腰三角形的判定,解题的关键是掌握全等三角形的判定与性质及动点的运动状态,从而进行分类讨论.12.如图:四边形ABCD 中,//AB CD ,90B C ,3cm AB ,4cm BC .动点P 从B 向C 以1cm/s 的速度运动,动点Q 由C 向D 运动.(1)若P 、Q 运动速度相等,运动1秒后,试判断PA 、PQ 的数量关系,并说明理由;(2)在P 、Q 运动过程中,若ABP △与PCQ △全等,求Q 点运动速度;【答案】(1)AP PQ ,理由见解析(2)1/cm s 或1.5/cm s【解析】【分析】(1)根据题意证明()ABP PCQ SAS ≌即可得出结论;(2)分两种情况当①BP CQ 时,②当BP CP 时,AB QC ,分别求出Q 点的速度即可;解:(1)AP PQ ;理由如下:∵P 、Q 运动速度相等,当运动1秒后,cm 1BP CQ ,∴413PC BC BP cm ,∴3PC AB ,又∵90B C ,∴()ABP PCQ SAS ≌,∴AP PQ ;(2)ABP △与PCQ △全等设运动时间为t ,Q 的运动速度为Q v ,①当BP CQ 时,则有:1Q t v t ,∴1/Q v cm s ;②当BP CP 时,AB QC ,∵4cm BC ,∴2BP CP cm ,则12BP t cm ,解得:2t s ,则23Q AB QC v cm ,∴ 1.5/Q v cm s ;13.如图,已知正方形ABCD 边长为4cm ,动点M 从点C 出发,沿着射线CD 的方向运动,动点P 从点B 出发,沿着射线BC 的方向运动,连结,BM DP ,(1)若动点M 和P 都以每秒2cm 的速度运动,问t 为何值时DPC △和BCM 全等?(2)若动点P 的速度是每秒3cm ,动点M 的速度是每秒1.5cm 问t 为何值时DPC △和BCM 全等?【答案】(1)t =1;(2)t =89或t =83【解析】【分析】(1)根据△DCP 与△BCM 全等,列出关于t 的方程,解之即可;(2)分当点P 在点C 左侧和当点P 在点C 右侧,两种情况,根据PC =CM ,列方程求解即可.【详解】解:(1)要使△DCP 与△BCM 全等,则PC =CM ,由题意得:2t =4-2t ,解得:t =1;(2)当点P 在点C 左侧时,则△DCP ≌△BCM ,∴PC =CM ,∴4-3t =1.5t ,解得:t =89;当点P 在点C 右侧时,则△DCP ≌△BCM ,∴CP =CM ,∴3t -4=1.5t ,解得:t =83,综上:当t =89或t =83时,△DCP 与△BCM 全等.【点睛】本题考查了全等三角形的判定和性质,解题的关键是抓住全等三角形的条件,得到相等线段,列出方程,注意分类讨论.14.如图,在△ABC 中,高线AD ,BE ,相交于点O ,AE =BE ,BD =2,DC =2BD .(1)证明:△AEO ≌△BEC ;(2)线段OA =;(3)F 是直线AC 上的一点,且CF =BO ,动点P 从点O 出发,沿线段OA 以每秒1个单位长度的速度向终点A 运动,动点Q 从点B 出发,沿射线BC 以每秒4个单位长度的速度运动,P ,Q 两点同时出发,当点P 到达A 点时,P ,Q 两点同时停止运动,设点P 的运动时间为t 秒,则是否存在t 值,使得以点B ,O ,P 为顶点的三角形与以点F ,C ,Q 为顶点的三角形全等?若存在,请求出符合条件的t 值,若不存在,请说明理由.【答案】(1)证明过程见解析;(2)6;(3)存在, 1.2t s 或2s ,理由见解析【解析】【分析】(1)根据AD ,BE 是ABC 的高,得到90AEB BDA ,再根据EOA BOD ,得到EAO EBC ,即可得证;(2)根据已知条件解得6BC BD DC ,再根据全等三角形的性质计算即可;(3)由题意得,OP t ,4BQ t ,BOP FCQ ,分点Q 在线段DC 上和线段DC 延长线上分类计算即可;【详解】(1)证明:∵AD ,BE 是ABC 的高,∴90AEB BDA ,∵EOA BOD ,∴EAO EBC ,在AEO △和BEC △中,AEO BEC AE BE EAO EBC,∴AEO EBC △△;(2)∵2BD ,2DC BD ,∴4DC ,∴6BC BD DC ,∵AEO EBC △△,∴6OA BC ;故答案是6.(3)存在,由题意得,OP t ,4BQ t ,∵OB CF ,∴BOP FCQ ,如图,当BOP FCQ △△时,OP CQ ,∴64t t ,解得: 1.2t ;如图,当BOP FCQ △△时,OP CQ ,∴46t t ,解得:2t ;综上所述,当 1.2t s 或2s 时,以点B ,O ,P 为顶点的三角形与以点F ,C ,Q 为顶点的三角形全等.【点睛】本题主要考查了全等三角形的综合应用、一元一次方程,熟练掌握上述知识、准确分析计算是解题的关键.15.如图,在ABC 中,20cm AB AC ,16cm BC ,点D 是AB 边的中点.点P 是BC 边上的动点,以3cm /秒的速度从点B 向点C 运动;点Q 是AC 边上的动点,同时从点C 向点A 运动.设运动时间为cm t /秒.(1)如果点Q 运动的速度与点P 运动的速度相等.求证当运动时间2t 秒时,DBP PCQ .(2)如果点Q 运动的速度与点P 运动的速度不相等,是否存在某一时刻0t ,使DBP 与PCQ △全等?若存在,求出0t 的值,并求此时点Q 运动的速度;若不存在,请说明理由.【答案】(1)详见解析;(2)存在,083t秒, 3.75Q V cm /秒【解析】【分析】(1)根据t 的值先运算出BP 的长度,求出PC 和BD 的长度,再利用等腰三角形的性质得到B C ,再利用边角边证明即可;(2)根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度 时间公式,先求得点P 的运动时间,再求点Q 的运动速度.【详解】解:(1)∵2t ∴3326BP CQ t ∴16610PC BC BP ∵D 为AB 中点∴11201022BD AB 又∵AB AC∴B C∴在DBP 和PCQ △中PC BD B C BP CQ∴DBP PCQ△≌△(2)存在某一时刻0t ,使DBP PCQ△≌△理由是:BP CQ又∵DBP PCQ △≌△,B C∴8BP PC ,10CQ BD ∴点P ,点Q 的运动时间0833BP t秒∴10 3.7583Q CQ V t cm /秒【点睛】本题主要考查了全等三角形的性质及判定,熟悉掌握全等三角形的判定方法是解题的关键.16.我们在第十一章《三角形》中学习了三角形的边与角的性质,在第十二章《全等三角形》中学习了全等三角形的性质和判定.在一些探究题中经常用到以上知识转化角和边,进而解决问题.问题初探:已知,在ABC 中,AB AC ,90BAC ,点D 为直线BC 上一动点(点D 不与点B 、C 重合),连接AD ,以AD 为直角边作等腰直角三角形ADE ,90DAE ,AD AE ,连接CE .(1)如图1,当点D 在线段BC 上时,BD 与CE 的数量关系是______,BD 与CE 的位置关系是______,CE 、BC 、CD 三条线段的数量关系是______.(2)如图2,当点D 在线段BC 的延长线上时,其他条件不变,请写出CE 、BC 、CD 三条线段之间的关系并说明理由.(3)如图3,当D 运动到BC 的延长线上时,若7BC ,2BD ,求BE 的长.【答案】(1)BD CE ,BD CE ,BC CE CD(2)CE BC CD ,理由见解析(3)9【解析】【分析】(1)根据题意证明ABD ACE △≌△,根据全等三角形的性质即可求解;(2)同(1)根据题意证明ABD ACE △≌△,然后根据全等三角形的性质对线段进行等量代换即可求解;(3)根据题意证明出ABE ACD △≌△,然后根据全等三角形的性质对线段进行等量代换即可求出BE 的长.(1)∵90BAC ,90DAE ,∴BAD CAE ,又∵AB AC ,AD AE ,∴ ABD ACE SAS △≌△,∴BD CE ;∴BC BD CD CE CD ;∴45ACE B ,又∵45ACB B ,∴90BCE ACB ACE ,∴BD CE ;(2)结论:CE BC CD ,理由如下:∵90BAC DAE ,∴BAC CAD DAE CAD ,即BAD CAE ,在ABD △和ACE 中,AB AC BAD CAE AD AE∴ SAS ABD ACE △≌△,∴BD CE ,∵BD BC CD ,∴CE BC CD .(3)∵90BAC DAE∴DAC EAB∴在ABE △和ACD △中AE AD EAB DAC AB AC∴ABE ACD△≌△∴9BE CD BC BD ∴9BE 【点睛】此题考查了全等三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定.全等三角形的性质:全等三角形对应边相等,对应角相等.判定三角形全等的方法有:SSS ,SAS ,AAS ,ASA ,HL(直角三角形).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动态问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 数形结合思想 转化思想1、如图1,梯形ABCD 中,AD ∥ BC ,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P 从A 开始沿AD 边以1cm/秒的速度移动,点Q 从C 开始沿CB 向点B 以2 cm/秒的速度移动,如果P ,Q 分别从A ,C 同时出发,设移动时间为t 秒。
当t= 时,四边形是平行四边形;6 当t= 时,四边形是等腰梯形. 82、如图2,正方形ABCD 的边长为4,点M 在边DC 上,且DM=1,N 为对角线AC 上任意一点,则DN+MN 的最小值为 53、如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ;②当α= 度时,四边形EDBC 是直角梯形,此时AD 的长为 ; (2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由. 解:(1)①30,1;②60,;(2)当∠α=900时,四边形EDBC 是菱形.∵∠α=∠ACB=900,∴BC ∵CE ∴AB =4,AC =23. ∴AO =12AC =3 .在Rt△AOD 中,∠A =300,∴AD =2.∴BD =2. ∴BD =BC . 又∵四边形EDBC 是平行四边形,OECDA lOCA(备用图)∴四边形EDBC 是菱形4、在△ABC 中,∠ACB =90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E.(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ;(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ; (3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系请写出这个等量关系,并加以证明.解:(1)① ∵∠ACD=∠ACB=90° ∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90° ∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB② ∵△ADC ≌△CEB ∴CE=AD ,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE 又∵AC=BC ∴△ACD ≌△CBE ∴CE=AD ,CD=BE ∴DE=CE-CD=AD-BE(3) 当MN 旋转到图3的位置时,DE=BE-AD(或AD=BE-DE ,BE=AD+DE 等) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE , 又∵AC=BC , ∴△ACD ≌△CBE , ∴AD=CE ,CD=BE , ∴DE=CD-CE=BE-AD.5、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗如果正确,写出证明过程;如果不正确,请说明理由.C B A E D图1 N M AB CD E MN 图2 A CB ED N M 图3解:(1)正确.证明:在AB 上取一点M ,使AM EC =,连接ME . BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°.CF 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°. AME ECF ∴∠=∠.90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°,∴BAE CEF ∠=∠. AME BCF ∴△≌△(ASA ). AE EF ∴=.(2)正确.证明:在BA 的延长线上取一点N .使AN CE =,连接NE .BN BE ∴=. 45N PCE ∴∠=∠=°.四边形ABCD 是正方形, AD BE ∴∥.DAE BEA ∴∠=∠. NAE CEF ∴∠=∠. ANE ECF ∴△≌△(ASA ).AE EF ∴=.6、如图, 射线MB 上,MB=9,A 是射线MB 外一点,AB=5且A 到射线MB 的距离为3,动点P 从M 沿射线MB 方向以1个单位/秒的速度移动,设P 的运动时间为t.求(1)△ PAB 为等腰三角形的t 值;(2)△ PAB 为直角三角形的t 值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB 为直角三角形的t 值7、如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠.求:(1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.①当点N 在线段AD 上时(如图2),PMN △的形状是否发生改变若不变,求出PMN △的周长;若改变,请说明理由;ADF CGEB图1ADFC GE B图3ADFC GEB图2ADFCGEBM ADFC G E BN②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形若存在,请求出所有满足要求的x 的值;若不存在,请说明理由解(1)如图1,过点E 作EG BC ⊥于点G .∵E 为AB 的中点,∴122BE AB ==.在Rt EBG △中,60B =︒∠, ∴30BEG =︒∠.∴112BG BE EG ====,即点E 到BC(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变. ∵PM EF EG EF ⊥⊥,, ∴PM EG ∥.∵EF BC ∥, ∴EP GM =,PM EG == 同理4MN AB ==. 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥, ∴6030NMC B PMH ==︒=︒∠∠,∠.∴12PH PM ==∴3cos302MH PM =︒=. 则35422NH MN MH =-=-=.在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++=.②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形. 当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =.∴23MN MR ==. ∵MNC △是等边三角形,∴3MC MN ==.图1A D E BF CG图2A D EB F CPNMG HA D E BFC图4(备A D EBF C图5(备A D E BF C 图1图2 A D E BF C P NM图3A D EBFC P N M(第25此时,6132x EP GM BC BG MC ===--=--=.当MP MN=时,如图4,这时MC MN MP ===此时,615x EP GM ===-=- 当NP NM =时,如图5,30NPM PMN ==︒∠∠. 则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠. 因此点P 与F 重合,PMC △为直角三角形. ∴tan301MC PM =︒=. 此时,6114x EP GM ===--=. 综上所述,当2x =或4或(5时,PMN △为等腰三角形.8、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇 解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米, ∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△. ②∵P Qv v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,B P图3A DE B FCPN M图4A D E BFCP MN 图5A DE BF (P ) CMN GGR G∴点P,点Q运动的时间433BPt==秒,∴515443QCQvt===厘米/秒。
(2)设经过x秒后点P与点Q第一次相遇,由题意,得1532104x x=+⨯,解得803x=秒.∴点P共运动了803803⨯=厘米.∵8022824=⨯+,∴点P、点Q在AB边上相遇,∴经过803秒点P与点Q第一次在边AB上相遇.9、如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD 上滑动,且E、F不与B.C.D重合.(1)证明不论E、F在BC.CD上如何滑动,总有BE=CF;(2)当点E、F在BC.CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化如果不变,求出这个定值;如果变化,求出最大(或最小)值.【答案】解:(1)证明:如图,连接AC∵四边形ABCD为菱形,∠BAD=120°,∠BAE+∠EAC=60°,∠FAC+∠EAC=60°,∴∠BAE=∠FAC。