二元一次方程组与不等式组的方案设计问题

合集下载

2年中考1年模拟备战2020年中考数学精品专题35 方案设计问题(原卷版)

2年中考1年模拟备战2020年中考数学精品专题35  方案设计问题(原卷版)

第七篇专题复习篇专题35方案设计问题知识点名师点晴方程组与不等式二元一次方程的整数解能利用二元一次方程的整数解确定具体的方案设计一元一次不等式(组)的正整数解利用不等式或不等式组的特殊解求实际问题一次函数的应用一次函数的增减性利用一次函数的增减性和最值问题,确定最优化设计方案归纳1:方程(组)与不等式的综合问题基础知识归纳:二元一次方程(组)的应用、一元一次不等式(组)的应用基本方法归纳:方程组与不等式组的应用关键是理解题意,找出等量关系和不等关系列出对应的二元一次方程组或一元一次不等式(组)即可.注意问题归纳:解二元一次方程组的基本方法是代入消元法和加减消元法,注意二元一次方程有无数个解,但其正整数解有有限个.【例1】(2019湖北省天门市,第8题,3分)把一根9m长的钢管截成1m长和2m长两种规格均有的短钢管,且没有余料,设某种截法中1m长的钢管有a根,则a的值可能有()A.3种B.4种C.5种D.9种【例2】(2019四川省巴中市,第20题,8分)在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.(1)请问甲、乙两种物品的单价各为多少?(2)如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?归纳2:一次函数的方案设计基础知识归纳:一次函数y=kx+b,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.基本方法归纳:一次函数的增减性只与k有关系,与b的取值无关.注意问题归纳:一次函数的方案设计经常与方程组或不等式(组)在一起考查,解决一次函数的最值的关键是确定自变量的取值范围以及函数的增减性.【例3】(2019湖南省常德市,第21题,7分)某生态体验园推出了甲、乙两种消费卡,设入园次数为x 时所需费用为y元,选择这两种卡消费时,y与x的函数关系如图所示,解答下列问题(1)分别求出选择这两种卡消费时,y关于x的函数表达式;(2)请根据入园次数确定选择哪种卡消费比较合算.【2019年题组】一、选择题1.(2019四川省绵阳市,第9题,3分)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A.3种B.4种C.5种D.6种2.(2019湖南省永州市,第9题,4分)某公司有如图所示的甲、乙、丙、丁四个生产基地.现决定在其中一个基地修建总仓库,以方便公司对各基地生产的产品进行集中存储.已知甲、乙、丙、丁各基地的产量之比等于4:5:4:2,各基地之间的距离之比a:b:c:d:e=2:3:4:3:3(因条件限制,只有图示中的五条运输渠道),当产品的运输数量和运输路程均相等时,所需的运费相等.若要使总运费最低,则修建总仓库的最佳位置为()A.甲B.乙C.丙D.丁3.(2019黑龙江省绥化市,第8题,3分)小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有()A.5种B.4种C.3种D.2种4.(2019黑龙江省鸡西市,第19题,3分)某学校计划用34件同样的奖品全部用于奖励在“经典诵读”活动中表现突出的班级,一等奖奖励6件,二等奖奖励4件,则分配一、二等奖个数的方案有()A.4种B.3种C.2种D.1种5.(2019黑龙江省齐齐哈尔市,第8题,3分)学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有()A.3种B.4种C.5种D.6种二、填空题三、解答题6.(2019四川省内江市,第26题,12分)某商店准备购进A、B两种商品,A种商品毎件的进价比B种商品每件的进价多20元,用3000元购进A种商品和用1800元购进B种商品的数量相同.商店将A种商品每件的售价定为80元,B种商品每件的售价定为45元.(1)A种商品每件的进价和B种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A、B两种商品共40件,其中A种商品的数量不低于B种商品数量的一半,该商店有几种进货方案?(3)端午节期间,商店开展优惠促销活动,决定对每件A种商品售价优惠m(10<m<20)元,B种商品售价不变,在(2)条件下,请设计出销售这40件商品获得总利润最大的进货方案.7.(2019四川省广元市,第20题,8分)某水果商计划购进甲、乙两种水果进行销售,经了解,甲种水果的进价比乙种水果的进价每千克少4元,且用800元购进甲种水果的数量与用1000元购进乙种水果的数量相同.(1)求甲、乙两种水果的单价分别是多少元?(2)该水果商根据该水果店平常的销售情况确定,购进两种水果共200千克,其中甲种水果的数量不超过乙种水果数量的3倍,且购买资金不超过3420元,购回后,水果商决定甲种水果的销售价定为每千克20元,乙种水果的销售价定为每千克25元,则水果商应如何进货,才能获得最大利润,最大利润是多少?8.(2019广安,第22题,8分)为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A型节能灯和5只B型节能灯共需50元,2只A型节能灯和3只B型节能灯共需31元.(1)求1只A型节能灯和1只B型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A型节能灯的数量不超过B型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.9.(2019四川省泸州市,第21题,7分)某出租汽车公司计划购买A型和B型两种节能汽车,若购买A型汽车4辆,B型汽车7辆,共需310万元;若购买A型汽车10辆,B型汽车15辆,共需700万元.(1)A型和B型汽车每辆的价格分别是多少万元?(2)该公司计划购买A型和B型两种汽车共10辆,费用不超过285万元,且A型汽车的数量少于B型汽车的数量,请你给出费用最省的方案,并求出该方案所需费用.10.(2019莱芜区,第22题,10分)某蔬菜种植基地为提高蔬菜产量,计划对甲、乙两种型号蔬菜大棚进行改造,根据预算,改造2个甲种型号大棚比1个乙种型号大棚多需资金6万元,改造1个甲种型号大棚和2个乙种型号大棚共需资金48万元.(1)改造1个甲种型号和1个乙种型号大棚所需资金分别是多少万元?(2)已知改造1个甲种型号大棚的时间是5天,改造1个乙种型号大概的时间是3天,该基地计划改造甲、乙两种蔬菜大棚共8个,改造资金最多能投入128万元,要求改造时间不超过35天,请问有几种改造方案?哪种方案基地投入资金最少,最少是多少?11.(2019滨州,第22题,12分)有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.12.(2019山东省烟台市,第21题,9分)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?13.(2019浙江省温州市,第23题,12分)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.14.(2019湖北省荆州市,第23题,10分)为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示:学校计划此次研学活动的租金总费用不超过3000元,为安全起见,每辆客车上至少要有2名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为辆;(3)学校共有几种租车方案?最少租车费用是多少?15.(2019湖南省张家界市,第18题,6分)某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9000元.(1)求购买甲、乙两种树苗各多少棵?(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案?16.(2019湖南省衡阳市,第24题,8分)某商店购进A、B两种商品,购买1个A商品比购买1个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.(1)求购买一个A商品和一个B商品各需要多少元;(2)商店准备购买A、B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A、B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?17.(2019湖南省郴州市,第22题,8分)某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?18.(2019贵州省遵义市,第21题,12分)某校计划组织240名师生到红色教育基地开展革命传统教育活动.旅游公司有A,B两种客车可供租用,A型客车每辆载客量45人,B型客车每辆载客量30人.若租用4辆A型客车和3辆B型客车共需费用10700元;若租用3辆A型客车和4辆B型客车共需费用10300元.(1)求租用A,B两型客车,每辆费用分别是多少元;(2)为使240名师生有车坐,且租车总费用不超过1万元,你有哪几种租车方案?哪种方案最省钱?19.(2019黑龙江省鸡西市,第27题,10分)为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生.已知购买2个甲种文具、1个乙种文具共需花费35元;购买1个甲种文具、3个乙种文具共需花费30元.(1)求购买一个甲种文具、一个乙种文具各需多少元?(2)若学校计划购买这两种文具共120个,投入资金不少于955元又不多于1000元,设购买甲种文具x 个,求有多少种购买方案?(3)设学校投入资金W元,在(2)的条件下,哪种购买方案需要的资金最少?最少资金是多少元?【2018年题组】一、选择题1.(2018黑龙江省齐齐哈尔市,第8题,3分)某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有()A.1种B.2种C.3种D.4种2.(2018黑龙江省,第19题,3分)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种B.3种C.2种D.1种二、填空题3.(2018黑龙江省绥化市,第19题,3分)为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有种购买方案.三、解答题4.(2018湖北省咸宁市,第22题,10分)为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.5.(2018湖北省武汉市,第20题,8分)用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B 型钢板可制成1块C型钢板和3块D型钢板.现准备购买A、B型钢板共100块,并全部加工成C、D型钢板.要求C型钢板不少于120块,D型钢板不少于250块,设购买A型钢板x块(x为整数).(1)求A、B型钢板的购买方案共有多少种?(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若将C、D型钢板全部出售,请你设计获利最大的购买方案.6.(2018湖北省黄石市,第23题,8分)某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)请填写下表(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.7.(2018黑龙江省牡丹江市,第28题,9分)某书店现有资金7700元,计划全部用于购进甲、乙、丙三种图书共20套,其中甲种图书每套500元,乙种图书每套400元,丙种图书每套250元.书店将甲、乙、丙三种图书的售价分别定为每套550元,430元,310元.设书店购进甲种图书x套,乙种图书y套,请解答下列问题:(1)请求出y与x的函数关系式(不需要写出自变量的取值范围);(2)若书店购进甲、乙两种图书均不少于1套,则该书店有几种进货方案?(3)在(1)和(2)的条件下,根据市场调查,书店决定将三种图书的售价作如下调整:甲种图书的售价不变,乙种图书的售价上调a(a为正整数)元,丙种图书的售价下调a元,这样三种图书全部售出后,所获得的利润比(2)中某方案的利润多出20元,请直接写出书店是按哪种方案进的货及a的值.8.(2018黑龙江省,第27题,10分)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?9.(2018黑龙江,第27题,10分)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?10.(2018内蒙古通辽市,第24题,9分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?11.(2018四川省内江市,第21题,10分)某商场计划购进A,B两种型号的手机,已知每部A型号手机的进价比每部B型号手机进价多500元,每部A型号手机的售价是2500元,每部B型号手机的售价是2100元.商场用50000元共购进A型号手机10部,B型号手机20部.(1)求A、B两种型号的手机每部进价各是多少元?(2)为了满足市场需求,商场决定用不超过7.5万元采购A、B两种型号的手机共40部,且A型号手机的数量不少于B型号手机数量的2倍.①该商场有哪几种进货方式?②该商场选择哪种进货方式,获得的利润最大?12.(2018四川省凉山州,第27题,14分)结合西昌市创建文明城市要求,某小区业主委员会决定把一块长80m,宽60m的矩形空地建成花园小广场,设计方案如图所示,阴影区域为绿化区(四块绿化区为全等的直角三角形),空白区域为活动区,且四周出口宽度一样,其宽度不小于36m,不大于44m,预计活动区造价60元/m2,绿化区造价50元/m2,设绿化区域较长直角边为xm.(1)用含x的代数式表示出口的宽度;(2)求工程总造价y与x的函数关系式,并直接写出x的取值范围;(3)如果业主委员会投资28.4万元,能否完成全部工程?若能,请写出x为整数的所有工程方案;若不能,请说明理由.(4)业主委员会决定在(3)设计的方案中,按最省钱的一种方案,先对四个绿化区域进行绿化,在实际施工中,每天比原计划多绿化11m2,结果提前4天完成四个区域的绿化任务,问原计划每天绿化多少m2.13.(2018四川省巴中市,第28题,8分)学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.14.(2018天津市,第23题,10分)某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(1)根据题意,填写下表:(2)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(3)当x>20时,小明选择哪种付费方式更合算?并说明理由.15.(2018山东省济宁市,第19题,7分)“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?16.(2018山东省潍坊市,第23题,11分)为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有A,B两种型号的挖掘机,已知3台A 型和5台B型挖掘机同时施工一小时挖土165立方米;4台A型和7台B型挖掘机同时施工一小时挖土225立方米.每台A型挖掘机一小时的施工费用为300元,每台B型挖掘机一小时的施工费用为180元.(1)分别求每台A型,B型挖掘机一小时挖土多少立方米?(2)若不同数量的A型和B型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元,问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?17.(2018山东省莱芜市,第22题,10分)快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?哪个方案费用最低,最低费用是多少万元?18.(2018广州,第21题,12分)友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A 型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.一、选择题1.(2019门头沟区二模)团体购买某公园门票,票价如表,某单位现要组织其市场部和生产部的员工游览该公园.如果按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元.那么该公司这两个部门的人数之差为()购票人数1~5051~100100以上门票价格13元/人11元/人9元/人A.20B.35C.30D.402.(2019克东县二模)某宾馆有单人间、双人间和三人间三种客房供游客租住,某旅行团有18人准备同时租用这三种客房共9间,且每个房间都住满,则租房方案共有()种.A.3B.4C.5D.63.(2019潜江一模)“六一”儿童节快到了,小芳的妈妈计划用1000元在唯品会购买价格分别为80元和。

初中数学二元一次方程组的应用题型分类汇编——方案决策问题4(附答案)

初中数学二元一次方程组的应用题型分类汇编——方案决策问题4(附答案)

初中数学二元一次方程组的应用题型分类汇编——方案决策问题4(附答案)1.威立到小吃店买水饺,他身上带的钱恰好等于15 粒虾仁水饺或20 粒韭菜水饺的价钱,若威立先买了9 粒虾仁水饺,则他身上剩下的钱恰好可买多少粒韭菜水饺()A.6 B.8 C.9 D.122.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位,要求租用的车辆不留空座,也不能超载。

租车方案有()A.4种B.3种C.2种D.1种3.“保护好环境,拒绝冒黑烟。

”某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.则每辆A型车的售价是()A.14万元B.18万元C.22万元D.26万元4.小明在某商店购买商品A,B共两次,这两次购买商品A,B的数量和费用如下表:购买商品A 的数量/个购买商品B的数量/个购买总费用/元第一次购物 4 3 93第二次购物 6 6 162若小丽需要购买3个商品A和2个商品B,则她要花费()A.64元B.65元C.66元D.67元5.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有()A.6种B.7种C.8种D.9种6.小刘同学用10元钱买两种不同的贺卡共8张,单价分别是1元与2元,设1元的贺卡为张,2元的贺卡为张,那么、所适合的一个方程组是()A.B.C.D.7.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y人.下面所列的方程组正确的是()A.B.C.D.8.购买甲、乙两种笔记本共用70元.若甲种笔记本单价为5元,乙种笔记本单价为15元,且甲种笔记本数量是乙种笔记本数量的整数倍,则购笔记本的方案有()A.2种B.3种C.4种D.5种9.某花农培育甲种花木10株,乙种花木8株,共需成本6400元;培育甲种花木4株,乙种花木5株,共需成本3100元。

二元一次方程组和一元一次不等式的应用

二元一次方程组和一元一次不等式的应用

二元一次方程组及不等式的综合应用崔莹莹2016-6-112.(2015•广东省,第22题,7分)某电器商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5 台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?【答案】解:(1)设A ,B 型号的计算器的销售价格分别是x 元,y 元,得:5(30)(40)766(30)3(40)120-+-=⎧⎨-+-=⎩x y x y ,解得4256=⎧⎨=⎩x y .答:A ,B 两种型号计算器的销售价格分别为42元,56元.(2)设最少需要购进A 型号的计算a 台,得3040(70)2500+-≥a a ,解得30≥a .答:最少需要购进A 型号的计算器30台.【考点】二元一次方程组和一元一次不等式的应用(销售问题).【分析】(1)要列方程(组),首先要根据题意找出存在的等量关系,本题设A ,B 型号的计算器的销售价格分别是x 元,y 元,等量关系为:“销售5 台A 型号和1台B 型号计算器的利润76元”和“销售6台A 型号和3台B 型号计算器的利润120元”.(2)不等式的应用解题关键是找出不等量关系,列出不等式求解. 本题设最少需要购进A 型号的计算a 台,不等量关系为:“购进A ,B 两种型号计算器共70台的资金不多于2500元”.6.(2015·四川甘孜、阿坝,第26题8分)一水果经销商购进了A ,B 两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:A种水果/箱B种水果/箱甲店11元17元乙店9元13元(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?考点:一元一次不等式的应用..分析:(1)经销商能盈利=水果箱数×每箱水果的盈利;(2)设甲店配A种水果x箱,分别表示出配给乙店的A水果,B水果的箱数,根据盈利不小于110元,列不等式求解,进一步利用经销商盈利=A种水果甲店盈利×x+B种水果甲店盈利×(10﹣x)+A种水果乙店盈利×(10﹣x)+B种水果甲店盈利×x;列出函数解析式利用函数性质求得答案即可.解答:解:(1)经销商能盈利=5×11+5×17+5×9+5×13=5×50=250;(2)设甲店配A种水果x箱,则甲店配B种水果(10﹣x)箱,乙店配A种水果(10﹣x)箱,乙店配B种水果10﹣(10﹣x)=x箱.∵9×(10﹣x)+13x≥100,∴x≥2,经销商盈利为w=11x+17•(10﹣x)+9•(10﹣x)+13x=﹣2x+260.∵﹣2<0,∴w随x增大而减小,∴当x=3时,w值最大.甲店配A种水果3箱,B种水果7箱.乙店配A种水果7箱,B种水果3箱.最大盈利:﹣2×3+260=254(元).点评:此题考查一元一次不等式的运用,一次函数的实际运用,找出题目蕴含的不等关系与等量关系解决问题.7.(2015·山东潍坊第19 题9分)为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价)考点:一元一次不等式的应用;二元一次方程组的应用..分析:(1)设A种型号家用净水器购进了x台,B种型号家用净水器购进了y台,根据“购进了A、B两种型号家用净水器共160台,购进两种型号的家用净水器共用去36000元.”列出方程组解答即可;(2)设每台A型号家用净水器的毛利润是a元,则每台B型号家用净水器的毛利润是2a 元,根据保证售完这160台家用净水器的毛利润不低于11000元,列出不等式解答即可.解答:解:(1)设A种型号家用净水器购进了x台,B种型号家用净水器购进了y台,由题意得,解得.答:A种型号家用净水器购进了100台,B种型号家用净水器购进了60台.(2)设每台A型号家用净水器的毛利润是a元,则每台B型号家用净水器的毛利润是2a 元,由题意得100a+60×2a≥11000,解得a≥50,150+50=200(元).答:每台A型号家用净水器的售价至少是200元.点评:此题考查一元一次不等式组的实际运用,二元一次方程组的实际运用,找出题目蕴含的数量关系与不等关系是解决问题的关键.12.(2015•四川眉山,第24题9分)某厂为了丰富大家的业余生活,组织了一次工会活动,准备一次性购买若干钢笔和笔记本(每支钢笔的价格相同,每本笔记本的价格相同)作为奖品.若购买2支钢笔和3本笔记本共需62元,购买5支钢笔和1本笔记本共需90元.(1)购买一支钢笔和一本笔记本各需多少元?(2)工会准备购买钢笔和笔记本共80件作奖品,根据规定购买的总费用不超过1100元,则工会最多可以购买多少支钢笔?考点:一元一次不等式的应用;二元一次方程组的应用..分析:(1)首先用未知数设出买一支钢笔和一本笔记本所需的费用,然后根据关键语“购买2支钢笔和3本笔记本共需62元,购买5支钢笔和1本笔记本共需90元”,列方程组求出未知数的值,即可得解.(2)设购买钢笔的数量为x,则笔记本的数量为80﹣x,根据总费用不超过1100元,列出不等式解答即可.解答:解:(1)设一支钢笔需x元,一本笔记本需y元,由题意得解得:答:一支钢笔需16元,一本笔记本需10元;(2)设购买钢笔的数量为x,则笔记本的数量为80﹣x,由题意得16x+10(80﹣x)≤1100解得:x≤50答:工会最多可以购买50支钢笔.点评:此题主要考查了二元一次方程组和一元一次不等式的应用,关键是正确理解题意,找出等量关系,列出方程组和不等式.13. (2015•四川泸州,第21题7分)某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵。

二元一次方程教案

二元一次方程教案

二元一次方程教案二元一次方程教案(精选8篇)作为一名为他人授业解惑的教育工作者,总不可避免地需要编写教案,教案有助于学生理解并掌握系统的知识。

怎样写教案才更能起到其作用呢?下面是店铺为大家整理的二元一次方程教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

二元一次方程教案篇1一、教学目标:1.理解二元一次方程及二元一次方程的解的概念;2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育二、教学重点、难点:重点:二元一次方程的意义及二元一次方程的解的概念难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程三、教学方法与教学手段:通过与一元一次方程的比较,加强学生的类比的思想方法;通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点四、教学过程:1.情景导入:新闻链接:桐乡70岁以上老人可领取生活补助,得到方程:80a+150b=902 880。

2.新课教学:引导学生观察方程80a+150b=902 880与一元一次方程有异同?得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程做一做:1.根据题意列出方程:①小明去看望奶奶,买了5 kg苹果和3 kg梨共花去23元,分别求苹果和梨的单价,设苹果的单价x元/kg ,梨的单价y元/kg;②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程:(2)课本P80练习2.判定哪些式子是二元一次方程方程。

合作学习:活动背景爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动。

问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人,团支书拟安排8个劳动组,2个文艺,单从人数上考虑,此方案是否可行?为什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等?由学生检验得出代入方程后,能使方程两边相等,得出二元一次方程的解的概念:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解。

人教版七年级下册数学第八章二元一次方程组应用题——方案问题

人教版七年级下册数学第八章二元一次方程组应用题——方案问题

人教版七年级下册数学第八章二元一次方程组应用题——方案问题1.为预防新冠肺炎病毒,市面上95KN等防护型口罩出现热销.已知3个A型口罩和2个B型口罩共需31元;6个A型口罩和5个B型口罩共需70元.(1)求一个A型口罩和一个B型口罩的售价各是多少元?(2)小红打算用160元(全部用完)购买A型,B型两种口罩(要求两种型号的口罩均购买),正好赶上药店对口罩价格进行调整,其中A型口罩售价上涨40%,B型口罩按原价出售,则小红有多少种不同的购买方案?请设计出来.2.学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品,两种奖品的单价.共需120元,购买5个A奖品和4个B奖品共需210元.求A B3.某文具店销售甲、乙两种钢笔,甲钢笔每支进价6元,乙钢笔每支进价14元,该文具店同时进购甲、乙两种钢笔共50支,恰好用去540元.求该文具店购进了甲、乙两种钢笔各多少支?4.某商店订购了A,B两种商品,A商品18元/千克,B商品20元/千克,若B商品的数量比A商品的2倍少10千克,购进两种商品共用了1540元,求两种商品各多少千克.5.甲类票480元/张,乙类票280元/张,某球迷协会组织50名球迷去现场为辽宁男篮加油助威,买门票共花20000元,请问该协会甲、乙两类门票各买了多少张?6.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A种饮料每瓶需加该添加剂2克,B种饮料每瓶需加该添加剂3克,已知生产共100瓶的A,B两种饮料恰好添加了270克该添加剂,则生产A、B两种饮料各多少瓶?7.小亮家装修,需购进甲、乙两种地砖共100块,共花费5600元,已知甲种地砖单价是80元/块,乙种地砖的单价是40元/块,问甲、乙两种地砖各购进了多少块?8.某工厂第一季度生产甲、乙两种机器共450台,改进技术后,计划第二季度生产这两种机器520台,其中甲种机器增产10%,乙种机器增产20%,该厂第二季度计划生产甲、乙机器各多少台?9.有大、小两种货车,2辆大车与3辆小车一次可以运货15.5吨;5辆大车与6辆小车一次可以运货35吨.求3辆大车与5辆小车一次可以运货多少吨?10.寿阳某中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元,购买一个足球、一个篮球各需多少元?11.已知用3辆A型车和2辆B型车一次可运货19吨;用2辆A型车和3辆B型车一次可运货21吨.(每辆车每次都满载货物)(1)求1辆A型车和1辆B型车载满货物一次分别可以运多少吨?(2)某货物中心现有49吨货物,计划同时租用A型车和B型车若干辆,一次运完,且恰好每辆车都载满货物,请问有哪几种不同的租车方法.12.为了更好地保护环境,治污公司决定购买若干台污水处理设备.现有A、B两种型号的设备,已知购买1台A型号设备比购买1台B型号设备多2万元,购买2台A 型号设备比购买3台B型号设备少6万元.求A、B两种型号设备的单价.13.“利海”通讯器材商场,计划用60000元从厂家购进若干部新型手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完,请你帮助商场计算一下如何购买.14.为备战体育中考,学校新购买一批排球和实心球,在某体育用品商店,若购买10个排球和20个实心球需用960元,若购买20个排球和10个实心球需用1380元.(1)排球、实心球的单价各是多少元?(2)寒假期间,该店开展了促销活动,所有商品一律九折销售.则购买20个排球和20个实心球实际共需要花费多少元?15.小志从甲、乙两超市分别购买了10瓶和6瓶cc饮料,共花费51元;小云从甲、乙两超市分别购买了8瓶和12瓶cc饮料,且小云在乙超市比在甲超市多花18元,在小志和小云购买cc饮料时,甲、乙两超市cc饮料价格不一样,若只考虑价格因素,到哪家超市购买这种cc饮料便宜?请说明理由.16.在抗击新型冠状肺炎期间,我市某企业向湖北武汉捐赠了价值26万元的甲、乙两种仪器共30套.已知甲种仪器每套8000元,乙种仪器每套10000元,问甲、乙两种仪器各捐赠了多少套?17.疫情期间,学校为了学生在班级将生活垃圾和废弃口罩分类丢弃,准备购买A,B 两种型号的垃圾箱,通过市场调研得知:购买3个A型垃圾箱和2个B型垃圾箱共需270元,购买2个A型垃圾箱比购买3个B型垃圾箱少用80元.求每个A型垃圾箱和B型垃圾箱各多少元?学校购买A型垃圾桶8个,B型垃圾桶16个,共花费多少元?18.(列二元一次方程组解应用题)某公司共有3个一样规模的大餐厅和2个一样规模的小餐厅,经过测试同时开放2个大餐厅和1个小餐厅,可供300名员工就餐;同时开放1个大餐厅,1个小餐厅,可供170名员工就餐.(1)请问1个大餐厅、1个小餐厅分别可供多少名员工就餐;(2)如果3个大餐厅和2个小餐厅全部开放,那么能否供全体450名员工就餐?请说明理由.19.某储运公司现有货物35吨,要全部运往灾区支援灾区重建工作.计划要同时租用A B、两种型号的货车,一次运送完全部货物,且每辆车均为满载.已知在货车满载的情况下,2辆A型货车和3辆B型货车一次共运货18吨;3辆A型货车和2辆B型货车一次共运货17吨.根据以下信息回答下列问题:(1)一辆A型车和一辆B型车各能满载货物多少吨?、两种型号的货车各几辆?请(2)按计划完成本次货物运送,储运公司要同时租用A B求出所有的租车方案.20.某家具商先准备购进A,B两种家具,已知100件A型家具和150件B型家具需要35000元,150件A型家具和100件B型家具需要37500元.(1)求A,B两种家具每件各多少元;(2)家具商现准备了8500元全部用于购进这两种家具,他有几种方案可供选择?请你帮他设计出所有的购买方案.。

人教版2022-2023学年七年级下册数学期末复习专题:二元一次方程组的应用(方案问题) (2)

人教版2022-2023学年七年级下册数学期末复习专题:二元一次方程组的应用(方案问题) (2)

人教版2022-2023学年七年级下册数学期末复习专题二元一次方程组的应用(方案问题)原计划两班都以班为单位分别购票,则一共应付1106元.请回答下列问题:(1)初一(2)班有多少人?(2)你作为组织者如何购票最省钱?比原计划省多少钱?4.某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200吨,如用新工艺,则废水排量比环保限制的最大量少100吨,新、旧工艺的废水量之比为2:5,两种工艺的废水量各是多少?5.列二元一次方程组解应用题:学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元,购买5个A奖品和4个B奖品共需210元.求A B,两种奖品的单价.6.某同学在A,B两家网店发现他看中的随身听的单价相同,书包单价也相同.随身听和书包单价之和是492元,且随身听的单价比书包单价的3倍少108元.(1)求该同学看中的随身听和书包的单价各是多少元.(2)某一天恰好赶上商家促销,网店A所有商品打八折销售,网店B全场每购满100元减25元销售,怎样购买更省钱?写出必要的理由过程.7.已知:用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有36吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案.8.抗击新冠肺炎疫情期间,全国上下万众一心为武汉捐赠物资.某物流公司运送捐赠物资,已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.(1)求1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)该物流公司现有31吨货物需要运送,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.若A型车每辆需租金100元/次,B型车每辆需租金120元/次,请你设计出所有租车方案并选出最省钱的租车方案,求出此时最少租车费.9.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A 型汽车、3辆B型汽车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元(1)求A B、两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案;(3)若该汽车销售公司销售1辆A型汽车可获利8000元,销售1辆B型汽车可获利5000元,在(2)中的购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大?最大利润是多少元?10.某运输公司有A、B两种货车,3辆A货车与2辆B货车一次可以运货90吨,5辆A货车与4辆B货车一次可以运货160吨.(1)请问1辆A货车和1辆B货车一次可以分别运货多少吨?(2)目前有190吨货物需要运输,该运输公司计划安排A、B两种货车将全部货物一次运完(A、B两种货车均满载),其中每辆A货车一次运货花费500元,每辆B货车一次运货花费400元.请你列出所有运输方案并指出哪种运输方案费用最少.11.某汽车制造厂开发了一款新式电动汽车计划一年生产安装240辆,由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂抽调熟练工m名,再招聘()<<名新工人,使得招聘的新工人和n n010抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案? 12.我校组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?13.小志从甲、乙两超市分别购买了10瓶和6瓶cc饮料,共花费51元;小云从甲、乙两超市分别购买了8瓶和12瓶cc饮料,且小云在乙超市比在甲超市多花18元,在小志和小云购买cc饮料时,甲、乙两超市cc饮料价格不一样,若只考虑价格因素,到哪家超市购买这种cc饮料便宜?请说明理由.14.有大、小两种货车,2辆大车与3辆小车一次可以运货15.5吨;5辆大车与6辆小车一次可以运货35吨.求3辆大车与5辆小车一次可以运货多少吨?15.某学校现有若干间学生宿舍,准备安排给若干名学生住宿.原计划每间住8人,则有10间宿舍无人居住.由于疫情防控需要,每间宿舍只能住5人,则有10人无法入住.问该校现有多少间学生宿舍?16.鹏程中学拟组织七年级部分师生赴滁州市琅琊山进行文学采风活动.下面是活动负责人李老师和小芳同学、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”(1)全部物资一次性运送可用甲型车8辆,乙型车5辆,丙型车辆.(2)若全部物资仅用甲、乙两种车型一次性运完,需运费9600元,求甲、乙两种车型各需多少辆?(3)若该公司打算用甲、乙、丙三种车型同时参与运送,已知车辆总数为14辆,(1)甲、乙两种货车每辆可装多少吨货物?(2)若某货主共有20吨货物,计划租用该公司的货车,正好(每辆货车都满载)把这批货物运完,则该货主有________种租车方案?(3)王先生要租用该公可的甲、乙两种货车送一批货,如果租用甲种货车数量比乙种货车数量多1辆,而乙种货车每辆的运费是甲种货车的1.4倍,结果甲种货车共付运费800元,乙种货车共付运费980元,试求此次甲、乙两种货车每辆各需运费多少元?答案1.(1)每辆甲种货车能装货4吨,每辆乙种货车能装货3吨(2)方案1:租用3辆甲种货车、11辆乙种货车;方案2:租用6辆甲种货车、7辆乙种货车;方案3:租用9辆甲种货车、3辆乙种货车2.(1)A种产品4件,B种产品3件;(2)利润是12万元.3.(1)初一(2)班共有53人或59人;(2)两个一起买票更省钱,比原计划节省298元或290元4.新、旧工艺的废水排量分别为200吨和500吨5.A奖品单价30元,B奖品单价15元.6.(1)随身听单价为342元,书包单价为150元(2)在A购买书包,在B购买随身听更省钱,费用为387元7.(1)1辆A型车和1辆B型车都装满货物一次可分别运货3吨,4吨;(2)故共有四种租车方案,分别为:①A型车0辆,B型车9辆;②A型车4辆,B 型车6辆;③A型车8辆,B型车3辆;④A型车12辆,B型车0辆.8.(1)1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨;(2)共有3种租车方案:方案一,A型车9辆,B型车1辆;方案二,A型车5辆,B型车4辆;方案三,A型车1辆,B型车7辆,最省钱的租车方案是A型车1辆,B型车7辆,最少租车费为940元9.(1)A型汽车每辆的进价为25万元,B型汽车每辆的进价为10万元;(2)方案一:购进A型车6辆,B型车5辆;方案二:购进A型车4辆,B型车10辆;方案三:购进A型车2辆,B型车15辆;(3)购进A型车2辆,B型车15辆获利最大,最大利润是91000元10.(1)1辆A货车和1辆B货车一次可以分别运货20吨和15吨;(2)共有3种租车方案,方案1:租用A型车8辆,B型车2辆;方案2:租用A型车5辆,B型车6辆;方案3:租用A型车2辆,B型车10辆;租用A型车8辆,B 型车2辆最少.11.(1)每名熟练工每月可以安装4辆电动汽车,新工人每月分别安装2辆电动汽车;(2)12.(1)240人,原计划租用45座客车5辆;(2)租4辆60座客车划算.13.到甲超市购买这种cc饮料便宜.14.24.5吨15.该校现有30间学生宿舍16.(1)平安客运公司60座和45座的客车每辆每天的租金分别是1000元,800元.(2)按小明提出的租车方案,七年级师生到该公司租车一天,共需租金6000元.(3)租用5辆60座和1辆45座的客车,此时租车费为5800元.17.(1)建设一个A类美丽村庄需120万元,建设一个B类美丽村庄需180万元;(2)共需资金1080万元.18.(1)4;(2)甲种车型需8辆,乙种车型需10辆;(3)甲车2辆,乙车5辆,丙车7辆,此时的总运费为8800元.19.(1)1辆A型车满载时一次可运柑橘3吨,1辆B型车满载时一次可运柑橘2吨;(2)①共有4种租车方案,方案1:租用1辆A型车,9辆B型车;方案2:租用3辆A型车,6辆B型车;方案3:租用5辆A型车,3辆B型车;方案4:租用7辆A型车;②最省钱的租车方案是租用7辆A型车,最少租车费是840元20.(1)甲种货车每辆可装2吨货物,乙种货车每辆可装3吨货物;(2)4种租车方案;(3)甲种货车每辆需运费100元,乙种货车每辆需运费140元。

指向高阶思维的数学问题设计——以“二元一次方程(组)”的复习课设计为例

指向高阶思维的数学问题设计——以“二元一次方程(组)”的复习课设计为例

律群的连接点—遴选实例”的方式,有效创设适切复
习课教学目标的任务.
3. 编制实例要注重生成资源与能力发展
在开放性问题实例的编制中,教师要注重课堂生
成资源,将学生有特点的实例和有错误的实例及时进
行讨论、辨析,进一步巩固学生对核心概念的理解.
“二元一次方程 (组)”是浙教版 《义务教育教科
书·数学》 七年级下册第二章的内容 . 在“二元一次
{ 问题3:对于方程 3x + y = 10 和方程组
2x - 3y = 2, x + z = 1,
分别添加一个什么条件后,它的解是有限组,并求出
它的解.
教学分析:(1) 将方程 3x + y = 10 添加一个条件,
学生给出以下两种添加方案.
方案1:增设解为正整数的条件,即求 3x + y = 10
方程 (组)”的复习课中,复习的知识点为二元一次方
程 (组) 的概念及解,体会消元思想. 二元一次方程
(组) 是对一元一次方程的延伸,也是多元一次方程组
的基础. 二元一次方程组的通用解法是利用消元 (加
减或代入) 的数学思想方法进行求解. 因此,教师可
以设计一个开放性问题,让学生根据自己的理解写出
一个二元一次方程组.
问题1:写出一个关于x,y的二元一次方程组.
教学分析:学生回顾、思考后,写出如下几组二
元一次方程组.
第1组: 3x + y = 10 .
第2组:
2x
+
y
=
1
+ 2y 2
.
第3组:
ì2x - 3y = 1, íîx + y = 2;
ì2x - 3y =

《10.1认识二元一次方程组》作业设计方案-初中数学青岛版12七年级下册

《10.1认识二元一次方程组》作业设计方案-初中数学青岛版12七年级下册

《认识二元一次方程组》作业设计方案(第一课时)一、作业目标本作业设计旨在帮助学生掌握二元一次方程组的基本概念和解题方法,通过练习巩固所学知识,提高学生的数学思维能力和解决问题的能力。

二、作业内容1. 掌握二元一次方程组的概念及特点,理解其在实际生活中的应用。

2. 学会通过消元法解简单的二元一次方程组。

3. 掌握方程组的增广矩阵表示法,并能利用增广矩阵解二元一次方程组。

三、作业要求1. 理论知识部分:学生需自行预习并理解二元一次方程组的基本概念和增广矩阵的表示方法,做好笔记并标注疑惑点。

2. 练习题部分:设计练习题,包括基础题和拓展题,题型包括选择题、填空题和解答题。

要求学生独立完成练习题,并在完成后进行自我检查和订正。

3. 作业提交:学生需将作业以电子版形式提交至教师指定的平台或邮箱,同时要求字迹清晰、格式规范。

4. 附加任务:鼓励学生尝试寻找生活中的二元一次方程组实例,并加以分析和解决,以此加深对知识的理解和应用。

四、作业评价1. 教师将根据学生提交的作业进行批改,对正确答案进行标注,对错误答案进行指导性评语,指出错误原因及正确解题方法。

2. 对学生完成的练习题和附加任务进行综合评价,评价内容包括知识点掌握程度、解题思路和解题能力等方面。

3. 对表现优秀的学生给予表扬和鼓励,对表现欠佳的学生进行指导和帮助,促进其进步。

五、作业反馈1. 教师将根据批改情况,对全班学生的掌握情况进行总结,针对普遍存在的问题进行讲解和辅导。

2. 对于学生提交的附加任务中的优秀案例,将在课堂上进行展示和讲解,以鼓励更多学生积极参与实践活动。

3. 定期组织学生进行学习交流和讨论,让学生互相学习和借鉴,共同进步。

六、作业设计注意事项1. 作业量要适中,既要保证学生能够掌握知识点,又要避免过多作业导致学生产生厌学情绪。

2. 题目设计要有层次性,既要包括基础题,也要有适当难度的拓展题,以满足不同层次学生的需求。

3. 作业要突出重点和难点,确保学生在完成作业的过程中能够巩固所学知识,提高解题能力。

中学数学复习:第1-10讲 二元一次方程的方案问题

中学数学复习:第1-10讲 二元一次方程的方案问题

专题10 有关二元一次方程的方案问题考纲要求:1.掌握代入消元法和加减消元法,能解二元一次方程。

2.能用二元一次方程解决实际问题基础知识回顾:1.应用题中常见的等量关系(1)增长率等量关系:增长率=增长量÷基础量×100%.一般类型:设原来量为a,平均增长(下降)率为x,则一次增长(下降)后的值为a(1±x),两次增长(下降)后的值为a(1±x)2 .(2)利润等量关系:利润=售价-成本(进价),利润率=×100%.(3)利息等量关系:利息=本金×利率×期数;本息和=本金+利息;利息税=利息×税率.(4)行程等量关系:路程=速度×时间.招数一、与方程不等式相关的方案设计,据题意得出正确的等量关系,找准等量关系,列出二元一次不等式组,据题意写出正确的方案。

【例1】(2017贵州安顺)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?【例2】(2017毕节)某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同.(1)求这种笔和本子的单价;(2)该同学打算用自己的100元压岁钱购买这种笔和本子,计划100元刚好用完,并且笔和本子都买,请列出所有购买方案.招数二、二元一次方程组的应用以及一元一次方程的应用等知识,根据题意得出正确的等量关系是解题关键,根据数量关系,找出w与m之间的函数关系式.【例3】学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.招数三、二元一次方程组的应用以及一次函数的图像应用等知识,根据题意得出正确的等量关系是解题关键,根据一次函数的增减性得出费用最省方案是解决问题.【例4】(2016·湖北荆州·8分)为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.【例5】(2016河南)学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.【例6】(2017黑龙江鹤岗)某企业决定投资不超过20万元建造A、B两种类型的温室大棚.经测算,投资A种类型的大棚6万元/个、B种类型的大棚7万元/个,那么建造方案有()A.2种B.3种C.4种D.5种方法、规律归纳:1、在解决实际问题时,需合理安排,从几种方案中,选择最佳方案。

高中数学必修5《二元一次不等式(组)与简单的线性规划问题》教案

高中数学必修5《二元一次不等式(组)与简单的线性规划问题》教案

高中数学必修5《二元一次不等式(组)与简单的线性规划问题》教案一、教学内容分析本小节是普通高中课程标准实验教科书数学5(必修)第三章第3小节,主要内容是利用平面区域体现二元一次不等式(组)的解集;借助图解法解决在线性约束条件下的二元线性目标函数的最值与最优解问题;运用线性规划知识解决一些简单的实际问题(如资源利用,人力调配,生产安排等)。

突出体现了优化思想,与数形结合的思想。

本小节是利用数学知识解决实际问题的典例,它体现了数学源于生活而用于生活的特性。

二、学生学习情况分析本小节内容建立在学生学习了一元不等式(组)及其应用、直线与方程的基础之上,学生对于将实际问题转化为数学问题,数形结合思想有所了解. 但从数学知识上看学生对于涉及多个已知数据、多个字母变量,多个不等关系的知识接触尚少,从数学方法上看,学生对于图解法还缺少认识,对数形结合的思想方法的掌握还需时日,而这些都将成为学生学习中的难点。

三、设计思想以问题为载体,以学生为主体,以探究归纳为主要手段,以问题解决为目的,以多媒体为重要工具,激发学生的动手、观察、思考、猜想探究的兴趣。

注重引导学生充分体验“从实际问题到数学问题”的数学建模过程,体会“从具体到一般”的抽象思维过程,从“特殊到一般”的探究新知的过程;提高学生应用“数形结合”的思想方法解题的能力;培养学生的分析问题、解决问题的能力。

四、教学目标1、知识与技能:了解二元一次不等式(组)的概念,掌握用平面区域刻画二元一次不等式(组)的方法;了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行域和最优解等概念;理解线性规划问题的图解法;会利用图解法求线性目标函数的最值与相应最优解;2、过程与方法:从实际问题中抽象出简单的线性规划问题,提高学生的数学建模能力;在探究的过程中让学生体验到数学活动中充满着探索与创造,培养学生的数据分析能力、化归能力、探索能力、合情推理能力;3、情态与价值:在应用图解法解题的过程中,培养学生的化归能力与运用数形结合思想的能力;体会线性规划的基本思想,培养学生的数学应用意识;体验数学来源于生活而服务于生活的特性.五、教学重点和难点重点:从实际问题中抽象出二元一次不等式(组),用平面区域刻画二元一次不等式组的解集及用图解法解简单的二元线性规划问题;难点:二元一次不等式所表示的平面区域的探究,从实际情境中抽象出数学问题的过程探究,简单的二元线性规划问题的图解法的探究.六、教学基本流程第一课时,利用生动的情景激起学生求知的欲望,从中抽象出数学问题,引出二元一次不等式(组)的基本概念,并为线性规划问题的引出埋下伏笔.通过学生的自主探究,分类讨论,大胆猜想,细心求证,得出二元一次不等式所表示的平面区域,从而突破本小节的第一个难点;通过例1、例2的讨论与求解引导学生归纳出画二元一次不等式(组)所表示的平面区域的具体解答步骤(直线定界,特殊点定域);最后通过练习加以巩固。

初中数学二元一次方程组的应用题型分类汇编——方案决策问题3(附答案)

初中数学二元一次方程组的应用题型分类汇编——方案决策问题3(附答案)
15.2019年是中国建国70周年,作为新时期的青少年,我们应该肩负起实现祖国伟大复兴的责任,为了培养学生的爱国主义情怀,我校学生和老师在5月下旬集体乘车去抗日战争纪念馆研学,已知学生的人数是老师人数的12倍多20人,学生和老师总人数有540人.
(1)请求出去抗日战争纪念馆研学的学生和老师的人数各是多少?
【详解】
设每头牛值金 两,每头羊值金 两,则依据题意得
.
故选C.
【点睛】
本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.
5.D
【解析】
【分析】
设B、C两种车分别租a辆、b辆.然后根据三种情况:A型号租0辆或1辆或2辆,列方程进行讨论.
【详解】
设B、C两种车分别租a辆、b辆.
(1)求每台A种、B种设备各多少万元;
(2)根据学校实际,需购进A种和B种设备共30台,总费用不超过30万元,请你通过计算,求至少购买A种设备多少台.
21.为了奖励校运会优秀运动员,学校决定用1200元购买篮球和排球两种奖品若干个.其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有_____.
27.有甲、乙、丙三种货物,若购甲3件、乙7件、丙1件共需315元;若购甲4件,乙10件,丙1件,共需420元,问购甲、乙、丙各5件共需________元.
28.根据下图给出的信息,则每束鲜花价格的价格分别为____.
参考答案
1.B
【解析】
【分析】设购买篮球x个,排球y个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于x、y的方程,由x、y均为非负整数即可得.
(1)求每个篮球和每个排球的销售利润;

二元一次方程组,一元一次不等式组及其应用

二元一次方程组,一元一次不等式组及其应用

一元一次不等式组及其应用◆知识讲解1.解不等式组一般先分别求出不等式组中各个不等式的解集并表示在数轴上,再求出它们的公共部分,就得到不等式组的解集.2.由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表.不等式组 (其中a<b )图示解集口诀x ax b ≥⎧⎨≥⎩x ≥b同大取大x ax b ≤⎧⎨≤⎩x ≤a 同小取小x ax b ≥⎧⎨≤⎩ a ≤x ≤b 大小、小大中间找 x ax b≤⎧⎨≥⎩空集小小、大大找不到3.列一元一次不等式组解决实际问题是中考要考查的一个重要内容,在列不等式解决实际问题时,应掌握以下三个步骤:(1)•找出实际问题中的所有不等关系或相等关系(有时要通过不等式与方程综合来解决),设出未知数,列出不等式组(•或不等式与方程的混合组);(2)解不等式组;(3)从不等式组(或不等式与方程的混合组)•的解集中求出符合题意的答案.◆经典例题: 例1 (2006,江苏江阴)关于x 的不等式组1532223x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有4个整数解,则a 的取值范围是:( ) A .-5≤a ≤-143 B .-5≤a<-≤-143 C .-5<a ≤-143 D .-5<a<-143例2 (2004,南昌市)仔细观察图,认真阅读对话:根据对话内容,试求出饼干和牛奶的标价各是多少元?例3 (2004,江西赣州)某钱币收藏爱好者,想把3.50元纸币兑换成的1分,2•分,5分的硬币;他要求硬币总数为150枚,2分硬币的枚数不少于20枚且是4的倍数,5•分的硬币要多于2分的硬币;请你根据此要求,设计所有的兑换方案.◆强化训练:一、填空题1.(06,四川达州)不等式组31011x x -+≥⎧⎨+>-⎩的解集是_______.2.(2006,四川成都)不等式组52(1)1233x x x >-⎧⎪⎨-≤-⎪⎩的整数解的和是______. 3.不等式1≤3x-7<5的整数解是______. 4.对于整数a ,b ,c ,d ,符号a b c d表示运算ac-bd ,已知1<a b c d<3,则b+d 的值是____.5.长度分别为3cm ,•7cm ,•xcm•的三根木棒围成一个三角形,•则x•的取值范围是_______.6.如果a<2,那么不等式组2x a x >⎧⎨>⎩的解集为________;当______时,不等式组2x a x <⎧⎨>⎩的解集是空集.7.(2006,山西)若不等式组220x a b x ->⎧⎨->⎩的解集是-1<x<1,则(a+b )=______.8.已知关于x 的不等式组0321x a x -≥⎧⎨->-⎩的整数解共有5个,则a 的取值范围是______.9.(2008,苏州)2008年6月1日起,某超市开始有偿提供可重复使用的三种环保购物袋,每只售价分别为1元,2元和3元,这三种环保购物袋每只最多分别能装大米3kg ,5kg 和8kg .6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20kg 散装大米,他们选购的3只环保购物袋至少应付给超市_______元. 二、选择题10.已知0<b<a ,那么下列不等式组中无解的是( )A .x a x b>⎧⎨<⎩ B .x a x b>-⎧⎨<-⎩ C .x a x b>⎧⎨<-⎩ D .x a x b>-⎧⎨<⎩11.(2008,义乌)不等式组312,840x x ->⎧⎨-≤⎩的解集在数轴上表示为( )A B C D 12.(2006,山东聊城)已知24221x y k x y k +=⎧⎨+=+⎩,且-1<x-y<0,则k 的取值范围是( )A .-1<k<-12B .0<k<12C .0<k<1D .12<k<1 13.如果不等式组320x x m-≥⎧⎨≥⎩有解,则m 的取值范围是( ) A .m<32B .m ≤32C .m>32D .m ≥3214.若15233m m +>⎧<⎪⎨-⎪⎩,化简│m+2│-│1-m │+│m │得( )A .m-3B .m+3C .3m+1D .m+115.不等式组3(2)423x a xx x +--≤⎧>⎪⎨⎪⎩无解,则a 的取值范围是( ) A .a<1 B .a ≤1 C .a>1 D .a ≥116.为了改善城乡人民生产,生产环境,我市投入大量资金治理清水河污染,在城郊建立了一个综合性污水处理厂.设库池中存有待处理的污水at ,又从城区流入库池的污水按每小时bt 的固定流量增加.如果同时开动2台机组需30h 处理完污水,同时开动4台机组需10h 处理完污水.若要求在5h 内将污水处理完毕,那么至少要同时开动机组的台数为( ) A .6台 B .7台C .8台 D .9台 三、解答题17.(1)(2005,南京市)解不等式组2(2)33134x x xx +≤+⎧⎪+⎨<⎪⎩,并写出不等式组的整数解; (2)(2004,太原市)解不等式组312(1)2(1)4x x x x+≥-⎧⎨+>⎩,并把它的解集在数轴上表示出来.18.(2006,湖北十堰)某牛奶乳业有限公司经过市场调研,决定从明年起对甲,乙两种产品实行“限产压库”,要求这两种产品全年共新增产量20件,这20件的总产值p (万元)满足:110<p<120.已知有关数据如表所示,•那么该公司明年应怎样安排新增产品的产量?19.(2004,湖北省)如图所示,一筐橘子分给若干个儿童,如果每人分4个,•则剩下9个;如果每人分6个,则最后一个儿童分得的橘子数少于3个,问共有几个儿童,•分了多少个橘子?20.(2005,江苏省)七(2)班有50名学生,老师安排每人制作一件A 型和B 型的陶艺品,学校现有甲种制作材料36kg ,乙种制作材料29kg ,制作A ,B 两种型号的陶艺品用料情况如下表:需甲种材料 需乙种材料1件A 型陶艺品 0.9kg 0.3kg 1件B 型陶艺品 0.4kg1kg(1)设制作B 型陶艺品x 件,求x 的取值范围;(2)请你根据学校现有材料,分别写出七(2)班制作A 型和B 型陶艺品的件数.产品 每件产品的产值 甲 4.5万元 乙7.5万元21.(2008,青岛)2008年8月,北京奥运会帆船比赛在青岛国际帆船中心举行,•观看帆船比赛的船票分为两种:A种船票600/张,B种船票120/张.•某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A,B两种船票共15张,要求A种船票的数量不少于B种船票数量的一半,若设购买A 种船票x张,请你解答下列问题:(1)共有几种符合题意的购票方案?写出解答过程;(2)根据计算判断:哪种购票方案更省钱?22.(2006,青岛)“五一”黄金周期间,某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座两种客车,42座客车的租金每辆为320元,60•座客车的租金每辆为460元.(1)若学校单独租用这两种车辆各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),•而且要比单独租用一种车辆节省租金.请你帮助学校选择一种最节省的租车方案.23.(2005,深圳)某工程,甲工程队单独做40天完成,若乙工程队单独做30天后,•甲,乙两工程队再合作20天完成.(1)求乙工程队单独做需要多少天完成?(2)将工程分两部分,甲做其中的一部分用了x天,乙做另一部分用了y天,其中x,y均为正整数,且x<15,y<70,求x,y.24.(2005,苏州)苏州地处太湖之滨,有丰富的水产养殖资源,水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到如下信息:①每亩水面的年租金为500元,水面需按整数亩出租;②每亩水面可在年初混合投放4kg蟹苗和20kg虾苗;③每公斤蟹苗的价格为75元,其饲养费用为525元,当年可获1400元收益;④每公斤虾苗的价格为15元,其饲养费用为85元,当年可获160元收益;(1)若租用水面n亩,则年租金共需______元;(2)水产养殖的成本包括水面年租金,苗种费用和饲养费用,•求每亩水面蟹虾混合养殖的年利润(利润=收益-成本);(3)李大爷现有资金25000元,他准备再向银行贷不超过25000元的款,•用于蟹虾混合养殖,已知银行贷款的年利率为8%,试问李大爷应该租多少亩水面,•并向银行贷款多少元,可使年利润超过35000元。

人教版七年级下册数学第八章二元一次方程组应用题——方案问题训练

人教版七年级下册数学第八章二元一次方程组应用题——方案问题训练

人教版七年级下册数学第八章二元一次方程组应用题——方案问题训练1.我校组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?2.某村老杨家有耕地和林地共24公顷,今年每公顷耕地纯收入为5500元,每公顷林地纯收入为6000元,耕地与林地的纯收入共137000元,为保护生态环境,增加收入,老杨计划将部分耕地改为林地(改后每公顷耕地,林地纯收入不变),要使改后的纯收入为140000元.问:(1)老杨家原有耕地,林地各多少公顷?(2)老杨应将多少公顷耕地改为林地?3.为了在即将到来的体育中考中取得好的成绩,某校准备在体育中考前将学校九年级的690名学生送到体育馆进行一次模拟考试,经学校和客车公司联系了解到,2辆大型客车和1辆中型客车可载客130人,1辆大型客车和3辆中型客车可载客140人,若要将这些学生--次性全部送到体育馆,且恰好装满.根据以上信息,回答下面问题:(1)每辆大型客车和中型客车各载多少人?(2)该校共有多少种租车方案?.(3)若每辆大型客车需租金1000元,每辆中型客车需租金800元,请你给该校提供一个最省钱的租车建议,并求出最少租车费用是多少?4.某校八年级师生共368人准备参加社会实践活动,现已预备了A、B两种型号的客车,除司机外A型号客车有49个座,B型号客车有37个座,两种客车共8辆,刚好坐满,求A、B两种型号的客车各用了多少辆?5.有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?6.某校订购了A、B两种笔记本,A种笔记本单价为28元,B种单价为24元,若B种笔记本的订购数量比A种笔记本的2倍少20个,并且订购两种笔记本共用了2560元问该校分别订购了A、B两种笔记本各多少个?7.某校美术组要购买铅笔和橡皮,按照商店规定,若同时购买60支铅笔和30块橡皮,则需按零售价购买,共需支付30元;若同时购买90支铅笔和60块橡皮,则可按批发价购买,共需支付40.5元.已知每支铅笔的批发价比零售价低0.05元,每块橡皮的批发价比零售价低0.10元.求每支铅笔和每块橡皮的批发价各是多少元?8.某中学七年级有350名师生需要租车去野外进行拓展训练,现有A、B两种类型号的车可供选择,已知1辆A型车和2辆B型车可载110人,2辆A型车和1辆B型车可载100人.(1)A、B型车每辆可分别载多少人?(2)要始每辆车都恰好坐满且正好运完这些师生,请问你有哪几种设计租车方案,请一一列举出来.9.某商场计划拨款9万元从厂家购进50台电视机,已知该厂生产三种不同型号的电视机,出厂价分别为甲种每台1500元, 乙种每台2100元, 丙种每台2500元, 若商场同时购进其中两种不同型号的电视机共50台,用去9万元.请你通过计算,说明商场有哪些进货方案.10.我市某中学决定到超市购买一定数量的羽毛球拍和羽毛球,已知买1副羽毛球拍和1个羽毛球要花费35元,买2副羽毛球拍和3个羽毛球要花费75元,求购买10副羽毛球拍和20个羽毛球共需多少元?11.亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?12.时下正是海南百香果丰收的季节,张阿姨到“海南爱心扶贫网”上选购百香果,若购买2千克“红土”百香果和1千克“黄金”百香果需付80元,若购买1千克“红土”百香果和3千克“黄金”百香果需付115元.请问这两种百香果每千克各是多少元?13.某校举行研学旅行活动,车上准备了7箱矿泉水,每箱的瓶数相同,到达目的地后,先从车上搬下3箱,发给每位同学1瓶矿泉水,有9位同学未领到.接着又从车上搬下4箱,继续分发,最后每位同学都有2瓶矿泉水,还剩下6瓶.问:有多少人参加此次研学旅行活动?每箱矿泉水有多少瓶?14.某厂生产甲、乙两种型号的产品,生产一个甲种产品需时间8s,铜8g;生产一个乙种产品需时间6s,铜16g.如果生产甲、乙两种产品共用时1h,共用铜6.4kg,那么甲、乙两种产品各生产多少个?15.春晓中学为开展“校园科技节”活动,计划购买A型、B型两种型号的航模.若购买8个A型航模和5个B型航模需用2200元;若购买4个A型航模和6个B型航模需用1520元.求A,B两种型号航模的单价分别是多少元.16.学校为了创建示范教育标准校,计划购进一批台式电脑和笔记本电脑,经过市场调研得知,购买1台台式电脑和2台笔记本电脑共需3.5万元,购买2台台式电脑和3台笔记本电脑共需5.5万元.每台台式电脑、笔记本电脑各需多少万元?17.某商场计划购进A、B两种新型节能台灯共100盏,已知A型台灯的进价是30(元/盏),B型台灯每台进价比A型台灯贵20元,若商场预计进货款为3500元,则这两种台灯各购进多少盏?18.某中学初一年级有350名同学去春游,已知2辆A型车和1辆B型车可以载学生100人;1辆A型车和2辆B型车可以载学生110人.、型车每辆可分别载学生多少人?(1)A B(2)若租一辆A型车需要1000元,一辆8型车需1200元,请你设计租车方案,使得恰好运送完学生并且租车费用最少.19.张栋同学到百货大楼买了两种型号的信封,共30个,其中买A型号的信封用了1元5角,买B型号的信封用了1元2角,B型号的信封每个比A型号的信封便宜2分.两种型号的信封的单价各是多少?20.五经富服装厂接受一批生产校服的任务,按计划的天数生产,若平均每天生产20件,到时将比订货任务少100件;若平均每天生产23件,则可提前1天完成.问:这批校服的订货任务是多少?原计划几天完成?。

一元一次不等式应用题

一元一次不等式应用题

一元一次不等式应用题考点1:二元一次方程组和不等式组的方案设计类型:文字式描述【例1】将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。

问有笼多少个?有鸡多少只?【巩固】开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.【例2】跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.A、两类学校的校舍进行改造,根据预算,【巩固】在实施“中小学校舍安全工程”之际,某市计划对B改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.(1)改造一所A类学校和一所B类学校的校舍所需资金分别是多少万元?A、两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若(2)该市某县B国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元,其中地方A、两类学样的改造资金分别为每所20万元和30万元,请你通过计算求出有财政投入到BA、两类学校各有几所.几种改造方案,每个方案中B考点2:一般不等式应用题【例3】初中毕业了,孔明同学准备利用暑假卖报纸赚取140~200元钱,买一份礼物送给父母.已知:在暑假期间,如果卖出的报纸不超过1000份,则每卖出一份报纸可得1.0元;如果卖出的报纸超过1000份,则超过部分....每份可得2.0元.(1)请说明:孔明同学要达到目的,卖出报纸的份数必须超过1000份.(2)孔明同学要通过卖报纸赚取140~200元,请计算他卖出报纸的份数在哪个范围内.【巩固】在保护地球爱护家园活动中,校团委把一批树苗分给初三(1)班同学去栽种.如果每人分2棵, 还剩42棵;如果前面每人分3棵,那么最后一人得到的树苗少于5棵(但至少分得一棵). (1)设初三(1)班有x 名同学,则这批树苗有多少棵?(用含x 的代数式表示). (2)初三(1)班至少有多少名同学?最多有多少名?【巩固】北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种 运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数 量的2倍,但每套进价多了10元.(%100⨯=成本利润利润率) (1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于%20,那么每套售价至少 是多少元?考点3 一次函数与不等式组的方案设计类型:文字描述【例4】2006年春,成都市为了"创建最佳旅游城市",要种植一种新品种树苗.甲、乙两处育苗基地均以每株4元的价格出售这种树苗,并对一次性购买该种树苗不低于1000株的用户均实行优惠:甲处的优惠政策是每株树苗按原价的八折出售;乙处的优惠政策是免收所购树苗中150株的费用,其余树苗按原价的九折出售。

八年级数学下册知识点复习专题讲练解惑函数中的方案问题(含解析)

八年级数学下册知识点复习专题讲练解惑函数中的方案问题(含解析)

解惑函数中的方案问题方案设计根本类型1. 利用题目中的不等式,根据取值范围直接设计方案并利用函数性质求最大值:如:某医药器械厂接受了生产一批高质量医用口罩的任务。

要求在8天之内〔含8天〕生产A型和B型两种型号的口罩共5万只,其中A型口罩不得少于1.8万只,该厂的生产能力是:假设生产A型口罩每天能生产0.6万只,假设生产B型口罩每天能生产0.8万只,生产一只A型口罩可获利0.5元,生产一只B型口罩可获利0.3元。

在完成任务的前提下,你如何安排生产A型和B型口罩的只数,使获得的总利润最大?最大利润是多少?答案:安排生产A型和B型口罩的只数分别为4.2万只和0.8万只,最大利润为2.34万元。

2. 题目中没有明显的不等式,利用所隐含条件求方案:如:某小型企业获得授权生产甲、乙两种奥运桔祥物,生产每种桔祥物所需材料及所获利润如下表:A种材料〔m2〕B种材料〔m2〕所获利润〔元〕每个甲种桔祥物10每个乙种桔祥物20 该企业现有A种材料900m2,B种材料850m2,用这两种材料生产甲、乙两种桔祥物共2000个。

设生产甲种桔祥物x个,生产这两种桔祥物所获总利润为y元。

该企业如何安排甲、乙两种桔祥物的生产数量,才能获得最大利润,最大利润是多少?生产甲种桔祥物1000个,乙种桔祥物1000个,所获利润最大,最大利润为30000元.总结:〔1〕利用不等式组求出取值范围,从中寻找整数值,从而设计出方案;〔2〕利用函数增减性求出函数最值,在方案再设计中,是利用二元一次方程重新找出符合条件的整数解。

例题为庆祝“六•一〞国际儿童节,鸡冠区某小学组织师生共360人参加公园游园活动,有A、B两种型号客车可供租用,两种客车载客量分别为45人、30人,要求每辆车必须满载,那么师生一次性全部到达公园的租车方案有〔〕A. 3种B. 4种C. 5种D. 6种解析:可设租用A型号客车x辆,B型号客车y辆,根据共360人参加公园游园活动可列方程,再根据车辆数为非负整数求解即可。

《第五章2求解二元一次方程组》作业设计方案-初中数学北师大版12八年级上册

《第五章2求解二元一次方程组》作业设计方案-初中数学北师大版12八年级上册

《求解二元一次方程组》作业设计方案(第一课时)一、作业目标本作业设计旨在通过实践操作,使学生掌握二元一次方程组的基本概念和求解方法,能够运用消元法或代入法解决简单的二元一次方程组问题,并培养学生的逻辑思维能力和解决问题的能力。

二、作业内容作业内容主要分为以下几个部分:1. 基础知识回顾:要求学生复习一元一次方程的解法,理解二元一次方程组的概念和基本形式。

2. 消元法应用:设计几组二元一次方程组,要求学生运用消元法求解。

在消元过程中,学生需明确每一步的运算目的,保证运算的准确性和逻辑性。

3. 代入法实践:同样设计几组二元一次方程组,要求学生使用代入法进行求解。

通过代入法的实践,学生需理解其原理和适用场景。

4. 题目拓展:设计一些稍复杂的二元一次方程组,要求学生尝试多种方法求解,以提高学生的思维灵活性和解题能力。

5. 错题分析:要求学生收集自己在解题过程中出现的错误,分析原因,并重新求解,以加深对知识的理解。

三、作业要求1. 学生在完成作业时,需认真审题,明确题目要求,按照步骤进行求解。

2. 学生在运用消元法和代入法时,需保证每一步的运算正确无误,注意运算的顺序和逻辑。

3. 在完成题目拓展部分时,学生需尝试多种方法求解,并比较不同方法的优劣,提高自己的解题能力。

4. 在错题分析部分,学生需认真分析错误原因,并重新求解,确保自己真正掌握了解题方法。

5. 作业完成后,学生需整理错题集,将错误题目和正确解答记录下来,以便后续复习。

四、作业评价教师将对学生的作业进行批改和评价,评价内容包括解题步骤的正确性、运算的准确性、逻辑的清晰性以及解题方法的灵活性等方面。

对于表现优秀的学生,教师将给予表扬和鼓励;对于存在问题的学生,教师将指出问题所在,并提供指导和帮助。

五、作业反馈教师将在批改完作业后,对学生的作业情况进行反馈。

反馈内容包括学生的表现、存在的问题及改进建议等。

同时,教师还将针对学生在作业中出现的共性问题进行讲解和演示,帮助学生更好地掌握解题方法和技巧。

实际问题与二元一次方程组方案选择与设计问题-PPT

实际问题与二元一次方程组方案选择与设计问题-PPT
实际问题与二元一次方程组 方案选择与设计问题
大家好
1
前面我们讨论了二元一次方程组的解 法,并用二元一次方程组解决了一些实际 问题。本节我们继续探究如何用二元一次 方程组解决实际问题。同学们可以先独立 分析问题中的数量关系,列出方程组,得 出问题的解答,然后再互相交流。
大家好
2
1、某商场准备购进两种摩托车共25辆,预计 投资10万元,现有甲、乙、丙三种摩托车供选 购,甲种每辆4200元,可获利500元,乙种每 辆3700元,可获利350元,丙种每辆3200元, 可获利300元,10万元资金全部用完,
义而造成错解。
大家好
7
2、(2014•聊城)某服装店用6000元购进A,B两 种新式服装,按标价售出后可获得毛利润3800元 (毛利润=售价﹣进价),这两种服装的进价、标价 如表所示:
类型 价格
A型 B型
进价(元/件) 60

标价(元/件) 100
160
(1)这两种服装各购进的件数;
(2)如果A中服装按标价的8折出售,B中服装按标
(2)请你帮该物流公司设计租车方案;
(3)若A型车每辆需租金100元/次,B型车每辆需租
金120元/次,请你选出最省钱的租车方案,并求出最
少租车费用。
大家好
4
小试牛刀:
1、为庆祝“六一”儿童节,某市中小学统一组织文艺汇演,甲、 乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人 数不够90人)准备统一购买服装参加演出,下面是某服装厂 给出的演出服装的价格表:
演出,请为两校设计一种省钱大的家购好 买服装方案.
5
2、某旅行社组织一批游客外出旅游,原计划 租用45座客车若干辆,但有15人没有座位;若 租用同样数量的60座客车,则多出一辆车,且 其余客车恰好坐满,已知45座客车租金220元/ 辆,60座租金300元/辆,问

初中数学二元一次方程组的应用题型分类汇编——方案决策问题1(附答案)

初中数学二元一次方程组的应用题型分类汇编——方案决策问题1(附答案)

初中数学二元一次方程组的应用题型分类汇编——方案决策问题1(附答案)1.某车间一个工人将一根长为100cm的钢材裁剪成规格为6cm与10cm的两种钢条(假设裁剪中没有消耗,并允许有不超过2cm的余料),则该工人裁剪的方案有()A.3种B.4种C.5种D.6种2.铭铭要用20元钱购买笔和本,两种物品都必须都买,20元钱全部用尽,若每支笔3元,每个本2元,则共有几种购买方案()A.2 B.3 C.4 D.53.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.154.“欢乐购”元旦促销活动即将到来,小芳的妈妈计划花费1000元,全部用来购买价格分别为80元和120元的两种商品若干件,则可供小芳妈妈选择的购买方案有:A.4种B.5种C.6种D.7种5.老大爷背了一背鸡鸭到市场出售,单价是每只鸡100元,每只鸭80元,他出售完收入了660元,那么这背鸡鸭只数可能的方案有()A.4种B.3种C.2种D.1种6.某家具生产厂生产某种配套桌椅(一张桌子,两把椅子),已知每块板材可制作桌子1张或椅子4把,现计划用120块这种板材生产一批桌椅(不考虑板材的损耗),设用x 块板材做桌子,用y块板材做椅子,则下列方程组正确的是()A.12042x yx y+=⎧⎨=⨯⎩B.12024x yx y+=⎧⎨⨯=⎩C.12024x yx y+=⎧⎨=⨯⎩D.12024x yx y+=⎧⎨⨯=⎩7.我国古典数学文献《增删算法统宗·六均输》中这样一道题:甲、乙两人一同放牧,两人暗地里数羊,如果乙给甲9只羊,则甲的羊数为乙的两倍;如果甲给乙9只羊,则两人的羊数相同,设甲有羊x只,乙有羊y只,根据题意,可列方程组为()A.92(9)99x yx y-=+⎧⎨-=+⎩B.2(9)999x yx y+=-⎧⎨-=+⎩C.92(9)99x yx y+=-⎧⎨-=+⎩D.92(9)99x yx y-=+⎧⎨+=-⎩8.为推进课改,王老师把班级里40名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案()A.4 B.3 C.2 D.19.“双11”促销活动中,小芳的妈妈计划用100元在唯品会购买价格分别为8元和12元的两种商品,则可供小芳妈妈选择的购买方案有()A.7种B.6种C.5种D.4种10.学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有()A.3种B.4种C.5种D.6种11.某鞋店有甲、乙两款鞋各30双,甲鞋每双200元,乙鞋每双50元,该店促销的方式为:买一双甲鞋,送一双乙鞋;只买乙鞋没有任何优惠.打烊后得知.此两款鞋共卖得2750元,还剩鞋共25双,设剩甲鞋x双,乙鞋y双,则依题意可列出方程组12.某学校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,至少买一个排球,在购买资金恰好用尽的情况下,购买方案有_____种.13.某单位现要组织其市场和生产部的员工游览该公园,门票价格如下:如果按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1245元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为945元.那么该公司这两个部的人数之差的绝对值为_____.14.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为____________.15.临近端午,某超市准备购进某品牌的白粽、豆沙粽、蛋黄粽,三种品种的粽子共1000袋(每袋均为同一品种的粽子),其中白粽每袋12个,豆沙粽每袋8个,蛋黄粽每袋6个.为了推广,超市还计划将三个品种的粽子各取120出来,拆开后重新组合包装,制成A、B两种套装进行特价销售:A套装为每袋白粽4个,豆沙粽4个;B套装为每袋白粽4个,蛋黄粽2个,取出的袋数和套装的袋数均为正整数.若蛋黄粽的进货量不低于总进货量的15,则豆沙粽最多购进__袋.16.有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨.则1辆大货车与1辆小货车一次可以运货__吨.17.某学校计划用34件同样的奖品全部用于奖励在“经典诵读”活动中表现突出的班级,一等奖奖励6件,二等奖奖励4件,则分配一、二等奖个数的方案有()A.4种B.3种C.2种D.1种18.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有______种购买方案.19.2018年10月21日,重庆市第八届中小学艺术工作坊在渝北区空港新城小学体育馆开幕,来自全重庆市各个区县共二十多个工作坊集中展示了自己的艺术特色.组委会准备为现场展示的参赛选手购买三种纪念品,其中甲纪念品5元/件,乙纪念品7元/件,丙纪念品10元/件.要求购买乙纪念品数量是丙纪念品数量的2倍,总费用为346元.若使购买的纪念品总数最多,则应购买纪念品共_____件.20.秋天到了,花溪区高坡乡美景如画,其中露营基地吸引了不少露营爱好者,露营基地为了接待30名露营爱好者,需要搭建可容纳3人或2人的帐篷若干,若所搭建的帐篷恰好能容纳这30名露营爱好者,则不同的搭建方案有_______种.21.为参加学校艺术节闭幕演出,八年级一班欲租用男、女演出服装若干套以供演出时使用,已知4套男装和6套女装租用一天共需租金490元,6套男装和10套女装租用一天共需790元.(1)租用男装、女装一天的价格分别是多少?(2)由于演出时间错开租用高峰时段,男装、女装一天的租金分别给予9折和8折优惠,若该班演出团由5名男生和12名女生组成,求在演出当天该班租用服装实际支付的租金是多少?22.春晓中学为开展“校园科技节”活动,计划购买A型、B型两种型号的航模.若购买8个A型航模和5个B型航模需用2200元;若购买4个A型航模和6个B型航模需用1520元.求A,B两种型号航模的单价分别是多少元.23.某新建成学校举行“美化绿化校园”活动,计划购买A、B两种花木共300棵,其中A花木每棵20元,B花木每棵30元.(1)若购进A,B两种花木刚好用去7300元,则购买了A,B两种花木各多少棵?(2)如果购买B花木的数量不少于A花木的数量的1.5倍,且购买A、B两种花木的总费用不超过7820元,请问学校有哪几种购买方案?哪种方案最省钱?24.某蔬菜加工公司先后两批次收购洋葱共100吨.第一批洋葱价格为4000元/吨;因洋葱大量上市,第二批价格跌至1000元/吨.这两批洋葱共用去16万元.(1)求两批次购进洋葱各多少吨;(2)公司收购后对洋葱进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?25.小陈第一次购买学习用品情况的明细表如下:因污损(表中●处)导致部分数据无法识别,根据下表,解答下列问题:(1)小陈购买圆规、笔记本各多少?(2)若小陈再次购买笔记本和HB铅笔两种学习用品,共花费14元,问有几种不同的购买方案?写出这些方案.26.寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用,若购买3副围棋和5副中国象棋需用98元;若购买8副围棋和3副中国象棋需用158元;(1)求每副围棋和每副中国象棋各多少元;(2)寒梅中学决定购买围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购买多少副围棋? 27.慧秀中学在防“非典”知识竞赛中,评出一等奖4人,二等奖6人,三等奖20人,学校决定给所有获奖学生各发一份奖品,同一等次的奖品相同.(1)若一等奖,二等奖、三等奖的奖品分别是喷壶、口罩和温度计,购买这三种奖品共计花费113元,其中购买喷壶的总钱数比购买口罩的总钱数多9元,而口罩的单价比温度计的单价多2元,求喷壶、口罩和温度计的单价各是多少元?(2)若三种奖品的单价都是整数,且要求一等奖的单价是二等奖单价的2倍,二等奖的单价是三等奖单价的2倍,在总费用不少于90元而不足150元的前提下,购买一、二、三等奖奖品时它们的单价有几种情况,分别求出每种情况中一、二、三等奖奖品的单价.28.某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.29.为了扶贫户学生好读书,读好书,某实验学校校友会在今年开学初,到新华书店采购文学名著和自然科学两类图书.经了解,购买30本文学名著和50本自然科学书共需2350元,20本文学名著比20本自然科学书贵500元.(注:所采购的文学名著价格都一样,所采购的自然科学书价格都一样)(1)求每本文学名著和自然科学书的单价.(2)若该校校友会要求购买自然科学书比文学名著多30本,自然科学书和文学名著的总数不低于80本,总费用不超过2400元,请求出所有符合条件的购书方案.30.为庆祝祖国70周年华诞,阳光超市销售甲、乙两种庆祝商品,该超市若同时购进甲、乙两种商品各10件共花费400元;若购进甲种商品30件,购进乙种商品15件,将用去750元;(1)求甲、乙两种商品每件的进价;(2)由于甲、乙两种商品受到市民欢迎,十一月份超市决定购进甲、乙两种商品共80件,且保持(1)的进价不变,已知甲种商品每件的售价为15元,乙种商品每件的售价40元,要使十一月份购进的甲、乙两种商品共80件全部销售完的总利润不少于600元,那么该超市最多购进甲种商品多少件?参考答案1.D【解析】【分析】设6cm 的钢条有x 条,10cm 的钢条有y 条,根据题意,列出关于x ,y 的二元一次方程,结合x ,y 都是正整数,即可得到答案.【详解】设6cm 的钢条有x 条,10cm 的钢条有y 条,由题意得:610100x y +=或61099x y +=或61098x y +=,∵x ,y 都是正整数,∴57x y =⎧⎨=⎩或104x y =⎧⎨=⎩或151x y =⎧⎨=⎩或38x y =⎧⎨=⎩或85x y =⎧⎨=⎩或132x y =⎧⎨=⎩ ∴该工人裁剪的方案有6种.故选D .【点睛】本题主要考查二元一次方程的实际应用,根据等量关系,列出二元一次方程,是解题的关键.2.B【解析】【分析】设购买x 支笔,y 个本,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结x ,y 均为正整数即可求出结论.【详解】解:设购买x 支笔,y 个本,依题意,得:3x +2y =20,∴y =10-32x . ∵x ,y 均为正整数,∴1127x y =⎧⎨=⎩,2244x y =⎧⎨=⎩,3361x y =⎧⎨=⎩, ∴共有3种购买方案.故选:B.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的基础,用一个变量表示另一个变量,进行整数解的讨论是解题的关键.3.B【解析】【分析】设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据前两束气球的价格,即可得出关于x y、的方程组,用前两束气球的价格相加除以2,即可求出第三束气球的价格.【详解】设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据题意得:316320x yx y+=⎧⎨+=⎩①②,方程(①+②)÷2,得:2x+2y=18.故选:B.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.4.A【解析】【分析】设购买80元的商品数量为x,购买120元的商品数量为y,根据总费用是1000元列出方程,求得正整数x、y的值即可.【详解】设购买80元的商品数量为x,购买120元的商品数量为y,依题意得:80x+120y=1000,整理,得2523xy-=.因为x是正整数,所以当x=2时,y=7.当x =5时,y =5.当x =8时,y =3.当x =11时,y =1.即有4种购买方案.故选:A .【点睛】本题考查了二元一次方程的应用.对于此类问题,挖掘题目中的关系,找出等量关系,列出二元一次方程.然后根据未知数的实际意义求其整数解.5.C【解析】【分析】设有鸡x 只,有鸭y 只,根据收入共660元列方程,然后根据鸡鸭只数是正整数分析求解.【详解】设有鸡x 只,鸭y 只,根据题意,得10080660x y +=,整理,得:5433x y +=, ∴3354x y -=, ∵x 、y 必须是正整数, ∴3354x -≥,且335x -必须是偶数,即x 为奇数, ∴2905x ≤≤,且x 为奇数, 则x =1,3,5,当1x =时,7y =,符合题意;当3x =时,184y =,不是整数,不符合题意,舍去. 当5x =时,2y =,符合题意.所以,这背鸡鸭只数可能的方案有2种.故选:C .【点睛】本题综合考查了二元一次方程的应用,能够根据不等式求得未知数的取值范围,从而分析得到所有的情况.6.D【解析】【分析】设用x 块板材做桌子,用y 块板材做椅子,根据“用120块这种板材生产一批桌椅”,即可列出一个二元一次方程,根据“每块板材可做桌子1张或椅子4把,使得恰好配套,一张桌子两把椅子”,列出另一个二元一次方程,即可得到答案.【详解】解:设用x 块板材做桌子,用y 块板材做椅子,∵用100块这种板材生产一批桌椅,∴x +y =100 ①,生产了x 张桌子,4y 把椅子,∵使得恰好配套,1张桌子4把椅子,∴2x =4y ②,①和②联立得:12024x y x y +=⎧⎨⨯=⎩, 故选:D .【点睛】本题考查了由实际问题抽象出二元一次方程组,正确找出等量关系,列出二元一次方程组是解题的关键.7.C【解析】【分析】设甲放x 只羊,乙放y 只羊,根据“如果乙给甲9只羊,则甲的羊数量为乙的两倍;如果甲给乙9只羊,则两人的羊数量相同”列出方程组解答即可.【详解】解:设甲放x 只羊,乙放y 只羊,由题意得92(9)99x y x y +=-⎧⎨-=+⎩, 故选C .【点睛】此题考查二元一次方程组的实际运用,根据数量的变化,找出题目蕴含的数量关系是解决问题的关键8.C【解析】【分析】设5人一组的有x 个,6人一组的有y 个,列出方程,再令x 为大于等于1的整数,逐一进行计算,即可得出答案.【详解】设5人一组的有x 个,6人一组的有y 个,根据题意可得:5x +6y =40,当x =1,则y =356(不合题意); 当x =2,则y =5;当x =3,则y =256(不合题意); 当x =4,则y =103(不合题意); 当x =5,则y =52(不合题意); 当x =6,则y =53(不合题意); 当x =7,则y =56(不合题意); 当x =8,则y =0;故有2种分组方案.故选:C .【点睛】本题考查的是列方程,解题关键是根据题目意思列出含x 和y 的方程.9.D【解析】【分析】设购买8元的商品数量为x ,购买12元的商品数量为y ,根据总费用是100元列出方程,求得正整数x 、y 的值即可.【详解】解:设购买8元的商品数量为x ,购买12元的商品数量为y ,依题意得:8x+12y =100,整理,得因为x 是正整数,所以当x =2时,y =7当x =5时,y =5当x =8时,y =3当x =11时,y =1即有4种购买方案,选:D【点睛】本题考查了二元一次方程的应用.对于此类题,挖掘题目中的关系,找出等量关系,列出二元一次方程.然后根据未知数的实际意义求其整数解.10.B【解析】【分析】 设购买A 品牌足球x 个,购买B 品牌足球y 个,根据总价=单价⨯数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数即可求出结论.【详解】解:设购买A 品牌足球x 个,购买B 品牌足球y 个,依题意,得:60751500x y +=,∴4205y x =-. Q x ,y 均为正整数,∴11516x y =⎧⎨=⎩,221012x y =⎧⎨=⎩,33158x y =⎧⎨=⎩,44204x y =⎧⎨=⎩,∴该学校共有4种购买方案.故选:B.【点睛】本题主要考查二元一次方程的解的问题,这类题往往涉及到方案的种类,是常考点.11.25{200(30)50[30(30)]2750 x yx x y+=-+---=.【解析】试题分析:设剩甲鞋x双,乙鞋y双,由题意得,25{200(30)50[30(30)]2750 x yx x y+=-+---=.考点:由实际问题抽象出二元一次方程组.12.3【解析】【分析】设可以购买x个篮球,y个排球,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合y为正整数、x为非负整数,此题得解.【详解】解:设可以购买x个篮球,y个排球,依题意,得:120x+90y=1200,∴x=10﹣34y.∵y为正整数,x为非负整数,∴74xy=⎧⎨=⎩,48xy=⎧⎨=⎩,112xy=⎧⎨=⎩.∴共有3种购买方案.故答案为:3.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.13.15【解析】【分析】根据945不能被11和13整除,能被9整除,可得两个部门的人数之和为105;再根据1245不能被11和13整除可知两个部门的人数分别在1~50和51~100的范围,结合门票价格和人数之间的关系列出方程组进行求解即可.【详解】解:设人数较少的部门有x 人,人数较多的部门有y 人,∵945不能被11和13整除且945÷9=105(人),∴两个部门的人数之和为105(人),∵1245不能被11和13整除,∴1≤x ≤50,51≤y ≤100,依题意,得:10513111245x y x y +=⎧⎨+=⎩,解得:4560x y =⎧⎨=⎩, ∴15-=x y ,故答案为:15.【点睛】本题考查了函数的应用问题和学生分析问题的能力,结合门票和人数之间的关系,建立方程是解题的关键.14.45435 3x y x y +=⎧⎨-=⎩ 【解析】【分析】根据总费用列出一个方程,根据单价关系列出一个方程,联立方程即可.【详解】由题意得:4个篮球和5个足球共花费435元,可列方程:4x+5y=435,篮球的单价比足球的单价多3元,可列方程:x-y=3,联立得45435 3x y x y +=⎧⎨-=⎩. 【点睛】本题考查二元一次方程的应用,根据题意列出方程是关键.15.360.【解析】【分析】根据题意,设购进的豆沙粽为x 袋,白粽y 袋,则蛋黄粽为(1000)x y --袋,根据等量关系列式进行求解即可得解.【详解】设购进的豆沙粽为x 袋,白粽y 袋,则蛋黄粽为(1000)x y --袋, 于是,取出的豆沙粽的个数为128205x x ⨯=个;取出的白粽的个数为1312205y y ⨯=个;取出的蛋黄粽的个数为13(1000)6(1000)2010x y x y --⨯=--个; 因此A 套装的套数为:214510x x ÷=套,B 套装的套数为:33(1000)2(1000)1020x y x y --÷=--套, 根据两种套装的白粽个数等于取出的白粽的个数得:13344(1000)10205x x y y ⨯+⨯--=, 整理得:x +6y =3000,又∵蛋黄粽的进货量不低于总进货量的15, ∴1100010005x y --≥⨯, 把x +6y =3000,代入1100010005x y --≥⨯中, 解得:x ≤360,x 为正整数,因此x =360.故答案为:360.【点睛】本题主要考查了二元一次方程及二元一次不等式以及变量数值得确定,熟练掌握相关方程及不等式得解是解决本题得关键.16.6.5【解析】设大货车一次运x 吨,小货车一次运y 吨,根据两种运货情况各列一个方程,组成方程组求解即可.【详解】设大货车一次运x 吨,小货车一次运y 吨,依题意有2315.55635x y x y +=⎧⎨+=⎩①②, ②-①得3x +3y =19.5,∴x +y =4+6.5=6.5(吨).故答案为:6.5.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.17.B【解析】【分析】设一等奖个数x 个,二等奖个数y 个,根据题意,得6x+4y=34,根据方程可得三种方案;【详解】设一等奖个数x 个,二等奖个数y 个,根据题意,得6434x y +=,使方程成立的解有17x y =⎧⎨=⎩,34x y =⎧⎨=⎩,51x y =⎧⎨=⎩, ∴方案一共有3种;故选:B .【点睛】此题考查二元一次方程的应用,解题关键在于列出方程18.两【解析】设购买甲种体育用品x件,购买乙种体育用品y件,根据“甲种体育用品每件20元,乙种体育用品每件30元,共用去150元”列出方程,求解方程的正整数解即可得答案.【详解】设购买甲种体育用品x件,购买乙种体育用品y件,依题意得:20x+30y=150,即2x+3y=15,由于x、y均为正整数,所以33xy=⎧⎨=⎩或61xy=⎧⎨=⎩,即有两种购买方案,故答案是:两.【点睛】本题考查了二元一次方程的应用,二元一次方程的正整数解,弄清题意,找准等量关系正确列出方程是解题的关键.19.62【解析】【分析】设购买甲纪念品x件,丙纪念品y件,则购进乙纪念品2y件,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为非负整数,即可求出x,y的值,进而可得出(x+y+2y)的值,取其最大值即可得出答案.【详解】设购买甲纪念品x件,丙纪念品y件,则购进乙纪念品2y件,依题意,得:5x+7×2y+10y=346,∴x=346245y-,∵x,y均为非负整数,∴346﹣24y为5的整数倍,∴y的尾数为4或9,∴504xy=⎧⎨=⎩,269xy=⎧⎨=⎩,214xy=⎧⎨=⎩,∴x+y+2y=62或53或44.∵62>53>44,∴最多可以购买62件纪念品.故答案为:62.【点睛】本题主要考查二元一次方程的实际应用,根据题意,求出x,y的非负整数解,是解题的关键.20.6【解析】【分析】可设3人的帐篷有x顶,2人的帐篷有y顶.根据两种帐篷容纳的总人数为30人,可列出关于x、y的二元一次方程,根据x、y均为非负整数,求出x、y的取值.根据未知数的取值即可判断出有几种搭建方案.【详解】解:设3人的帐篷有x顶,2人的帐篷有y顶,依题意,有:3x+2y=30,整理得y=15-1.5x,因为x、y均为非负整数,所以15-1.5x≥0,解得:0≤x≤10,从0到10的偶数共有6个,所以x的取值共有6种可能.故答案是:6.【点睛】此题主要考查了二元一次方程的应用,解决本题的关键是找到人数的等量关系,及帐篷数的不等关系.21.(1)40元,55元;(2)708元【解析】【分析】(1)设租用男装一天x元,租用女装需要y元,根据4套男装和6套女装租用一天共需租金490元,6套男装和10套女装租用一天共需790元列方程组求解即可;(2)根据(1)中所求的结果,按9折和8折优惠求出实际需支付租金即可.【详解】(1)设租用男装一天x元,租用女装需要y元,由题意得,46490 610790 x yx y+=⎧⎨+=⎩,解得:4055 xy=⎧⎨=⎩,答:租用男装一天40元,租用女装需要55元;(2)根据题意得:5400.912550.8708⨯⨯+⨯⨯=(元).答:演出当天租用服装实际需支付租金为708元.【点睛】本题考查了二元一次方程组的应用,关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.22.A型航模的单价为200元/台,B型航模的单价为120元/台.【解析】【分析】设A型航模的单价为x元/台,B型航模的单价为y元/台,根据“购买8个A型航模和5个B型航模需用2200元;购买4个A型航模和6个B型航模需用1520元”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】解:设A型航模的单价为x元/台,B型航模的单价为y元/台,依题意,得:852200 461520 x yx y+=⎧⎨+=⎩,解得:200120 xy=⎧⎨=⎩.答:A型航模的单价为200元/台,B型航模的单价为120元/台.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.23.(1)A种花木170棵,B种花木130棵;(2)方案三最省钱【解析】【分析】(1)设购买A 种花木x 棵,B 种花木y 棵,根据“A ,B 两种花木共100棵、购进A ,B 两种花木刚好用去8000元”列方程组求解可得;(2)设购买A 种花木a 棵,则购买B 种花木(300-a )棵,根据“B 花木的数量不少于A 花木的数量的1.5倍且购买A 、B 两种花木的总费用不超过7820元”即可得出关于a 的一元一次不等式组,解之即可得出a 的取值范围,进而可得出各购买方案,再根据总价=单价×购进数量求出各购买方案所需总费用,比较后即可得出结论.【详解】解:(1)设购买A 种花木x 棵,B 种花木y 棵,根据题意,得:30020307300x y x y +=⎧⎨+=⎩,解得:170130x y =⎧⎨=⎩. 答:购买A 种花木170棵,B 种花木130棵;(2)设购买A 种花木a 棵,则购买B 种花木(300-a )棵,根据题意,得:()300 1.520303007820a a a a -≥⎧⎨+-≤⎩, 解得:118≤a≤120,∴学校共有三种购买方案.方案一:购买118棵A 种花木,182棵B 种花木;方案二:购买119棵A 种花木,181棵B 种花木;方案三:购买120棵A 种花木,180棵B 种花木.方案一所需费用118×20+182×30=7820(元),方案二所需费用119×20+181×30=7810(元),方案三所需费用120×20+180×30=7800(元).∵7820>7810>7800,∴方案三最省钱.故答案是:(1)A 种花木170棵,B 种花木130棵;(2)方案三最省钱【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等24.(1)第一批购进洋葱20吨,第二批购进洋葱80吨;(2)精加工数量应为75吨,最大利润是85000元【解析】【分析】(1)设第一批购进洋葱x 吨,第二批购进洋葱y 吨,构建方程组即可解决问题;(2)设精加工m 吨,总利润为w 元,则粗加工(100-m)吨,由精加工数量不多于粗加工数量的三倍求出m 的取值范围,根据总利润w=精加工的利润+粗加工的利润列出函数解析式,利用一次函数的性质即可解决问题.【详解】解:(1)设第一批购进洋葱x 吨,第二批购进洋葱y 吨.由题意10040001000160000x y x y +=⎧⎨+=⎩, 解得2080x y =⎧⎨=⎩, 答:第一批购进洋葱20吨,第二批购进洋葱80吨.(2)设精加工m 吨,总利润为w 元,则粗加工(100-m)吨.由m≤3(100-m),解得m≤75,利润w=1000m+400(100-m)=600m+40000,∵600>0,∴w 随m 的增大而增大,∴m=75时,w 有最大值为85000元.答:精加工数量应为75吨,最大利润是85000元.【点睛】本题考查了二元一次方程组,一次函数,一元一次不等式等知识的应用,解答本题的关键是读懂题意,设出未知数,找出合适的数量关系,列方程组和一次函数解析式求解. 25.(1)圆规1个,笔记本2本;(2)3种不同的购买方案,方案见解析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次方程组与不等式组的方案设计问题
1、某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑.经投标,购买1块
电子白板比买3台笔记本电脑多3000元.购买4块电子白板和5台笔记本电脑共需80000元.(1)求购买1块电子白板和一台笔记本电脑各需多少元
(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过2700000元,并且购买笔记本电脑的台数不超过购买电子白板数量的3倍.该校有哪几种购买方案(3)上面的哪种购买方案最省钱按最省钱方案购买需要多少钱
2、学校6名教师和234名学生集体外出活动,准备租用45座大客车或30座小客车,若租用
1辆大车2辆小车共需租车费1000元;若租用2辆大车1辆小车共需租车费1100元.
(1)求大、小车每辆的租车费各是多少元
(2)若每辆车上至少
...2300元,求最省钱的租车方案.
..要有一名教师,且总租车费用不超过
3、奋斗中学计划从荣威公司购买A、B两种型号的小黑板,经恰谈,购买一块A型小黑板比购
买一块B型小黑板多用20元,且购买5块A型小黑板和4块B型小黑板共需820元.
(1)求购买一块A型小黑板、一块B型小黑板各需要多少元
(2)根据奋斗中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B 两种型号小黑板的总费用不超过5240元,并且购买A型小黑板的数量应大于购买A、B两种型号小
黑板总数量的1
3
.请你通过计算,求出奋斗中学从荣威公司购买A、B两种型号的小黑板有哪几种方案
4、阳光小区准备新建50个停车位,以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位需万元;新建3个地上停车位和2个地下停车位需万元.
(1)该小区新建1个地上停车位和1个地下停车位各需多少万元
(2)若该小区预计投资金额超过10万元而不超过11万元,则共有几种建造方案
(3)已知每个地上停车位月租金100元,每个地下停车位月租金300元. 在(2)的条件下,新建停车位全部租出.若该小区将第一个月租金收入中的3600元用于旧车位的维修,其余收入继续兴建新车位,恰好用完,请直接写出该小区选择的是哪种建造方案
1、解:(1)解法一:设购买一台笔记本电脑需要x 元,则购买1块电子白板需要(33000)x +元,根据题意得: 54(33000)80000x x ++=
解这个方程,得4000x =,当4000x =时,3300015000x +=
解法二:设购买一台笔记本电脑需要x 元,购买1块电子白板需要y 元,根据题意得:
330004580000y x y x -=⎧⎨+=⎩ 解这个方程组,得400015000x y =⎧⎨=⎩
因此,购买一台笔记本电脑需要4000元,购买1块电子白板需要15000元.
(2)设购买笔记本电脑数为z 台,则购买电子白板数为(396)z -块,根据题意得:
400015000(396)27000003(396)z z z z +-⎧⎨
-⎩≤≤ 解这个不等式组,得629429711z ≤≤ z 为正整数,z ∴的值为295或296或297.
当295z =时,396101z -=;
当296z =时,396100z -=;
当297z =时,39699z -=;
因此该校有三种购买方案:
方案一:购买笔记本电脑295台,则购买电子白板101块;
方案二:购买笔记本电脑296台,则购买电子白板100块;
方案三:购买笔记本电脑297台,则购买电子白板99块.
(3)解法一:购买笔记本电脑和电子白板的总费用为:
方案一:2954000101150002695000⨯+⨯=(元);
方案二:2964000100150002684000⨯+⨯=(元);
方案三:297400099150002673000⨯+⨯=(元);
因此,方案三最省钱,按这种方案共需费用2673000元.
2、解:(1)设大、小车辆的租车费各是x y 、元.
则2100021100x y x y +=⎧⎨+=⎩解得:400300x y =⎧⎨=⎩
答:大、小车辆的租车费分别是400元、300元.
(2)240名师生都有座位,租车总辆数6≥;每辆车上至少要有一名教师,租车总辆数6≤.故租车总数为6辆,设大车辆数是x 辆,则租小车(6)x -辆,则
4530(6)240400300(6)2300x x x x +-⎧⎨+-⎩≥≤解得:45
x x ⎧⎨⎩≥≤ 45x ∴≤≤. x 是正整数,4x ∴=或5.
于是有两种租车方案,方案1:大车4辆,小车2辆,总租车费用2200元,方案2:大车5辆,小车1辆,总租车费用2300元,可见最省钱的是方案1.
3、解:(1)设购买一块A 型小黑板需要x 元,则购买一块B 型小黑板需要(20)x -元. 根据题意54(20)820x x +-=,解得100x =,2080x ∴-=.
答:购买一块A 型小黑板需要100元,购买一块B 型小黑板需要80元.
(2)设购买A 型小黑板m 块,则购买B 型小黑板(60)m -块.
根据题意10080(60)52401603m m m +-⎧⎪⎨>⨯⎪⎩
≤,.解得2022m <≤. m 为整数,m ∴为21或22.
∴当21m =时,6039m -=;当22m =时,6038m -=.∴有两种购买方案.
方案一:购买A 型小黑板21块,购买B 型小黑板39块;
方案二:购买A 型小黑板22块,购买B 型小黑板38块.
4、解:(1)解:设新建一个地上停车位需x 万元,新建一个地下停车位需y 万元,由题意得⎩⎨⎧=+=+1.1235.0y x y x
解得⎩⎨⎧==4
.01.0y x 答:新建一个地上停车位需万元,新建一个地下停车位需万元
﹙2﹚设新建m 个地上停车位,则
10<0.1m +(50-m ) ≤11 解得 30≤m <3
100, 因为m 为整数,所以m =30或m =31或m =32或m =33,
对应的50-m =20或50-m =19或50-m =18或50-m =17
所以,有四种建造方案。

﹙3﹚建造方案是∶建造32个地上停车位,18个地下停车位。

5、解:(1)设改造一所A 类学校的校舍需资金x 万元,改造一所B 类学校的校舍需资金y 万元, 则34803400x y x y +=⎧⎨+=⎩解之得90130x y =⎧⎨=⎩. 答:改造一所A 类学校的校舍需资金90万元,改造一所B 类学校的校舍需资金130万元.
(2)设A 类学校应该有a 所,则B 类学校有(8)a -所,
则2030(8)210(9020)(13030)(8)770a a a a +-⎧⎨-+--⎩≥≤解得31a a ⎧⎨⎩≤≥.13a ∴≤≤,即123a =,,. 答:有3种改造方案:
方案一:A 类学校1所,B 类学校7所;
方案二:A 类学校2所,B 类学校6所;方案三:A 类学校3所,B 类学校5所.。

相关文档
最新文档