高三文科数学复习——椭圆

合集下载

高三椭圆相关知识点总结

高三椭圆相关知识点总结

高三椭圆相关知识点总结在高三数学学习中,椭圆是一个十分重要且常见的几何图形。

它具有许多独特的性质和特点,对于理解和解决相关题目至关重要。

本文将对高三椭圆的相关知识点进行总结,旨在帮助同学们更好地理解椭圆的性质和应用。

1. 椭圆的定义及公式椭圆是平面上到两个定点F₁和F₂距离之和等于常数2a的动点P的轨迹。

定点F₁和F₂称为椭圆的焦点,两焦点之间的距离为2c,且c²=a²-b²。

椭圆的离心率e=c/a。

椭圆的标准方程为,(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)为椭圆的中心坐标。

2. 椭圆的性质- 长轴和短轴:椭圆的两焦点距离为2c,且c²=a²-b²,所以椭圆的长轴为2a,短轴为2b。

- 离心率:椭圆的离心率e=c/a,离心率越接近0,椭圆的形状越接近于圆;离心率越接近1,椭圆的形状越扁平。

- 对称性:椭圆关于x轴和y轴都具有对称性,中心对称。

3. 椭圆的方程变形椭圆的方程在数学上经常需要进行变形和化简。

以下是几种常见的椭圆方程变形形式:- 标准方程变形:将标准方程进行代数变形和化简,可以得到不同形式的椭圆方程,如正方形椭圆、长轴平行于y轴的椭圆等。

- 参数方程:将椭圆的方程用参数表示,例如x=a*cosθ,y=b*sinθ,其中θ为参数。

- 三角方程:利用三角函数的性质,将椭圆的方程变形为三角函数的方程,如x²/a²+ y²/b² = 1可以变形为sin²θ/a² + cos²θ/b² = 1。

4. 椭圆的性质与应用- 焦点定理:椭圆上任意一点P到两焦点F₁和F₂的距离之和等于椭圆的长轴长度,即PF₁ + PF₂ = 2a。

- 弦焦定理:椭圆上任意一条弦的两个焦点到弦的距离之和等于常数2a。

- 切线性质:椭圆上的点P处的切线斜率为y/x=-b²x/a²y。

高考椭圆专题知识点

高考椭圆专题知识点

高考椭圆专题知识点椭圆是高中数学中的一个重要几何形状,也是高考数学中的热点考点之一。

掌握椭圆的基本概念和相关知识点对于解题至关重要。

本文将详细介绍高考椭圆专题的知识点,帮助同学们更好地理解和应用。

一、椭圆的定义和特点椭圆是平面上到两个不重合点的距离之和等于常数的动点构成的轨迹。

其中,这两个点被称为焦点,记作F1和F2,二者之间的距离为2a。

椭圆的长轴为2a,短轴为2b,焦距为2c。

椭圆的离心率定义为e=c/a,表示椭圆的瘦胖程度。

椭圆的主要特点包括:1. 对称性:椭圆关于长轴、短轴及原点均具有对称性。

2. 焦点:椭圆上任意一点到两个焦点的距离之和为常数。

3. 直径:椭圆上的直径包括长轴和短轴,长轴和短轴的中点都在椭圆上。

4. 首尾距离:椭圆上首尾相接的两个点到两个焦点的距离之和也等于常数。

5. 扇形面积:以焦点和首尾相接的两个焦点连线为半径的扇形面积与椭圆扇形面积的和为常数。

6. 弧长性质:椭圆上的弧长与弦长的关系满足等角弧弦定理。

7. 方程表达:椭圆可以用方程的形式表达,常见的标准方程为x^2/a^2+y^2/b^2=1。

二、椭圆的性质与方程推导1. 椭圆的离心率性质:椭圆的离心率e满足0<e<1,当e=0时,为圆。

2. 椭圆的焦点距离性质:椭圆的焦点距离满足2a=c^2=a^2-b^2。

3. 椭圆的焦半径平方和:椭圆上任意一点到两个焦点距离平方之和等于两个焦点距离平方之和。

4. 椭圆的参数方程:椭圆的参数方程为x=a·cosθ,y=b·sinθ。

5. 椭圆的斜轴方程:斜轴方程为(x-h)^2/a^2+(y-k)^2/b^2=1,其中(h, k)为椭圆中心坐标。

6. 椭圆的标准方程:标准方程为x^2/a^2+y^2/b^2=1。

三、椭圆的相关定理和性质1. 弦长定理:椭圆上两个不相交的弦的长度之积与它们两个弦所夹的角的余弦值成正比。

2. 切线定理:过椭圆上一点的切线与椭圆两焦连线的夹角等于该点切线与椭圆中心连线的夹角。

文科椭圆的知识点总结

文科椭圆的知识点总结

文科椭圆的知识点总结一、定义椭圆是平面上一点到两个固定点的距离之和为常数的所有点的轨迹。

设点F1(x1,y1)和F2(x2,y2)是平面上给定的两点,离心率为e(0<e<1),则椭圆E是满足下面条件的点P(x,y)的轨迹:PF1+PF2=2a其中PF1和PF2分别表示点P到点F1和点F2的距离,a为常数,称为椭圆的半长轴。

在离心率e已知的情况下,椭圆的半短轴b可以表示为:b=a√(1-e^2)根据椭圆的定义,椭圆是两个焦点之间距离的轨迹,通常可以通过图形来直观地理解椭圆的定义。

二、性质1. 对称性:椭圆相对于长轴和短轴都具有对称性。

关于长轴、短轴、焦点、中心对称均为椭圆的性质。

2. 离心率:椭圆的离心率e定义为焦点之间的距离除以长轴的长度,即e=c/a。

离心率描述了椭圆的扁平程度,如果离心率接近于1,椭圆趋向于是一条直线;如果离心率接近于0,椭圆趋向于是一个圆。

3. 参数方程:椭圆也可以通过参数方程进行描述。

设椭圆的参数方程为x=a*cosθ,y=b*sinθ,其中a为长轴的一半,b为短轴的一半。

θ为参数在0到2π之间变化。

4. 直径:椭圆有两个特殊的直径,即长轴和短轴。

长轴的两个端点称为椭圆的顶点,短轴的两个端点称为椭圆的辅顶点。

5. 焦点:椭圆上与长轴两端的两点叫做椭圆的焦点。

椭圆的焦点与长轴的关系可以通过数学公式x^2/a^2+y^2/b^2=1推导得出。

6. 相交角:椭圆上两条相交弦的夹角的两个端点在同侧。

设椭圆的两条相交弦的直线方程为ax+by+c=0,ax+by+d=0,其中a、b不同时为0,亦即两条线的斜率不相等。

两条直线分别和椭圆相交于四点,设在第一个方程上交于P1、P2,第二个方程上交于P3、P4。

那么P1P2P3P4是一个凸四边形,<P1P2P3=P,<P1P3P4=Q。

请问P和Q是多少。

7. 圆环面积公式:椭圆上两点P、Q,有两条相交弦OP、OQ,设切线OP´、OQ´。

高中椭圆知识点归纳

高中椭圆知识点归纳

高中椭圆知识点归纳一、椭圆的定义1. 椭圆的数学定义- 椭圆是平面上所有到两个固定点(焦点)距离之和为常数的点的集合。

- 椭圆的标准方程。

2. 椭圆的基本要素- 焦点(F1, F2)- 长轴(2a)- 短轴(2b)- 焦距(2c)- 离心率(e)二、椭圆的性质1. 焦点性质- 焦点位于主轴上。

- 焦点到椭圆上任意一点的距离之和是常数,等于长轴的长度。

2. 离心率- 离心率是衡量椭圆形状的一个参数。

- 离心率的计算公式:e = c/a。

3. 椭圆的对称性- 椭圆关于长轴和短轴具有对称性。

三、椭圆的几何关系1. 长轴和短轴的关系- b^2 = a^2 - c^2。

2. 焦点与椭圆的关系- 焦点到椭圆上任意一点的距离之和等于长轴的长度。

四、椭圆的方程1. 标准方程- 椭圆的标准方程形式为:(x^2/a^2) + (y^2/b^2) = 1。

2. 椭圆的参数方程- 参数方程的形式:x = a * cos(t), y = b * sin(t),其中t为参数。

五、椭圆的应用1. 天文学- 行星轨道的描述。

2. 工程学- 轮轴和凸轮设计。

3. 物理学- 电场和磁场中的某些路径。

六、椭圆的图形绘制1. 绘制方法- 使用绘图工具(如圆规)绘制椭圆。

2. 椭圆的变换- 平移和旋转椭圆。

七、椭圆与圆的关系1. 特殊情形- 当离心率为0时,椭圆变为圆。

- 当两个焦点重合时,椭圆退化为抛物线。

八、练习题1. 椭圆方程的求解。

2. 焦点性质的应用。

3. 椭圆的几何关系计算。

以上是关于高中椭圆知识点的归纳文档的大纲和示例内容。

在实际编写文档时,每个部分都应包含详细的解释、公式推导、图示和实例。

此外,文档应使用专业的排版和格式,确保清晰易读,并且方便编辑和打印。

高中数学-椭圆知识点

高中数学-椭圆知识点

高中数学-椭圆知识点椭圆是一种常见的几何图形,在高中数学中经常被讨论和应用。

下面是椭圆的一些重要知识点:1. 椭圆的定义和性质- 椭圆是平面上一点到两个给定点的距离之和等于常数的轨迹。

这两个给定点称为焦点,距离之和称为焦距。

- 椭圆的形状是一个长轴和短轴决定的闭合曲线。

长轴的两个端点是焦点,短轴是长轴垂直的线段。

- 椭圆有对称轴和中心,对称轴是长轴和短轴的中垂线,中心是椭圆的中点。

2. 椭圆的方程- 椭圆的标准方程是(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)是中心坐标,a和b分别是长轴和短轴的半长。

- 标准方程中的参数a和b决定了椭圆的大小和形状。

- 当椭圆的中心在坐标原点时,方程简化为x²/a² + y²/b² = 1。

- 椭圆的离心率e是焦距与长轴长度之比。

3. 椭圆的性质和推论- 椭圆的离心率e满足0<e<1,离心率越接近0,椭圆越圆。

- 椭圆的焦点到直径的垂直距离是常数,称为椭圆的算术平均数定理。

- 椭圆的面积为πab,周长近似为2π√((a²+b²)/2)。

- 椭圆关于长轴和短轴有对称性,即对称轴垂直于长轴和短轴。

4. 椭圆的应用- 椭圆在物理学、工程学、天文学等领域中有广泛应用,例如描述行星轨道、弹道等。

- 椭圆可以用来模拟和预测某些运动和变化的特性。

- 椭圆的数学性质可以用于解决一些几何和物理问题。

以上是关于高中数学中椭圆的一些重要知识点。

了解和掌握这些知识有助于更好地理解椭圆的性质和应用。

(注:此处提供的是简要的椭圆知识点概述,具体内容请参考相关高中数学教材或资料。

)。

高三椭圆知识点总结

高三椭圆知识点总结

高三椭圆知识点总结1. 椭圆的定义椭圆是平面上的一个点集,它的定义是:给定一个点 F1 和一个实数 e(e<1),平面上到 F1 的距离与到另一定点 F2 的距离的和是一个常数 2a ,即:PF1 + PF2 = 2a(a>0)。

这样的点集就构成了一个椭圆。

2. 椭圆的性质(1)椭圆的对称性椭圆具有两条互相垂直的对称轴,称为长轴和短轴。

椭圆的中心既是长轴的中点,也是短轴的中点。

椭圆具有中心对称性,即椭圆上的任意点关于中心对称。

(2)焦点和直径在椭圆上存在两个特殊的点 F1 和 F2,它们被称为焦点。

椭圆上的所有点到焦点的距离和为定值 2a。

椭圆的长轴称为椭圆的主轴,短轴称为椭圆的次轴。

椭圆的主轴的两端点被称为端点,也被称为椭圆的顶点。

(3)椭圆的离心率椭圆的离心率 e 定义为焦点 F1 到椭圆中心 O 的距离与椭圆的底边长 b 的比值,即 e = OF1 / b。

离心率的取值范围为 0<e<1,当 e=0 时,椭圆退化为一个圆;当e→1 时,椭圆逐渐趋近于一个狭长的形状。

(4)椭圆的方程椭圆的标准方程为 x^2 / a^2 + y^2 / b^2 = 1 ,其中 a 和 b 分别是椭圆的长轴和短轴的长度。

椭圆的方程也可以表示为其它形式,如标准方程的极坐标形式、参数方程、直角坐标系下的一般形式等。

3. 椭圆的相关定理(1)椭圆的焦点定理椭圆上任意一点 P 到椭圆的两个焦点 F1 和 F2 的距离之和等于常数 2a,即 PF1 + PF2 = 2a。

(2)椭圆的切线定理椭圆的切线与椭圆的两个焦点之间的距离之和等于椭圆的两条焦轴的长度,即 PT1 + PT2= 2a;PT1 和 PT2 分别为切线的两个切点到椭圆两焦点的距离。

(3)椭圆的两条辅助圆定理椭圆与其两个辅助圆相交于同一条直线上,椭圆的两个焦点为圆心,椭圆的长轴为直径的圆被称为椭圆的第一辅助圆,椭圆的两个顶点为圆心,椭圆的短轴为直径的圆被称为椭圆的第二辅助圆。

高中椭圆的知识点总结

高中椭圆的知识点总结

高中椭圆的知识点总结关键信息:1、椭圆的定义2、椭圆的标准方程3、椭圆的性质4、椭圆的焦点、焦距5、椭圆的离心率6、椭圆中的弦长公式7、椭圆与直线的位置关系11 椭圆的定义平面内与两个定点$F_1$,$F_2$的距离之和等于常数(大于$|F_1F_2|$)的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。

111 数学表达式若点$M$到两定点$F_1$,$F_2$的距离之和为$2a$,两定点之间的距离为$2c$($2a > 2c$),则椭圆的定义可以表示为$|MF_1| +|MF_2| = 2a$。

12 椭圆的标准方程焦点在$x$轴上的椭圆标准方程为:$\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$($a > b > 0$),其中$a$为椭圆的长半轴长,$b$为椭圆的短半轴长,$c =\sqrt{a^2 b^2}$为半焦距。

焦点在$y$轴上的椭圆标准方程为:$\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1$($a > b > 0$)。

121 推导过程以焦点在$x$轴上为例,设椭圆的两个焦点分别为$F_1(c, 0)$,$F_2(c, 0)$,点$M(x, y)$为椭圆上任意一点,根据椭圆的定义可得:$\sqrt{(x + c)^2 + y^2} +\sqrt{(x c)^2 + y^2} = 2a$,经过一系列的化简可得椭圆的标准方程。

13 椭圆的性质131 对称性椭圆关于$x$轴、$y$轴和原点对称。

132 顶点焦点在$x$轴上的椭圆,顶点坐标为$(\pm a, 0)$,$(0, \pm b)$;焦点在$y$轴上的椭圆,顶点坐标为$(0, \pm a)$,$(\pm b, 0)$。

133 范围焦点在$x$轴上的椭圆,$a \leq x \leq a$,$b \leq y \leq b$;焦点在$y$轴上的椭圆,$b \leq x \leq b$,$a \leq y \leq a$。

高中椭圆相关知识点复习(生)

高中椭圆相关知识点复习(生)

第一部分 椭圆相关知识点讲解二.点与椭圆的位置关系:(1)点00(,)P x y 在椭圆外⇔2200221x y a b+>; (2)点00(,)P x y 在椭圆上⇔220220by a x +=1; (3)点00(,)P x y 在椭圆内⇔2200221x y a b+< 三.椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质 (1)对称性:对于椭圆标准方程12222=+by a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆12222=+by a x 是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。

(2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。

(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。

②椭圆12222=+by a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为 )0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。

a 和b 分别叫做椭圆的长半轴长和短半轴长。

三.直线与椭圆的位置关系:(1)相交:0∆>⇔直线与椭圆相交;(2)相切:0∆=⇔直线与椭圆相切;(3)相离:0∆<⇔直线与椭圆相离; 四.椭圆12222=+b y a x 与 12222=+bx a y )0(>>b a 的区别和联系 6.弦长公式:若直线y kx b =+与圆锥曲线相交于两点A 、B ,且12,x x 分别为A 、B 的横坐标,则AB =2121k x x +-,若12,y y 分别为A 、B 的纵坐标,则AB =21211y y k-+。

高考文科椭圆知识点

高考文科椭圆知识点

高考文科椭圆知识点椭圆是高考文科数学中的一个重要知识点,其在平面几何和解析几何中都有广泛的应用。

椭圆的性质和公式是考试中常见的考点,下面我们将详细讲解椭圆的相关知识。

一、基本定义椭圆是指平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。

定义中,F1和F2称为焦点,线段F1F2的长度为2c,2a为焦点到椭圆的任意点P的距离之和,a为椭圆的半长轴,c为椭圆的焦距。

二、标准方程椭圆的标准方程可以表示为(x-x0)²/a² + (y-y0)²/b² = 1,其中(x0,y0)为椭圆的中心坐标,a为椭圆的半长轴长度,b为椭圆的半短轴长度。

三、焦点及焦距的计算对于椭圆,焦点到椭圆上任意点P的距离之和等于2a。

根据焦点定义和距离公式,可以得到焦点F1的坐标为(x0-c,y0),焦点F2的坐标为(x0+c,y0),焦距等于2c。

四、离心率的计算离心率是一个衡量椭圆形状的参数,可以通过离心率e的计算公式e=c/a来求得。

离心率的范围是0到1,当e=0时,表示椭圆退化成一条线段;当e=1时,表示椭圆退化成一个抛物线。

五、常见性质1. 长轴和短轴:椭圆的长轴是通过焦点并且垂直于长轴的直线段,短轴是通过焦点并且垂直于短轴的直线段。

2. 对称性:椭圆具有两个重要的对称轴,分别是长轴和短轴,对称轴相交于椭圆的中心。

3. 离心率与形状:离心率越接近于0,椭圆的形状越扁平;离心率越接近于1,椭圆的形状越接近于圆形。

4. 弦长定理:椭圆上两点A、B之间的弦长等于焦半径之和。

5. 切线方程:椭圆上的切线方程可以通过代入标准方程和求导得到。

六、解析几何中的应用1. 椭圆的直径:椭圆上任意两点之间的线段称为椭圆的直径,直径的长度等于长轴的长度。

2. 焦点和直角:椭圆的焦点和椭圆上任意一点及其到直径的垂足构成的三角形是一个直角三角形。

3. 椭圆与直线的交点:椭圆与直线的交点可以通过将直线方程代入椭圆的方程组来求解。

高三数学关于椭圆的知识点

高三数学关于椭圆的知识点

高三数学关于椭圆的知识点椭圆是解析几何中的一个重要概念,它在数学和物理等领域都有广泛的应用。

本文将介绍高三数学中关于椭圆的知识点,包括定义、性质和相关公式。

一、椭圆的定义椭圆是一个平面上的几何图形,其定义为到两个定点F1、F2的距离之和等于常数2a的点的集合。

这两个定点称为椭圆的焦点,常数2a称为长轴的长度。

二、椭圆的性质1. 焦点与顶点的关系:椭圆的焦点在其长轴上,且离顶点的距离等于椭圆的离心率e乘以长轴的长度。

2. 弦的性质:对于一个椭圆,通过焦点F1、F2的弦恰好与椭圆的法线相互垂直。

3. 离心率的性质:椭圆的离心率e是一个介于0和1之间的实数,用来描述椭圆的独特程度。

当e=0时,椭圆退化为一个圆;当e=1时,椭圆退化为一个抛物线。

4. 外接矩形的性质:椭圆的外接矩形的面积等于长轴长度a乘以短轴长度b。

三、椭圆的相关公式1. 椭圆的标准方程:对于一个以原点为中心的椭圆,其标准方程可以表示为x^2/a^2 + y^2/b^2 = 1,其中a为长轴的一半,b为短轴的一半。

2. 椭圆的焦点坐标:以原点为中心的椭圆的焦点坐标可以表示为(-c, 0)和(c, 0),其中c^2 = a^2 - b^2。

3. 椭圆的离心率公式:椭圆的离心率e可以表示为e = c/a。

4. 椭圆的焦距公式:椭圆的焦距f可以表示为f = 2a。

四、椭圆的应用椭圆在数学和物理中有广泛的应用。

在数学领域,椭圆用于描述曲线的形状和方程的解。

在物理领域,椭圆用于描述行星的轨道、卫星的轨道和拱桥的形状等。

例如,开普勒定律描述了行星运动的规律,其中行星绕太阳的轨道是一个椭圆。

根据椭圆的性质和公式,可以推导出行星的速度和轨道半径之间的关系。

在构造和设计领域,椭圆也被广泛使用。

例如,建筑师使用椭圆曲线来设计拱形建筑物,这样可以增加结构的稳定性和美观性。

总结:椭圆是解析几何中的重要概念,具有许多特殊性质和应用。

掌握椭圆的定义、性质和相关公式,对于解决数学和物理中的问题具有重要的意义。

高三椭圆相关知识点

高三椭圆相关知识点

高三椭圆相关知识点椭圆是高中数学的重要内容之一,涉及到椭圆的定义、性质、参数方程等方面的知识。

在高三阶段,学生需要掌握围绕椭圆的基本概念和计算方法。

本文将重点介绍高三椭圆相关的知识点,以帮助学生加深对椭圆的理解和应用。

一、椭圆的定义椭圆是平面上到两个定点的距离之和等于常数的点的轨迹。

这两个定点称为焦点,两焦点间的距离称为焦距。

椭圆的形状由焦距和离心率决定,离心率是椭圆的一个重要参数,定义为离心率等于焦距与椭圆长轴的比值。

二、椭圆的标准方程椭圆的标准方程是含有坐标的一次方程,其一般形式为:(x-h)²/a² + (y-k)²/b² = 1。

在该方程中,(h, k)表示椭圆的中心坐标,a 和b分别表示椭圆的长半轴和短半轴长度。

三、椭圆的参数方程椭圆的参数方程是由参数t的函数给出的,椭圆上的任意一点的坐标可以表示为x = a*cos(t),y = b*sin(t),其中0≤t≤2π。

四、椭圆的性质1. 焦点和准线:椭圆的焦点在椭圆的长轴上,且位于中心的左右两侧。

同时,每条过焦点和垂直于长轴的直线称为准线。

2. 圆和双曲线的特殊情况:当椭圆的长轴和短轴相等时,椭圆即为圆。

当离心率等于1时,椭圆退化成双曲线。

3. 对称性:椭圆具有对称性,对于任意一点P(x, y)在椭圆上,以中心O为对称中心,点P关于中心O的对称点也在椭圆上。

4. 焦半径的性质:从椭圆上的任意一点P到两焦点的距离之和等于椭圆的长半轴长度,即PF₁ + PF₂ = 2a。

5. 点到椭圆的判定:对于给定的点P(x, y),可以通过计算(x-h)²/a² + (y-k)²/b²的值是否小于1来判断该点是否在椭圆上。

五、椭圆的方程变换椭圆的方程可以通过平移、缩放和旋转等方式进行变换。

具体来说,通过平移可以改变椭圆的中心位置,通过缩放可以改变椭圆的长短轴长度,通过旋转可以改变椭圆相对于坐标轴的方向。

高考椭圆的知识点

高考椭圆的知识点

高考椭圆的知识点高考数学中关于椭圆的知识点主要包括以下几个方面:1、椭圆的定义:椭圆是平面内到两个固定点(焦点)的距离之和为定值(大于两焦点间距离)的所有点的轨迹。

2、椭圆的标准方程:当焦点在x轴上时,标准方程为:(x-h)^2/a^2 + (y-k)^2/b^2 = 1,其中(a > b > 0),(h, k)是椭圆中心的坐标。

当焦点在y轴上时,标准方程为:(y-k)^2/a^2 + (x-h)^2/b^2 = 1,同样a>b>0,(h, k)为椭圆中心坐标。

3、参数形式:椭圆还可以用参数方程表示,例如:x = a * cosθ + h,y = b * sinθ + k。

4、基本性质:长半轴a和短半轴b决定了椭圆的形状和大小,离心率e = c/a(c为焦距的一半),范围在0 < e < 1。

椭圆的面积公式S = πab。

焦点与长轴、短轴的关系:焦距|F1F2| = 2c,长轴长2a,短轴长2b,有关系式a^2 = b^2 + c^2。

5、几何性质:焦点弦性质、通径(过焦点垂直于长轴的弦)、共轭直径等。

与圆锥曲线相关的光学性质,如反射定律等。

6、解题方法:利用定义求解有关焦点、焦半径等问题。

根据给定条件确定椭圆的标准方程,通常采用待定系数法。

计算椭圆上的点与焦点或准线的距离,以及运用离心率解决相关问题。

7、离心率的应用:离心率常作为约束条件出现在题目中,用来求解椭圆方程或者判断椭圆形状。

8、交点问题:椭圆与其他图形(直线、圆、抛物线等)相交时求交点坐标及相关长度、面积计算。

高考中的椭圆题目类型多样,包括但不限于以上知识点,要求考生能够灵活运用椭圆的基本概念、性质及方程来解答不同难度的问题。

椭圆高考知识点总结

椭圆高考知识点总结

椭圆高考知识点总结一、椭圆的定义和基本性质1. 椭圆的定义椭圆的定义有多种表述方式,其中一种常见的定义是:椭圆是平面上到两个定点F1、F2的距离之和等于定常长2a(a>0)的点P的轨迹。

称F1、F2为椭圆的焦点,2a为椭圆的长轴。

即椭圆定义为$|PF_1|+|PF_2|=2a$。

根据这个定义,我们可以推导出椭圆的标准方程:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,其中$2a$和$2b$分别为椭圆的长轴和短轴。

椭圆的离心率e满足$0<e<1$。

2. 椭圆的基本性质(1)主轴和短轴: 通过椭圆两个焦点连线的中垂线叫做长轴,椭圆的两个焦点所在直线叫做长轴;长轴的两端点叫做椭圆的顶点。

垂直于长轴的直线段叫做短轴。

(2)顶点和焦点:椭圆的两个端点叫做顶点,两个焦点分别叫做F1和F2。

(3)公式中的取值范围:椭圆标准方程中的参数a和b满足$a>b>0$。

(4)对称性:椭圆具有镜面对称性。

(5)内外离心率:椭圆的内离心率e1满足:$0<e_1<1$,外离心率e2满足:$1<e_2$。

3. 椭圆的离散表示:根据离心率e和焦点F1、F2获知椭圆的表达式$|PF_1|+|PF_2|=2a$表示椭圆的定点,即点到两个定点的距离之和等于一个定常长2a。

其中a是椭圆的长轴,F1、F2是焦点。

这个定义可以描述椭圆的形状和性质。

二、椭圆的方程和坐标变换1. 椭圆标准方程:椭圆的标准方程是$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$。

其中a和b分别为椭圆的长半轴和短半轴。

2. 椭圆的一般方程:如果椭圆的长轴不在x、y轴上,可以通过坐标变换将椭圆的标准方程转化为一般方程$Ax^2+By^2+Cx+Dy+E=0$。

3. 椭圆的参数方程:椭圆的参数方程为$x=acos\theta$,$y=bsin\theta$,其中$\theta$是参数,$-\pi<\theta<\pi$。

高三知识点总结椭圆

高三知识点总结椭圆

高三知识点总结椭圆一、椭圆的定义椭圆是平面上一个动点到两个不同的固定点的距离之和等于常数的轨迹。

这两个固定点分别称为焦点,这个常数称为椭圆的半长轴的长度。

椭圆的定义可以用数学表达式表示为:椭圆的标准方程为:$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a>b>0)$其中,a和b分别为椭圆的半长轴和半短轴的长度,且椭圆的长轴在x轴上,短轴在y轴上。

二、椭圆的性质1. 焦点性质:椭圆定义的两个焦点到椭圆曲线上的任意一点的距离之和等于常数2a。

2. 直径性质:椭圆的任意一条直径上任意一点到焦点的距离与到准位线的距离之和等于直径的长。

3. 对称性质:椭圆具有关于x轴、y轴和原点对称的性质。

4. 离心率:椭圆的离心率为$e = \sqrt{1-\frac{b^2}{a^2}}$,它描述了椭圆的扁平程度,离心率越接近于0,椭圆越圆。

三、椭圆的参数方程椭圆的参数方程可以表示为:$x=a \cos t$$y=b \sin t$其中,t为参数,a和b分别为椭圆的半长轴和半短轴的长度。

四、椭圆的焦点与准位线椭圆的焦点和准位线是椭圆的重要性质之一,它们在椭圆的图形、方程和计算中起着重要作用。

1. 焦点的坐标:椭圆的焦点坐标为$(\pm \sqrt{a^2 - b^2},0)$2. 准位线方程:椭圆的准位线方程为$x=\pm a \epsilon$,其中ε为椭圆的离心率。

五、椭圆的相关定理1. 椭圆的直径定理:椭圆的所有直径的长度之和为常数2a。

2. 椭圆的离心率定理:椭圆的离心率e的平方等于1减去b平方除以a平方。

六、椭圆的应用椭圆在生活和工程领域中有着广泛的应用,例如:1. 太阳系中行星的轨迹一般为椭圆,椭圆的性质可以帮助我们更好地理解天体运动规律。

2. 椭圆在工程中的应用:例如建筑、机械、航天等领域都会涉及到椭圆的应用,例如在建筑设计中椭圆形的圆顶结构、在机械制造中椭圆齿轮的设计等等。

文科数学椭圆知识点总结

文科数学椭圆知识点总结

文科数学椭圆知识点总结一、椭圆的基本概念1. 定义:椭圆是一个平面上点的集合,其到两个给定点的距离之和等于常数的情形。

这两个给定点称为焦点,这个常数称为椭圆的半径和。

椭圆是一种特殊的圆锥曲线。

2. 要素:椭圆包括两个焦点F1、F2和椭圆的半长轴a、半短轴b。

定义F1F2=2a,F1P+F2P=2a+b,其中P为椭圆上的任意一点。

二、椭圆的性质1. 关于对称性:椭圆具有关于x轴、y轴和原点的对称性。

对于椭圆上的任意一点P(x, y),都有P(-x, y)、P(x, -y)、P(-x, -y)在椭圆上。

2. 弧长和扇形面积:椭圆的弧长计算公式为L=4aE(e),其中E(e)是第二类椭圆积分,并且扇形的面积计算公式为A=πab。

3. 离心率和焦点:椭圆的离心率e是一个重要的参数,它决定了椭圆的形状。

e=c/a,其中c是焦点到中心的距离,a是半长轴的长。

4. 判别式:在解析几何中,一般地,椭圆方程Ax^2+By^2+Cx+Dy+E=0可以化为标准型x^2/a^2+y^2/b^2=1,其中a、b和离心率e=√(a^2-b^2)/a,可以通过判别式B^2-4AC来判别椭圆方程的类型。

5. 焦直线和其它性质:椭圆的焦直线可以表示为x=a/c或x=-a/c,其中c=√(a^2-b^2)。

椭圆上的任意一点P(x, y)到两个焦点的距离之和等于椭圆的长轴长度。

三、椭圆的方程1. 标准方程:椭圆的标准方程可以表示为 x^2/a^2+y^2/b^2=1,其中a>b>0。

当椭圆的中心位于原点时,方程为x^2/a^2+y^2/b^2=1;当椭圆的中心不位于原点时,方程为(x-h)^2/a^2+(y-k)^2/b^2=1。

2. 参数方程:椭圆的参数方程可以表示为x=a*cos(t),y=b*sin(t),其中t是参数,a、b分别表示椭圆的半长轴和半短轴。

3. 焦点方程和直角坐标方程:椭圆的焦点方程可以表示为x^2+y^2=a^2,e^2=a^2-b^2;椭圆的直角坐标方程可以表示为y=a*√(1-x^2/a^2)。

高中椭圆知识点总结大全

高中椭圆知识点总结大全

高中椭圆知识点总结大全一、椭圆的定义椭圆可以通过一个固定点F(称为焦点)和一个固定线段2a(称为长轴)来定义:对于平面上的任意一点P到F的距离加上到线段上两个端点的距离之和恒为常数2a。

即对于平面上任意一点P(x, y),有PF1 + PF2 = 2a,其中PF1和PF2分别是点P到焦点F1和F2的距离。

椭圆的数学定义为:椭圆是平面上到两个给定点F1和F2的距离之和为定值2a的所有点P(x, y)的集合。

2a称为椭圆的主轴长。

椭圆的中点O为原点,主轴与x轴平行。

a称为半长轴,b称为半短轴。

椭圆的方程通常表示为(x^2)/a^2 + (y^2)/b^2 = 1,当a=b时,椭圆的长轴和短轴相等,称为圆。

二、椭圆的参数方程椭圆还可以通过参数方程来描述。

椭圆的参数方程为x = a*cos(t),y = b*sin(t),其中t为参数,a和b分别为半长轴和半短轴。

参数方程可以将椭圆的轨迹表示为一个参数的函数,很方便进行曲线的分析和运算。

三、椭圆的焦点与离心率椭圆有两个焦点F1和F2,它们在长轴上与中点O等距离。

椭圆的离心率e定义为焦距2c与长轴2a的比值,即e = c/a。

e的取值范围为0<e<1,当e=0时,椭圆为圆,当e逐渐增大时,椭圆的形状变得更加扁平。

四、椭圆的方程与性质1. 椭圆的标准方程椭圆的标准方程为(x^2)/a^2 + (y^2)/b^2 = 1,其中a和b分别为半长轴和半短轴的长度。

一般来说,可以通过椭圆的焦点和长短轴长短求出标准方程。

2. 椭圆的性质(1)椭圆的对称轴:椭圆相对于x轴、y轴或坐标原点都是对称的。

(2)椭圆的离心率:椭圆的形状特征由离心率e决定,e越接近于0,椭圆的形状越接近于圆。

(3)椭圆的焦点与直径:椭圆有两个焦点F1和F2,它们在长轴上与中点O等距离。

它的两个焦点连成的直线叫作椭圆的长轴,而过椭圆中点与垂直于长轴的直线的交点叫作椭圆的短轴。

长轴的长度等于2a,短轴的长度等于2b。

高三知识点总结椭圆

高三知识点总结椭圆

高三知识点总结椭圆椭圆作为高中数学中的重要知识点之一,在几何学和代数学中都有广泛的应用。

它具有独特的性质和特点,需要我们掌握其定义、基本性质以及相关公式和定理。

接下来,我将对椭圆的知识点进行总结。

1. 椭圆的定义和相关术语椭圆是一个平面上的几何图形,由到两个定点的距离之和等于常数的点的集合组成。

其中,两个定点称为焦点,常数称为焦距。

椭圆的中心是焦点连线的中垂线的交点,椭圆的长轴是焦点连线的延长线段,短轴是长轴上截取的一段等于焦距的线段。

2. 椭圆的标准方程椭圆的标准方程为(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)表示椭圆的中心坐标,a和b分别表示长轴和短轴的一半长度。

通过标准方程,我们可以确定椭圆的中心、长短轴和离心率。

3. 椭圆的离心率和焦距关系椭圆的离心率是一个衡量椭圆形状的重要指标。

离心率的计算公式为e = √(a²-b²)/a,其中a和b分别表示长轴和短轴的一半长度。

当离心率小于1时,椭圆是一个闭合曲线,当离心率等于1时,椭圆退化为一个抛物线。

4. 椭圆的焦点坐标和焦距的计算椭圆的焦点坐标可以通过中心坐标和离心率计算得到。

设横轴为x轴,纵轴为y轴,椭圆的焦点坐标为(F₁,0)和(-F₁,0),其中F₁ = e * a。

椭圆的焦距为2F₁。

5. 椭圆的参数方程椭圆还可以通过参数方程来表示。

如果椭圆的焦点在原点上方,参数方程可表示为x = h + a * cosθ,y = k + b * sinθ,其中θ为参数。

6. 椭圆的性质和定理椭圆有许多重要的性质和定理,如椭圆离心率定理、椭圆三点共线定理、椭圆的切线方程等。

掌握这些性质和定理,对于解题和证明椭圆相关问题非常有帮助。

7. 椭圆的应用椭圆广泛应用于几何学、物理学、电子学等领域。

在几何学中,椭圆常用于描述行星的轨道、天体运动和地震波的传播等。

在物理学中,椭圆常用于描述光的偏振和电场的变化等。

高中文科数学椭圆知识点总结

高中文科数学椭圆知识点总结

高中文科数学椭圆知识点总结高中数学椭圆知识点1一、椭圆知识点总结1、椭圆的概念在平面内到两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆、这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距。

集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集。

2、椭圆的标准方程和几何性质一条规律椭圆焦点位置与x2,y2系数间的`关系:两种方法(1)定义法:根据椭圆定义,确定a2、b2的值,再结合焦点位置,直接写出椭圆方程。

(2)待定系数法:根据椭圆焦点是在x轴还是y轴上,设出相应形式的标准方程,然后根据条件确定关于a、b、c的方程组,解出a2、b2,从而写出椭圆的标准方程。

三种技巧(1)椭圆上任意一点M到焦点F的所有距离中,长轴端点到焦点的距离分别为最大距离和最小距离,且最大距离为a+c,最小距离为a-c。

(2)求椭圆离心率e时,只要求出a,b,c的一个齐次方程,再结合b2=a2-c2就可求得e(0<e<1)。

(3)求椭圆方程时,常用待定系数法,但首先要判断是否为标准方程,判断的依据是:①中心是否在原点;②对称轴是否为坐标轴。

二、复习指导1、熟练掌握椭圆的定义及其几何性质会求椭圆的标准方程。

2、掌握常见的几种数学思想方法——函数与方程、数形结合、转化与化归等、体会解析几何的本质问题——用代数的方法解决几何问题。

高中数学椭圆知识点2正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0抛物线标准方程y2=2pxy2=-2px-x2=2pyx2=-2py直棱柱侧面积S=c.h斜棱柱侧面积S=c'.h正棱锥侧面积S=1/2c.h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi.r2圆柱侧面积S=c.h=2pi.h圆锥侧面积S=1/2.c.l=pi.r.l弧长公式l=a.ra是圆心角的弧度数r>0扇形面积公式s=1/2.l.r 锥体体积公式V=1/3.S.H圆锥体体积公式V=1/3.pi.r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s.h圆柱体V=p.r2h乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab +b2)三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1.X2=c/a注:韦达定理判别式b2-4ac=0注:方程有两个相等的实根b2-4ac>0注:方程有两个不等的实根b2-4ac<0注:方程没有实根,有共轭复数根高中数学椭圆知识点3椭圆的标准方程共分两种情况:当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);其中a^2—c^2=b^2推导:PF1+PF2>F1F2(P为椭圆上的点F为焦点)椭圆的对称性:不论焦点在X轴还是Y轴,椭圆始终关于X/Y/原点对称。

高三椭圆知识点

高三椭圆知识点

高三椭圆知识点椭圆是数学中的一个重要概念,广泛应用于几何学、物理学、工程学等领域。

本文将对高三学生需要了解的椭圆知识点进行详细介绍。

一、椭圆的定义椭圆是平面上所有到两个固定点F1和F2的距离之和等于常数2a的点的集合。

两个固定点F1和F2称为椭圆的焦点,而常数2a 则称为椭圆的长轴。

二、椭圆的方程椭圆的标准方程为(x - h)²/a² + (y - k)²/b² = 1,其中(h, k)为椭圆的中心坐标,a和b分别为椭圆的长轴和短轴长度。

三、椭圆的性质1. 椭圆上的所有点到两个焦点的距离之和等于常数2a。

2. 椭圆上的点与两个焦点连线的夹角相等。

3. 椭圆的离心率定义为e = c/a,其中c为焦距。

椭圆的离心率小于1,且越接近于0,椭圆越扁平。

4. 椭圆是一个闭合曲线,对称于椭圆的中心。

5. 椭圆的长轴和短轴之间的关系为2ae = 2ab,即离心率乘以长轴等于短轴。

四、椭圆的图形特征1. 当a = b时,椭圆退化为一个圆。

2. 当a > b时,椭圆呈现出纵向拉长的形状,长轴在y轴方向。

3. 当a < b时,椭圆呈现出横向拉长的形状,长轴在x轴方向。

五、椭圆的离心率与几何实例1. 当离心率趋近于0时,椭圆接近于圆形,如地球的形状。

2. 当离心率介于0和1之间时,椭圆的形状为椭球体,如椭球中的地下水位面。

3. 当离心率等于1时,椭圆变成一条直线,即为抛物线。

4. 当离心率大于1时,椭圆成为一个开口朝上或朝下的曲线,称为双曲线。

六、椭圆的应用领域1. 天体运动:行星、卫星等天体的轨迹都可以用椭圆来描述。

2. 光学系统:椭圆形镜头可以校正色差,提高成像质量。

3. 平面运动:如抛物线运动、交通工具的轨迹等。

4. 电子通信:卫星轨道和雷达波束设计等。

综上所述,椭圆是一种具有许多重要性质和广泛应用的几何曲线。

通过熟练掌握椭圆的定义、方程和性质,学生可以在解决实际问题中运用椭圆相关知识,提高数学思维和解题能力。

高三椭圆知识点归纳总结

高三椭圆知识点归纳总结

高三椭圆知识点归纳总结一、椭圆的定义椭圆是平面上到两个定点F1,F2的距离之和等于一定值(2a)的动点P的轨迹所组成的曲线。

两个定点F1,F2称为椭圆的焦点,而线段F1F2的长度为主轴的长度。

二、椭圆的基本性质1. 半长轴与半短轴- 半长轴a:半长轴是椭圆中心到椭圆的边界的最大距离。

- 半短轴b:半短轴是椭圆中心到椭圆的边界的最小距离。

2. 焦距与半长轴的关系- 焦距c:焦距是椭圆的两个焦点之间的距离。

根据焦距和半长轴的关系,可以得出关系式:c^2 = a^2 - b^2。

3. 离心率- 离心率e:离心率是用来衡量椭圆形状的一个参数。

离心率e的值介于0到1之间,离心率越接近于0,椭圆形状越接近于圆形;离心率越接近于1,椭圆形状越扁平。

4. 椭圆的焦点和准线- 焦点F1和F2:椭圆的焦点是定义中的两个定点,焦点到椭圆上任意一点的距离之和等于2a。

- 准线L1和L2:准线是与椭圆的焦点平行且通过椭圆中心的两条直线。

5. 椭圆的方程- 标准方程:以椭圆中心为坐标原点,长轴与x轴平行,且焦点在x轴上的椭圆方程为x^2/a^2 + y^2/b^2 = 1。

- 带有倾斜角度的方程:如果椭圆的长轴与x轴的夹角为α,则椭圆的方程为[(x-h)cosα + (y-k)sinα]^2/a^2 +[(x-h)sinα - (y-k)cosα]^2/b^2 = 1,其中(h, k)表示椭圆中心的坐标。

三、椭圆的相关公式1. 离心率的计算离心率e = c / a,其中c为焦距,a为半长轴的长度。

2. 焦点到直角椭圆弧的距离对于直角椭圆弧的焦点到椭圆上任意一点的距离d,有以下关系:d = a(1 - e*cosθ),其中θ为焦点与椭圆上某点P的连线与半长轴的夹角。

3. 焦半径公式椭圆上任意一点P(x,y)到焦点F1或F2的距离为r,有以下关系:r = |PF1| + |PF2| = 2a。

四、椭圆的相关定理1. 切线与法线- 切线:过椭圆上任意一点的切线与该点与两个焦点的连线之间的夹角等于这两条线段的夹角的一半。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆(1)
【考点及要求】理解椭圆的定义,掌握椭圆的标准方程,会求椭圆的标准方程。

掌握椭圆的几何性质,运用椭圆的标准方程和几何性质处理一些简单的实际问题 【基础知识】
1. 椭圆13
42
2=+y x 的长轴位于_____轴,长轴长等于_____;短轴位于_____轴,短轴长等于_____;焦点在_____轴上,焦点坐标分别是________和________;离心率e =_____;左
顶点坐标是________;下顶点坐标是________;椭圆上点),(00y x P 的横坐标的范围是___________,纵坐标的范围是___________;00y x +的取值范围是______________.
2. 已知1F 、2F 是椭圆
19
162
2=+y x 的两个焦点,过1F 的直线与椭圆交于A 、B 两点,则B AF 2∆的周长为______________.
【基本训练】
1. ABC ∆中,若B 、C 的坐标分别为)0,3(-、)0,3(,且ABC ∆的周长等于16,则顶点A 的轨迹方程为___________________.
2. 若椭圆的长轴是短轴的3倍,且经过点)0,3(A ,则椭圆标准方程为___________________.
3. 如果方程k ky x =+22表示焦点在y 轴上的椭圆,则实数k 的取值范围是_____________
4. 椭圆14
22
=+y x 的焦点为1F 、2F ,点P 为椭圆上一动点,当21PF F ∠为钝角时,则点P 的横坐标∈0x __________________. 【典型例题】
例1 求满足下列条件的椭圆的标准方程:
(1) 与椭圆1592
2=+y x 有相同焦点且过点)1,6(- (2) 与椭圆13
42
2=+y x 有相同离心率且过点)3,2(-.;
练习 已知三点)0,6(),0,6(),2,5(21F F P -.(1)求以1F 、2F 为焦点且过点的椭圆的标准方程; (2)设点21,,F F P 关于直线x y =的对称点分别为',','21F F P ,求以','21F F 为焦点且过点'P 的双曲线的标准方程.
例1 一动圆与已知圆1O :1)3(22=++y x 外切,与圆2O :81)3(22=+-y x 内切,试求动圆圆心的轨迹方程.
练习 已知动圆M 过定点)0,3(-A ,并且在定圆B :64)3(22=+-y x 的内部与其相内切,求动圆圆心的轨迹方程.
【课堂小结】 【课堂检测】
1求满足下列条件的椭圆的标准方程:
(1) 短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为3 (2) 经过点)1,32(-P ,)2,3(-Q .
2. 平面内有两定点A 、B 及动点P .命题p :PB PA +为定值,命题q :点P 的轨迹是以A 、B 为焦点的椭圆,那么p 是q 的( ) A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
3设椭圆122
22=+b
y a x )0(>>b a 的焦点为1F 、2F ,长轴两端点为1A 、2A .(1)P 为椭圆上一
点,且 6021=∠PF F ,求21PF F ∆的面积;(2)若椭圆上存在一点Q ,使 12021=∠QA A 求椭圆离心率e 的取值范围.
§78 椭圆(2)
例3
13610022
=+y x 上一点P 到右准线的距离为10,那么P 点到它的左焦点的距离是_____.
练习 点P 在椭圆19
252
2=+y x 上,它到左焦点的距离是它到右焦点距离的两倍,则点P 的横坐标是____________.
例2 若椭圆122=+by ax 与直线1=+y x 交于A 、B 两点,M 为AB 的中点,直线OM (O 为原点)的斜率为22,(1)求a
b
;(2)若OB OA ⊥,求椭圆的方程.
变式 直线l 过点)1,1(M ,与椭圆13
42
2=+y x 相交于A 、B 两点,若AB 的中点为M ,试求直线l 的方程.
【课堂小结】
【课堂检测】
1.椭圆1222=+y x 的离心率是______________,准线方程是______________________
2.若焦点在x 轴上的椭圆1222=+m y x 的离心率为2
1,则m =______________. 3.椭圆122=+my x 的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为____________. 4.在,10,6,=+=∆AC AB BC ABC 中 则ABC ∆面积的最大值为____________________. 5.已知中心在原点的椭圆经过(2,1)点,则该椭圆的半长轴长的取值范围是______________.
6.若直线1+=kx y 和椭圆
1252
2=+m y x 恒有公共点,则实数∈m _____________________. 7.1F ,2F 是椭圆14
8:2
2=+y x C 的焦点,在C 上满足21PF PF ⊥的点P 的个数为_______个. 8.椭圆⎩
⎨⎧=+=ϕϕ
sin 3cos 54y x (ϕ为参数)焦点坐标是_______________________.
【课后作业】
1.已知n m n m +,,成等差数列,mn n m ,,成等比数列,则椭圆12
2=+n
y m x 的离心率为_______. 2.椭圆)0(122
22>>=+b a b
y a x 的半焦距为c ,直线x y 2=与椭圆的一个交点的横坐标恰为c ,
则该椭圆的离心率为_______________.
3.椭圆13
122
2=+y x 的一个焦点为1F ,点P 在椭圆上,如果线段1PF 中点M 在y 轴上,那么点M 的纵坐标是___________
4.椭圆14
22
=+y x 的两个焦点为1F ,2F ,过1F 作垂直于x 轴的直线与椭圆相交,一个交点为P ,则2PF 等于_________________
5 .已知椭圆
19
252
2=+y x ,直线l :04054=+-y x ,椭圆上是否存在一点,它到直线l 的距离最小?若存在,求出最小距离.
6. 已知)3,2(-A ,F 是椭圆
112
162
2=+y x 的右焦点,点M 在椭圆上移动,当MF MA 2+取最小值时,求点M 的坐标.。

相关文档
最新文档