《变量与常量》教学设计
变量常量教学设计
变量常量教学设计教学设计:变量和常量一、教学目标1. 了解变量和常量的概念及其在编程语言中的应用。
2. 掌握变量和常量的声明和定义方法。
3. 能够使用变量和常量解决实际问题。
二、教学内容1. 变量的概念和作用。
2. 变量的声明和定义方法。
3. 常量的概念和作用。
4. 常量的声明和定义方法。
5. 变量和常量的应用实例。
三、教学过程引入:(5分钟)1. 通过给学生出示一个问题,让学生思考变量的作用:如果要求计算1到100的和,你会如何解决这个问题?2. 引导学生思考,使用变量可以简化这个问题的解决过程,避免手动计算。
3. 引入变量的概念:变量是在程序中用于存储和代表数据的一种机制。
讲解:(15分钟)1. 介绍变量的声明和定义方法:a. 声明变量时要指定其数据类型,如整数类型、浮点数类型、字符类型等。
b. 变量的定义包括变量的名称和初始值,初始值可以是一个常量或者另一个变量的值。
2. 举例说明变量的应用:a. 声明一个整数类型的变量用于存储年龄,然后将其赋值为18。
b. 声明一个浮点数类型的变量用于存储圆的半径,然后将其赋值为3.14。
c. 声明一个字符类型的变量用于存储性别,然后将其赋值为男。
3. 引入常量的概念:常量是在程序中值不能被改变的数据。
4. 介绍常量的声明和定义方法:a. 常量的声明和定义与变量类似,只是在声明时使用const关键字来表示常量。
5. 举例说明常量的应用:a. 声明一个整数类型的常量用于存储一年的天数,将其赋值为365。
b. 声明一个字符类型的常量用于存储pi的值,将其赋值为3.1415926。
练习:(20分钟)1. 设计练习题,让学生通过使用变量解决实际问题。
例如:声明两个整数类型的变量分别表示长度和宽度,计算矩形的面积。
2. 设计练习题,让学生通过使用常量解决实际问题。
例如:声明一个整数类型的常量表示圆的半径,计算圆的周长和面积。
讨论:(15分钟)1. 鼓励学生分享自己设计的练习题的解决方法,引导学生理解变量和常量在解决实际问题中的作用。
人教版八年级数学下册第19章19.1.1变量与常量(教案)
4.引导学生在探索变量与常量过程中,培养严谨的数学态度和逻辑推理的素养。
5.培养学生的团队协作意识,通过小组讨论、互动交流,提升合作探究的能力。
三、教学难点与重点
1.教学重点
-理解变量与常量的定义及表示方法,并能正确区分两者。
-掌握函数概念的基本内涵,了解变量之间关系的表示方式。
在新课讲授的案例分析部分,我选取了一个与学生生活密切相关的例子,这样做的目的是让学生们感受到数学知识在解决实际问题中的应用。通过这个案例,我看到了学生们开始尝试将数学概念与实际情境联系起来,这是一个很好的开始。
实践活动环节,学生们在分组讨论中表现出了很高的热情。他们通过讨论和实验操作,亲身体验了变量与常量的变化过程,这种亲自动手的方式似乎比单纯的讲授更能加深他们的理解。
在小组讨论环节,我发现有的小组在分析问题时还不够深入,可能是因为他们对变量的理解还不够透彻。我适时地介入,提出了几个引导性的问题,帮助学生进一步思考。看到他们在讨论中逐渐找到问题的解决办法,我感到很欣慰。
最后,我发现在总结回顾环节,有些学生仍然对自己的理解不够自信,可能需要在课后进行个别辅导,确保他们能够真正掌握变量与常量这一知识点。此外,我也会在课后反思自己的教学方法,探索更有效的教学策略,以提升学生们的数学核心素养。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了变量与常量的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对变量与常量的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
变量与常量教学设计(精品课)
1 第1课时变量与常量
Ⅰ.教学任务分析
教学目标知识与技能1.了解常量、变量的概念.
2.会写出简单问题中的数量关系,并辨别其中的常量和变量.
过程与方法 1.通过实例体验在一个过程中有些量固定不变,有些量不断变化.
2.体验在一个过程中常量与变量的相对存在.
情感与态度 1.感受“数学中有生活,生活中有数学”,培养学习数学的兴趣.
2.体验矛盾事物的对立统一的辩证唯物主义思想.
教学重点会识别常量和变量.
教学难点常量与变量的相对存在.
Ⅱ.教学过程设计
问题及师生行为设计意图
一、创设问题,激发兴趣
导语:“万物皆变”这种一个量随另一个量的变化而变化的现象,在大千世界中,在我们的生
产和生活中大量存在.
比如,学校组织学生秋游,现知道景点的门票为80元/人,学生按半价(即
40元/人),若前往的学生人数为x 人,学生需付门票为y 元,则y 与x 的关
系式为:_________.
请学生回答:x y 40.其中变化的是人数x 和门票费y ,而40保持不变.
通过图片,展示一
个量随另一个量的变化
而变化的现象,希望能
吸引学生的注意力,激
发学习兴趣,同时,为
学习新知识作好铺垫.
x 人的身高随年龄而变化行星在宇宙中的位置随时间而变化汽车行驶里程随时间而变化
气温随海拔而变化。
《变量与常量》说课稿
《变量与常量》说课稿下面是八年级数学《变量与常量》,欢迎大家阅读!评委老师:下午好!今天我说课的课题是《变量》,我从教材、教法、学法、教学流程和设计说明、板书设计六个方面进行说课。
一、说教材1、教材地位与作用本节内容是人教版初中数学八年级上册,第14章第1节第1课时。
函数是研究运动变化的重要数学模型,它来源于客观实际,又服务于客观实际。
而本节课是一次函数的启蒙课,在这里学生初步接触了变量的概念,它是函数学习的入门,也为以后学习函数以及不等式的内容打下基础。
本节课内容不但对培养学生比较、分析、概括的思维能力有作用,而且对培养学生运动变化等辨证唯物主义观点和形成良好的个性品质也有一定的帮助。
基于对教材的理解与分析,考虑到学生已有的知识水平和认知经验,我制定了如下的教学目标。
2、教学目标①知识与技能目标:①理解变量、常量的概念以及相互间的关系。
②能在一个变化过程中找出变量与常量。
②过程与方法目标:通过对问题的讨论,让学生参与变量的发现过程,学会将实际问题抽象成数学问题;体验在一个过程中常量与变量是相对存在的。
③情感态度与价值观目标:通过积极参与课堂上对问题的分析,感受现实生活中函数的普遍性,体会事物之间的相互联系与制约,在探索活动中获的成功。
3、教学重点、难点教学重点:变量与常量的概念。
教学难点:较复杂问题中常量与变量的识别,通过自主探究,教师点拨突破重点。
教学关键:弄清常量和变量是相对存在的,通过小组合作交流,教师指导突破难点。
二、说教法根据初二学生的心理特征和本节内容的特点,我采取了:①情境教学法:开始通过生活情景引入,让学生尽快“走进课堂”,激发学生的兴趣,引发学生思考。
②互动探究式教学法:通过设置问题,激发学生的求知欲,以自主探索和合作交流为主,在师生的共同努力下,归纳出常量、变量的概念。
这样能充分调动学生学习的积极性、主动性。
③同时借助多媒体,形象直观地展示引例、例题及练习。
帮助学生理解概念,活跃课堂气氛,增大教学密度,提高教学效率。
常量与变量的教案
【篇一:常量与变量教案】
7.1常量与变量
教学目标:
1、通过实例体验在一个过程中有些量固定不变,有些量不断地变化。
2、了解常量、变量的概念,体验在一个过程中常量与变量相对地存在。
3、会在简单的过程中辨别常量与变量。
重点:常量与变量的概念。
难点:本节的范例。
教学过程:
一、创设情景,引入新课
函数是研究运动变化的重要数学模型,它来源于客观实际,又服务于客观实际。它是函数学习的入门,也为后面引出变量间的单值对应关系进而学习函数的定义做了铺垫。本节课内容不但对培养学生比较、分析、概括的思维能力有作用,而且对培养学生运动变化等辨证唯物主义观点和形成良好的个性品质也有一定的帮助。
教学内容
(人教版)初中数学八年级下册第71页。
(3)若汽车行驶了4小时,则其中常量、变量分别是什么?
常量是4小时;变量是s,v.
(4)从以上3题你发现了什么?
在一个过程中,常量与变量相对地存在。
三、例题讲解:
一家快递公司的收费标准如图,用t表示邮件的质量,p表示每件快递费,n表示快递邮件的件数。课本141页
(1)填写下表
(2)在投寄快递邮件的事项中,t,p,n是常量,还是变量?
生:h、n在改变,110与10不变。
师:当我们用数学来分析现实世界的各种现象时,会遇到各种各样的量,在某一个过程中,有些量固定不变,有些量不断改变,我们今天这节课就来学习这两种量。
二、新课教学
1、常量与变量概念。
在一个过程中,可以取不同数值的量称为变量。如上面公式中h和n、s和r是变量。2、学生练习(小试牛刀)
师:同学们,你知道你的睡眠时间充足吗?根据科学研究表明,一个10岁至50岁的人每天所需睡眠时间(h小时)可用公式h=(110-n)/10计算出来,其中n代表这个人的岁数,请赶紧算算你所需的睡眠时间吧!(出示投影)
八年级数学上册《常量与变量》教案、教学设计
3.小组分享:各小组向全班同学分享自己的讨论成果,展示问题解决过程和数学表达式的建立。
4.互动交流:鼓励学生提问、发表观点,促进全班范围内的互动交流,加深对常量与变量知识的理解。
(四)课堂练习
1.练习设计:根据学生的掌握情况,设计不同难度的练习题,涵盖识别常量与变量、列表达式、数据分析等方面。
二、学情分析
八年级的学生已经具备了一定的数学基础,对数学概念和运算规则有初步的了解。在此基础上,他们对《常量与变量》这一章节的学习将面临以下挑战:
1.抽象思维能力:学生对抽象概念的理解能力尚需提高,需要通过具体实例和形象教学手段帮助他们理解常量与变量的本质区别。
2.问题解决能力:学生在解决实际问题时,可能难以把握问题中的常量和变量,需要教师引导他们学会分析问题、提炼关键信息。
2.教师提问:请同学们思考,在生活中还有哪些类似的现象?这些现象中的常量和变量是什么?
3.学生回答:学生分享自己的观察和思考,如温度、降雨量、植物生长等,尝试区分这些现象中的常量和变量。
4.教师引导:根据学生的回答,总结常量与变量的概念,引出本节课的学习主题。
(二)讲授新知
1.教学内容:讲解常量与变量的定义,通过具体实例阐述它们在数学表达中的表示方法。
2.设计丰富多样的例题和练习,培养学生的问题解决能力。
3.加强小组合作指导,提高学生的合作交流能力。
4.结合实际问题,引导学生体会数学知识在生活中的应用,培养数学应用意识。
三、教学重难点和教学设想
(一)教学重点
1.理解并掌握常量与变量的概念,能够区分实际问题中的常量和变量。
2.学会使用变量表示数量关系,并能够根据问题情景列出相应的表达式。
初中变量和常量的概念教案
初中变量和常量的概念教案1. 让学生理解变量和常量的概念,掌握它们之间的区别和联系。
2. 培养学生从实际问题中抽象出变量和常量的能力,感受数学与生活的紧密联系。
3. 培养学生运用变量和常量解决实际问题的能力,提高学生的数学应用意识。
二、教学内容1. 变量和常量的定义及其区别和联系。
2. 实际问题中变量和常量的应用。
三、教学重难点1. 掌握变量和常量的概念,能够从实际问题中识别变量和常量。
2. 理解变量和常量在实际问题中的作用,能够运用它们解决实际问题。
四、教学方法1. 采用情境教学法,让学生在实际问题中感受变量和常量的存在。
2. 采用合作学习法,让学生通过讨论、交流,共同探讨变量和常量的特点和应用。
3. 采用引导发现法,引导学生从实际问题中发现变量和常量,培养学生的问题意识。
五、教学过程1. 导入:通过展示一幅图,让学生观察图中的变化,引出变量和常量的概念。
2. 新课:介绍变量和常量的定义,讲解它们之间的区别和联系。
3. 实例分析:给出几个实际问题,让学生识别其中的变量和常量,并探讨它们的运用。
4. 小组讨论:让学生分组讨论,总结变量和常量的特点,以及如何运用它们解决实际问题。
5. 总结:对变量和常量的概念进行归纳总结,强调它们在数学和生活中的重要性。
6. 练习:布置一些练习题,让学生巩固所学内容,提高运用变量和常量解决实际问题的能力。
七、教学反思通过本节课的教学,学生应该能够理解变量和常量的概念,掌握它们之间的区别和联系。
在实际问题中,学生应能够识别变量和常量,并运用它们解决实际问题。
同时,学生应感受到数学与生活的紧密联系,提高数学应用意识。
在教学过程中,教师应关注学生的学习情况,及时解答学生的疑问,引导学生从实际问题中发现变量和常量。
此外,教师还应注重培养学生的合作学习能力,鼓励学生积极参与讨论,提高问题意识。
总之,本节课的教学目标是让学生掌握变量和常量的概念,培养学生运用它们解决实际问题的能力。
初中数学教案变量与常量
初中数学教案变量与常量初中数学教案:变量与常量引言:数学是一门严谨而有趣的学科,而初中数学作为数学学习的基础课程,需培养学生的逻辑思维和问题解决能力。
其中,理解和掌握变量与常量的概念至关重要。
本教案旨在通过寓教于乐的方式帮助学生深入理解变量与常量的含义、作用以及它们在数学问题中的应用。
一、背景知识的概述1. 变量与常量的定义在数学中,变量是指可改变的量,常用字母表示;而常量是指固定不变的量,常用数字或字母表示。
2. 变量与常量的作用变量与常量在数学问题中起着不同的作用。
学生需要理解这两个概念的区别,以及它们在算术、代数以及其他实际问题中的应用。
二、教学目标在本课中,学生将能够:1. 定义变量与常量的概念;2. 区分变量与常量,并举例说明;3. 运用变量与常量解决实际问题。
三、教学内容和方法1. 引入利用一个有趣的情境或问题,引起学生的兴趣,并提出相关问题,如:在一次志愿者活动中,有多少人愿意为植树活动做贡献?请你们想一想,这个数字应该是一个变量还是一个常量?2. 讲解变量与常量的概念通过示意图、实例等方式,清晰地解释变量与常量的定义,并与学生进行互动讨论。
3. 变量与常量的区分通过多个实例,与学生一起分析问题,并要求他们判断出变量与常量在不同情景中的应用与区别。
4. 变量与常量的应用数学中变量与常量的应用非常广泛,可以引导学生在解决实际问题中灵活运用这两个概念。
可以设计实际问题,要求学生在解决问题时运用变量与常量,并进行解答。
5. 知识总结综合归纳变量与常量的定义及其应用,并通过提问和讨论的形式巩固学生的理解。
四、教学辅助工具和评估方式1. 辅助工具课件、黑板、粉笔、实物物品等。
2. 评估方式可以设计小组活动、个人作业或小测验等方式对学生对变量与常量的理解进行评估。
五、课堂延伸1. 拓展思维鼓励学生思考变量与常量的应用在其他学科和实际生活中的重要性,如化学中化学方程式中的变量、经济学中的变量等。
19.1.1 变量与常量 教案设计
19.1.1 变量与常量教案设计学习目标:1.了解常量与变量的概念,掌握常量与变量之间的联系与区别.2.学会用含一个变量的代数式表示另一个变量.重点:能够区分同一个问题中的常量与变量.难点:用式子表示变量间的关系.一、创设情境(图片展示)行星在宇宙中的位置随时间而变化;国旗的上升的高度随时间而变化气温随海拔而变化;汽车行驶里程随行驶时间而变化为了更深刻地认识千变万化的世界,在这一章里我们将学习有关一种量随另一种量变化的一些基本知识,其中包括如何用式子和图、表来描述、刻画这种变化的内容.今天我们先来认识变量和常量二、新知讲解<问题1>t/时 1 2 3 4 5 ......s/千米60120180240300......(2)在以上这个过程中,变化的量是 s、t ,不变化的量是 60 .(3)试用含t的式子表示s,s= 60t ,定义:在一个变化过程中,数值发生变化的量叫变量,数值始终不变的量叫常量。
<问题2>电影票的售价为10元/张,第一场售出150张票,第二场售出205张票,第三场售出310张(1)三场电影票的票房收入各多少元?售出票数x150张205张310张......(张)收入y (元) 150020503100......(2)设一场电影售出票x张,票房收入为y元,含x的式子表示y: y=10x.(3) y的值随x的值的变化而变化吗? y的值随x的值的变化而变化(4)这个问题中,变量是x、y 常量是 10<问题3>水中涟漪,圆形水波的面积和它的半径之间存在着怎样的关系?(1)当圆的半径R 分别为10 cm,20cm,30 cm 时,圆的面积S 分别为多少?半径r (cm) 10 20 30 ......面积s(cm2)100π400π900π......(2)圆面积S与圆的半径R之间的关系式是: S=πR;(3) S的值随R的值的变化而变化吗?S的值随R的值变化而变化(4)这个问题中的变量是 S、R ;常量是π .<问题4> 用10m长的绳子围成一个矩形(1)当矩形的一边长x 分别为3 m,3.5m,4m ,4.5m时,它的邻边长y 分别为多少?一边长x(m) 3 3.5 4 4.5 ......其邻边长y(m) 2 1.5 1 0.5 ......(2)其邻边长y 与一边长x 之间的关系式是: y=5-x (3) y 的值随x 的值的变化而变化吗? y 的值随x 的值变化而变化 (4)这个问题中的变量是 y 、x ;常量是 5 . 三、例题及知识应用例1 指出下列事件过程中的常量与变量(1)某水果店橘子的单价为5元/千克,买a 千橘子的总价为m 元,其中常量是 5 ,变量是a 、m ; (2)周长C 与圆的半径r 之间的关系式是C =r 2 ,其中常量是2、π ,变量是C 、r ;(3)三角形的一边长5cm ,它的面积S(cm 2)与这边上的高h(cm)的关系式S =52ℎ 中,其中常量是 52,变量是S 、h .知识应用1 写出下列问题中的关系式,并指出变量和常量:(1)某市的自来水价为4元/吨.现要抽取若干户居民调查水费支出情况,记某户月用水量为x 吨,月应交水费为y 元. 变量:x , y ; 常量:4(2)某地手机通话费为0.2元/分.李明在手机话费卡中存入30元,记此后他的手机通话时间为t 分钟,话费卡中的余额为w 元. 变量:t, w ; 常量:0.2 , 30(3)水中涟漪(圆形水波)不断扩大,记它的半径为r ,圆周长为C ,圆周率(圆周长与直径的比)为π. 变量:r ,C; 常量:π(4)把10本书随意放入两个抽屉(每个抽屉内都放),第一个抽屉放入x 本,第二个抽屉放入y 本. 变量:x , y ; 常量:10例2 弹簧的长度与所挂重物有关.如果弹簧原长为10 cm ,每1 kg 重物使弹簧伸长0.5 cm ,试填下表:怎样用含重物质量m (kg )的式子表示受力后的弹簧长度 L(cm)? L=10+0.5m .变式:如果弹簧原长为12 cm ,每1 kg 重物使弹簧压缩0.5 cm ,则用含重物质量m (kg )的式子表示受力后的弹簧长度 L(cm)为: L=12-0.5m . 知识应用2重物的质量(kg) 1 2 3 4 5 弹簧长度(cm)10.51111.51212.5x /本 1 2 3 4 …1.小丽去买一种笔记本,笔记本的总价Q (元)与笔记本的数量x (本)之间的关系记录如下:则用含x 的式子表示Q 为: Q=5x .2. 用10m 长的绳子围成一个长方形,设长方形的长为xm ,面积为Sm 2, 则用含x 的式子表示S 为: S=x(5-x) . 三、随堂练习1.若球体体积为V ,半径为R ,则343V R π=,其中变量是V 、R ,常量是 43π . 2.计划购买50元的乒乓球,所能购买的总数n(个)与单价 a (元)的关系式 n =50a 其中变量是 n 、a ,常量是 50 .3.汽车开始行使时油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q (升)与行使时间t (小时)的关系是 Q=40-5t ,其中的常量是 Q 、t ,变量是 40、5 .4.表格列出了一项实验的统计数据,表示小球从高度x (单位:m )落下时弹跳高度y (单位:m )与下落高的关系,据表可以写出的一个关系式是 y=0.5x .5.瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子总数y 与层数x 之间的关系式.完成上表,并写出瓶子总数y 与层数x 之间的关系式:四、课堂小结1、本节课你有哪些收获?______________________________________________2、你还有什么疑惑? 五、作业布置 详见《精准作业》Q/元 5 10 15 20 … 50 80 100 15025405075x 1 2 3 … ny11+21+2+3…1+2+3+...+n1(1)2y x x =+六、板书设计19.1.1变量与常量1.定义:在一个变化过程中,数值发生变化的量叫变量,数值始终不变的量叫常量。
人教版数学七年级上册《变量与常量》教学设计
人教版数学七年级上册《变量与常量》教学设计一. 教材分析人教版数学七年级上册《变量与常量》是学生在小学阶段对数学概念的认知基础上,进一步深化对数学概念的理解。
本节课主要介绍了变量的概念,常量的概念,以及它们之间的关系。
教材通过丰富的例题和练习,帮助学生掌握变量的意义,并能运用变量解决实际问题。
二. 学情分析七年级的学生已经具备了一定的数学基础,对数学概念有一定的认知。
但是,对于变量与常量的概念,学生可能还存在一定的模糊认识。
因此,在教学过程中,教师需要通过生动的例子和实际问题,帮助学生理解和掌握变量与常量的概念。
三. 教学目标1.知识与技能:理解变量与常量的概念,能正确区分两者,并运用变量解决实际问题。
2.过程与方法:通过观察、思考、交流、归纳等方法,培养学生分析问题和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和沟通能力。
四. 教学重难点1.重点:理解变量与常量的概念,能正确运用变量解决实际问题。
2.难点:对变量与常量的概念有深入的理解,能灵活运用变量解决实际问题。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,以学生为主体,教师为指导,引导学生通过观察、思考、交流、归纳等方法,掌握变量与常量的概念,并运用变量解决实际问题。
六. 教学准备1.教材:人教版数学七年级上册。
2.课件:制作精美的课件,用于辅助教学。
3.练习题:准备一些有关变量与常量的练习题,用于巩固所学知识。
4.实物:准备一些实物的道具,用于帮助学生更好地理解变量与常量的概念。
七. 教学过程1.导入(5分钟)利用实物道具,引导学生观察和思考,提出问题:“同学们,你们见过这种情况吗?在现实生活中,有些量是会发生变化的,有些量是不变的,那么,这些变化的量和不变的量有什么特点呢?”通过这个问题,激发学生的兴趣,引出变量与常量的概念。
2.呈现(10分钟)通过课件,展示变量与常量的定义,以及它们之间的关系。
常量与变量的导入教案
常量与变量的导入教案篇一:常量与变量教案doc5.1 常量和变量〖教学目标〗1、通过实例体验在一个过程中有些量固定不变,有些量不断地变化。
2、了解常量、变量的概念,体验在一个过程中常量与变量相对地存在。
3、会在简单的过程中辨别常量和变量。
〖教学重点与难点〗教学重点:常量和变量的概念。
教学难点:快递费范例情境比较复杂,是本节教学的难点。
〖教学过程〗一、新课引入乌鸦喝水视频播放。
聪明的乌鸦认识到:1、瓶口的大小不可改变,水的量也不可改变;2、但瓶中水的高度是可以改变的,投的石块越多则水面就越高。
当我们用数学来分析现实世界的各种现象时,会遇到各种各样的量,如物体运动中的速度、时间和距离;圆的半径、周长和圆周率;购买商品的数量、单价和总价;某城市一天中各时刻变化着的气温;某段河道一天中时刻变化着的水位……在某一个过程中,有些量固定不变,有些量不断改变。
二、合作交流,探求新知:1、请讨论下面的问题:(1)圆的周长公式为C?2?r,请取r的一些不同的值,算出相应的C的值:rsrs?rs?r?s?cm……在计算半径不同的圆的面积的过程中,哪些量在改变,哪些量不变?(2)假设钟点工的工资标准为20元/时,设工作时数为t,应得工资额为m,则m =20t取一些不同的t的值,求出相应的m的值:t?m?t?m?t?m?t? m?……在根据不同的工作时数计算钟点工应得工资额的过程中,哪些量在改变?哪些量不变?设问:一个量变化,具体地说是它的什么在变?什么不变呢?引导学生观察发现:量的数值变与不变。
21世纪教育网2、变量与常量的概念形成:在一个过程中,固定不变的量称为常量,如上面两题中,圆周率?和钟点工的工资标准20元/时。
在一个过程中,可以取不同数值的量称为变量,如上面两题中,半径r和圆面积s,工作时数t 和工资额m都是变量。
又如购买同一种商品时,商品的单价就是常量,购买商品数量和相应的总价就是变量;某段河道一天中各时刻变化着的水位也是变量。
《常量与变量》教案
《常量与变量》教案教学目标知识与技能1.理解变量、常量的概念以及相互之间的关系.2.增强对变量的理解.3.本节渗透找变量之间的简单关系,试列简单关系式.过程与方法1.通过对问题的讨论引出常量与变量的概念,为学习函数的定义作准备.2.通过对学生熟悉的几个例子,系统地认识常量与变量,有助于理解相关概念之间的联系与区别.情感、态度与价值观学生通过积极参与课堂上对问题的分析,感受现实生活中函数的普遍性,体会事物之间的相互联系与制约.重点难点重点变量与常量.难点对变量的判断.教学设计情境引入问题一:当你坐在摩天轮上时,想一想,随着时间的变化,你离开地面的高度是如何变化的?教师提出这个问题,并留一定的时间让学生思考,讨论.自主探究问题二:出示教材“一起探究”的问题1和问题2.思考:通过上面题的解答,每道题中有几个变化的量?有没有不变的量呢?类似的,请你再举出两个实际问题的例子,并分别说明含有几个量,其中哪些量是不变的,哪些是变化的.什么叫变量?什么叫常量?试指出上述几个问题中的变量和常量.多媒体出示.让学生填表,观察问题1的表格和问题2的条形统计图,思考题目中的问题,并板书答案,这有助于认识概念,认识概念之间的区别.学生解答后教师应该给予评价.此处应注意:(1)学生以⑴组为单位合作探究.(2)教师巡视,注意指导.教师让学生举例.教师引导学生观察题的答案,发现并结论.自主探究问题三:多媒体显示教材第61页“做一做问题四巩固练习:多媒体显示教材第62页“练习”引导、点拨.老师应重点关注:(1)学生是否能正确地写出解析式;(2)答题是否全面;(3>学生的参与度.教师巡视,指导学生按定义思考回答.巩固提高师生小结:1.变量与常量的定义,二者之间的区别.2.指出问题中的常量与变量.3.怎样列变量之间的关系式?点评方法:(1)常量是不发生变化的量,前提是“在某一个变化过程中”,同一个量在不同的变化过程中可能是不同的.(2)常量可以是常数.例如C=2πr中,π也是常数.作业1.教材第62页习题A组,2,思考题:补充1〜2道按规律写表达式的题目.教师布置,分层要求.教师及时评分.。
名师教学设计《变量与常量》完整教学教案
变量与常量教学设计
说一说:上述运动变化过程中出现的数量,你认为可以怎样分类
数值不断变化的量-------变量 数值固定不变的量-------常量
在上面的问题中,我们研究了一些数量关系,出现了各种各样的量,有些量,它们始终保持不变.我们称之为常量(constant ),如:60,π,而有些量,在某一变化过程中,可以取不同数值,我们称之为变量 【例题讲解】
如果弹簧原长10cm ,每1kg 重物使弹簧伸长,设重物质量为m kg ,受力后的弹簧长度为l cm ,怎样用含m 的式子表示l
分析:首先这是一个变化过程,在这个变化过程中,弹簧的原长10cm 是一个常量,每1kg 重物使弹簧伸长的长度是一个常量,重物
质量m 和受力后的弹簧长度l 是两个变量。
两个变量的关系可以用表格进行不全面的表示:
m (kg) 0 1 2 3 4 5 6 l (cm) 10 11 12 13
从表格数据可以看出,这两个变量中,一个变量变化,另一个变量按某种规律随着变化;一个变量取定一个值,则另一个变量按照某种规律对应有唯一的值。
这个对应关系用式子表示出来,即.
注意:虽然也表示两个变量间的关系,但这是用含l 的式子表示m ,不符合题意. 【课堂练习】 1.请指出下列问题中的变量为常量 (1)用20 cm 的铁丝所围的长方形的长为 x cm 与面积为S cm2;
(2)一台机器上的轮子的转速为60转/分,轮子旋转的转数 n 转与时间 t 分;
(3)小亮练习1500米长跑,他跑完全程所用的时间为 t 秒他跑步的平均速度为 u 米/秒.
2.指出下列变化过程中的变量和常量:
m l 5.010+=)10(2-=l m。
变量与常量教学设计
19.1.1 变量与常量(1)教学目标(一)知识目标1.认识变量、常量。
2.学会用含一个变量的代数式表示另一个变量。
(二)能力目标1.经历观察、分析、思考等数学活动过程,发展合情推理,有条理地、清晰地阐述自己观点。
2.逐步感知变量间的关系。
(三)情感与态度目标1.积极参与数学活动,对数学产生好奇心和求知欲。
2.形成实事求是的态度以及独立思考的习惯。
教学重点1.认识变量、常量。
2.用式子表示变量间关系。
教学难点用含有一个变量的式子表示另一个变量。
教学方法引导、探索法教具准备多媒体演示教学过程一、创设情境观看一分钟视频《地球演变史》,告诉学生大千世界是在不断的运动变化,但是量与量之间存在联系,而联系之间又存在规律。
【课前学习】问题一:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时.1.请同学们根据题意填写下表:请说明你的道理:路程=__________________2.在以上这个过程中,变化的量是_____________,不变化的量是__________。
3.试用含t的式子表示s,s=_________________。
这个问题反映了匀速行驶的汽车所行驶的路程___随行驶时间___的变化过程。
问题二:我到超市购买了若干瓶矿泉水,这种矿泉水的单价是每瓶1.2元,花费的总金额为y 元,购买的瓶数为x瓶,先填写下表,再用含x的式子表示y。
1.请同学们根据题意填写下表:2.在以上这个过程中,变化的量是_____________,不变化的量是__________。
3.试用含x的式子表示y. y=_________________。
这个问题反映了购买矿泉水需要的钱____随购买的数量___的变化过程。
问题三:圆形水波慢慢地扩大,在这一过程中,当圆的半径r 圆和面积S 的变化过程1.请同学们根据题意填写下表:请说明你的道理:圆的面积=__________________。
2.在以上这个过程中,变化的量是_____________,不变化的量是__________。
初中数学变量与常量教案
教案:初中数学——变量与常量教学目标:1. 了解常量和变量的概念,能够区分两者。
2. 能够运用常量和变量解决实际问题。
3. 理解变量在数学中的作用,培养学生的抽象思维能力。
教学内容:1. 常量与变量的定义。
2. 常量与变量的应用。
教学过程:一、导入(5分钟)1. 引入话题:在我们日常生活中,有哪些事物是经常变化的?有哪些事物是不变的?2. 学生回答,教师总结:像身高、体重、年龄等都是经常变化的事物,我们称之为变量;而像圆周率、地球的质量等都是不变的事物,我们称之为常量。
二、新课讲解(15分钟)1. 讲解常量的概念:常量是在某个过程中不变的量。
2. 讲解变量的概念:变量是在某个过程中可以取不同值的量。
3. 举例说明:如圆的周长公式C=2πr,其中r是变量,π是常量。
三、课堂练习(10分钟)1. 请学生独立完成教材P38的练习题1-3。
2. 学生互相交流答案,教师讲解正确与否。
四、应用拓展(10分钟)1. 请学生举例说明生活中常见的常量和变量。
2. 学生分组讨论,每组选出一个实际问题,用常量和变量来解决。
3. 各组汇报讨论结果,教师点评。
五、总结(5分钟)1. 回顾本节课所学内容,让学生复述常量和变量的概念。
2. 强调常量和变量在实际问题中的应用。
教学评价:1. 课后作业:请学生完成教材P39的练习题1-5。
2. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况。
教学反思:本节课通过导入、新课讲解、课堂练习、应用拓展和总结等环节,让学生掌握了常量和变量的概念及应用。
在课堂练习和应用拓展环节,学生能够主动思考、合作交流,提高了解决问题的能力。
但在教学过程中,要注意引导学生正确理解常量和变量的区别,避免混淆。
变量与常量教案范文
变量与常量教案范文【教案概述】本教案主要介绍变量与常量的概念、特点和使用,通过生动的例子和实践操作,帮助学生深入理解变量与常量的概念,并能够正确使用变量和常量。
【教学目标】1.理解变量和常量的概念和特点。
2.能够正确声明和使用变量和常量。
3.掌握变量和常量的基本使用方法。
【教学重点】1.变量和常量的概念和特点。
2.变量和常量的声明和使用方法。
【教学难点】1.变量和常量的特点及其区别。
2.多个变量和常量的声明和使用。
【教学步骤】Step 1 引入(10分钟)1.教师通过简单的例子引导学生思考:“在日常生活中,我们经常使用一些固定的数值或数据,比如:年龄、身高、体重等。
那么这些数值有没有可能发生改变呢?”2.学生积极回答后,教师引导学生思考:“如果有些数值会发生改变,应该怎样处理呢?”3.引导学生总结出变量与常量的概念:“变量是指可以改变数值的量,常量是指不可改变的数值。
”4.教师展示一些实际的变量和常量的例子,如:气温、姓名等。
Step 2 知识讲解(15分钟)1.教师介绍变量和常量的特点:“变量的数值可以不断改变,而常量的数值在使用中不能改变。
”2.教师通过图示和比较,进一步解释变量和常量的区别和特点。
3.引导学生理解变量和常量的概念和特点。
Step 3 变量的声明与使用(20分钟)1.教师引导学生了解变量的声明方式:“在程序中,我们需要使用变量前必须先声明变量,声明变量是为变量分配内存空间。
”2.通过示例代码,解释变量的声明和使用方式。
3.引导学生操作计算器进行实践,如:声明一个变量存储一个人的年龄,并计算该人5年后的年龄。
Step 4 常量的声明与使用(20分钟)1.教师引导学生了解常量的声明方式:“声明常量的时候,需要指定常量的名称和数值,并且不能再次对其赋值。
”2.通过示例代码,解释常量的声明和使用方式。
3.引导学生操作计算器进行实践,如:声明一个常量存储圆周率,并计算一个圆的周长和面积。
《变量与常量》教学设计
《变量与常量》教学设计【教材分析】《变量与常量》是冀教版八年级数学下册第二十章内容,属于数与代数领域的重要部分。
本节课研究的内容是了解变量与常量,理解函数概念以及函数值。
本课题是在学生已有的生活经验和掌握了部分数量关系的基础上,继续通过对变量间关系的考察,让学生对初中函数有初步的认识;是学习一次函数、二次函数、三角函数等知识的基础。
【课标要求】《初中数学新课程标准》对这一部分的要求是:通过简单实例,了解常量、变量的意义。
能结合实例,了解函数的概念,能举出函数的实例。
能对简单实际问题中的函数关系进行分析。
【策略分析】“变量与函数”较为抽象,学生初次接触函数的概念,难以理解定义中“唯一确定”的准确含义.在本节教学中,我试图从学生较为熟悉的现实情景谈话导入,引导学生自主发现变量和函数的存在,体会变量之间的互相依存关系和变化规律;通过自学,交流,比较和概括等一系列活动,让学生初步理解函数的概念,使其学习积极主动性有所提高,锻炼动手动脑能力。
问题2:已知每斤油桃售价2.5元,如果要买x斤的话,需问题3:用10米长的绳子围一个矩形,当矩形的一边长为x,它的邻边长y为多少?(请写出相应的关系式)师生活动:学生思考后说出答案,老师写。
【设计意图】让学生利用已掌握的知识解答问题,同时感知量与量之间的微妙关系,为解答思考问题铺垫。
思考:(1)上面问题中哪些是不变的量,哪些是变化的量?(2)前面的每个问题中,各有几个变量?同一问题中的变量之间有什么联系?(试用一句话表述)(3)分组讨论教科书中第73页的两个思考师生活动:学生四人一组,分组讨论,教师做好板书准备后巡视检查学生自学情况,深入学生之间交流,掌握学情。
【设计意图】本环节中设置三个问题,希望学生通过观察、思考、交流、对比、归纳等活动,理解变量和常量的的概念,并能区分具体问题中的常量和变量;探究提纲中问题逐步深化,使学生在经历从具体到抽象地认识过程中,感知变量之间的互相依存关系和变化规律,从而理解函数的概念。
人教版数学六年级上册变量与常量例3教学设计
人教版数学六年级上册变量与常量例3教
学设计
目标
本节课的教学目标是让学生了解和掌握变量和常量的概念,并
能够辨别和应用它们。
教学准备
- 教材:人教版数学六年级上册
- PPT或教学板书
- 学生练册
- 打印好的变量和常量定义卡片
教学过程
导入
1. 引入教学主题:变量与常量的概念。
2. 引发学生思考:请举例说明什么是变量和常量?
探究
3. 示范:通过一个简单的例子,解释变量与常量的概念和区别。
4. 引导学生思考:变量和常量在数学中有什么作用?为什么要使用它们?
5. 学生探究:将学生分成小组,让他们自行寻找一些变量和常量在日常生活中的例子,并向全班分享。
讲解
6. 教师讲解:向学生介绍更多关于变量和常量的知识,如变量的符号表示和常量的特点。
应用
7. 练:教师发放练册并指导学生完成相关练。
同时提醒学生在练中注意辨别变量和常量。
8. 检查与讨论:教师与学生一起检查练答案,并讨论解题思路和方法。
总结
9. 总结:教师帮助学生对本课时的内容进行总结,强调变量和常量的重要性和用途。
延伸
10. 拓展:介绍变量和常量在代数中的应用,让学生了解它们在数学领域的更多作用。
教学评价
在本节课的练和讨论过程中,教师可以评价学生对变量和常量的理解程度和运用能力。
参考资料
- 人教版数学六年级上册
- 教育部课程标准的相关内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.1 变量与常量
年级八年级课题课型新授教学媒体多媒体
教学
目
标知识
技能
1.理解变量、常量的概念及相互间的关系;
2.能找出变量间的简单关系,试列简单关系式;
过程
方法
通过对实际问题的讨论引出常量与变量的概念,由熟悉的例子系统地认识常量与变
量,有助于理解相关概念之间的联系与区别
情感
态度
积极参与数学活动,对数学产生好奇心和求知欲
教学重点认识变量与常量
教学难点对变量的判断
教学过程设计
教学程序及教学内容师生行为设计意图
一、情境引入
观看视频,感受生活中的变量与常量。
二、探究新知
1.一辆汽车以60千米/小时的速度行驶,行驶里程为S千米,行驶时间为t小时
①根据题意填表
t/时 1 2 3 4 5
s/千米
②思考:这个过程是一个不变的过程还是一个变化的过程?哪个量的值是不变的?哪个量的值是变化的?数值变化的量之间是怎样的关系?
2.电影票的售价为10元,如果早场售出150张票,午场售出205张票,晚场售出310张票,则三场电影的票房收入各多少元?设一场电影售出x张票,票房收入为y元,怎样用含x的式子表示y?
思考:题中哪个过程是不变的过程?哪个过程是变化的过程?在变化的过程中,哪些量是变化的量?它们之间是怎样变化的?它们之间存在着怎样的对应关系?如何用式子表示出来?
3. 什么叫变量?什么叫常量?
4.指出上述问题中的变量和常量?
三、课堂训练教师提出问题,学生
带着问题观看视频
多媒体出示问题,学
生观察,分析,讨论,
写出答案
学生观察分析,合作
交流后得出结论
教师引导学生观察题
的答案,归纳定义
由实际问题引起
学生的好奇心
由熟悉的例子感
受新知,从不同
事物的变化过程
中寻找出变化量
之间的变化规律
加深对变量,常
1.写出下列各问题中所满足的关系式,并指出各个关系式中,哪些量是变量?哪些量是常量?
(1)用总长为60m 的篱笆围成矩形场地,求矩形的面积S (m 2)
与一边长x(m)之间的关系式 (2)购买单价是0.4元的铅笔,总金额y(元)与购买的铅笔的数量n(支)的关系式
(3)运动员在400m 一圈的跑道上训练,他跑一圈所用的时间t(s)与跑步的速度v(m/s)的关系式 (4)银行规定:五年期存款的年利率为2.79%,则某人存入x 元本金与所得的本息和y(元)之间的关系式
2.例题分析:在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的规律。
如果弹簧原长10cm ,每1kg 重物使弹簧伸长0.5cm ,设重物质量为m kg ,受力后的弹簧长度为l cm ,怎样用含m 的式
子表示l ? 分析:首先这是一个变化过程,在这个变化过程中,弹簧的原长10cm 是一个常量,每1kg 重物使弹簧伸长的长度0.5cm 是一个常量,重物
质量m 和受力后的弹簧长度l 是两个变量。
两个变量的关系可以用表格进行不全面的表示: m (kg) 0 1 2 3 4 5 6
l (cm) 10 10.5 11 11.5 12 12.5 13 从表格数据可以看出,这两个变量中,一个变量变化,另一个变量按某种规律随着变化;一个变量取定一个值,则另一个变量按照某种规律对应有唯一的值。
这个对应关系用式子表示出来,即m l 5.010+=. 注意:)10(2-=l m 虽然也表示两个变量间的关系,但这是用含l 的式子表示m ,不符合题意.
四、小结归纳
1.变量与常量的概念
2.常量与变量必须存在于一个变化过程中
3.常量与变量不是绝对的,而是对于一个变化过程而言的 五、作业设计)
(一))教材74页第1题
(二).补充 1.用含圆的面积s 式子表示圆的半径r_________ 2.球的体积V 和半径R 之间的关系是3
3
4R V π=,其中的变量是_________.
3.三角形的一边为5,用这条边上的高h 表示面积S :__________,其中5是______;h 、S 是_______.
4.等腰三角形的底角度数为α,顶角度数为β,列式用
教师出示问题并引导
点拔,学生先自主探
索再合作交流,写出答案
教师提出本息和=本
金+(利息-利息税)
教师出示题目,学生
读题并分析思考后,
合作交流
达成一致后,选代表回答 教师点拔
学生归纳总结体会反
思 量的理解
加强教学反思,帮助学生养成系统整理知识的习惯
底角表示顶角:___________;用顶角表示底角:
____________.
5.小明用40元钱购买5元/件的某种商品,则他剩余的钱
y(元)与购买这种商品的件数x(件)之间的关系式是
___________;其中常量是_____;变量是_____.
6.长为2米、宽不定的长方形,其面积随着___的变化而
变化,变化过程中的三个量为___________,其中常量是
_______,变量是________.
7.一种饮料每听售价4元,该饮料的销售量用x(听)表示;销售额用y(元)表示,根据x的值填写下表,
x(听) 2 3 4 5 6
y(元)
写出用x表示y的式子:____________.
8.某变化过程中,两个变量的值有如下对应关系:
x-2 -1 0 1 2
y-4 -2 0 2 4
写出用x表示y的式子:_______,其中____是常量.
9.用一根10m长的绳子围成一个长方形,设一边长为x(m),
面积为S (m2),试分析这个过程及过程中的量,并用通过
表格和式子两种方法表示变量间的关系.
板书设计
变量与常量
一、变量与常量的定义二、例题分析
教学反思。