克莱姆法则

合集下载

克莱姆法则

克莱姆法则
对于多于两个或三个方程的系统,克莱姆的规则在计算上非常低效;与具有多项式时间复杂度的消除方法相 比,其渐近的复杂度为O(n·n!)。即使对于2×2系统,克拉默的规则在数值上也是不稳定的 。
作者介绍
克莱姆(Cramer,Gabriel,瑞士数学家 1704-1752)克莱姆1704年7月31日生于日内瓦,早年在日内瓦读书, 1724年起在日内瓦加尔文学院任教,1734年成为几何学教授,1750年任哲学教授。他自 1727年进行为期两年的 旅行访学。在巴塞尔与约翰.伯努利、欧拉等人学习交流,结为挚友。后又到英国、荷兰、法国等地拜见许多数 学名家,回国后在与他们的长期通信中,加强了数学家之间的联系,为数学宝库也留下大量有价值的文献。他一 生未婚,专心治学,平易近人且德高望重,先后当选为伦敦皇家学会、柏林研究院和法国、意大利等学会的成员。
克莱姆法则
线性代数中一个关于求解线性方程组的定理
01 作者介绍
目录
02 基本介绍
03 法则总结
04 技术应用
05 不确定的情况
克莱姆法则,又译克拉默法则(Cramer's Rule)是线性代数中一个关于求解线性方程组的定理。它适用于 变量和方程数目相等的线性方程组,是瑞士数学家克莱姆(1704-1752)于1750年,在他的《线性代数分析导言》 中发表的。其实莱布尼兹〔1693〕,以及马克劳林〔1748〕亦知道这个法则,但他们的记法不如克莱姆。
记法1:若线性方程组⑴的系数矩阵可逆(非奇异),即系数行列式 D≠0。有唯一解,其解为 记法2:若线性方程组⑴的系数矩阵可逆(非奇异),即系数行列式 D≠0,则线性方程组⑴有唯一解,其解 为 其中Dj是把D中第j列元素对应地换成常数项而其余各列保持不变所得到的行列式。 记法1是将解写成矩阵(列向量)形式,而记法2是将解分别写成数字,本质相同。

克莱姆 法则

克莱姆 法则

b1 ,b2 , ,bn 全为零,则此方程组称为 n 元齐次线性方程组,即
a11x1 a12 x2 a21x1 a22 x2 an1x1 an2 x2
a1n xn 0 , a2n xn 0 ,
ann xn 0 .
( 1-16 )
相关概念
方程组(1-15)的系数 aij 构成的行列式
2 8 5 1
9 D1 5
3 2
0 1
6 2
81 , D2
1 0
9 5
0 1
6 108 , 2
0 4 7 6
1 0 7 6
2 18 1
2 1 5 8
1 D3 0
3 2
9 5
6 2
27 , D4
1 0
3 2
0 1
9 27 , 5
140 6
1 4 7 0
所以, x1
D1 D
81 27
3 , x2
根,则 f (x) 是一个零多项式。 证明:设 a1 ,a2 , ,an1 是 f (x) 的 n 1 个不同的根,即
c0 c0
c1a1 c1a2
c2a12 c2a22
cna1n 0 , cna2n 0 ,
c0
c1an1
c2
a2 n1
cn
an n 1
0,
这是以 c0 ,c1 , ,cn 为未知数的齐次线性方程组,其系数行列式为

1 a1 a12 1 a2 a22
a1n
11
1
a2n
a1 a2
an1
D 1 a3 a32
a3n a12 a22
a2 n 1
1 an1
a2 n 1
an n 1

行列式克莱姆法则

行列式克莱姆法则
详细描述
利用克莱姆法则,可以将一个行列式表示为一个数值,通过计算该数值即可得到行列式的值。这种方法适用于系 数行列式不为零的情况,可以简化行列式的计算过程。
实例三:解的唯一性验证
总结词
克莱姆法则可以用于验证线性方程组解的唯一性。
详细描述
通过计算系数矩阵的行列式,利用克莱姆法则判断解的唯一性。如果行列式不为零,则线性方程组有 唯一解;如果行列式为零,则线性方程组可能无解或有无穷多解。这种方法可以用于判断线性方程组 解的情况,为求解问题提供依据。
03 适用范围
研究克莱姆法则的适用范围,探索其在更广泛领 域的应用可能性。
应用领域的拓展
数值分析
将行列式克莱姆法则应用于数值分析中,解决 大规模线性方程组的求解问题。
科学计算
将克莱姆法则与其他科学计算方法相结合,提 高计算效率和精度。
工程领域
将克莱姆法则应用于工程领域,解决实际工程问题,如结构分析、流体动力学 等。
线性方程组解的唯一性条件是克莱姆法则应用的 重要前提之一,它确保了线性方程组的解是唯一 的,从而使得行列式中的每个子式可以代表一个 唯一的解向量。
03
克莱姆法则的推导过程
推导步骤一:行列式的计算
计算行列式的值
根据行列式的定义,按照行或列展开,计算得到行列 式的值。
展开方式的选择
选择合适的展开方式,使得计算过程简化,提高计算 效率。
计算方法的改进
算法优化
优化克莱姆法则的计算方法,提高计算效率,减少计算量。
并行计算
利用并行计算技术,实现克莱姆法则的高效计算,处理大规模数 据。
软件实现
开发适用于克莱姆法则的软件或库,方便用户进行实际应用和计 算。
THANKS

carmer法则

carmer法则

carmer法则
克莱姆法则(Cramer's Rule)是线性代数中一个关于求解线性方程组的定理,也称作克拉默法则。

这个法则是由瑞士数学家克莱姆(Gabriel Cramer)在他的《线性代数分析导言》中于1750年发表的。

不过值得注意的是,尽管克莱姆是首位发表这个法则的数学家,但莱布尼兹和马克劳林等数学家在此之前也已经知晓这个法则。

克莱姆法则的核心内容是:对于一个有n个方程和n个未知数的线性方程组,如果其系数行列式不等于零,那么方程组有唯一解,且每一个未知数的解可以由对应的行列式求得。

具体来说,每一个未知数的解等于常数项替换该未知数系数后所得到的行列式与原系数行列式之商。

然而,克莱姆法则并不总是计算线性方程组最有效的方法。

实际上,当方程组的规模(即未知数的数量)增加时,使用克莱姆法则进行计算会变得非常低效。

因为计算每一个未知数的解都需要计算n个n阶行列式,而计算一个n阶行列式的时间复杂度是O(n!),这使得克莱姆法则对于大规模线性方程组的求解并不实用。

此外,克莱姆法则还存在数值稳定性的问题。

即使对于规模较小的线性方程组,由于计算过程中涉及大量的乘法和除法运算,可能会导致数值误差的累积,从而影响解的精度。

总的来说,克莱姆法则虽然在线性代数中具有重要的理论意义,但在实际应用中,我们通常会选择更高效、更稳定的算法来求解线性方程组。

克莱姆法则

克莱姆法则
称为方程组的系数行列式。 称为方程组的系数行列式。 系数行列式
a1n a2n L ann
,
3
当 D ≠ 0 时,方程组有且仅有一个解 Dj xj = j =1,2,L, n D 其中
a11 L a1 j−1 b1 Dj = ai1 L aij−1 bi
a1 j+1 L a1n aij+1 L ain anj+1 L ann
(1)
D≠0
则(1)只有惟一的零解。 )只有惟一的零解。
定理3 齐次方程组( ) 定理 齐次方程组(1) 有非零解
6
例3
解齐次方程组
x1 + 3x2 + 2x3 = 0 2x1 − x2 + 3x3 = 0 3x + 2x − x = 0 2 3 1

1 3 D = 2 −1 3 2
2 3 = 42≠ 0 −1
因此方程组只有零解
x1 = x2 = x3 = 0
7
例4
λ 取何值时下列齐次方程组有非零解
λx1 + x2 + x3 = 0 x1 + λx2 + x3 = 0 x + x + λx = 0 3 1 2

λ 1 1 1 1 1 1 1 1 D = 1 λ 1 = (λ + 2)1 λ 1 = (λ + 2) 0 λ −1 0 1 1 λ 1 1 λ 0 0 λ −1
这样求解二元一次方程组归结为求三个二阶行列式 的值。 同样用此方法可解n元一次方程组。 元一次方程组。 的值。 同样用此方法可解 元一次方程组
2
定理1(克莱姆法则) 定理 (克莱姆法则) 个方程, 当含有 n 个方程,n 个未知数的线性方程组

1.4 克莱姆( Cramer )法则

1.4 克莱姆( Cramer )法则
24
1 1 6 1 1 1 6 1 D3 144, 1 2 6 8 1 2 6 8
1 1 1 1 D4 1 2 1 2
1 6 1 6 72, 4 6 4 6
D1 576 所以 a0 8, D 72
D3 144 a2 2, D 72
D2 72 a1 1, D 72
(1 ) (2 )
2
因为方程组有非零解, 则
D (1 )2 (2 ) 0
故 λ =1 或 λ= −2.
12
例3 问 取何值时, 齐次线性方程组
1 x1 2 x2 4 x3 0 2 x1 3 x2 x3 0 有非零解? x x 1 x 0 2 3 1
其余 xi ( i j ) 的系数均等于0, 而等式右端为 D j 于是
Dx j Dj j 1, 2,
,n
2
当D≠0时, 方程组(2)有唯一的一个解为
D3 D1 D2 x1 , x2 , x3 , D D D
D3 D1 D2 x1 , x2 , x3 , D D D
3
(1)
的系数行列式 D
a21 a n1
0
则线性方程组(1)有唯一解,且
D3 D1 D2 x1 , x2 , x3 , D D D Dn , xn . D
其中Dj 是把系数行列式 D 中第 j 列的元素用方程组
右端的常数项代替后所得到的 n 阶行列式, 即
a11 Dj a n1
解 先求系数行列式,得
2 1 5 1 1 3 0 6 D 0 2 1 2 1 4 7 6
r1 2r2

线性代数课件1-5克莱姆法则

线性代数课件1-5克莱姆法则

线性方程组的解的个数
有唯一解
当系数矩阵的行列式不为零时,线性方 程组有唯一解。
VS
无解或多解
当系数矩阵的行列式为零时,线性方程组 可能无解或多解,此时克莱姆法则不适用 。
03
克莱姆法则的证明过程
系数矩阵的行列式的性质
系数矩阵的行列式不为零
克莱姆法则的前提条件是系数矩阵的行列式 不为零,这是保证线性方程组有唯一解的重 要条件。
线性方程组解的个数的判断
总结词
克莱姆法则可以用于判断线性方程组解的个数。
详细描述
通过计算系数矩阵的行列式值和各列的代数余子式,可 以确定线性方程组的解的个数。如果行列式值不为零, 则线性方程组有唯一解;如果行列式值为零且系数矩阵 的秩等于增广矩阵的秩,则线性方程组有无穷多解;如 果行列式值为零且系数矩阵的秩不等于增广矩阵的秩, 则线性方程组无解。
Ax=b,其中A是系数矩阵,x是未知数矩阵,b是常数矩阵。
特殊形式
当系数矩阵A为方阵时,即行数和列数相等的矩阵,克莱姆法则适用。
系数矩阵的行列式
非零行列式
克莱姆法则的前提是系数矩阵的行列式不为零,即|A|≠0。
行列式的计算
行列式的值是通过其对应元素的代数余子式计算得出的,即|A|=Σ(-1)^(i+j)a_{ij},其中a_{ij}是A的元 素。
解的唯一性
除了证明解的存在性,还需要证明解是唯一 的。这可以通过利用系数矩阵的行列式不为 零的条件和线性方程组的解的性质来证明。
克莱姆法则的证明
证明过程
克莱姆法则的证明过程涉及多个步骤,包括利用代数余子式计算系数矩阵的行列式、将 线性方程组的解表示为系数矩阵的行列式的值等。这个过程需要仔细推导和计算,确保

克莱姆(Cramer)法则

克莱姆(Cramer)法则

0 2 1 2
1 4 7 6

8 1 5 1
9 3 0 6
D1 5
2
1
81 2
0 4 7 6
2 8 5 1
1 9 0 6
D2 0 5 1
108 2
1 0 7 6
21 8 1
1 3 9 6
D3 0
2
5
27 2
14 0 6
2 1 5 8
1 3 0 9
D4 0
2
27 1 5
Байду номын сангаас
1 4 7 0
1 cn cn2 cnn
为 n+1阶范德蒙行列式的转置,故D≠0 .由定
理1.4.2,齐次线性方程组(1.4.7)只有零解,从
而 an=0,此与题设条件矛盾.
n
bk Akj ( j 1,2,, n)
k 1
于是
n aij
j 1
Dj D
1 D
n j 1
aij
n
( bk
k 1
Akj )
1 D
nn
aijbk Akj
j1 k 1
1 D
n
(
k 1
n
aij Akj
j 1
)bk
1 D
bi
(
n
aij Aij
j 1
)
1 D
bi D
bi
(i 1,2,,n)
k1 1 D 1 k 1 (k 1)(k 4)
2 1 1
所以, k = 1或k=4 ,且易验证k = 1或k=4 时方程组确有非零解.
例1.4.4 试证: n次多项式
f (x) a0 a1x an x n (an 0)

线性代数—克莱姆法则

线性代数—克莱姆法则

线性代数—克莱姆法则
克莱姆法则是由现代数学家狄里克·克莱姆在十九世纪二十年代初发现的一种数学方法,用于快速地解决某些复杂的非线性方程组。

该法则主要有四步:(1)假设一组未知量;(2)求解该组方程;(3)核查解的有效性;(4)如果解有效,则接受该解;否则更改第1步中的未知量,然后重新开始这一过程。

克莱姆法则的运用是基于线性代数中最优化方程组的求解,即确定未知连续变量的值来最大程度地满足非线性方程组限制条件的过程。

由于该法则具有容易理解、计算方便、解结构同构完整、解复杂度小等特点,因而迅速受到业界的欢迎,成为现代线性代数常用的求解方法之一。

克莱姆法则应用于显式多元线性方程组中,它假设这一方程组具有唯一的解,并通过将该方程组映射到另一个虚拟方程组来解决。

它也可以用来求解隐式的多元线性方程组,其优点是能够有效规避数值问题。

实际应用中,克莱姆法则也往往与其它数值技术相结合,如子程序法、减法法等,为解决最优化问题提供了更强大的解决方案。

同时,该法则也被拓展应用到其它领域(如运筹学),并在控制工程和机器人学等领域大量使用。

1.3 克莱姆(Cramer)法则

1.3 克莱姆(Cramer)法则

个方程相加, 再将 n 个方程相加,得
n n n n ∑ ak 1 Ak 1 x1 + ∑ ak 2 Ak 1 x2 + L + ∑ a k n Ak 1 xn = ∑ bk Ak 1 . k =1 k =1 k =1 k =1
第 一 章 行 列 式
§1.3 克莱姆(Cramer)法则
四、齐次线性方程组的有解问题
考虑齐次线性方程组
显然,它总存在一组全为零的解(称为零解) 显然,它总存在一组全为零的解(称为零解): 零解
x1 = x2 = L = xn = 0 .
定义 若齐次线性方程组的一组解不全为零 则称为非零解 若齐次线性方程组的一组解不全为零, 则称为非零解 非零解.
8
第 一 章 行 列 式
§1.3 克莱姆(Cramer)法则
四、齐次线性方程组的有解问题
定理 若齐次线性方程组的系数行列式 D ≠ 0 , 则它只有零解 则它只有零解. 证明 由于当线性方程组的系数行列式 D ≠ 0 时有惟一解, 由于当线性方程组的系数行列式 时有惟一解, 线性方程组 故齐次线性方程组的系数行列式 D ≠ 0 时只有零解. 齐次线性方程组的系数行列式 时只有零解 推论 若齐次线性方程组有非零解 则其系数行列式必为零 若齐次线性方程组有非零解, 则其系数行列式必为零. (此为上述定理的逆否命题) 此为上述定理的逆否命题) 思考 (1) 若齐次线性方程组的系数行列式 D = 0 , 则它是否 一定有非零解? 即定理的否命题是否成立? 一定有非零解? (即定理的否命题是否成立?) (2) 齐次线性方程组有非零解和它对应的非齐次线性 齐次线性方程组有非零解 有非零解和它对应的非齐次线性 方程组有无穷多解有何联系? 方程组有无穷多解有何联系? 有无穷多解有何联系 9

克莱姆法则

克莱姆法则

如何结合其他决策方法提高克莱姆法则的决策效果
结合其他决策方法
• 将克莱姆法则与直觉决策、群体决策等其他决策方法相 结合 • 实现决策方法的互补和优化,提高决策效果
决策效果评估
• 建立决策效果评估机制,对决策过程进行监督和反馈 • 根据评估结果,不断调整和优化决策方法,提高决策效 果
CREATE TOGETHER
政策方案的选择
• 通过克莱姆法则对政策方案进行评估和选择,实现最优政策效果 • 克莱姆法则有助于提高政策制定的科学性和民主性,增强政策的可信度
克莱姆法则在个人决策中的应用实例
职业规划
• 通过克莱姆法则明确职业目标,分析个人能力和市场需求,制定合适的职业规划 • 克莱姆法则可以帮助个人实现职业发展目标,提高职业满意度
克莱姆法则的发展历程
• 20世纪60年代,克莱姆法则开始受到广泛关注 • 20世纪70年代,克莱姆法则被广泛应用于项目管理领域 • 20世纪80年代,克莱姆法则逐渐成为决策科学的一个重要分支
克莱姆法则的核心要义与基本原理
克莱姆法则的核心要义
• 明确问题:首先需要清晰地定义问题和决策目标 • 收集信息:收集与问题相关的所有信息和数据 • 列出解决方案:根据收集到的信息,提出所有可能的解决方案 • 评估风险:对每个解决方案的风险进行评估,选择风险最小的方案
决策步骤优化
• 对决策步骤进行精简,提高决策效率 • 引入人工智能和大数据技术,辅助决策过程
如何提高克莱姆法则在复杂问题决策中的准确性
提高信息质量
• 采用多种渠道收集信息,确保信息的真实性、可靠性和全面性 • 提高信息处理的能力和技巧,挖掘信息价值
增强决策者的能力
• 培养决策者的批判性思维和创新能力 • 提高决策者的风险意识和风险应对能力

线性代数 克莱姆(Cramer)法则

线性代数 克莱姆(Cramer)法则

其中 b j 称为右端项 (或常数项);
a11 a 21 D a n1 a12 a1n a 22 a 2 n a n 2 a nn
简记为
ai j x j bi ,
j 1
n
i 1 , 2 , , n .
称为系数行列式 .
2
§1.3 克莱姆(Cramer)法则 第 二、克莱姆(Cramer)法则 一 a11 x1 a12 x 2 a1n x n b1 , 章 a 21 x1 a 22 x 2 a 2 n x n b2 , 定理 考虑线性方程组 行 列 P 18 a n1 x1 a n 2 x 2 a nn x n bn . 定理 式 1.3 若系数行列式 D 0 ,则方程组有惟一解
再将 n 个方程相加,得
n n n n ak 1 Ak 1 x1 ak 2 Ak 1 x2 ak n Ak 1 xn bk Ak 1 . k 1 k 1 k 1 k 1
4
§1.3 克莱姆(Cramer)法则 第 一 章 行 列 式
6
§1.3 克莱姆(Cramer)法则 第 三、齐次与非齐次线性方程组 一 a11 x1 a12 x 2 a1n x n b1 , 章 a x a x a x b , 21 1 22 2 2n n 2 行 定义 设线性方程组为 列 P 21 a n1 x1 a n 2 x 2 a nn x n bn . 式 (1) 若常数项 b1 , b2 , , bn 不全为零, 则称此方程组为非齐次线性方程组; (2) 若常数项 b1 , b2 , , bn 全为零, 则称此方程组为齐次线性方程组; 注 通常还称齐次线性方程组为它所对应的非齐次线性 方程组的导出(方程)组. 7

03-第三节-克莱姆法则

03-第三节-克莱姆法则

03-第三节-克莱姆法则克莱姆法则,又称克莱姆-高尔德定理,是线性代数中的一个基本定理。

它是由瑞典数学家Thomas Joannes Stieltjes的工作启发得到的,是Sylvester定理的推广。

它表明对于一个n元线性方程组,其解向量的每一维可以表示为n个由原方程组变换而来的n-1元线性方程组的行列式比值,而这个比值只与原方程组的系数矩阵有关,与常数向量无关。

克莱姆法则的核心是求解一个n元线性方程组Ax=b,其中A为n×n的方阵,b为n 元常数向量。

假设原方程组的系数矩阵为A=[a1,a2,…,an],则对于解向量x=[x1,x2,…,xn],可以表示为:x1 = (det(A1)/det(A))……其中,A1=[b1,a2,…,an], A2=[a1,b2,…,an],An=[a1,a2,…,bn],det(A)为A的行列式,det(Ai)为将A中的第i列替换为向量b后得到的矩阵的行列式。

换句话说,x1、x2、…、xn是由Ai中的元素和bi组成的行列式,除以A的行列式得到的。

克莱姆法则适用于系数矩阵非奇异的情况,即det(A)≠0的情况。

当det(A)=0时,原方程组可能无解,也可能有无穷多解,无法使用克莱姆法则求解。

克莱姆法则的优点在于简单,直观,易于使用。

但是,它也有一些缺点。

首先,它只适用于小规模的方程组,因为计算每个Ai和det都需要指数级的时间复杂度。

其次,由于对每个解分别计算行列式比值,因此克莱姆法则对于数值误差非常敏感,可能产生较大的舍入误差。

因此,在实际应用中,一般使用其他更为鲁棒的方法,如高斯消元法、LU分解法等。

总之,克莱姆法则是一个强大且简单的工具,可以用于分析和解决一些线性方程组问题。

克莱姆法则

克莱姆法则
齐次线性方程组除了零解以外还有没 有其它解,即非零解?
定理三 如果齐次线性方程组有非零解,则 齐次线性方程组的系数行列式D=0. [证 ] 若 D 0 由克莱姆法则知齐次线性方程组只Hale Waihona Puke 唯一的零解. 与已知矛盾 D=0
由定理三可知,齐次线性方程组的系 数行列式D=0是齐次线性方程组有非零解 的必要条件. 在第四章将会看到,D=0也是齐次线性 方程组有非零解的充分条件. 综合上述,得到: 齐次线性方程组有非 零解的充要条件是系数行列式D=0.
2 1 8 1 1 3 9 6 D3 D3 = 27 x 3 D 0 2 5 2 27 1 4 0 6 = 1 27
2 1 5 8 D4 27 1 3 0 9 =27 x 4 D4 D 27 0 2 1 5 =1 1 4 7 0
二、齐次线性方程组有非零解的充要条件 齐次线性方程组: a11 x1 a12 x 2 a1n x n 0 a 21 x1 a 22 x 2 a 2 n x n 0 a n1 x1 a n 2 x 2 a nn x n 0 显然,齐次线性方程组总是有解的.因为 x1=0, x2=0,, xn=0就是一个解,它称为零解.
则该线性方程组有且仅有唯一解: Dn D1 D2 x1 , x2 ,, xn D D D 其中Dj (j=1,2,...,n)是把系数行列式D中第j 列的元素用常数项b1,b2,,bn代替后得到的 n阶行列式. 即 a11 a1, j 1 b1 a1, j 1 a1n a 21 a 2, j 1 b2 a2 , j 1 a 2 n Dj a n1 a n , j 1 bn a n , j 1 ann

1.4克莱姆法则

1.4克莱姆法则
一、克莱姆法则
二、重要定理
一、克莱姆法则
术语 齐次与非齐次线性方程组
a11 x1 a12 x2 a1n xn b1 0 a x a x a x b 0 21 1 22 2 2n n 2 有线性方程组 an1 x1 an 2 x2 ann xn bn 0
二、重要定理
定理1 如果线性方程组1的系数行列式 D 0, 则 1一定有解,且解是唯一的 . 定理2 如果线性方程组 1 无解或解不唯一,则 它的系数行列式必为零. 【注】线性方程组(1)要求方程个数与未知量个数相同!
齐次线性方程组的相关定理
a11 x1 a12 x 2 a1 n x n 0 a x a x a x 0 21 1 22 2 2n n a n1 x1 a n 2 x 2 a nn x n 0
小结
1. 用克莱姆法则解线性方程组的两个条件:
① 方程个数等于未知量个数; ② 系数行列式不等于零. 2.克莱姆法则建立了线性方程组的解和已知的系 数与常数项之间的关系.它主要适用于理论推导.
作业:P34 21(2), 22(2), 23
附 数域 定义 F是由一些数组成的集合,其中 0 F ,1 F , 若F中任意两个数(可相同)的和、差、积、商(除数 不为0)仍然是F中的数,(也称F对加、减、乘、除运 算封闭),则F称为一个数域.
abc D1 a 2 b 2 c 2 3abc
1 1 a 1 1 b c c1 bc2 cc3 a 2 b c ac ab abc ac ab
1 1 1 D1 a a b c aD, x1 a. D bc ac ab
D3 D2 b, x 3 c. 同理可得 x2 D D

05 第五节 克莱姆法则

05 第五节 克莱姆法则

第五节 克莱姆法则内容要点.克莱姆法则定理1 (克莱姆法则) 若线性方程组(1)的系数行列式0≠D , 则线性方程组(1)有唯一解,其解为),,2,1(n j D D x jj == (3)其中),,2,1(n j D j =是把D 中第j 列元素nj j j a a a ,,,21 对应地换成常数项,,,,21n b b b 而其余各列保持不变所得到的行列式.一般来说,用克莱姆法则求线性方程组的解时,计算量是比较大的. 对具体的数字线性方程组,当未知数较多时往往可用计算机来求解.克莱姆法则在一定条件下给出了线性方程组解的存在性、唯一性,与其在计算方面的作用相比,克莱姆法则更具有重大的理论价值. 撇开求解公式(3),克莱姆法则可叙述为下面的定理.定理2 如果线性方程组(1)的系数行列式,0≠D 则(1)一定 有解,且解是唯一的.在解题或证明中,常用到定理2的逆否定理:定理2' 如果线性方程组(1)无解或有两个不同的解, 则它的系数行列式必为零.对齐次线性方程组(2), 易见021====n x x x 一定该方程组的解, 称其为齐次线性方程组(2)的零解. 把定理2应用于齐次线性方程组(2),可得到下列结论.定理3 如果齐次线性方程组(2)的系数行列式,0≠D 则齐次线性方程组(2)只有零解. 定理3' 如果齐次方程组(2)有非零解,则它的系数行列式.0=D注: 在第三章中还将进一步证明,如果齐次线性方程组的系数行列式,0=D 则齐次线性方程组(2)有非零解.例题选讲例1用克莱姆法则求解线性方程组:⎪⎩⎪⎨⎧=+=+=++4535225323221321x x x x x x x 解 530021532=D 31r r - ,205225302253002102=⨯⨯==5340255321=D 31r r -,2052)2(534025002-=⨯⨯-=- 5400515222=D 212r r -54051580-21r r ↔,605458540580051=--=--4305212323=D 212r r -43521810--21r r ↔.204381430810521-=---=---由克莱姆法则,.1,3,1332211-====-==DD x D Dx D D x例2用克莱姆法则解方程组 ⎪⎪⎩⎪⎪⎨⎧=+-+-+-=--=+-+.0674,522,963,85243214324214321x x x x x x x x x x x x x x解 6741212060311512-----=D21242r r r r --12772121357127702120603113570----=-----212322c c c c ++.272733277010353=---=-------,8167402125603915181=------=D ,10867012150609115822=-----=D,2760412520693118123-=---=D ,2707415120903185124=-----=D,3278111===∴D D x ,42710822-=-==D D x,1272733-=-==D D x .1272744===D D x例3 问λ为何值时, 齐次方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解?解D =λλλ----111132421=λλλλ--+--101112431)3)(1(2)1(4)3()1(3λλλλλ+------+-=3)1(2)1(23-+-+-=λλλ),3)(2(λλλ--=齐次线性方程组有非零解,则,0=D 所以,0=λ 2=λ或3=λ时齐次线性方程组有非零解.例4 设方程组 ⎪⎩⎪⎨⎧=++++=++++=++abc abz cay bcx c b a cz by ax c b a z y x 3222试问c b a ,,满足什么条件时, 方程组有惟一解, 并求出惟一解.解 abca bc c b aD 111= 3221c c c c -- abb c a a b c c c b ba )()(100----)()(21c b c b a c -÷-÷))()((11))((111))((a c c b b a ac c b b a aba c c cb b a ---=----=----显然,当c b a ,,互不相等时,,0≠D 该方程组有唯一解. 又abca abcc b c b a cb a D 3112221++++=321cc bc c -- abca abc c baa211ac ÷1 .111aD abca bc c b aa = 同理可得,,32cD D bD D ==于是 .,,321c DD z b D Dy a D D x ======。

克莱姆法则公式

克莱姆法则公式

克莱姆法则公式克莱姆法则公式是20世纪40年代由美国物理学家威廉克莱姆(WilliamKlemperer)提出的一个关于质量、动能和热能的互换关系的重要定律。

克莱姆法则公式能够描述质量和能量的转换,从而描述量子物理学的基本特性,也是分子物理学的基础。

克莱姆法则公式的数学表达克莱姆法则公式通过以下数学表达式表示:Δm =E/c其中,m表示物质的质量,E表示物体内部存储的能量,c为光速,可理解为质量和能量之间的比率;Δm为发生物理变化时,质量变化量,ΔE表示发生物理变化时,能量变化量。

克莱姆法则公式的物理意义克莱姆法则公式揭示了质量和动能的互换关系,能量和热能的互换关系,以及物质的能量和质量之间存在着相互转换的可能性。

克莱姆法则公式诠释了质能守恒定律:即在宇宙任何地方、任何时间,物质总质量及能量总量都不会减少或增加,而只能以不同的形式存在,互相转换。

根据克莱姆法则公式,物质的质量和能量的变化是相反的,当物质的质量发生变化时,物质的内部能量也会随之而变化,反之亦然。

也就是说,物质的质量和能量间具有直接的联系,可以相互转换,变量的增加意味着另一个变量的减少,变量的减少意味着另一个变量的增量。

克莱姆法则公式的实际应用克莱姆法则公式可以用于描述原子核释放能量过程和粒子、粒子流构成物质衰变过程,以及粒子发射和吸收物质等交互运动过程。

例如,原子核衰变是一种由质量减少而能量增加的自发现象,这是根据克莱姆法则公式的原理得出的。

此外,电磁能量发射和吸收是按照克莱姆法则来实现物质运动的,物质运动时,电磁能量会在物质和非物质之间转换,克莱姆法则公式也可以解释光子的存在,比如原子间的相互作用。

综上所述,克莱姆法则公式是一个有关质量、动能和热能转换关系的重要定律,它从本质上揭示出物质的质量和能量之间的相互转换。

克莱姆法则公式不仅支持了物质质能守恒定律,也可以用于描述原子核的衰变过程,电磁能量的发射与吸收,以及光子的存在等现象。

克莱姆法则及证明

克莱姆法则及证明

第7节克莱姆(Cramer)法则一、线性方程组元线性方程组就是指形式为:(1)得方程组,其中代表个未知量,就是方程得个数,,;称为方程组得系数,称为常数项.线性方程组得一个解就是指由个数组成得有序数组,当个未知量分别用代入后,式(1)中每个等式都成为恒等式.方程组(1)得解得全体称为它得解集合,如果两个线性方程组有相同得解集合,就称它们就是同解方程组.ﻫ为了求解一个线性方程组,必须讨论以下一些问题:(1)、这个方程组有没有解?ﻫ (2)、如果这个方程组有解,有多少个解?(3)、在方程组有解时,解之间得关系,并求出全部解.本节讨论方程得个数与未知量得个数相等(即)得情形。

二、克莱姆法则ﻫ定理1(克莱姆法则)如果线性方程组(2)得系数行列式:那么这个方程组有解,并且解就是唯一得,这个解可表示成:(3)其中就是把中第列换成常数项所得得行列式,即。

分析:定理一共有3个结论:方程组有解;解就是唯一得;解由公式(3)给出.因此证明得步骤就是:第一,把代入方程组,验证它确实就是解。

这样就证明了方程组有解,并且(3)就是一个解,即证明了结论与。

第二,证明如果就是方程组(2)得一个解,那么一定有.这就证明了解得唯一性,即证明了结论。

证明:先回忆行列式得一个性质,设阶行列式,则有:接下来证明定理.首先,证明(3)确实就是(2)得解。

将行列式按第列展开得:,其中就是行列式中元素得代数余子式。

现把代入第个方程得左端,得:这说明将(3)代入第个方程后,得到了一个恒等式,所以(3)就是(2)得一个解。

其次,设就是方程组(2)得一个解,那么,将代入(2)后,得到个恒等式:(4)用系数行列式得第列得代数余子式依次去乘(4)中个恒等式,得到:将此个等式相加,得:从而有:。

这就就是说,如果就是方程组(2)得一个解,那么一定有,所以方程组只有一个解。

三、齐次线性方程组在线性方程组中,有一种特殊得线性方程组,即常数项全为零得方程组,称为齐次线性方程组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14 0 6
27 27
=
1
2 1 5 8
1 D4 0
3 2
0 1
9 5
=27
x4
D4 D
27 27
1 4 7 0
=1
A
7
二、齐次线性方程组有非零解的充要条件
齐次线性方程组:
a11x1 a12x2 a1nxn 0
a21x1
a22x2 a2n xn
0
an1x1 an2 x2 annxn 0
a21x1 an1x1
a22x2 a2nxn
an2x2 annxn
b2 bn
的系数行列式 a11 a12 a1n
D
a21
a22
a2n
0
an1
aA n2
ann
2
则该线性方程组有且仅有唯一解:
x1D D 1,x2D D 2, ,xnD D n
其中Dj (j=1,2,...,n)是把系数行列式D中第j 列的元素用常数项b1,b2,,bn代替后得到的 n阶行列式. 即
(1)未知数个数等于方程个数
(2)系数行列式D0
A
4
2 x1 x2 5 x3 x4 8
例1
解线性方程组
x1 2x
3 2
x2 x3
6 x4 2 x4
9
5
x1 4 x2 7 x3 6 x4 0
解: 方程组的系数行列式
2 1 5 1
1 3 0 6
D 0
2
1
2 =27 0
1 4 7 6
a11 a1,j1
Dj
a 21
a2,j1
b1 a1,j1
b2 a2,j1
a1n a2n
an1 an,j1 bn an,j1 ann
A
3
定理中包含三个结论:
(1)方程组有解
(2)解是唯一的
(3)解由公式
xj
Dj D
( j=1,2,...,n)给出
注: 用克莱姆法则解线性方程组必须有两 个前提条件:
显然,齐次线性方程组总是有解的.因为 x1=0, x2=0,, xn=0就是一个解,它称为零解.
齐次线性方程组除了零解以外还有没
有其它解,即非零解? A
8
定理三 如果齐次线性方程组有非零解,则 齐次线性方程组的系数行列式D=0. [证] 若D0
由克莱姆法则知齐次线性方程组只有 唯一的零解.
与已知矛盾
§1.3 克莱姆法则
1.克莱姆法则
2.齐次线性方程组有非零解的充要条件
我们已经知道,在一定条件下,二元(或
三元) 线性方程组的解可以用二阶(或三
阶)行列式表示出来.那么,对于n元线性方
程组能否用n阶行列式来表示?
A
1
一、克莱姆法则
定理二(克莱姆法则) 设线性方程组
a11x1 a12x2 a1nxn b1
D=0
A
9
注: 由定理三可知,齐次线性方程组的系
数行列式D=0是齐次线性方程组有非零解 的必要条件.
在第四章将会看到,D=0也是齐次线性 方程组有非零解的充分条件.
综合上述,得到: 齐次线性方程组有非 零解的充要条件是系数行列式D=0.
A
10
例2 取何值时,下述齐次线性方程组有非
零解?
( 1)x1 x2 x3 0 x1 ( 1)x2 x3 0 x1 x2 ( 1)x3 0
解:
1 1 1
D 1 1 1 =(+3)2
1 1 1
齐次线性方程组有非零解 D=0
A
= 3或0 11
A
5
由克莱姆法则知,方程组有唯一解
8 1 5 1

9 D1 5
3 2
0 1
6 2
=81
x1
D1 D
81 27
0 4 7 6
=3
2 8 5 1
1 D2 0
9 5
0 1
6 2
=
108
x2
D2 D
1 0 7 6 A
108 27
=
4
6
21 8 1
1 D3 0
3 2
9 5
6 2
=
27
x3
D3 D
相关文档
最新文档