2000--2018年考研数学三真题及解析

合集下载

2018年考研数学三真题及答案解析(完整版)

2018年考研数学三真题及答案解析(完整版)

(C) f x cos x
(D) f x cos x
【答案】(D)
【解析】根据导数的定义:
x sin x
x
lim
lim
x 0,可导;
(A) x0 x
x0 x
x sin x
x
lim
lim
x 0,可导;
(B) x0
x
x0 x
cos lim
x
1

lim

1 2
t 0
t 0
2= lim (1 bt)et 1 lim et 1 lim btet 1 b,
t 0
t
t t 0
t t 0
从而b 1.
综上,a 1,b 1.
(16)(本题满分 10 分)
设平面区域D由曲线y 3 1 x2 与直线y 3x及y轴围成, 计算二重积分 x2dxdy.
2018 年全国硕士研究生入学统一考试数学(三)试题及答案解析
一、选择题:1 8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项符合题目要求的.
(1) 下列函数中,在 x 0 处不可导的是( )
(A) f x x sin x
(B) f x x sin x
x
x
x 0时,可得f (x) 2xf (x) f (x) 2xf (x) 0.
由公式得:f (x) Ce(2x)dx =Cex2 , f (0) 2 C 2. 故f (x)=2ex2 f (1) 2e.
(13) 设A为3阶矩阵, a1, a2, a3是线性无关的向量组,若Aa1 a1 a2, Aa2 a2 a3, Aa3 a1 a3,

2018年研究生入学考试数学三真题及标准答案

2018年研究生入学考试数学三真题及标准答案

2018年考研数学三试题及答案解析一选择题1)下列函数不可导的是:().||sin ||.||A y x x B y x ==.cos ||.C y x D y ==解答:选D。

由定义得,001||12lim lim 2x x x x ++→→-==-,001||12lim lim 2x x x x --→→-== 2)设()f x 在[0,1]上二阶可导,且1()0f x dx =⎰,则().A 当'()0f x <时,1()02f <.B 当''()0f x <时,1()02f <.C 当'()0f x >时,1()02f <.D 当''()0f x >时,1()02f <解答:选D ,将()f x 在12x =处展开为带有拉格朗日余项的一阶泰勒公式 21'()11''()12()()()(),21!22!2f f f x f x x ξ=+-+-ξ介于x 和12之间。

由已知10()0f x dx =⎰所以111220001'()11''()11''()12()[()()()]()()021!22!222!2f f f f x dx f x x dx f x dx ξξ=+-+-=+-=⎰⎰⎰因为''()0f x >,所以1()02f <3)2222(1)1x M dx x ππ-+=+⎰,221x xN dx e ππ-+=⎰,22(1K dx ππ-=⎰,则,,M N K 的大小关系为()..A M N K B M K N >>>>..C K M N D K N M >>>>解答:选C222222222(1)2(1)111x xM dx dx dx x x πππππππ---+==+==++⎰⎰⎰因为()xf x e =在(1,0)点的切线方程是1y x =+,所以101xxe +<<,故222211x xN dx dx e πππππ--+=<=⎰⎰22222(112K dx dx ππππππ--==+>⎰⎰⎰4)设某产品的成本函数()C Q 可导,其中Q 为产量,若产量为0Q 时平均成本最小,则()0.'()0A C Q =00.'()()B C Q C Q =000.'()()C C Q Q C Q =000.'()()D Q C Q C Q =解答:选D ,平均成本()()C Q C Q Q =,由平均成本最小时2'()()'()0QC Q C Q C Q Q-==得到000020'()()'()0Q C Q C Q C Q Q -==,所以000'()()Q C Q C Q =5)下列矩阵中,与矩阵110011001⎛⎫ ⎪⎪ ⎪⎝⎭相似的是()111.011001A -⎛⎫ ⎪⎪ ⎪⎝⎭101.011001B -⎛⎫ ⎪ ⎪ ⎪⎝⎭111.011001C -⎛⎫ ⎪ ⎪ ⎪⎝⎭101.010001D -⎛⎫ ⎪ ⎪ ⎪⎝⎭解答:选A110011001Q ⎛⎫ ⎪= ⎪ ⎪⎝⎭的特征值为1,1,1,()2r E Q -=,选项A 中的矩阵111011001A -⎛⎫⎪= ⎪ ⎪⎝⎭特征值为1,1,1,()2r E A -=6)设,A B 为n 阶矩阵,记()r X 为矩阵X 的秩,()X Y 表示分块矩阵,则().()()A r A AB r A =.()()B r A BA r A =.()max{(),()}C r A B r A r B =.()()T T D r A B r A B =解析:选A ,因为(,),()((,))()r E B n r A AB r A E B r A === 7)设()f x 为某分布的概率密度函数,20(1)(1),()0.6f x f x f x dx +=-=⎰,则{0}P X <=().0.2.0.3.0.4.0.6A B C D解答:选A 特殊值法,由已知,可将()f x 看成随机变量2(1,)X N σ 的概率密度,根据正态分布的对称性,{0}0.2P X <=8)设12,,,(2)n x x x n ≥ 为来自总体2(,)(0)N μσσ>的简单随机样本,令*11,,)n ii X X S n ==∑.~()A t n.~(1)B t n -.~()C t n~(1)D t n - 解答:选B2222(1)~~(1,0),~(1)n S X N N n n σμχσ⎛⎫-- ⎪⎝⎭ ,,又X 与2S相互独立,所以,~(1)t n -选B二填空题9)曲线22ln y x x =+在其拐点处的切线方程是解:22ln y x x =+的定义域为{|0}x x >,222'2,''2y x y x x=+=-,令''0y =得1,x =1x =-(舍去),所以拐点坐标为(1,1),切线斜率为4k =,切线方程为43y x =-10)x e =⎰解:2x x x x e e ==⎰⎰212x xx e e C ==11)差分方程25x x y y ∆-=的通解是解:221525x x x x y y y y ++∆-=→-=,特征方程为212200,2r r r r -=→==,齐次方程的通解为122x C C +,由于()5f x =,故设特解为*y a =,带入得5a =-,所以通解为1225x y C C =+-12)函数()f x 满足()()2()()(0)f x x f x xf x x o x x +∆-=∆+∆∆→且(0)2f =,则(1)f = 解:由已知得()()()2()f x x f x o x xf x x x+∆-∆=+∆∆,取极限得到'()2()f x xf x =,解此微分方程得到2()x f x Ce =,又(0)2f =得到2()2x f x e =,所以(1)2f e =13)设A 为三阶矩阵,向量组123,,ααα线性无关,若112,A ααα=+223,A ααα=+331A ααα=+,则||A =解:123123123200(,,)(,,)(,,)111121A A A A ααααααααα⎛⎫⎪==- ⎪ ⎪⎝⎭因为123,,ααα线性无关,所以令123(,,)P ααα=所以P 可逆,1200111121P AP -⎛⎫ ⎪=- ⎪ ⎪⎝⎭,所以200||1112121A =-=14)随机事件,,A B C 相互独立,1()()()2P A P B P C ===,则()P C = 解:(())()(|)()()P AC A B P AC ABC P AC A B P A B P A B ==()()()()1()()()()()()()3P AC P ABC P ABC P AC P A P B P AB P A P B P A P B +-===+-+-三解答题15)已知实数,a b 满足1lim [()]2xx ax b e x →+∞+-=,求,a b解:法一令1,t x =因为001()12lim[()]lim t tt t a a bt e b e t t t++→→+-=+-=,所以l i m [()1]0,t t a b t e +→+-= 1a ∴=,由洛必达法则00(1)1(1)2lim lim 1,11t t tt t bt e be bt e b b t ++→→+-++===+∴=法二:11111lim[()]lim[()(1()]lim[(1)()()]2xx x x ax b e x ax b o x a x a b b o x x x x→+∞→+∞→+∞+-=+++-=-++++=所以102a a b -=⎧⎨+=⎩解得1,1a b ==16)设平面区域D由曲线y =与直线y =及y 轴围成,计算二重积分2Dx dxdy ⎰⎰解:交点坐标(2,22200)Dx dxdy x dx dx ==⎰⎰30xx dx =,令sin ,[0,]4x t t π=∈,则222444000011sin cos sin 2(1cos 4)4832xt tdt tdt t dt ππππ===-=⎰⎰⎰所以原式17)将长为2m 的铁丝截成三段,分别折成圆、三角形、正方形,则这三段分别长度是多少时所得的面积总和最小,并求该最小值。

2018年考研数学三试题与答案解析(完整版)

2018年考研数学三试题与答案解析(完整版)

M 2 (1
2

2x ) dx 22 1dx 1 x2
x - , 时, 1 cos x 1, 所以K M 2 2 令f ( x) 1 x e x , f (0) 0, f ( x) 1 e x 当x 0, 时,f ( x ) 0; 当x , 0 时,f ( x ) 0 2 2 1 x 所以x - , 时,有f ( x ) 0,从可有 x 1,由比较定理得N<M, 故选C e 2 2
B. f ( x ) x sin( D. f ( x ) cos(
x) x)
f - 0 lim
x 0
x sin x x x sin x x
lim
x 0
x sin x x sin x x sin x 0 lim 0, f lim 0 x 0 x 0 x x x x sin x x sin x x sin x 0 lim 0, f lim 0 x 0 x 0 x x x
0 2
B. r ( A BA) r ( A). D. r ( A B ) r ( A B ).
T T
【解析】特殊值法:由已知可将 f ( x ) 看成随机变量 X N 1, 布的对称性, P X 0 0.2

2
的概率密度,根据正态分
1 n Xi , n i 1
Born to win
2018 年考研数学三试题与答案解析(完整版)
——跨考教育数学教研室
一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项 符合题目要求的,请将所选项前的字母填在答题纸 指定位置上. ... 1. 下列函数中,在 x 0 处不可导的是( A. f ( x ) x sin( x ) C. f x cos( x ) 【答案】D 【解析】 A 可导: ) 。

2000考研数学三真题及答案

2000考研数学三真题及答案

2000考研数学三真题及答案一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上) (1) 设,x x z f xy g y y ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,其中,f g 均可微,则z x ∂=∂.(2)21.x xdxe e+∞-=+⎰(3) 若四阶矩阵A 与B 相似,矩阵A 的特征值为1111,,,2345,则行列式1.B E --=(4) 设随机变量X 的概率密度为1[0,1]()29,[3,6]0x f x x ∈⎧⎪=∈⎨⎪⎩其他 若k 使得2{}3P X k ≥=,则k 的取值范围是 (5) 假设随机变量X 在区间[1,2]-上服从均匀分布,随机变量1,00,01,0X Y X X >⎧⎪==⎨⎪-<⎩若若若 则方差().D Y =二、选择题(本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设对任意的x ,总有()()()x f x g x ϕ≤≤,且[]lim ()()0x g x x ϕ→∞-=,则lim ()x f x →∞( )(A)存在且一定等于零. (B)存在但不一定等于零.(C)一定不存在. (D)不一定存在.(2) 设函数()f x 在点x a =处可导,则函数()f x 在点x a =处不可导的充分条件是 ( )(A)()0()0f a f a '==且 (B)()0()0f a f a '=≠且 (C)()0()0f a f a '>>且 (D)()0()0f a f a '<<且(3) 设123,,ααα是四元非齐次线性方程组AX b =的三个解向量,且()3A =秩,()11234Tα=,,,,()230,123Tαα+=,,,c 表任意常数,则线性方程组AX b =的通解X = ( )(A)11213141c ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(B)10213243c ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ (C)12233445c ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ (D)13243546c ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(4) 设A 为n 阶实矩阵,T A 是A 的转置矩阵,则对于线性方程组():0I AX =和():0T II A AX =,必有 ( )(A)()II 的解是()I 的解,()I 的解也是()II 的解. (B)()II 的解是()I 的解,但()I 的解不是()II 的解. (C)()I 的解不是()II 的解,()II 的解也不是()I 的解. (D)()I 的解是()II 的解,但()II 的解不是()I 的解.(5) 在电炉上安装了4个温控器,其显示温度的误差是随机的.在使用过程中,只要有两个温控器显示的温度不低于临界温度0t ,电炉就断电,以E 表示事件“电炉断电”,而(1)(2)(3)(4)T T T T ≤≤≤为4个温控器显示的按递增顺序排列的温度值,则事件E 等于事件( )(A){}(1)0T t ≥ (B){}(2)0T t ≥ (C){}(3)0T t ≥ (D){}(4)0T t ≥三、(本题满分6分)求微分方程220xy y e '''--=满足条件(0)0,(0)1y y '==.四、(本题满分6分)计算二重积分,Dσ,其中D是由曲线0)y a a =->和直线y x =-围成的区域五、(本题满分6分)假设某企业在两个相互分割的市场上出售同一种产品,两个市场的需求函数分别是112218,12,P Q P Q =-=-其中1P 和2P 分别表示该产品在两个市场的价格(单位:万元/吨),1Q 和2Q 分别表示该产品在两个市场的销售量(即需求量,单位:吨),并且该企业生产这种产品的总成本函数是25C Q =+,其中Q 表示该产品在两个市场的销售总量,即12Q Q Q =+(1)如果该企业实行价格差别策略,试确定两个市场上该产品的销售量和价格,使该企业获得最大利润;(2)如果该企业实行价格无差别策略,试确定两个市场上该产品的销售量及其统一的价格,使该企业的总利润最大化;并比较两种价格策略下的总利润大小.六、(本题满分7分)求函数arctan 2(1)xy x e π+=-的单调区间和极值,并求该函数图形的渐近线.七、(本题满分6分)设40sin ,0,1,2,,nn I xcosxdx n π==⎰求0.n n I ∞=∑八、(本题满分6分)设函数()f x 在[]0,π上连续,且()0,()cos 0f x dx f x xdx ππ==⎰⎰,试证明:在(0,)π内至少存在两个不同的点12,ξξ,使12()()0.f f ξξ== 九、(本题满分8分)设向量组,123(,2,10),(2,1,5),(1,1,4),(1,,)T T T Ta b c αααβ==-=-=试问,,a b c 满足什么条件时,(1)β可由123,,ααα线性表出,且表示唯一? (2)β不能由123,,ααα线性表出?(3)β可由123,,ααα线性表出,但表示不唯一?并求出一般表达式. 十、(本题满分9分)设有n 元实二次型222212112223111(,,,)()()()()n n n n n n f x x x x a x x a x x a x x a x --=++++++++其中(1,2,,)i a i n ==为实数.试问:当12,,,n a a a 满足条件时,二次型12(,,,)n f x x x 为正定二次型.十一、(本题满分8分)假设是来自总体的简单随机样本值.已知ln Y X =服从正态分布(,1)N μ. (1)求X 的数学期望EX (记EX 为b ); (2)求μ的置信度为0.95的置信区间;(3)利用上述结果求b 的置信度为0.95的置信区间.十二、(本题满分8分)设,A B 是二随机事件;随机变量1,1,1,1,A B X Y A B ⎧⎧==⎨⎨--⎩⎩若出现若出现若不出现若不出现试证明随机变量X Y 和不相关的充分必要条件是A B 与相互独立.参考答案一、填空题 (1)【答案】1221z y yf f g x y x∂'''=+-∂ 【详解】根据复合函数的求导公式,有1221'''z y f y f g x y x ∂⎛⎫=⋅+⋅+⋅- ⎪∂⎝⎭(2)【答案】4eπ【详解】被积函数的分母中含有2x x e e -+,且当x →+∞时,2x x e e -+→+∞,即被积函数属于无穷限的反常积分,只需先求不定积分,在令其上限趋于无穷.22222211111x xx x x x x xdxdx e dx de e e ee e e ee e+∞+∞+∞+∞-===++++⎰⎰⎰⎰ 221111xx de ee e +∞=⎛⎫+ ⎪⎝⎭⎰22111x x e e d e e e e +∞⎛⎫= ⎪⎛⎫⎝⎭+ ⎪⎝⎭⎰11arctan x e e e+∞=1()24e ππ=-4eπ=(3)【答案】24 【详解】 方法1:AB A B ⇒、有相同的特征值:11112345.,,,由矩阵1B -是矩阵B 的逆矩阵,他们所有特征值具有倒数的关系,得1B -有特征值2345,,,, 由B 特征局矩阵为E B λ-,1B E --得特征矩阵为()()111E B E E B λλ----=--可以看出B 与1B E --的特征值相差1 ,所以1B E --有特征值1234,,,.由矩阵的行列式等于其特征值得乘积,所有特征值的和等于矩阵主对角元素之和, 知 411123424ii B E .λ-=-==⋅⋅⋅=∏方法2 :AB 即存在可逆阵P ,使得1P AP B -=.两边求逆得111B P A P ---=.又A 有四个不同的特征值,存在可逆矩阵Q ,使1Q AQ -=Λ,其中12131415⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥Λ=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦上式两边求逆得 1112345Q A Q ---⎡⎤⎢⎥⎢⎥=Λ=Λ=⎢⎥⎢⎥⎣⎦,111A Q Q ---=Λ 从而有1111111112131244151B E P A P E P A E P Q Q EQ E Q ----------=-=-=Λ-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=Λ-=-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(4)【答案】[]1,3.【详解】在给定概率密度条件下,有性质{}2112().x x P x X x f x dx <≤=⎰因此,{}()kP X k f x dx +∞≥=⎰(或{}{}11().kP X k P X k f x dx -∞≥=-<=-⎰)因为[0,1]x ∈时,1()3f x =;[3,6]x ∈时,2()9f x =都是定值,因为{}213P X k ≥=<,所以k 最可能的取值区间是包含在[]0,6区间之内的[]1,3区间,否则是不可能的.当13k ≤≤时,{}22()(63).93kP X k f x dx +∞≥==⨯-=⎰ (或者,当13k ≤≤时,{}11()(10),33kP X k f x dx -∞<==⨯-=⎰{}{}1211.33P X k P X k ≥=-<=-=)所以,答案应该填13k ≤≤或[]1,3.(5)【答案】8.9【详解】由于题中Y 是离散型随机变量,其所取值的概率分别为{}{}0,0P X P X >=和 {}0P X <.又由于X 是均匀分布,所以可以直接得出这些概率,从而实现由X 的概率计算过渡到Y 的概率.{}{}0(1)110;33P Y P X --=-=<== {}{}000;P Y P X ==== {}{}20210.33P Y P X -==>== 因此 121()11,333E Y =-⨯+⨯= ()2221212()111,3333E Y =-⨯+⨯=+=所以 []2218()()()1.99D YE Y E Y =-=-=二、选择题 (1)【答案】D【详解】用排除法.例1:设22221()22x x f x x x +≤≤++, 满足条件2222211lim lim 0222x x x x x x x →∞→∞⎡⎤+-==⎢⎥+++⎣⎦, 并且 22221lim 1,122x x x x x →∞+==++, 由夹逼准则知,lim ()1x f x →∞=,则选项()A 与()C 错误.例2:设6262442()11x x x x f x x x ++≤≤++, 满足条件626224442lim lim 0111x x x x x x x x x x →∞→∞⎡⎤++-==⎢⎥+++⎣⎦, 但是由于6224()1x x f x x x +≥=+,有lim ()x f x →∞=+∞,极限不存在,故不选()B ,所以选()D .因为最终结论是“()D :不一定存在”,所以只能举例说明“可以这样”“可以那样”,无法给出相应的证明.(2)【答案】B【详解】方法1:排除法,用找反例的方式()A :2()f x x =,满足(0)0(0)0f f '==且,但2()f x x =在0x =处可导;()C :()1f x x =+,满足(0)10,(0)10f f '=>=>,但()1f x x =+当()1,1x ∈-,在0x =处可导;(D):()1f x x =--,满足(0)10,(0)10,f f '=-<=-<但()1f x x =+当()1,1x ∈-,在0x =处可导; 方法2:推理法.由()B 的条件()0f a =, 则()()()()()limlim lim ,x ax a x a f x f a f x f x f a x a x a x a →→→--==--- 所以()()()()lim lim ()x ax a f x f a f x f a f a x a x a++→→--'==-- (1)()()()()lim lim ().x ax a f x f a f x f a f a x ax a --→→-⎛-⎫'=-=- ⎪--⎝⎭(2) 可见,()f x 在x a =处可导的充要条件是()()f a f a ''=-,所以()0f a '=,即()0f a '=所以当()0f a '≠时必不可导,选()B .(3)【答案】(C)【详解】因为()11234Tα=,,,是非齐次方程组的解向量所以我们有1A b α=,故1α是AX b =的一个特解又()34r A ,n ==(未知量的个数),故AX b =的基础解系由一个非零解组成. 即基础解系的个数为1.因为()()123220A b b b ,ααα-+=--= 故()1122024132624835ααα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-+=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦是对应齐次方程组的基础解系,故AX b =的通解为()()1231213224354c c .αααα⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-++=+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(4)【答案】(A)【详解】若α是方程组():0I AX =的解,即0A α=,两边左乘TA ,得0TA A α=,即α也是方程组():0TII A AX =的解,即()I 的解也是()II 的解.若β是方程组():0TII A AX =的解,即0TA A β=,两边左乘Tβ得()0TT T A A A A .ββββ== A β是一个向量,设[]12TA b ,b ,bβ=,则()210nTi i A A b .ββ===∑故有0i b =,12i ,,n =从而有0A β=,即β也是方程组():0I AX =的解.(5)【答案】C【详解】随机变量(1)(2)(3)(4),,,T T T T 为4个温控器显示的按递增顺序排列的温度值,事件E 表示事件“电炉断电”,即有两个温控器显示的温度不低于0t ,此时必定两个显示较高的温度大于等于0t ,即(4)(3)0.T T t ≥≥ 所以说断电事件就是{}(3)0T t ≥三【详解】本题属于二阶常系数非齐次线性微分方程,对于二阶常系数非齐次线性微分方程得求解,首先需要求出对应的齐次微分方程的通解,再求出非齐次方程的特解,再利用线性方程解的解构,从而得到对应方程的通解.本题对应的齐次微分方程为 20y y '''-=, 其特征方程为 220r r -=,特征根为120,2r r ==. 于是齐次方程的通解为 212.xY C C e =+由于2λ=是特征方程的单根,所以设 2xy Axe *= 求得 22222;44x x x x y Ae Axe y Ae Axe **'''=+=+代入原方程,得 222224424x x x x x Ae Axe Ae Axe e +--=,即222x x Ae e = 约去2xe ,再比较等式左、右两边,得121,2A A == 故得特解212x y xe *=,非齐次方程的通解为 22121.2x x y Y y C C e xe *=+=++ 再由初始条件(0)1y =,得:121C C += (1)由(0)1y '=,得2222212220111221222xx x x x x x C C e xe C e e xe C =='⎛⎫⎛⎫++=++=+= ⎪⎪⎝⎭⎝⎭ (2)联立(1)与(2)得 1231,44C C == 则满足初始条件的通解为2311()442x y x e =++.四【详解】画出积分区域D . 由被积函数的形式以及积分区域形状, 易见采用极坐标更为方便. 将曲线22y a a x =--化为:222()()x y a a y a ++=≥-,极坐标方程为2sin (0)r a θπθ=--≤≤,再D 区域是由曲线22(0)y a a x a =-->和直线y x =-围成的区域,于是04πθ-≤≤,极半径02sin r a θ≤≤-,则22202sin 222224.44a Dx y I d d dr a x ya rθπσθ--+==---⎰⎰令2sin r a t =,有0r =时0t =;2sin r a θ=-时,t θ=-.2024sin 42cos 2cos tI d a a tdt a t θπθ--=⎰⎰022044sin d a tdt θπθ--=⎰⎰02042(1cos 2)d a t dt θπθ--=-⎰⎰240sin 222t a d t dt θπθ--⎛⎫=- ⎪⎝⎭⎰ 02412(sin 2)2a d πθθθ-=-+⎰022412cos 224a πθθ-⎛⎫=⋅-- ⎪⎝⎭221()162a π=-五【定理】简单极值问题(无条件极值):设(,)z f x y =在开区域D 内可偏导,又根据实际问题可知,它在D 内有最大值或最小值,于是只需在0,0f fx y∂∂==∂∂的点中找到(,)f x y 的最大值点或最小值点【详解】记总利润函数为L ,总收益函数为R ,则总利润=总收益-总成本1122(25)L R C p Q p Q Q =-=+-+112212[2()5]p Q p Q Q Q =+-++ 112212(182)(12)[2()5]Q Q Q Q Q Q =-+--++2211221218212225Q Q Q Q Q Q =-+----221212216105Q Q Q Q =--++-其中,120,0Q Q >>,12Q Q Q =+为销售总量.(1)令121241602100L LQ Q Q Q ∂∂=-+==-+=∂∂,,解得1245Q Q ==,. 而11182P Q =-,2212,P Q =- 故相应地1210,7.p p ==在120,0Q Q >>的范围内驻点唯一,且实际问题在120,0Q Q >>范围内必有最大值,故在1245Q Q ==,处L 为最大值.22max 245164105552()L =-⨯-+⨯+⨯-=万元.(2) 若两地的销售单价无差别, 即12p p =,于是1218212Q Q -=-, 得1226Q Q -=, 在此约束条件下求L 的最值,以下用两个方法:方法1: 若求函数(,)z f x y =在条件(,)0x y ϕ=的最大值或最小值,用拉格朗日乘数法:先构造辅助函数(,,)(,)(,)F x y f x y x y λλϕ=+,然后解方程组00(,)0F f x x x F fy y y Fx y ϕλϕλϕλ⎧∂∂∂=+=⎪∂∂∂⎪∂∂∂⎪=+=⎨∂∂∂⎪⎪∂==⎪∂⎩ 所有满足此方程组的解(,,)x y λ中的(,)x y 是(,)z f x y =在条件(,)0x y ϕ=的可能极值点,在可能极值点中求得最大值点或最小值点.故用拉格朗日乘数法,其中1212(,)260Q Q Q Q ϕ=--=,构造函数2212121212(,,)216105(26),F Q Q Q Q Q Q Q Q λλ=--++-+--令112212416202100260FQ Q FQ Q FQ Q λλλ∂⎧=-++=⎪∂⎪∂⎪=-+-=⎨∂⎪⎪∂=--=⎪∂⎩ 解得1254Q Q ==,,在120,0Q Q >>的范围内驻点唯一,且实际问题在120,0Q Q >>范围内必有最大值,故在1245Q Q ==,处L 为最大值.得22max 254165104549()L =-⨯-+⨯+⨯-=万元.方法2:由1226Q Q -=代入221212216105L Q Q Q Q =--++-消去一个变量得211660101L Q Q =-+-这样就变成了简单极值问题(无条件极值),按(1)的做法:令1112600,dLQ dQ =-+= 得15Q =,为L 的唯一驻点.当11050dL Q dQ <<>时(说明在这个区间上函数单调递增);当15Q >时10dLdQ < (说明在这个区间上函数单调递减)故,15Q =为L 的唯一极大值点,所以是最大值点,而1226Q Q -=⇒24Q =, 故2211max 6601016560510149()L Q Q =-+-=-⨯+⨯-=万元.六【渐近线】水平渐近线:若有lim ()x f x a →∞=,则y a =为水平渐近线;铅直渐近线:若有lim ()x af x →=∞,则x a =为铅直渐近线;斜渐近线:若有()lim,lim[()]x x f x a b f x ax x→∞→∞==-存在且不为∞,则y ax b =+为斜渐近线.【详解】原函数对x 求导,所以 arctan arctan 22(1)(arctan )2xxy ex x eπππ++''=+-⋅+arctan arctan 2221(1)1xx e x e x ππ++=+-⋅⋅+2arctan 221x x x e x π++=+ 令0y '=,得驻点120,1x x ==-.列表注:+表示函数值大于0,-表示函数值小于0;表示在这区间内单调递增;表示在这区间内单调递减.所以由以上表格可以得出函数的大概形状,有严格单调增的区间为(),1-∞-与()0,+∞;严格单调减的区间为()1,0-.2(0)f eπ=-为极小值, 4(1)2f e π-=-为极大值.以下求渐近线. 通过对函数大概形状的估计,arctan 2lim ()lim(1)lim(1)xx x x f x x ee x ππ+→∞→∞→∞=-=-=∞所以此函数无水平渐近线;同理,也没有铅直渐近线. 所以令111()lim,lim[()]2;x x f x a e b f x a x e xππ→+∞→+∞===-=-222()lim1,lim[()] 2.x x f x a b f x a x x→-∞→-∞===-=-所以,渐近线为11(2)y a x b e x π=+=-及222y a x b x =+=-,共两条.七【概念】幂级数的收敛半径:若1lim lim n x nx a a ρ+→∞→∞=,其中1,n n a a +是幂级数nn n a x∞=∑的相邻两项的系数,则这幂级数的收敛半径1, 0,, 0, 0, .R ρρρρ≠⎧⎪=+∞=⎨⎪=+∞⎩【详解】先计算出积分nI的具体表达式,再求和144001sin sin sin12nn nnI xcosxdx xd xnππ+⎛⎫=== ⎪⎪+⎝⎭⎰⎰则100112nnn nIn+∞∞==⎛⎫= ⎪⎪+⎝⎭∑∑.考虑幂级数11(),1nnS x xn∞+==+∑求出幂级数的和函数,代入2x=即可得出答案,按通常求收敛半径的办法.所以111lim lim lim111nx x xna nna nnρ+→∞→∞→∞+====+得到本题中幂级数的收敛半径()11,11Rρ==-在,内,先微分再积分,在收敛域内幂级数仍收敛,有11000111()111n n nn n nS x x x xn n x∞∞∞++===''⎛⎫⎛⎫'====⎪⎪++-⎝⎭⎝⎭∑∑∑,所以001()(0)()0ln11x xS x S S x dx dx xx'=+=+=---⎰⎰以()1,12x=∈-代入,得()ln(1)ln(222S=--=+.即ln(2nnI∞==+∑.八【证明】方法1:令()(),0xF x f t dt xπ=≤≤⎰,有(0)0,F=由题设有()0Fπ=.又由题设()cos0f x xdxπ=⎰,用分部积分,有000()cos cos()f x xdx xdF xππ==⎰⎰()cos ()sin F x xF x xdx ππ=+⎰0()sin F x xdx π=⎰由积分中值定理知,存在(0,)ξπ∈使0()sin ()sin (0)F x xdx F πξξπ==⋅-⎰因为(0,)ξπ∈,sin 0ξ≠,所以推知存在(0,),ξπ∈使得()0F ξ=. 再在区间[0,]ξ与[,]ξπ上对()F x 用罗尔定理,推知存在1(0,)ξξ∈,2(,)ξξπ∈使12()0,()0F F ξξ''==,即 12()0,()0f f ξξ==方法2:由()0f x dx π=⎰及积分中值定理知,存在1(0,)ξπ∈,使1()0f ξ=. 若在区间(0,)π内()f x 仅有一个零点1ξ,则在区间1(0,)ξ与1(,)ξπ内()f x 异号. 不妨设在1(0,)ξ内()0f x >,在1(,)ξπ内()0f x <. 于是由()0,()cos 0f x dx f x xdx ππ==⎰⎰,有111101100()cos ()cos ()(cos cos )()(cos cos )()(cos cos )f x xdx f x dx f x x dxf x x dx f x x dxπππξπξξξξξ=-=-=-+-⎰⎰⎰⎰⎰当10x ξ<<时,1cos cos x ξ>,1()(cos cos )0f x x ξ->;当1x ξπ<<时,1cos cos x ξ<,仍有1()(cos cos )0f x x ξ->,得到:00>. 矛盾,此矛盾证明了()f x 在(0,)π仅有1个零点的假设不正确,故在(0,)π内()f x 至少有2个不同的零点.九【详解】方法1:设方程组112233x x x αααβ++= ①对方程组的增广矩阵作初等行变换,化成阶梯形矩阵,有[]123211211,,2112101105410434a a b a b c a c αααβ----⎡⎤⎡⎤⎢⎥⎢⎥=→+-+⎢⎥⎢⎥⎢⎥⎢⎥+-+⎣⎦⎣⎦211210140031aa b a c b -⎡⎤⎢⎥→+-+⎢⎥⎢⎥+-+⎣⎦(1) 当4a ≠-时,[][]1231233r ,,r ,,,ααααααβ==. 方程组①唯一解,即β可由123,,ααα线性表出,且表出唯一.(2) 当4a =-,但310c b -+≠时,[][]12312323r ,,r ,,,ααααααβ=≠=方程组①无解,β不可由123,,ααα线性表出(3) 当4a =-,且310c b -+=时,[][]1231232r ,,r ,,,ααααααβ==方程组①有无穷多解,此时有[]1234211,,21010000b αααβ--⎡⎤⎢⎥→--+⎢⎥⎢⎥⎣⎦得对应齐次方程组的基础解系为:()120T,,ξ=-(取自由未知量11x =,回代得2320x ,x =-=),非齐次方程的一个特解是()()0121T*,b ,b η=-++⎡⎤⎣⎦,故通解为()1021021k b ,b ⎡⎤⎡⎤⎢⎥⎢⎥-+-+⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦其中k 是任意常数. 方法2:设方程组112233x x x αααβ++= ①因为①是三个方程的三个未知量的线性非齐次方程组,故也可由系数行列式讨论,()1232121211211141054001a a A ,,a ααα----⎡⎤⎡⎤⎢⎥⎢⎥====-+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦因此知道:(1) 当4a ≠-时,0A ≠,方程组有唯一解,β可由123,,ααα线性表出,且表出唯一.(2) 当4a =-时,(有可能无解或无穷多解)对增广矩阵作初等行变换,得[]12342112111,,2110012110540015b b c c b αααβ--⎡⎤⎡⎤⎢⎥⎢⎥=→+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦21110012100031b c b ⎡⎤⎢⎥→+⎢⎥⎢⎥-+⎣⎦ (i) 当4a =-时,且但310c b -+≠时,有[][]12312323r ,,r ,,,ααααααβ=≠=方程组①无解.(ii) 当4a =-,且310c b -+=时,[][]1231232r ,,r ,,,ααααααβ==方程组①有无穷多解,其通解为()1021021k b ,b ⎡⎤⎡⎤⎢⎥⎢⎥-+-+⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦其中k 是任意常数.十【详解】方法1:用正定性的定义判别.已知对任意的12n x ,x ,x 均有()120n f x ,x ,x ≥,其中等号成立当且仅当 1122231110000n n n n n x a x x a x x a x x a x --+=⎧⎪+=⎪⎪⎨⎪+=⎪+=⎪⎩ ①方程组①仅有零解的充分必要条件是其系数行列式()1211211000010000100110000101n n n na a B a a a a a +-==+-≠即当()121nn a a a ⋅≠- 时,方程组①只有零解,此时()120n f x ,x ,x =. 若对任意的非零向量()120n X x ,x ,x ,=≠ ①中总有一个方程不为零,则有()222212112223111()()()()0n n n n n n f x ,x ,x x a x x a x x a x x a x --=++++++++>所以,根据正定二次型的定义,对任意的向量()12n x ,x ,x ,如果()120n f x ,x ,x ≥,则二次型正定. 由以上证明题中12(,,,)n f x x x 是正定二次型.方法2: 将二次型表示成矩阵形式,有()222212112223111()()()()n n n n n n f x ,x ,x x a x x a x x a x x a x --=++++++++[]112223112223111111n n n n n n n n n n x a x x a x x a x ,x a x ,,x a x ,x a x x a x x a x ----+⎡⎤⎢⎥+⎢⎥⎢⎥=++++⎢⎥+⎢⎥⎢⎥+⎣⎦[]11122212111000100010000100010000100000100001000101n n n n n n a a x a a x a x ,x ,x a a a x --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦记 112211000010000100000101n n n a x a x B ,X a a x -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦则 ()()120TT T n f x ,x ,x X B BX BX BX ==≥当()1211211000010000100110000101n n n na a B a a a a a +-==+-≠即当()121nn a a a ⋅≠-时,0BX =只有零解,故当任意的0X ≠时,均有()()120Tn f x ,x ,x BX BX =>,从而由正定二次型的定义,对任意的向量()12n x ,x ,x ,如果()120n f x ,x ,x >,则()12n f x ,x ,x 是正定二次型.十一【详解】ln Y X =⇒YX e =. 题设条件Y 为正态,故()()Y EX E e =可用函数的期望的公式求得. 将X 的样本可以转化成Y 的样本,从而对正态(,1)Y N μ中的μ求得置信区间. 最后,再从μ的置信区间转得b 的置信区间.(1) 由正态分布密度函数的定义知,Y 的概率密度为2()2(),,y f y e y μ--=-∞<<+∞于是 2()2()()y Y y b E X E e e edy μ--+∞-∞===⋅令t y μ=-,有 ()221111222t t t b ee dt ee dt μμ+∞+∞-+--+-∞-∞=⋅=⎰12e μ+=. (2) 当置信度10.95α-=时,0.05α=.查表可知标准正态分布的双侧分位数等于1.96.故由1(,)4YN μ,其中Y 表示总体Y 的样本均值,11(ln 0.50ln 0.80ln1.25ln 2.00)ln10.44Y =+++==Y 是μ的无偏估计,且2σ(0,1).Y N所以,按标准正态分布的α分位点的定义,有 /21,P Z αα⎫⎪<=-⎬⎪⎭即/2/21.P Y Y ααμα⎧⎫<<=-⎨⎬⎩⎭这样,我们就得到了μ的一个置信水平为1α-的置信区间/2/2,Y Z Y αα⎛⎫⎪⎝⎭在此题中,1,4σμ==,0Y =,所以参数μ的置信度为0.95的置信区间为( 1.96 1.96(0.98,0.98).Y Y -+=- (3) 由指数函数xe 的严格单调递增性,有{}10.980.980.48 1.482P P μμ⎧⎫-<<=-<+<⎨⎬⎩⎭10.48 1.482P e e e μ+-⎧⎫=<<⎨⎬⎩⎭{}0.48 1.48P e b e -=<<0.95=因此b 的置信度为0.95的置信区间为()0.48 1.48,.e e -十二【分析】随机变量X Y 和不相关(,)0Cov X Y ⇔=.事件A B 与相互独立()()()P AB P A P B ⇔=.要找出这二者之间的联系就应从(,)()()()Cov X Y E XY E X E Y =-入手.【详解】{}(){}{}()1121E X P A P A P A =⋅+-⋅=-,同理,{}()2 1.E Y P B =- 现在求()E XY ,由于XY 只有两个可能值1和1-,所以{}(){}()1111,E XY P XY P XY =⋅=+-⋅=-其中 {}{}{}{}{}11,11,1P XY P X Y P X Y P AB P AB ====+=-=-=+{}{}{}{}{}121P AB P A B P AB P A P B =+-=--+和 {}{}{}{}{}11,11,1P XY P X Y P X Y P AB P AB =-===-+=-==+{}{}{}2P A P B P AB =+-( 或者 {}{}{}{}{}1112P XY P XY P A P B P AB =-=-==+- )所以 {}{}()11E XY P XY P XY ==-=-{}{}{}4221P AB P A P B =--+ 由协方差公式,()()()()Cov XY E XY E X E Y =-{}{}{}{}{}42212121P AB P A P B P A P B =--+--⋅-⎡⎤⎡⎤⎣⎦⎣⎦ {}{}{}4P AB P A P B =-⎡⎤⎣⎦因此,()0Cov XY =当且仅当{}{}{}P AB P A P B =,即X Y 和不相关的充分必要条件是A B 与相互独立.。

2018年考研数学三真题及答案解析

2018年考研数学三真题及答案解析

1
0 0 1
1 0 1
B. 0 1
1
0 0 1
1 1 1
C. 0 1
0
0 0 1
1 0 1
D. 0 1
0
0 0 1
答案: A
1 1 0
1 1 0
解析:令
P
0
1
0

P 1
0
1
0
0 0 1
0 0 1
1 1 0 1 1 1 1 1 0
P 1
AP
一、 选择题
2018 年考研数学三真题及答案
1.下列函数中,在 x 0处不可导的是()
A. f x x sin x
B. f x x sin x
C. f x ?cos x
D. f x cos x
答案: D
解析:方法一:
A lim f x f 0 lim x sin x lim x sin x 0, 可导
n 1 i 1 i
2
1
n
(X
X )2 ,
ni i 1
则下列选项正确的是 ______ .
n X
(A)
t n ;
S
n X
(C) S*
t n ;
n X
(B)
t n 1 ;
S
n X
(D) S*
t n 1 .
n

由于
X
~
N
0, 1
,(n 1)S 2 2
(Xi X )2
x0
x
x0 x
应选 D .
方法二:
因为 f (x) cos x , f 0 1
f x f 0 cos

2018年考研(数学三)真题试卷(题后含答案及解析)

2018年考研(数学三)真题试卷(题后含答案及解析)

2018年考研(数学三)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.下列函数中,在x=0处不可导的是( )A.f(x)=|x|sin|x|B.C.f(x)=cos|x|D.正确答案:D解析:对D选项,由于f+’(0)≠f-’(0),因此f(x)在x=0处不可导.2.设函数f(x)在[0,1]上二阶可导,且∫01f(x)dx=0,则( )A.当f’(x)<0时,B.当f”(x)<0时,C.当f’(x)>0时,D.当f”(x)>0时,正确答案:D解析:对于A选项:.此时f’(x)=一1<0,但对于B、D选项:,由∫01f(x)dx=0,可得当f”(x)=2a<0时,=b>0;当f”(x)=2a>0时,对于C选项:取f(x)=此时f’(x)=1>0,但故D选项正确.3.设则( )A.M>N>KB.M>K>NC.K>M>ND.K>N>M正确答案:C解析:由于而由定积分的性质,可知即K>M>N.故C选项正确.4.设某产品的成本函数C(Q)可导,其中Q为产量,若产量为Q0时平均成本最小,则( )A.C’(Q0)=0B.C’(Q0)=C(Q0)C.C’(Q0)=Q0C(Q0)D.Q0C’(Q0)=C(Q0)正确答案:D解析:平均成本函数其取最小值时,则导数为零,即从而C’(Q0)Q0—C(Q0)=0,即C’(Q0)Q0=C(Q0).5.下列矩阵中,与矩阵相似的为( )A.B.C.D.正确答案:A解析:本题考查矩阵相似的定义及相似矩阵的性质(相似矩阵的秩相等).若存在可逆矩阵P,使得P-1AP=B,则A~B.从而可知E一A~E一B,且r(E—A)=r(E一B).设题中所给矩阵为A,各选项中的矩阵分别为B1,B2,B3,B4.经验证知r(E—B1)=2,r(E—B2)=r(E一B3)=r(E—B4)=1.因此A~B1,即A相似于A选项下的矩阵.6.设A,B为n阶矩阵,记r(X)为矩阵X的秩,(X,Y)表示分块矩阵,则( )A.r(A,AB)=r(A)B.r(A,BA)=r(A)C.r(A,B)=max{r(A),r(B)}D.r(A,B)=r(AT,BT)正确答案:A解析:解这道题的关键,要熟悉以下两个不等关系.①r(AB)≤min{r(A),r(B)};②r(A,B)≥max{r(A),r(B)}.由r(E,B)=n,可知r(A,AB)=r(A(E,B))≤min{r(A),r(E,B)}=r(A).又r(A,AB)≥max{r(A),r(AB)},r(AB)≤r(A),可知r(A,AB)≥r(A).从而可得r(A,AB)=r(A).7.设f(x)为某分布的概率密度函数,f(1+x)=f(1—x),∫02f(x)dx=0.6,则P{X<0}=( )A.0.2B.0.3C.0.4D.0.6正确答案:A解析:由于f(1+x)=f(1一x),可知f(x)图像关于x=1对称.而∫02f(x)dx=0.6,可得8.已知X1,X2,…Xn(n≥2)为来自总体N(μ,σ2)(σ>0)的简单随机样本,,则( )A.B.C.D.正确答案:B解析:解这道题,首先知道t分布的定义.假设X服从标准正态分布N(0,1),Y服从χ2(n)分布,则的分布称为自由度为n的t分布,记为Z~t(n).填空题9.曲线y=x2+2lnx在其拐点处的切线方程是_______.正确答案:y=4x一3解析:首先求得函数f(x)=x2+2lnx的定义域为(0,+∞).求一阶、二阶导,可得f’(x)=令y”=0,得x=1.当x>1时f”(x)>0;当x<1时f”(x)<0.因此(1,1)为曲线的拐点.点(1,1)处的切线斜率k=f’(1)=4.因此切线方程为y一1=4(x一1),即y=4x一3.10.正确答案:解析:本题考查分部积分法。

2018年数学三考研真题及解析

2018年数学三考研真题及解析

2018年全国硕士研究生入学统一考试数学三试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. 1. 下列函数中,在0x =错误!未找到引用源。

处不可导的是( )。

A. ()sin()f x x x =B. ()f x x =C. ()cos()f x x =D. ()f x =【答案】D 【解析】 A 可导:()()()()-0000sin sin sin sin 0lim lim 0,0lim lim 0x x x x x x x x x x x xf f x x x x--+++→→→→⋅⋅''====== B 可导:()()-0000sin 0lim lim 0,0lim lim 0x x x x x x f f x x--+++→→→→-⋅⋅''======C 可导:()()22-000011cos -1cos -1220lim lim 0,0lim lim 0x x x x x x x x f f x x x x--+++→→→→--''====== D 不可导:()()()()()-000-11-11220lim lim ,0lim lim -2200x x x x x x f f x x f f --+++→→→→+--''======''≠2 .已知函数()f x 在[]0,1上二阶可导,且()10,=⎰f x dx 则A.当()0'<f x 时,102⎛⎫<⎪⎝⎭f B. 当()0''<f x 时,102⎛⎫< ⎪⎝⎭f C. 当()0'>f x 时,102⎛⎫< ⎪⎝⎭f D. 当()0''>f x 时,102⎛⎫< ⎪⎝⎭f 【答案】D 【解析】A 错误:()()()11000,10111,2,022f x f x dx dx f x x f x ⎛⎫'===-< ⎪⎛⎫=-+-+= ⎝⎝⎭⎪⎭⎰⎰B 错误:()()()100212111111,033243120,20,f x dx dx f x x f f x x ⎛⎫''==⎛⎫=-+-+=-+=-< ⎪⎝⎭=> ⎪⎝⎭⎰⎰C 错误:()()()1100111,0220,10,2f x d f x x x f x dx f x ⎛⎫=-⎛⎫'-===> ⎪⎝⎭= ⎪⎝⎭⎰⎰D 正确:方法1:由()0f x ''>可知函数是凸函数,故由凸函数图像性质即可得出102f ⎛⎫< ⎪⎝⎭方法2:21112200011111()()()()()(),22222111111()()()()()()()()()02222221()0,()0.2f x f f x f x x f x dx f f x f x dx f f x dx f x f ξξξξ'''=+-+-'''''=+-+-=+-=''><⎰⎰⎰介于和之间,又故 3.设()(2222222211,,1,1ππππππ---++===++⎰⎰⎰x x xM dx N dx K dx x e 则 A.>>M N K B.>>M K NC.>>K M ND.>>K N M 【答案】C 【解析】222222(1)11-,11,22()1,(0)0,()10,()0;,0()0221-,()01N<M,C22x xx xM dx dx x x K Mf x x e f f x e x f x x f x x x f x e ππππππππππ--=+=+⎡⎤∈≥>⎢⎥⎣⎦'=+-==-⎡⎤⎡⎤''∈<∈->⎢⎥⎢⎥⎣⎦⎣⎦+⎡⎤∈≤≤⎢⎥⎣⎦⎰⎰时,所以令当时,当时,所以时,有,从可有,由比较定理得故选4. 设某产品的成本函数()C Q 可导,其中Q 为产量,若产量为0Q 时平均成本最小,则( ) A. ()00C Q '= B.()()00C Q C Q '= C.()()000C Q Q C Q '= D. ()()000Q C Q C Q '= 【答案】D【解析】根据平均成本()C Q C Q=,根据若产量为0Q 时平均成本最小,则有 ()()()()()()()0000000220Q Q Q QC Q Q C Q C Q Q C Q C C Q Q C Q Q Q ==''--''===⇒=5.下列矩阵中,与矩阵110011001⎛⎫ ⎪ ⎪ ⎪⎝⎭相似的为 A. 111011001-⎛⎫⎪⎪ ⎪⎝⎭ B.101011001-⎛⎫ ⎪ ⎪ ⎪⎝⎭ C. 111010001-⎛⎫ ⎪⎪ ⎪⎝⎭D.101010001-⎛⎫ ⎪ ⎪ ⎪⎝⎭【答案】A【解析】方法一:排除法令110011001Q ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,特征值为1,1,1,()2r E Q -= 选项A :令111011001A -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,A 的特征值为1,1,1,()0110012000r E A r -⎡⎤⎢⎥-=-=⎢⎥⎢⎥⎣⎦ 选项B :令101011001B -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,B 的特征值为1,1,1,()0010011000r E B r ⎡⎤⎢⎥-=-=⎢⎥⎢⎥⎣⎦ 选项C :令111010001C -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,C 的特征值为1,1,1,()0110001000r E C r -⎡⎤⎢⎥-==⎢⎥⎢⎥⎣⎦选项B :令101010001D -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,D 的特征值为1,1,1,()0010001000r E D r ⎡⎤⎢⎥-==⎢⎥⎢⎥⎣⎦若矩阵Q 与J 相似,则矩阵E Q -与E J -相似,从而()()r E Q r E J -=-,故选(A )方法二:构造法(利用初等矩阵的性质)令110010001P ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,1110010001P --⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦1110111011011001001P P --⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ ,所以110111011011001001-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦与相似故选(A )6.设,A B 为n 阶矩阵,记()r X 为矩阵X 的秩,(,)X Y 表示分块矩阵,则 A.()().r A AB r A = B.()().r A BA r A = C.()max{()()}.r A B r A r B =, D.()().T T r A B r A B = 【答案】(A )【解析】(,)(,)[(,)]()r E B n r A AB r A E B r A =⇒== 故选(A )7.设()f x 为某分布的概率密度函数,(1)(1)f x f x +=-,()200.6f x dx =⎰,则{0}P X <=A.0.2 B.0.3 C.0.4 D.0.6 【答案】A【解析】特殊值法:由已知可将()f x 看成随机变量()21,X N σ的概率密度,根据正态分布的对称性,()00.2P X <= 8.已知12,,,n X X X 为来自总体2~(,)X N μσ的简单随即样本,11ni i X X n ==∑,*S S ==A.()~()X t n S μ- B.()~(1)X t n S μ--C.*)~()X t n Sμ-D. *)~(1)X t n Sμ-- 【答案】B 【解析】2,XN n σμ⎛⎫⎪⎝⎭()()()22211,0,1n SX N n χσ--, 又2X S 与相互独立,所以)()1X t n Sμ--,故选项B 正确,而A 错.()()()*22210,1,n S X Nn μχσσ--,2X S *与相互独立 ()n X t n μ-,故选项C ,D 错。

2018年考研数学三真题与答案解析

2018年考研数学三真题与答案解析

2018年考研数学三真题及答案解析一、选择题(4分)1 •下列函数中在e = oil:不可导的是()扎f⑵-\x\sin. |x|B. = |a|siii y/\^\G f @)= CM |zD、J⑵=roe \/|r|【麻】D2谡團數在[0 J「上二阶可导.且力血=0 ■则(〉化当< 0时0B.当严go时」点心D、Sf ff(T)>0【答臺】DJT 空离1C王设Af =丄玉£[斗必,N= /_¥吕^忑-K = /_刍1 + idr,则()久N> K艮M>K >NJ K > M>N匕K>N> M【答室】C4:殳某士品的5&本囲故G(Q)可导.具中Q九产量・若产量为班时平均成本最小.则()&"Q D)- 0氐C\Q Q)= QQa)G 仪(QJ - Qo^(<?o)P Q0缶-叽)【蒔塞]D^1 1 0'5.下列拒氏中,空阵0 1 1梧似的为()-0 0 1 _■1 1 -1'人 0 1 L0 0 1 ■1 0 -110 1 10 0 1ri 1 -rC.0 1 0_0 0 14 o -i iD、0 1 0 I0 0 1d al【答室】A匕设4 D知阶袒阵,记伪矩肚X的枝「(&幻表示甘埃矩隹,则()人r^A, AB) = T(J4)BS 3A) = r(A)J r(A?B) = max{r(4)?r(B)}D, r(A,3) = r(A T,B T)[答案】A了蛙随机豈量工的惑養厦f 0)淒定几1 +刃=/(1 - X).且k f (工问=0』,则P{X< 0}=()入0.2B、03C x 0.4D、05【希A&设Xl.Xd,…,X n(n> 2)为来自总脚仏/脸A0)的筲单随机样本<,令天■扌f J 土丈的一那.b■侶f 因-G 侧();-1 »1-1 » t-i【答套]8二、填空题(4分)虫曲㈱=/ +型”在具拐点处的切巻方程为_________【答却V=4®-310.J*E T arcsjin. 二店血=________【答案】e1 arrsiji v 1 - e Ha一讥一严 + C口■羞分方程-轴-5凶通解是倍臺】u, = e ■ 2T+1 - 5.12>画数汛z)萬卫甲(h 4- Az)—归⑹—2Z^(B)A S十o(A*)g? T O)fi^(O) = 2 ,则就1) = _____【答棄】网=加1 窑盂^为” Ol.0!* 巧方誌向fi® * 若Afl] = dR + flg .A HJ =+ fls Aij =01+03 二#1 = __________【軽】214随匚事件儿乩牒互独立’且-P(3)-P[C)- i .则P(AC\A LIB}-【答垂】扌三解答题(10分)1王已知宾数仏b」満足1血匸一0险足+ b)E:—彳=2 »求仏b【答秦】叙-号可得皿s*包牡1. 2其中lim t^)+ 仏岬-J 吟十 lim t^)+ 时=l™t^)+ 远”十b可那吋亠4 吟=2 —齐而臺使得压叫卫* 吟存在,必须有■血=1.1W ,有Km匕T* o^1- L - 2- b. St&-1_踪上(a = 1^ & = 1【咎秦】稅分区域口凰17将长为2m 的铁丝分成三段,依次围成HR 正方形与正三角形,三个圏形的面积之 和是否存在最小值?若存在.求出最小值.r 则有总+ J ; +之=2及乂,彭2 >^y 2 r 正三甬形的面积为気= 器H 「则问题擴化为在祭件a +y + z=2.x 隼/的最小值&令 資”+ A(i +y + z- 2) f a? +A = 0 2+入r =咗 血心n工曲=妒 r (vs (i-i 1)--占2 /少1二内滋-声丘2 x 3dx rV 』具于对于/ V3(l-z a)dz . * =血片可化为 屮僻r?g 丿应=芈圧血也⑺)=半•彳=徐「 而v 综上"昌一黒』喙一习0 J 圆前面积为 糾,总面积 ,爲之> OF .求 x-v ■鬲f'M 西+9_再9v^ir+4v ■存+9 r忑=—更—【答秦】设分成的三段分别为头闵 Si = ^x 2 t 正方形的面积为隔二 $=討+討 函数吉丞+壽/ “討+討 / QL 呢dL则有 M j 布—店龙十忍 鮫“+护+ ” 该点的囲数彳直即为最A 值,*解得唯n 牛极值点为〈 二 0 2 = 0最小值为^/X切卄 i = (一 1产日(刼 +2)=2n+2,n=O,l,2r -;口陥=需卢+ (一 1严刊(加十1)=气黑一(加+ l ).n = 0J …Ui 益数列{%”蒿足:4 >0^X B+1三『程-l (n = 1,2^-).证明{%}收鈣I 「并 求】叽十入【答臺】由题意可和斗屮.=血吩严「 首先证阴&讣的有界性:证明跖j >■ 0 ;当n = 1时山1 > 0』斷=恵时「盹> 0 ,则孔+1 =加气詈,其中 e Jfc-1 > i fc ,可知用1 > B L 1 = 0 r 因此对于任息的U ,有弓> 0.再证明{工讣的星疆性:JJ 因为才时]—£Xn=芒比」一已珈=e In-l-J n e Tng %令f (z ) = e* — 1 — xe^ t 则f (H )=—詔 f f (H )= —ze E< 0(x > 0) r 故当n > 0 时,fb ) < /(□) = 0 ,从而严羅一丹< 0 ”記却.一险C 0 ”可知{唧单调递痰 综上「{%}为单希谨减有下界的憩列f 可知{%}收巍。

2018年考研数学三真题及答案解析

2018年考研数学三真题及答案解析

2018全国研究生入学考试考研数学三试题本试卷满分150,考试时间180分钟一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的.1.下列函数中,在0=x 处不可导的是:A.x x x f sin )(= B.x x x f sin )(=C.xx f cos )(= D.xx f cos)(=2.已知函数)(x f 在[0,1]上二阶可导,且⎰=10)(dx x f ,则A.当0)('<x f 时,021<⎪⎭⎫ ⎝⎛f B.当0)("<x f 时,021<⎪⎭⎫ ⎝⎛f C..当0)('>x f 时,021<⎪⎭⎫ ⎝⎛f D..当0)(">x f 时,021<⎪⎭⎫ ⎝⎛f 3.设dx x x M ⎰-++=22221)1(ππ, dx e x N x ⎰+=22-1ππ, dx x K ⎰+=22-cos 1ππ)(,则A.KN M >> B.N K M >>C.N M K >> D.MN K >>4.设某产品的成本函数)(Q C 可导,其中,Q 为产量,若产量为0Q 时平均成本最小,则A.0)('0=Q CB.)()('00Q C Q C =C.)()('000Q C Q Q C =D.)()('000Q C Q C Q =5.下列矩阵中,与矩阵⎪⎪⎪⎭⎫ ⎝⎛100110011相似的是A.⎪⎪⎪⎭⎫⎝⎛1001101-11 B.⎪⎪⎪⎭⎫⎝⎛-100110101C.⎪⎪⎪⎭⎫ ⎝⎛-100010111 D.⎪⎪⎪⎭⎫⎝⎛-1000101016.设A,B 为n 阶矩阵,记r(X)为矩阵X 的秩,(X Y )表示分块矩阵,则A.)A ()AB A (r r = B.)A ()BA A (r r =C.)}B (),A ({max )B A (r r r = D.)B A (r )B A (r TT=7.设随机变量X 的概率密度)(x f 满足6.0)(),1()1(2=-=+⎰dx x f x f x f ,则}0{P <x = 。

(完整word版)2000--2018年考研数学三真题及解析

(完整word版)2000--2018年考研数学三真题及解析

2003年全国硕士研究生入学统一考试数学三试题一、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则λ的取值范围是_____. (2)已知曲线b x a x y +-=233与x 轴相切,则2b 可以通过a 表示为=2b ________.(3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(=_______.(4)设n 维向量0,),0,,0,(<=a a a T α;E 为n 阶单位矩阵,矩阵T E A αα-=, T aE B αα1+=,其中A 的逆矩阵为B ,则a=______.(5)设随机变量X 和Y 的相关系数为0.9, 若4.0-=X Z ,则Y 与Z 的相关系数为________.(6)设总体X 服从参数为2的指数分布,n X X X ,,,21 为来自总体X 的简单随机样本,则当∞→n 时,∑==ni i n X n Y 121依概率收敛于______.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(= [ ](A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0.(C) 在x=0处右极限不存在. (D) 有可去间断点x=0.(2)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是 [ ] (A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零. (C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在. (3)设2nn n a a p +=,2nn n a a q -=, ,2,1=n ,则下列命题正确的是 [ ](A) 若∑∞=1n n a 条件收敛,则∑∞=1n n p 与∑∞=1n n q 都收敛.(B) 若∑∞=1n n a 绝对收敛,则∑∞=1n n p 与∑∞=1n n q 都收敛.(C) 若∑∞=1n n a 条件收敛,则∑∞=1n n p 与∑∞=1n n q 敛散性都不定.(D) 若∑∞=1n n a 绝对收敛,则∑∞=1n n p 与∑∞=1n n q 敛散性都不定.(4)设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若A 的伴随矩阵的秩为1,则必有 [ ](A) a=b 或a+2b=0. (B) a=b 或a+2b ≠0.(C) a ≠b 且a+2b=0. (D) a ≠b 且a+2b ≠0. (5)设s ααα,,,21 均为n 维向量,下列结论不正确的是 [ ](A) 若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 线性无关.(B) 若s ααα,,,21 线性相关,则对于任意一组不全为零的数s k k k ,,,21 ,都有.02211=+++s s k k k ααα (C) s ααα,,,21 线性无关的充分必要条件是此向量组的秩为s.(D) s ααα,,,21 线性无关的必要条件是其中任意两个向量线性无关.(6)将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件 [ ](A) 321,,A A A 相互独立. (B) 432,,A A A 相互独立. (C) 321,,A A A 两两独立. (D) 432,,A A A 两两独立.三、(本题满分8分) 设: ).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ试补充定义f(1)使得f(x)在]1,21[上连续.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂v f u f ,又)](21,[),(22y x xy f y x g -=,求.2222y g x g ∂∂+∂∂五、(本题满分8分)计算二重积分 .)sin(22)(22dxdy y x e I Dy x+=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y x y x六、(本题满分9分)求幂级数∑∞=<-+12)1(2)1(1n n nx n x 的和函数f(x)及其极值.七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在),(+∞-∞内满足以下条件: )()(x g x f =',)()(x f x g =',且f(0)=0, .2)()(x e x g x f =+(1) 求F(x)所满足的一阶微分方程;(2) 求出F(x)的表达式. 八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在)3,0(∈ξ,使.0)(='ξf 九、(本题满分13分) 已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a 其中.01≠∑=ni i a 试讨论n a a a ,,,21 和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系.十、(本题满分13分)设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T 中二次型的矩阵A 的特征值之和为1,特征值之积为-12. (1) 求a,b 的值;(2) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵.十一、(本题满分13分) 设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x fF(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.十二、(本题满分13分)设随机变量X 与Y 独立,其中X 的概率分布为⎪⎪⎭⎫ ⎝⎛7.03.021~X ,而Y 的概率密度为f(y),求随机变量U=X+Y 的概率密度g(u).2003年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则λ的取值范围是2>λ. 【分析】 当≠x 0可直接按公式求导,当x=0时要求用定义求导.【详解】 当1>λ时,有,0,0,0,1sin 1cos )(21=≠⎪⎩⎪⎨⎧+='--x x xx x x x f 若若λλλ 显然当2>λ时,有)0(0)(lim 0f x f x '=='→,即其导函数在x=0处连续.(2)已知曲线b x a x y +-=233与x 轴相切,则2b 可以通过a 表示为=2b 64a .【分析】 曲线在切点的斜率为0,即0='y ,由此可确定切点的坐标应满足的条件,再根据在切点处纵坐标为零,即可找到2b 与a 的关系.【详解】 由题设,在切点处有03322=-='a x y ,有 .220a x =又在此点y 坐标为0,于是有0300230=+-=b x a x ,故 .44)3(6422202202a a a x a x b =⋅=-=【评注】 有关切线问题应注意斜率所满足的条件,同时切点还应满足曲线方程.(3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(= 2a .【分析】 本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,因此实际上只需在满足此不等式的区域内积分即可.【详解】 ⎰⎰-=Ddxdy x y g x f I )()(=dxdy a x y x ⎰⎰≤-≤≤≤10,102=.])1[(2121012adx x x ady dx ax x=-+=⎰⎰⎰+【评注】 若被积函数只在某区域内不为零,则二重积分的计算只需在积分区域与被积函数不为零的区域的公共部分上积分即可.(4)设n 维向量0,),0,,0,(<=a a a T α;E 为n 阶单位矩阵,矩阵T E A αα-=, T aE B αα1+=,其中A 的逆矩阵为B ,则a= -1 .【分析】 这里T αα为n 阶矩阵,而22a T =αα为数,直接通过E AB =进行计算并注意利用乘法的结合律即可.【详解】 由题设,有)1)((T T a E E AB αααα+-==T T T T a a E αααααααα⋅-+-11=T T T T a a E αααααααα)(11-+-=T T T a a E αααααα21-+-=E aa E T =+--+αα)121(,于是有 0121=+--aa ,即 0122=-+a a ,解得 .1,21-==a a 由于A<0 ,故a=-1.(5)设随机变量X 和Y 的相关系数为0.9, 若4.0-=X Z ,则Y 与Z 的相关系数为 0.9 . 【分析】 利用相关系数的计算公式即可.【详解】 因为 )4.0()()]4.0([()4.0,cov(),cov(---=-=X E Y E X Y E X Y Z Y =)(4.0)()()(4.0)(Y E X E Y E Y E XY E +-- =E(XY) – E(X)E(Y)=cov(X,Y), 且.DX DZ =于是有 cov(Y,Z)=DZDY Z Y ),cov(=.9.0),cov(==XY DYDX Y X ρ【评注】 注意以下运算公式:DX a X D =+)(,).,cov(),cov(Y X a Y X =+(6)设总体X 服从参数为2的指数分布,n X X X ,,,21 为来自总体X 的简单随机样本,则当∞→n 时,∑==ni i n X n Y 121依概率收敛于 21 .【分析】 本题考查大数定律:一组相互独立且具有有限期望与方差的随机变量n X X X ,,,21 ,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值:).(1111∞→→∑∑==n EX n X n ni i pn i i【详解】 这里22221,,,nX X X 满足大数定律的条件,且22)(i i i EX DX EX +==21)21(412=+,因此根据大数定律有∑==n i i n X n Y 121依概率收敛于.21112=∑=n i i EX n二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=(A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0.(C) 在x=0处右极限不存在. (D) 有可去间断点x=0. [ D ] 【分析】 由题设,可推出f(0)=0 , 再利用在点x=0处的导数定义进行讨论即可. 【详解】 显然x=0为g(x)的间断点,且由f(x)为不恒等于零的奇函数知,f(0)=0.于是有 )0(0)0()(lim )(lim )(lim 000f x f x f x x f x g x x x '=--==→→→存在,故x=0为可去间断点.【评注1】 本题也可用反例排除,例如f(x)=x, 则此时g(x)=,0,0,0,1=≠⎩⎨⎧=x x x x 可排除(A),(B),(C) 三项,故应选(D).【评注2】 若f(x)在0x x =处连续,则.)(,0)()(lim000A x f x f A x x x f x x ='=⇔=-→.(2)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是(A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零. (C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在. [ A ] 【分析】 可微必有偏导数存在,再根据取极值的必要条件即可得结论.【详解】 可微函数f(x,y)在点),(00y x 取得极小值,根据取极值的必要条件知0),(00='y x f y ,即),(0y x f 在0y y =处的导数等于零, 故应选(A).【评注1】 本题考查了偏导数的定义,),(0y x f 在0y y =处的导数即),(00y x f y ';而),(0y x f 在0x x =处的导数即).,(00y x f x '【评注2】 本题也可用排除法分析,取22),(y x y x f +=,在(0,0)处可微且取得极小值,并且有2),0(y y f =,可排除(B),(C),(D), 故正确选项为(A).(3)设2nn n a a p +=,2nn n a a q -=, ,2,1=n ,则下列命题正确的是(A) 若∑∞=1n n a 条件收敛,则∑∞=1n n p 与∑∞=1n n q 都收敛.(B) 若∑∞=1n n a 绝对收敛,则∑∞=1n n p 与∑∞=1n n q 都收敛.(C) 若∑∞=1n n a 条件收敛,则∑∞=1n n p 与∑∞=1n n q 敛散性都不定.(D) 若∑∞=1n n a 绝对收敛,则∑∞=1n n p 与∑∞=1n n q 敛散性都不定. [ B ]【分析】 根据绝对收敛与条件收敛的关系以及收敛级数的运算性质即可找出答案.【详解】 若∑∞=1n n a 绝对收敛,即∑∞=1n n a 收敛,当然也有级数∑∞=1n n a 收敛,再根据2nn n a a p +=,2nn n a a q -=及收敛级数的运算性质知,∑∞=1n n p 与∑∞=1n n q 都收敛,故应选(B).(4)设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若A 的伴随矩阵的秩为1,则必有(A) a=b 或a+2b=0. (B) a=b 或a+2b ≠0.(C) a ≠b 且a+2b=0. (D) a ≠b 且a+2b ≠0. [ C ] 【分析】 A 的伴随矩阵的秩为1, 说明A 的秩为2,由此可确定a,b 应满足的条件. 【详解】 根据A 与其伴随矩阵A*秩之间的关系知,秩(A)=2,故有0))(2(2=-+=b a b a a b b b a b bb a ,即有02=+b a 或a=b.但当a=b 时,显然秩(A)2≠, 故必有 a ≠b 且a+2b=0. 应选(C).【评注】 n (n )2≥阶矩阵A 与其伴随矩阵A*的秩之间有下列关系:.1)(,1)(,)(,0,1,*)(-<-==⎪⎩⎪⎨⎧=n A r n A r n A r n A r(5)设s ααα,,,21 均为n 维向量,下列结论不正确的是(A) 若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 线性无关.(B) 若s ααα,,,21 线性相关,则对于任意一组不全为零的数s k k k ,,,21 ,都有.02211=+++s s k k k ααα (C) s ααα,,,21 线性无关的充分必要条件是此向量组的秩为s.(D) s ααα,,,21 线性无关的必要条件是其中任意两个向量线性无关. [ B ]【分析】 本题涉及到线性相关、线性无关概念的理解,以及线性相关、线性无关的等价表现形式. 应注意是寻找不正确的命题.【详解】(A): 若对于任意一组不全为零的数s k k k ,,,21 ,都有 02211≠+++s s k k k ααα ,则s ααα,,,21 必线性无关,因为若s ααα,,,21 线性相关,则存在一组不全为零的数s k k k ,,,21 ,使得02211=+++s s k k k ααα ,矛盾. 可见(A )成立.(B): 若s ααα,,,21 线性相关,则存在一组,而不是对任意一组不全为零的数s k k k ,,,21 ,都有.02211=+++s s k k k ααα (B)不成立.(C) s ααα,,,21 线性无关,则此向量组的秩为s ;反过来,若向量组s ααα,,,21 的秩为s ,则sααα,,,21 线性无关,因此(C)成立.(D) s ααα,,,21 线性无关,则其任一部分组线性无关,当然其中任意两个向量线性无关,可见(D)也成立. 综上所述,应选(B).【评注】 原命题与其逆否命题是等价的. 例如,原命题:若存在一组不全为零的数s k k k ,,,21 ,使得02211=+++s s k k k ααα 成立,则s ααα,,,21 线性相关. 其逆否命题为:若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 线性无关. 在平时的学习过程中,应经常注意这种原命题与其逆否命题的等价性.(6)将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件(A) 321,,A A A 相互独立. (B) 432,,A A A 相互独立.(C) 321,,A A A 两两独立. (D) 432,,A A A 两两独立. [ C ]【分析】按照相互独立与两两独立的定义进行验算即可,注意应先检查两两独立,若成立,再检验是否相互独立.【详解】 因为21)(1=A P ,21)(2=A P ,21)(3=A P ,41)(4=A P ,且 41)(21=A A P ,41)(31=A A P ,41)(32=A A P ,41)(42=A A P 0)(321=A A A P ,可见有)()()(2121A P A P A A P =,)()()(3131A P A P A A P =,)()()(3232A P A P A A P =,)()()()(321321A P A P A P A A A P ≠,)()()(4242A P A P A A P ≠.故321,,A A A 两两独立但不相互独立;432,,A A A 不两两独立更不相互独立,应选(C).【评注】 本题严格地说应假定硬币是均匀的,否则结论不一定成立. 三 、(本题满分8分) 设).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ 试补充定义f(1)使得f(x)在]1,21[上连续.【分析】 只需求出极限)(lim 1x f x -→,然后定义f(1)为此极限值即可.【详解】 因为)(lim 1x f x -→=])1(1sin 11[lim 1x x x x --+-→πππ=xx xx x πππππsin )1(sin )1(lim 111---+-→=xx x xx ππππππππcos )1(sin cos lim 111-+---+-→=xx x x xx ππππππππππsin )1(cos cos sin lim 11221----+-→ =.1π由于f(x)在)1,21[上连续,因此定义π1)1(=f ,使f(x)在]1,21[上连续.【评注】 本题实质上是一求极限问题,但以这种形式表现出来,还考查了连续的概念.在计算过程中,也可先作变量代换y=1-x ,转化为求+→0y 的极限,可以适当简化.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂v f u f ,又)](21,[),(22y x xy f y x g -=,求.2222y g x g ∂∂+∂∂【分析】 本题是典型的复合函数求偏导问题:),(v u f g =,)(21,22y x v xy u -==,直接利用复合函数求偏导公式即可,注意利用.22uv fv u f ∂∂∂=∂∂∂【详解】vf x u f y xg ∂∂+∂∂=∂∂, .vf y u f x yg ∂∂-∂∂=∂∂ 故 vf v f x v u f xy u f y xg ∂∂+∂∂+∂∂∂+∂∂=∂∂2222222222,.2222222222v f vf y u v f xy u f x yg ∂∂-∂∂+∂∂∂-∂∂=∂∂ 所以 222222222222)()(vf y x u f y x yg x g ∂∂++∂∂+=∂∂+∂∂ =.22y x +【评注】 本题考查半抽象复合函数求二阶偏导.五 、(本题满分8分) 计算二重积分 .)sin(22)(22dxdy y x e I Dy x+=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y x y x【分析】 从被积函数与积分区域可以看出,应该利用极坐标进行计算. 【详解】 作极坐标变换:θθsin ,cos r y r x ==,有 dxdy y x e e I Dy x)sin(22)(22+=⎰⎰+-π=.sin 2022dr r re d e r ⎰⎰-πππθ令2r t =,则tdt e e I t sin 0⎰-=πππ.记 tdt e A t sin 0⎰-=π,则t t de e A --⎰-=int 0π=]cos sin [0⎰----ππtdt e te t t=⎰--πcos t tde=]sin cos [0tdt e t e t t ⎰--+-ππ=.1A e -+-π 因此 )1(21π-+=e A , ).1(2)1(2πππππe e e I +=+=-【评注】 本题属常规题型,明显地应该选用极坐标进行计算,在将二重积分化为定积分后,再通过换元与分步积分(均为最基础的要求),即可得出结果,综合考查了二重积分、换元积分与分步积分等多个基础知识点.六、(本题满分9分)求幂级数∑∞=<-+12)1(2)1(1n n nx n x 的和函数f(x)及其极值.【分析】 先通过逐项求导后求和,再积分即可得和函数,注意当x=0时和为1. 求出和函数后,再按通常方法求极值.【详解】.1)1()(1212∑∞=-+-=-='n n n xxx x f 上式两边从0到x 积分,得).1ln(211)0()(202x dt t t f x f x +-=+-=-⎰ 由f(0)=1, 得).1(),1ln(211)(2<+-=x x x f令0)(='x f ,求得唯一驻点x=0. 由于 ,)1(1)(222x x x f +--='' 01)0(<-=''f ,可见f(x)在x=0处取得极大值,且极大值为 f(0)=1.【评注】 求和函数一般都是先通过逐项求导、逐项积分等转化为可直接求和的几何级数情形,然后再通过逐项积分、逐项求导等逆运算最终确定和函数.七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在),(+∞-∞内满足以下条件: )()(x g x f =',)()(x f x g =',且f(0)=0, .2)()(x e x g x f =+(3) 求F(x)所满足的一阶微分方程; (4) 求出F(x)的表达式.【分析】 F(x)所满足的微分方程自然应含有其导函数,提示应先对F(x)求导,并将其余部分转化为用F(x)表示,导出相应的微分方程,然后再求解相应的微分方程.【详解】 (1) 由)()()()()(x g x f x g x f x F '+'='=)()(22x f x g +=)()(2)]()([2x g x f x g x f -+ =(22)x e -2F(x), 可见F(x)所满足的一阶微分方程为.4)(2)(2x e x F x F =+'(2) ]4[)(222C dx e e e x F dxx dx +⎰⋅⎰=⎰-=]4[42C dx e e x x +⎰- =.22x x Ce e -+将F(0)=f(0)g(0)=0代入上式,得 C=-1. 于是.)(22x x e e x F --=【评注】 本题没有直接告知微分方程,要求先通过求导以及恒等变形引出微分方程的形式,从题型来说比较新颖,但具体到微分方程的求解则并不复杂,仍然是基本要求的范围.八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在)3,0(∈ξ,使.0)(='ξf 【分析】 根据罗尔定理,只需再证明存在一点c )3,0[∈,使得)3(1)(f c f ==,然后在[c,3]上应用罗尔定理即可. 条件f(0)+f(1)+f(2)=3等价于13)2()1()0(=++f f f ,问题转化为1介于f(x)的最值之间,最终用介值定理可以达到目的.【详解】 因为f(x)在[0,3]上连续,所以f(x)在[0,2]上连续,且在[0,2]上必有最大值M 和最小值m ,于是M f m ≤≤)0(, M f m ≤≤)1(, M f m ≤≤)2(. 故.3)2()1()0(M f f f m ≤++≤由介值定理知,至少存在一点]2,0[∈c ,使.13)2()1()0()(=++=f f f c f因为f(c)=1=f(3), 且f(x)在[c,3]上连续,在(c,3)内可导,所以由罗尔定理知,必存在)3,0()3,(⊂∈c ξ,使.0)(='ξf【评注】 介值定理、微分中值定理与积分中值定理都是常考知识点,且一般是两两结合起来考. 本题是典型的结合介值定理与微分中值定理的情形.九、(本题满分13分) 已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a 其中.01≠∑=ni i a 试讨论n a a a ,,,21 和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系.【分析】方程的个数与未知量的个数相同,问题转化为系数矩阵行列式是否为零,而系数行列式的计算具有明显的特征:所有列对应元素相加后相等. 可先将所有列对应元素相加,然后提出公因式,再将第一行的(-1)倍加到其余各行,即可计算出行列式的值.【详解】 方程组的系数行列式ba a a a ab a a a a a b a a a a a b a A n nn n ++++=321321321321=).(11∑=-+ni i n a b b(1) 当0≠b 时且01≠+∑=ni iab 时,秩(A)=n ,方程组仅有零解.(2) 当b=0 时,原方程组的同解方程组为.02211=+++n n x a x a x a由01≠∑=ni i a 可知,),,2,1(n i a i =不全为零. 不妨设01≠a ,得原方程组的一个基础解系为T a a )0,,0,1,(121 -=α,T a a )0,,1,0,(132 -=α,.)1,,0,0,(,1T n n a a -=α当∑=-=ni i a b 1时,有0≠b ,原方程组的系数矩阵可化为⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑∑∑∑====n i i n nni inni inni ia a a a a a a a a a a a a a a a a a a a 1321132131213211(将第1行的-1倍加到其余各行,再从第2行到第n 行同乘以∑=-ni ia11倍)→ ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑=1001010100113211 n ni ia a a a a( 将第n 行n a -倍到第2行的2a -倍加到第1行,再将第1行移到最后一行)→ .0000100101010011⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---由此得原方程组的同解方程组为12x x =,13x x =,1,x x n = . 原方程组的一个基础解系为 .)1,,1,1(T =α【评注】 本题的难点在∑=-=ni i a b 1时的讨论,事实上也可这样分析:此时系数矩阵的秩为 n-1(存在n-1阶子式不为零),且显然T )1,,1,1( =α为方程组的一个非零解,即可作为基础解系.十、(本题满分13分)设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T ,中二次型的矩阵A 的特征值之和为1,特征值之积为-12. (3) 求a,b 的值;(4) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵.【分析】 特征值之和为A 的主对角线上元素之和,特征值之积为A 的行列式,由此可求出a,b 的值;进一步求出A 的特征值和特征向量,并将相同特征值的特征向量正交化(若有必要),然后将特征向量单位化并以此为列所构造的矩阵即为所求的正交矩阵.【详解】 (1)二次型f 的矩阵为.200200⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=b b a A设A 的特征值为).3,2,1(=i i λ 由题设,有1)2(2321=-++=++a λλλ,.12242002002321-=--=-=b a b ba λλλ解得 a=1,b= -2.(2) 由矩阵A 的特征多项式)3()2(2020202012+-=+----=-λλλλλλA E , 得A 的特征值.3,2321-===λλλ对于,221==λλ解齐次线性方程组0)2(=-x A E ,得其基础解系 T )1,0,2(1=ξ,.)0,1,0(2T =ξ对于33-=λ,解齐次线性方程组0)3(=--x A E ,得基础解系 .)2,0,1(3T -=ξ由于321,,ξξξ已是正交向量组,为了得到规范正交向量组,只需将321,,ξξξ单位化,由此得T )51,0,52(1=η,T )0,1,0(2=η,.)52,0,51(3T -=η令矩阵[]⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==5205101051052321ηηηQ ,则Q 为正交矩阵. 在正交变换X=QY 下,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020002AQ Q T ,且二次型的标准形为.322232221y y y f -+=【评注】 本题求a,b ,也可先计算特征多项式,再利用根与系数的关系确定:二次型f 的矩阵A 对应特征多项式为)].2()2()[2(20020022b a a b b aA E +----=+----=-λλλλλλλ 设A 的特征值为321,,λλλ,则).2(,2,2232321b a a +-=-=+=λλλλλ由题设得1)2(2321=-+=++a λλλ,.12)2(22321-=+-=b a λλλ 解得a=1,b=2.十一、(本题满分13分) 设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x fF(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.【分析】 先求出分布函数F(x) 的具体形式,从而可确定Y=F(X) ,然后按定义求Y 的分布函数即可.注意应先确定Y=F(X)的值域范围)1)(0(≤≤X F ,再对y 分段讨论.【详解】 易见,当x<1时,F(x)=0; 当x>8 时,F(x)=1. 对于]8,1[∈x ,有 .131)(3132-==⎰x dt t x F x设G(y)是随机变量Y=F(X)的分布函数. 显然,当0<y 时,G(y)=0;当1≥y 时,G(y)=1. 对于)1,0[∈y ,有})({}{)(y X F P y Y P y G ≤=≤==})1({}1{33+≤=≤-y X P y X P =.])1[(3y y F =+于是,Y=F(X)的分布函数为.1,10,0,1,,0)(≥<≤<⎪⎩⎪⎨⎧=y y y y y G 若若若【评注】 事实上,本题X 为任意连续型随机变量均可,此时Y=F(X)仍服从均匀分布: 当y<0时,G(y)=0; 当 1≥y 时,G(y)=1;当 01<≤y 时,})({}{)(y X F P y Y P y G ≤=≤= =)}({1y F X P -≤ =.))((1y y F F =- 十二、(本题满分13分)设随机变量X 与Y 独立,其中X 的概率分布为 ⎪⎪⎭⎫ ⎝⎛7.03.021~X ,而Y 的概率密度为f(y),求随机变量U=X+Y 的概率密度g(u).【分析】求二维随机变量函数的分布,一般用分布函数法转化为求相应的概率. 注意X 只有两个可能的取值,求概率时可用全概率公式进行计算.【详解】 设F(y)是Y 的分布函数,则由全概率公式,知U=X+Y 的分布函数为 }{)(u Y X P u G ≤+==}2{7.0}1{3.0=≤++=≤+X u Y X P X u Y X P =}22{7.0}11{3.0=-≤+=-≤X u Y P X u Y P . 由于X 和Y 独立,可见G(u)= }2{7.0}1{3.0-≤+-≤u Y P u Y P=).2(7.0)1(3.0-+-u F u F由此,得U 的概率密度)2(7.0)1(3.0)()(-'+-'='=u F u F u G u g=).2(7.0)1(3.0-+-u f u f【评注】 本题属新题型,求两个随机变量和的分布,其中一个是连续型一个是离散型,要求用全概率公式进行计算,类似问题以前从未出现过,具有一定的难度和综合性.2004年全国硕士研究生入学统一考试数学三试题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若5)(cos sin lim0=--→b x ae xx x ,则a =______,b =______.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则2fu v∂=∂∂.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则212(1)f x dx -=⎰.(4) 二次型213232221321)()()(),,(x x x x x x x x x f ++-++=的秩为 . (5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P _______.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X 和 2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则12221112()()2n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎢⎥⎣⎦∑∑.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. [ ](A) (-1 , 0). (B) (0 , 1). (C) (1 , 2). (D) (2 , 3).(8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim , ⎪⎩⎪⎨⎧=≠=0,00,)1()(x x x f x g ,则 [ ](A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点. (C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关.(9) 设f (x ) = |x (1 - x )|,则[ ](A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点.(10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim 1>+∞→nn n u u ,则∑∞=1n n u 发散.(4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是 [ ] (A) (1) (2). (B) (2) (3). (C) (3) (4).(D) (1) (4).(11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是[ ] (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.(12) 设n 阶矩阵A 与B 等价, 则必有 [ ](A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B .(13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系[ ] (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量.(14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于[ ] (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1.三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分)求)cos sin 1(lim 2220xxx x -→. (16) (本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D 22122=y 所围成的平面区域(如图).(17) (本题满分8分) 设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥x axadt t g dt t f )()(,x ∈ [a , b ),⎰⎰=bab adt t g dt t f )()(.证明:⎰⎰≤bab adx x xg dx x xf )()(.(18) (本题满分9分) 设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时, 降低价格反而使收益增加. (19) (本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x 的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式. (20)(本题满分13分)设T α)0,2,1(1=, T ααα)3,2,1(2-+=, T b αb α)2,2,1(3+---=, T β)3,3,1(-=, 试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式. (21) (本题满分13分) 设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=111b b b b b b A . (Ⅰ) 求A 的特征值和特征向量;(Ⅱ) 求可逆矩阵P , 使得AP P 1-为对角矩阵. (22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=A B P , 21)|(=B A P , 令⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y X Z +=的概率分布.(23) (本题满分13分)设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量; (Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.2004年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若5)(cos sin lim0=--→b x ae xx x ,则a =1,b =4-. 【分析】本题属于已知极限求参数的反问题.【详解】因为5)(cos sin lim 0=--→b x ae xx x ,且0)(cos sin lim 0=-⋅→b x x x ,所以0)(lim 0=-→a e x x ,得a = 1. 极限化为 51)(cos lim )(cos sin lim00=-=-=--→→b b x xxb x a e x x x x ,得b = -4. 因此,a = 1,b = -4. 【评注】一般地,已知)()(limx g x f = A ,(1) 若g (x ) → 0,则f (x ) → 0;(2) 若f (x ) → 0,且A ≠ 0,则g (x ) → 0.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则)()(22v g v g vu f '-=∂∂∂.【分析】令u = xg (y ),v = y ,可得到f (u , v )的表达式,再求偏导数即可. 【详解】令u = xg (y ),v = y ,则f (u , v ) =)()(v g v g u+,所以,)(1v g u f =∂∂,)()(22v g v g v u f '-=∂∂∂. (3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则21)1(221-=-⎰dx x f .【分析】本题属于求分段函数的定积分,先换元:x - 1 = t ,再利用对称区间上奇偶函数的积分性质即可.【详解】令x - 1 = t ,⎰⎰⎰--==-121121221)()()1(dt x f dt t f dx x f=21)21(0)1(12121212-=-+=-+⎰⎰-dx dx xe x .【评注】一般地,对于分段函数的定积分,按分界点划分积分区间进行求解. (4) 二次型213232221321)()()(),,(x x x x x x x x x f ++-++=的秩为 2 .【分析】二次型的秩即对应的矩阵的秩, 亦即标准型中平方项的项数, 于是利用初等变换或配方法均可得到答案. 【详解一】因为213232221321)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=于是二次型的矩阵为 ⎪⎪⎪⎭⎫ ⎝⎛--=211121112A ,由初等变换得 ⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→000330211330330211A ,从而 2)(=A r , 即二次型的秩为2.【详解二】因为213232221321)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=2322321)(23)2121(2x x x x x -+++= 2221232y y +=,其中 ,21213211x x x y ++= 322x x y -=.所以二次型的秩为2. (5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P e1. 【分析】 根据指数分布的分布函数和方差立即得正确答案.【详解】 由于21λDX =, X 的分布函数为⎩⎨⎧≤>-=-.0,0,0,1)(x x e x F x λ故=>}{DX X P =≤-}{1DX X P =≤-}1{1λX P )1(1λF -e1=. 【评注】本题是对重要分布, 即指数分布的考查, 属基本题型.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X 和 2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则22121212)()(21σn n Y Y X X E n j j n i i =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+-+-∑∑==.【分析】利用正态总体下常用统计量的数字特征即可得答案.【详解】因为 2121])(11[1σX X n E n i i =--∑=, 2122])(11[2σY Y n E n j j =--∑=, 故应填 2σ.【评注】本题是对常用统计量的数字特征的考查.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (-1 , 0). (B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ A ]【分析】如f (x )在(a , b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在(a , b )内有界.【详解】当x ≠ 0 , 1 , 2时,f (x )连续,而183sin )(lim 1-=+-→x f x ,42sin )(lim 0-=-→x f x ,42sin )(lim 0=+→x f x ,∞=→)(lim 1x f x ,∞=→)(lim 2x f x , 所以,函数f (x )在(-1 , 0)内有界,故选(A).【评注】一般地,如函数f (x )在闭区间[a , b ]上连续,则f (x )在闭区间[a , b ]上有界;如函数f (x )在开区间(a , b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在开区间(a , b )内有界.(8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg ,则 (A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点. (C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ D ]【分析】考查极限)(lim 0x g x →是否存在,如存在,是否等于g (0)即可,通过换元x u 1=,可将极限)(lim 0x g x →转化为)(lim x f x ∞→.【详解】因为)(lim )1(lim )(lim 00u f x f x g u x x ∞→→→=== a (令x u 1=),又g (0) = 0,所以,当a = 0时,)0()(lim 0g x g x =→,即g (x )在点x = 0处连续,当a ≠ 0时,)0()(lim 0g x g x ≠→,即x = 0是g (x )的第一类间断点,因此,g (x )在点x = 0处的连续性与a 的取值有关,故选(D).【评注】本题属于基本题型,主要考查分段函数在分界点处的连续性. (9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ C ] 【分析】由于f (x )在x = 0处的一、二阶导数不存在,可利用定义判断极值情况,考查f (x )在x = 0的左、右两侧的二阶导数的符号,判断拐点情况.【详解】设0 < δ < 1,当x ∈ (-δ , 0) ⋃ (0 , δ)时,f (x ) > 0,而f (0) = 0,所以x = 0是f (x )的极小值点. 显然,x = 0是f (x )的不可导点. 当x ∈ (-δ , 0)时,f (x ) = -x (1 - x ),02)(>=''x f ,当x ∈ (0 , δ)时,f (x ) = x (1 - x ),02)(<-=''x f ,所以(0 , 0)是曲线y = f (x )的拐点.故选(C).【评注】对于极值情况,也可考查f (x )在x = 0的某空心邻域内的一阶导数的符号来判断. (10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim 1>+∞→nn n u u ,则∑∞=1n n u 发散.(4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是 (A) (1) (2). (B) (2) (3). (C) (3) (4). (D) (1) (4). [ B ]【分析】可以通过举反例及级数的性质来说明4个命题的正确性.【详解】(1)是错误的,如令nn u )1(-=,显然,∑∞=1n n u 分散,而∑∞=-+1212)(n n n u u 收敛.(2)是正确的,因为改变、增加或减少级数的有限项,不改变级数的收敛性.(3)是正确的,因为由1lim 1>+∞→nn n u u 可得到n u 不趋向于零(n → ∞),所以∑∞=1n n u 发散.(4)是错误的,如令n v n u n n 1,1-==,显然,∑∞=1n n u ,∑∞=1n n v 都发散,而∑∞=+1)(n n n v u 收敛. 故选(B).【评注】本题主要考查级数的性质与收敛性的判别法,属于基本题型. (11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ).(B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ).(C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ]【分析】利用介值定理与极限的保号性可得到三个正确的选项,由排除法可选出错误选项. 【详解】首先,由已知)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则由介值定理,至少存在一点),(0b a x ∈,使得0)(0='x f ; 另外,0)()(lim )(>--='+→ax a f x f a f a x ,由极限的保号性,至少存在一点),(0b a x ∈使得0)()(00>--ax a f x f ,即)()(0a f x f >. 同理,至少存在一点),(0b a x ∈使得)()(0b f x f >. 所以,(A) (B) (C)都正确,故选(D).【评注】 本题综合考查了介值定理与极限的保号性,有一定的难度. (12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||.(C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ D ] 【分析】 利用矩阵A 与B 等价的充要条件: )()(B r A r =立即可得.【详解】因为当0||=A 时, n A r <)(, 又 A 与B 等价, 故n B r <)(, 即0||=B , 故选(D). 【评注】本题是对矩阵等价、行列式的考查, 属基本题型.(13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的 互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量. [ B ] 【分析】 要确定基础解系含向量的个数, 实际上只要确定未知数的个数和系数矩阵的秩. 【详解】 因为基础解系含向量的个数=)(A r n -, 而且⎪⎩⎪⎨⎧-<-===.1)(,0,1)(,1,)(,)(*n A r n A r n A r n A r根据已知条件,0*≠A 于是)(A r 等于n 或1-n . 又b Ax =有互不相等的解, 即解不惟一, 故1)(-=n A r . 从而基础解系仅含一个解向量, 即选(B).【评注】本题是对矩阵A 与其伴随矩阵*A 的秩之间的关系、线性方程组解的结构等多个知识点的综合考查. (14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,。

考研数学三历真题及真题解析

考研数学三历真题及真题解析

研究生入学考试2000到2013年最新最全数学三考试试题2000年全国硕士研究生入学统一考试数学三试题一、填空题二、选择题2001年全国硕士研究生入学统一考试数学三试题一、填空题二、选择题2002年全国硕士研究生入学统一考试数学三试题一、填空题二、选择题2003年考研数学(三)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则λ的取值范围是_____. (2)已知曲线b x a x y +-=233与x 轴相切,则2b 可以通过a 表示为=2b ________.(3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(=_______.(4)设n 维向量0,),0,,0,(<=a a a T Λα;E 为n 阶单位矩阵,矩阵T E A αα-=, T aE B αα1+=,其中A 的逆矩阵为B ,则a=______.(5)设随机变量X 和Y 的相关系数为0.9, 若4.0-=X Z ,则Y 与Z 的相关系数为________. (6)设总体X 服从参数为2的指数分布,n X X X ,,,21Λ为来自总体X 的简单随机样本,则当∞→n 时,∑==n i i n X n Y 121依概率收敛于______.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=(A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0.(C) 在x=0处右极限不存在. (D) 有可去间断点x=0. [ ] (2)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是(A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零. (C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在. [ ](3)设2n n n a a p +=,2nn n a a q -=,Λ,2,1=n ,则下列命题正确的是(A) 若∑∞=1n n a 条件收敛,则∑∞=1n n p 与∑∞=1n n q 都收敛.(B) 若∑∞=1n n a 绝对收敛,则∑∞=1n n p 与∑∞=1n n q 都收敛.(C) 若∑∞=1n n a 条件收敛,则∑∞=1n n p 与∑∞=1n n q 敛散性都不定.(D) 若∑∞=1n n a 绝对收敛,则∑∞=1n n p 与∑∞=1n n q 敛散性都不定. [ ](4)设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若A 的伴随矩阵的秩为1,则必有 (A) a=b 或a+2b=0. (B) a=b 或a+2b ≠0.(C) a ≠b 且a+2b=0. (D) a ≠b 且a+2b ≠0. [ ] (5)设s ααα,,,21Λ均为n 维向量,下列结论不正确的是(A) 若对于任意一组不全为零的数s k k k ,,,21Λ,都有02211≠+++s s k k k αααΛ,则s ααα,,,21Λ线性无关.(B) 若s ααα,,,21Λ线性相关,则对于任意一组不全为零的数s k k k ,,,21Λ,都有.02211=+++s s k k k αααΛ(C) s ααα,,,21Λ线性无关的充分必要条件是此向量组的秩为s.(D) s ααα,,,21Λ线性无关的必要条件是其中任意两个向量线性无关. [ ](6)将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件(A) 321,,A A A 相互独立. (B) 432,,A A A 相互独立.(C) 321,,A A A 两两独立. (D) 432,,A A A 两两独立. [ ] 三、(本题满分8分) 设).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ 试补充定义f(1)使得f(x)在]1,21[上连续.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂v f u f ,又)](21,[),(22y x xy f y x g -=,求.2222ygx g ∂∂+∂∂ 五、(本题满分8分) 计算二重积分.)sin(22)(22dxdy y x e I Dy x +=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y x y x六、(本题满分9分)求幂级数∑∞=<-+12)1(2)1(1n n n x n x 的和函数f(x)及其极值. 七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在),(+∞-∞内满足以下条件: )()(x g x f =',)()(x f x g =',且f(0)=0, .2)()(x e x g x f =+ (1)求F(x)所满足的一阶微分方程; (2)求出F(x)的表达式. 八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在)3,0(∈ξ,使.0)(='ξf九、(本题满分13分) 已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛ 其中.01≠∑=n i i a 试讨论n a a a ,,,21Λ和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系. 十、(本题满分13分) 设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T ,中二次型的矩阵A 的特征值之和为1,特征值之积为-12. (1)求a,b 的值;(2)利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵.十一、(本题满分13分) 设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x fF(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.十二、(本题满分13分)设随机变量X 与Y 独立,其中X 的概率分布为⎪⎪⎭⎫ ⎝⎛7.03.021~X ,而Y 的概率密度为f(y),求随机变量U=X+Y 的概率密度g(u).2004年全国硕士研究生入学统一考试数学三试题一、填空题:本题共6小题,每小题4分,满分24分. 请将答案写在答题纸指定位置上.(1) 若()0sin lim cos 5x x xx b e a→-=-,则a =______,b =______.(2) 函数(),f u v 由关系式()(),f xg y y x g y =+⎡⎤⎣⎦确定,其中函数()g y 可微,且()0g y ≠,则2fu v∂=∂∂______. (3) 设()211,,2211,,2x xe x f x x ⎧-≤<⎪⎪=⎨⎪-≥⎪⎩ 则()2121f x dx -=⎰_____. (4) 二次型()()()()222123122331,,f x x x x x x x x x =++-++的秩为______. (5) 设随机变量X 服从参数为λ的指数分布,则{P X >=______.(6) 设总体X 服从正态分布()21,N μσ,总体Y 服从正态分布()22,N μσ,112,,,n X X X L 和212,,,n Y Y Y L 分别是来自总体X 和Y 的简单随机样本,则()()122211122n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎣⎦∑∑______. 二、选择题:本题共8小题,每小题4分,满分24分. 在每小题给出的四个选项中,只有一项符合题目要求,请把所选项前的字母填在答题纸指定位置上.(7) 函数()()()()2sin 212x x f x x x x -=--在下列哪个区间内有界. (A )()1,0- (B )()0,1 (C )()1,2 (D )()2,3(8) 设()f x 在(),-∞+∞内有定义,且()lim x f x a →∞=,()1,0,0,0,f x g x x x ⎧⎛⎫≠⎪ ⎪=⎝⎭⎨⎪=⎩则(A )0x =必是()g x 的第一类间断点 (B )0x =必是()g x 的第二类间断点(C )0x =必是()g x 的连续点 (D )()g x 在点0x =处的连续性与a 的值有关. (9) 设()()1f x x x =-,则(A )0x =是()f x 的极值点,但()0,0不是曲线()y f x =的拐点 (B )0x =不是()f x 的极值点,但()0,0是曲线()y f x =的拐点 (C )0x =是()f x 的极值点,且()0,0是曲线()y f x =的拐点 (D )0x =不是()f x 的极值点,()0,0也不是曲线()y f x =的拐点 (10) 设有以下命题:① 若()2121n n n u u ∞-=+∑收敛,则1n n u ∞=∑收敛② 若1n n u ∞=∑收敛,则10001n n u ∞+=∑收敛③ 若1lim1n n nu u +→∞>,则1n n u ∞=∑发散④ 若()1n n n u v ∞=+∑收敛,则1n n a ∞=∑,1n n v ∞=∑都收敛则以上命题中正确的是(A )①② (B )②③ (C )③④ (D )①④(11) 设()f x '在[],a b 上连续,且()()0,0f a f b ''><,则下列结论中错误的是 (A )至少存在一点()0,x a b ∈,使得()()0f x f a > (B )至少存在一点()0,x a b ∈,使得()()0f x f b > (C )至少存在一点()0,x a b ∈,使得()00f x '= (D )至少存在一点()0,x a b ∈,使得()00f x =(12) 设n 阶矩阵A 与B 等价,则必有(A )当()0A a a =≠时,B a = (B )当()0A a a =≠时,B a =- (C )当0A ≠时,0B = (D )当0A =时,0B =(13) 设n 阶矩阵A 的伴随矩阵*0A ≠,若1234,,,ξξξξ是非齐次线性方程组Ax b =的互不相等的解,则对应的齐次线性方程组0Ax =的基础解系(A )不存在 (B )仅含一个非零解向量(C )含有两个线性无关的解向量 (D )含有三个线性无关的解向量(14) 设随机变量X 服从正态分布()0,1N ,对给定的()0,1α∈,数n u 满足{}P X u αα>=,若{}P X x α<=,则x 等于(A )2u α (B )12uα-(C )12u α- (D )1u α-三、解答题:本题共9小题,满分94分. 请将解答写在答题纸指定的位置上. 解答应写出文字说明、证明过程或演算步骤.(15)(本题满分8分)求22201cos lim sin x x x x →⎛⎫- ⎪⎝⎭.(16)(本题满分8分) 求()22Dx y y d σ++⎰⎰,其中D 是由圆224x y +=和()2211x y ++=所围成的平面区域(如图).(17)(本题满分8分)设()(),f x g x 在[],a b 上连续,且满足()()x xaaf t dtg t dt ≥⎰⎰,[),x a b ∈, ()()bbaaf t dtg t dt =⎰⎰证明:()()b ba axf x dx xg x dx ≤⎰⎰.(18)(本题满分9分)设某商品的需求函数为1005Q P =-,其中价格()0,20P ∈,Q 为需求量. (Ⅰ)求需求量对价格的弹性()0d d E E >;(Ⅱ)推导()1d dRQ E dP=-(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加.(19)(本题满分9分)设级数()468242462468x x x x +++-∞<<+∞⋅⋅⋅⋅⋅⋅L 的和函数为()S x .求: (Ⅰ)()S x 所满足的一阶微分方程;(Ⅱ)()S x 的表达式.(20)(本题满分13分)设()()()1231,2,0,1,2,3,1,2,2TTTa ab a b ααα==+-=---+,()1,3,3Tβ=-. 试讨论当,a b 为何值时,(Ⅰ)β不能由123,,ααα线性表示;(Ⅱ)β可由123,,ααα唯一地线性表示,并求出表示式;(Ⅲ)β可由123,,ααα线性表示,但表示式不唯一,并求出表示式.(21)(本题满分13分)设n 阶矩阵111b b b b A b b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦L LM M M L. (Ⅰ)求A 的特征值和特征向量;(Ⅱ)求可逆矩阵P ,使得1P AP -为对角矩阵.(22)(本题满分13分)设,A B 为两个随机事件,且()()()111,,432P A P B A P A B ===,令 1,0,.A X A ⎧=⎨⎩发生,不发生1,0,.B Y B ⎧=⎨⎩发生,不发生求:(Ⅰ)二维随机变量(),X Y 的概率分布; (Ⅱ)X 与Y 的相关系数XY ρ; (Ⅲ)22Z X Y =+的概率分布.(23)(本题满分13分) 设随机变量X 的分布函数为()1,,;,0,.x F x x x βαααβα⎧⎛⎫->⎪ ⎪=⎨⎝⎭⎪≤⎩其中参数0,1αβ>>. 设12,,,n X X X L 为来自总体X 的简单随机样本.(Ⅰ)当1α=时,求未知参数β的矩估计量;(Ⅱ)当1α=时,求未知参数β的最大似然估计量; (Ⅲ)当2β=时,求未知参数α的最大似然估计量.2005年全国硕士研究生入学统一考试数学三试题一、填空题:本题共6小题,每小题4分,满分24分. 请将答案写在答题纸指定位置上.(1) 极限22lim sin 1x xx x →∞=+______.(2) 微分方程0xy y '+=满足初始条件()12y =的特解为______.(3) 设二元函数()()1ln 1x y z xe x y +=+++,则()1,0dz =______.(4) 设行向量组()()()()2,1,1,1,2,1,,,3,2,1,,4,3,2,1a a a 线性相关,且1a ≠,则a =______. (5) 从数1,2,3,4中任取一个数,记为X ,再从1,,X L 中任取一个数,记为Y ,则{}2P Y ==______.(6) 设二维随机变量(),X Y 的概率分布为若随机事件{}0X =与1X Y +=相互独立,则a =______,b =______.二、选择题:本题共8小题,每小题4分,满分24分. 在每小题给出的四个选项中,只有一项符合题目要求,请把所选项前的字母填在答题纸指定位置上.(7) 当a 取下列哪个值时,函数()322912f x x x x a =-+-恰有两个不同的零点.(A )2 (B )4 (C )6 (D )8 (8) 设()()22222123,cos ,cos DD DI I x y d I x y d σσσ==+=+⎰⎰⎰⎰⎰⎰,其中(){}22,1D x y xy =+≤,则(A )321I I I >> (B )123I I I >> (C )213I I I >> (D )312I I I >>(9) 设0,1,2,,n a n >=L 若1n n a ∞=∑发散,()111n n n a ∞-=-∑收敛,则下列结论正确的是(A )211n n a ∞-=∑收敛,21n n a ∞=∑发散 (B )21n n a ∞=∑收敛,211n n a ∞-=∑发散(C )()2121n n n a a ∞-=+∑收敛 (D )()2121n n n a a ∞-=-∑收敛(10) 设()sin cos f x x x x =+,下列命题中正确的是(A )()0f 是极大值,2f π⎛⎫⎪⎝⎭是极小值(B )()0f 是极小值,2f π⎛⎫⎪⎝⎭是极大值(C )()0f 是极大值,2f π⎛⎫⎪⎝⎭也是极大值(D )()0f 是极小值,2f π⎛⎫⎪⎝⎭也是极小值(11) 以下四个命题中,正确的是(A )若()f x '在()0,1内连续,则()f x 在()0,1内有界(B )若()f x 在()0,1内连续,则()f x 在()0,1内有界 (C )若()f x '在()0,1内有界,则()f x 在()0,1内有界 (D )若()f x 在()0,1内有界,则()f x '在()0,1内有界 (12) 设矩阵()33ij A a ⨯=满足*T A A =,其中*A 为A 的伴随矩阵,T A 为A 的转置矩阵. 若111213,,a a a 为三个相等的正数,则11a 为(A (B )3 (C )13(D (13) 设12,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则()112,A ααα+线性无关的充分必要条件是(A )10λ= (B )20λ= (C )10λ≠ (D )20λ≠(14)(注:该题已经不在数三考纲范围内)三、解答题:本题共9小题,满分94分. 请将解答写在答题纸指定的位置上. 解答应写出文字说明、证明过程或演算步骤.(15)(本题满分8分)求011lim 1x x x e x -→+⎛⎫-⎪-⎝⎭.(16)(本题满分8分)设()f u 具有二阶连续导数,且(),y x g x y f yf x y ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,求222222g g x y x y ∂∂-∂∂.(17)(本题满分9分)计算二重积分221Dx y d σ+-⎰⎰,其中(){},01,01D x y x y =≤≤≤≤.(18)(本题满分9分)求幂级数211121n n x n ∞=⎛⎫- ⎪+⎝⎭∑在区间()1,1-内的和函数()S x .(19)(本题满分8分)设()(),f x g x 在[]0,1上的导数连续,且()()()00,0,0f f x g x ''=≥≥.证明:对任何[]0,1α∈,有()()()()()()11ag x f x dx f x g x dx f a g ''+≥⎰⎰(20)(本题满分13分) 已知齐次线性方程组(ⅰ)123123123230,2350,0,x x x x x x x x ax ++=⎧⎪++=⎨⎪++=⎩ 和 (ⅱ)()12321230,210,x bx cx x b x c x ++=⎧⎪⎨+++=⎪⎩ 同解,求,,a b c 的值.(21)(本题满分13分)设T A C D C B ⎛⎫= ⎪⎝⎭为正定矩阵,其中,A B 分别为m 阶,n 阶对称矩阵,C 为m n ⨯阶矩阵.(Ⅰ)计算T P DP ,其中1mn E A C P O E -⎛⎫-= ⎪⎝⎭;(Ⅱ)利用(Ⅰ)的结果判断矩阵1T B C A C --是否为正定矩阵,并证明你的结论.(22)(本题满分13分)设二维随机变量(),X Y 的概率密度为()0,01,02,,1,x y x f x y <<<<⎧=⎨⎩其它. 求:(Ⅰ)(),X Y 的边缘概率密度()(),X Y f x f y ; (Ⅱ)2Z X Y =-的概率密度()Z f z ;(Ⅲ)1122P Y X ⎧⎫≤≤⎨⎬⎩⎭.(23)(本题满分13分)设()12,,,2n X X X n >L 为来自总体()20,N σ的简单随机样本,其样本均值为X ,记,1,2,,i i Y X X i n =-=L .(Ⅰ)求i Y 的方差,1,2,,i DY i n =L ; (Ⅱ)求1Y 与n Y 的协方差()1,n Cov Y Y ;(Ⅲ)若()21n c Y Y +是2σ的无偏估计量,求常数c .2006年全国硕士研究生入学统一考试数学三试题一、填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上.(1) ()11lim ______.nn n n -→∞+⎛⎫= ⎪⎝⎭(2) 设函数()f x 在2x =的某邻域内可导,且()()e f x f x '=,()21f =,则()2____.f '''=(3) 设函数()f u 可微,且()102f '=,则()224z f x y =-在点(1,2)处的全微分()1,2d _____.z=(4) 设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则=B .(5)设随机变量X Y 与相互独立,且均服从区间[]0,3上的均匀分布,则{}{}max ,1P X Y ≤=_______.(6) 设总体X 的概率密度为()()121,,,,2x n f x e x X X X -=-∞<<+∞L 为总体X 的简单随机样本,其样本方差为2S ,则2____.ES =二、选择题:7-14小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7) 设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在点0x 处的增量,d y y ∆与分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则()(A) 0d y y <<∆. (B) 0d y y <∆<.(C) d 0y y ∆<<. (D) d 0y y <∆< . (8) 设函数()f x 在0x =处连续,且()22lim1h f h h →=,则()(A) ()()000f f -'=且存在 (B) ()()010f f -'=且存在 (C) ()()000f f +'=且存在 (D)()()010f f +'=且存在 (9) 若级数1n n a ∞=∑收敛,则级数()(A) 1n n a ∞=∑收敛 . (B )1(1)n n n a ∞=-∑收敛.(C) 11n n n a a ∞+=∑收敛. (D) 112n n n a a ∞+=+∑收敛. (10) 设非齐次线性微分方程()()y P x y Q x '+=有两个不同的解12(),(),y x y x C 为任意常数,则该方程的通解是()(A) []12()()C y x y x -. (B) []112()()()y x C y x y x +-.(C) []12()()C y x y x +. (D) []112()()()y x C y x y x ++(11) 设(,)(,)f x y x y ϕ与均为可微函数,且(,)0y x y ϕ'≠,已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是()(A) 若00(,)0x f x y '=,则00(,)0y f x y '=. (B) 若00(,)0x f x y '=,则00(,)0y f x y '≠. (C) 若00(,)0x f x y '≠,则00(,)0y f x y '=.(D) 若00(,)0x f x y '≠,则00(,)0y f x y '≠. (12) 设12,,,s αααL 均为n 维列向量,A 为m n ⨯矩阵,下列选项正确的是() (A) 若12,,,s αααL 线性相关,则12,,,s A A A αααL 线性相关. (B) 若12,,,s αααL 线性相关,则12,,,s A A A αααL 线性无关.(C) 若12,,,s αααL 线性无关,则12,,,s A A A αααL 线性相关.(D) 若12,,,s αααL 线性无关,则12,,,s A A A αααL 线性无关.列得C ,记110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()(A) 1C P AP -=. (B) 1C PAP -=.(C) T C P AP =. (D) T C PAP =.(14) 设随机变量X 服从正态分布211(,)N μσ,随机变量Y 服从正态分布222(,)N μσ,且 {}{}1211P X P Y μμ-<>-<则必有()(A) 12σσ< (B) 12σσ>(C) 12μμ< (D) 12μμ>三、解答题:15-23小题,共94分. 解答应写出文字说明、证明过程或演算步骤. (15)(本题满分7分)设()1sin ,,0,01arctan xy y yf x y x y xy xπ-=->>+,求:(Ⅰ)()()lim ,y g x f x y →+∞=;(Ⅱ)()0lim x g x +→。

2000-数学三真题、标准答案及解析

2000-数学三真题、标准答案及解析

x→a
lim+
= − lim
x→a +
可见当 f '( a ) ≠ 0 时,
f ( x) 在点 x = a 处的左、右导数不相等,因此导数不存在.
故 f ( a ) = 0 且 f '( a ) ≠ 0 是 f ( x) 在点 x = a 处不可导的充分条件. (3)设 a1 , a2 , a3 是四元非齐次线形方程组 AX = b 的三个解向量,且秩 (A)=3, a1 = (1, 2,3, 4) , a2 + a3 = (0,1, 2,3) ,c 表示任意常数,则线形方程组
x
.
+∞ +∞ dx e x dx dt 1 t +∞ ex = t ∫ = = arctan 2 2− x 2 2 x ∫ 1 1 e +t e +e e e0 ex + (ex )

+∞
1
1⎛π π ⎞ π = ⎜ − ⎟= e ⎝ 2 4 ⎠ 4e
(3)已知四阶矩阵 A 与 B 相似;矩阵为 A 的特征值
f ( x) = x 2 在点 x = 1 处, f (1) > 0 , f ' (1) > 0 ,但 f ( x) = x 2 在点 x = 1 处可导,
排除(C) ; 同样, f ( x) = − x 在点 x = 1 处, f (1) < 0 , f (1) < 0 ,但
2 '
f ( x) = x 2 ,在点 x = 1
第 2/13页
(B)存在但不一定为零 (D) 不一定存在 【 】
−x
, g ( x) = 1 + e
−x

2000年考研数学三真题及答案解析

2000年考研数学三真题及答案解析

2000 年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上) (1) 设,x x z f xy g y y ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,其中,f g 均可微,则z x ∂=∂.(2)21.x xdxe e +∞-=+⎰(3) 若四阶矩阵A 与B 相似,矩阵A 的特征值为1111,,,2345,则行列式1.B E --=(4) 设随机变量X 的概率密度为13,[0,1]()2[3,6]0x f x x ∈⎧⎪=∈⎨⎪⎩其他 若k 使得2{}3P X k ≥=,则k 的取值范围是 (5) 假设随机变量X 在区间[1,2]-上服从均匀分布,随机变量1,00,01,0X Y X X >⎧⎪==⎨⎪-<⎩若若若 则方差().D Y =二、选择题(本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设对任意的x ,总有()()()x f x g x ϕ≤≤,且[]li m ()()0x g x x ϕ→∞-=,则l i m ()x f x →∞( ) (A)存在且一定等于零. (B)存在但不一定等于零.(C)一定不存在. (D)不一定存在.(2) 设函数()f x 在点x a =处可导,则函数()f x 在点x a =处不可导的充分条件是 ( )(A)()0()0f a f a '==且 (B)()0()0f a f a '=≠且 (C)()0()0f a f a '>>且 (D)()0()0f a f a '<<且(3) 设123,,ααα是四元非齐次线性方程组AX b =的三个解向量,且()3A =秩,()11234Tα=,,,,()230,123Tαα+=,,,c 表任意常数,则线性方程组AX b =的通解X = ( ) (A)11213141c ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ (B)10213243c ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ (C)12233445c ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ (D)13243546c ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(4) 设A 为n 阶实矩阵,TA 是A 的转置矩阵,则对于线性方程组():0I AX =和():0T II A AX =,必有 ( )(A)()II 的解是()I 的解,()I 的解也是()II 的解. (B)()II 的解是()I 的解,但()I 的解不是()II 的解. (C)()I 的解不是()II 的解,()II 的解也不是()I 的解. (D)()I 的解是()II 的解,但()II 的解不是()I 的解.(5) 在电炉上安装了4个温控器,其显示温度的误差是随机的.在使用过程中,只要有两个温控器显示的温度不低于临界温度0t ,电炉就断电,以E 表示事件“电炉断电”,而(1)(2)(3)(4)T T T T ≤≤≤为4个温控器显示的按递增顺序排列的温度值,则事件E 等于事件( ) (A){}(1)0T t ≥ (B){}(2)0T t ≥ (C){}(3)0T t ≥ (D){}(4)0T t ≥三、(本题满分6分)求微分方程220x y y e '''--=满足条件(0)0,(0)1y y '==. 四、(本题满分6分)计算二重积分,Dσ,其中D是由曲线0)y a a =-+>和直线y x =-围成的区域五、(本题满分6分)假设某企业在两个相互分割的市场上出售同一种产品,两个市场的需求函数分别是112218,12,P Q P Q =-=-其中1P 和2P 分别表示该产品在两个市场的价格(单位:万元/吨),1Q 和2Q 分别表示该产品在两个市场的销售量(即需求量,单位:吨),并且该企业生产这种产品的总成本函数是25C Q =+,其中Q 表示该产品在两个市场的销售总量,即12Q Q Q =+(1)如果该企业实行价格差别策略,试确定两个市场上该产品的销售量和价格,使该企业获得最大利润;(2)如果该企业实行价格无差别策略,试确定两个市场上该产品的销售量及其统一的价格,使该企业的总利润最大化;并比较两种价格策略下的总利润大小.六、(本题满分7分)求函数arctan 2(1)xy x e π+=-的单调区间和极值,并求该函数图形的渐近线.七、(本题满分6分)设40sin ,0,1,2,,nn I xcosxdx n π==⎰求0.n n I ∞=∑八、(本题满分6分)设函数()f x 在[]0,π上连续,且()0,()cos 0f x dx f x xdx ππ==⎰⎰,试证明:在(0,)π 内至少存在两个不同的点12,ξξ,使12()()0.f f ξξ== 九、(本题满分8分)设向量组,123(,2,10),(2,1,5),(1,1,4),(1,,)T T T T a b c αααβ==-=-=试问,,a b c 满足什么条件时,(1)β可由123,,ααα线性表出,且表示唯一? (2)β不能由123,,ααα线性表出?(3)β可由123,,ααα线性表出,但表示不唯一?并求出一般表达式. 十、(本题满分9分) 设有n 元实二次型222212112223111(,,,)()()()()n n n n n n f x x x x a x x a x x a x x a x --=++++++++其中(1,2,,)i a i n == 为实数.试问:当12,,,n a a a 满足条件时,二次型12(,,,)n f x x x 为正定二次型.十一、(本题满分8分)假设是来自总体的简单随机样本值.已知ln Y X =服从正态分布(,1)N μ. (1)求X 的数学期望EX (记EX 为b ); (2)求μ的置信度为0.95的置信区间;(3)利用上述结果求b 的置信度为0.95的置信区间.十二、(本题满分8分)设,A B 是二随机事件;随机变量1,1,1,1,A B X Y A B ⎧⎧==⎨⎨--⎩⎩若出现若出现若不出现若不出现试证明随机变量X Y 和不相关的充分必要条件是A B 与相互独立.2000 年全国硕士研究生入学统一考试数学三试题解析一、填空题 (1)【答案】1221z y yf f g x y x∂'''=+-∂ 【详解】根据复合函数的求导公式,有1221'''z y f y f g x y x ∂⎛⎫=⋅+⋅+⋅- ⎪∂⎝⎭(2)【答案】4eπ【详解】被积函数的分母中含有2x x e e -+,且当x →+∞时,2x x e e -+→+∞,即被积函数属于无穷限的反常积分,只需先求不定积分,在令其上限趋于无穷.22222211111x xx x x x xxdxdx e dx de e e ee e e e e e+∞+∞+∞+∞-===++++⎰⎰⎰⎰ 221111xx de ee e +∞=⎛⎫+ ⎪⎝⎭⎰22111x x e e d e e e e +∞⎛⎫= ⎪⎛⎫⎝⎭+ ⎪⎝⎭⎰11arctan x e e e+∞=1()24e ππ=-4eπ=(3)【答案】24 【详解】方法1:A B A B ⇒ 、有相同的特征值:11112345.,,,由矩阵1B -是矩阵B 的逆矩阵,他们所有特征值具有倒数的关系,得1B -有特征值2345,,,, 由B 特征局矩阵为E B λ-,1B E --得特征矩阵为()()111E B E E B λλ----=--可以看出B 与1B E --的特征值相差1 ,所以1B E --有特征值1234,,,.由矩阵的行列式等于其特征值得乘积,所有特征值的和等于矩阵主对角元素之和, 知 411123424ii B E .λ-=-==⋅⋅⋅=∏方法 2 :A B 即存在可逆阵P ,使得1P AP B -=.两边求逆得111B P A P ---=.又A 有四个不同的特征值,存在可逆矩阵Q ,使1Q AQ -=Λ,其中12131415⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥Λ=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦上式两边求逆得 1112345Q A Q ---⎡⎤⎢⎥⎢⎥=Λ=Λ=⎢⎥⎢⎥⎣⎦,111A Q Q ---=Λ 从而有1111111112131244151B E P A P E P A E P Q Q EQ E Q ----------=-=-=Λ-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=Λ-=-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(4)【答案】[]1,3.【详解】在给定概率密度条件下,有性质{}2112().x x P x X x f x dx <≤=⎰因此,{}()kP X k f x dx +∞≥=⎰(或{}{}11().kP X k P X k f x dx -∞≥=-<=-⎰)因为[0,1]x ∈时,1()3f x =;[3,6]x ∈时,2()9f x =都是定值,因为{}213P X k ≥=<,所以k 最可能的取值区间是包含在[]0,6区间之内的[]1,3区间,否则是不可能的.当13k ≤≤时,{}22()(63).93kP X k f x dx +∞≥==⨯-=⎰ (或者,当13k ≤≤时,{}11()(10),33kP X k f x dx -∞<==⨯-=⎰{}{}1211.33P X k P X k ≥=-<=-=)所以,答案应该填13k ≤≤或[]1,3.(5)【答案】8.9【详解】由于题中Y 是离散型随机变量,其所取值的概率分别为{}{}0,0P X P X >=和{}0P X <.又由于X 是均匀分布,所以可以直接得出这些概率,从而实现由X 的概率计算过渡到Y 的概率.{}{}0(1)110;33P Y P X --=-=<== {}{}000;P Y P X ==== {}{}20210.33P Y P X -==>== 因此 121()11,333E Y =-⨯+⨯= ()2221212()111,3333E Y =-⨯+⨯=+=所以 []2218()()()1.99D YE Y E Y =-=-=二、选择题 (1)【答案】D【详解】用排除法.例1:设22221()22x x f x x x +≤≤++, 满足条件2222211lim lim 0222x x x x x x x →∞→∞⎡⎤+-==⎢⎥+++⎣⎦, 并且 22221lim 1,122x x x x x →∞+==++, 由夹逼准则知,lim ()1x f x →∞=,则选项()A 与()C 错误.例2:设6262442()11x x x x f x x x ++≤≤++, 满足条件626224442lim lim 0111x x x x x x x x x x →∞→∞⎡⎤++-==⎢⎥+++⎣⎦, 但是由于6224()1x x f x x x +≥=+,有lim ()x f x →∞=+∞,极限不存在,故不选()B ,所以选()D .因为最终结论是“()D :不一定存在”,所以只能举例说明“可以这样”“可以那样”,无法给出相应的证明.(2)【答案】B【详解】方法1:排除法,用找反例的方式()A :2()f x x =,满足(0)0(0)0f f '==且,但2()f x x =在0x =处可导;()C :()1f x x =+,满足(0)10,(0)10f f '=>=>,但()1f x x =+当()1,1x ∈-,在0x =处可导;(D):()1f x x =--,满足(0)10,(0)10,f f '=-<=-<但()1f x x =+当()1,1x ∈-,在0x =处可导; 方法2:推理法.由()B 的条件()0f a =, 则()()()()()limlim lim ,x ax a x a f x f a f x f x f a x a x a x a→→→--==--- 所以 ()()()()lim lim ()x ax af x f a f x f a f a x ax a++→→--'==-- (1)()()()()lim lim ().x ax a f x f a f x f a f a x ax a --→→-⎛-⎫'=-=- ⎪--⎝⎭(2) 可见,()f x 在x a =处可导的充要条件是()()f a f a ''=-,所以()0f a '=,即()0f a '=所以当()0f a '≠时必不可导,选()B .(3)【答案】(C)【详解】因为()11234Tα=,,,是非齐次方程组的解向量所以我们有1A b α=,故1α是AX b =的一个特解又()34r A ,n ==(未知量的个数),故AX b =的基础解系由一个非零解组成. 即基础解系的个数为1.因为()()123220A b b b ,ααα-+=--= 故()1122024132624835ααα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-+=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦是对应齐次方程组的基础解系,故AX b =的通解为()()1231213224354c c .αααα⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-++=+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(4)【答案】(A)【详解】若α是方程组():0I AX =的解,即0A α=,两边左乘T A ,得0TA A α=,即α也是方程组():0TII A AX =的解,即()I 的解也是()II 的解.若β是方程组():0TI I A A X =的解,即0T A A β=,两边左乘T β得()0TT T A A A A .ββββ== A β是一个向量,设[]12TA b ,b ,bβ= ,则()210nTi i A A b .ββ===∑故有0i b =,12i ,,n = 从而有0A β=,即β也是方程组():0I AX =的解.(5)【答案】C【详解】随机变量(1)(2)(3)(4),,,T T T T 为4个温控器显示的按递增顺序排列的温度值,事件E 表示事件“电炉断电”,即有两个温控器显示的温度不低于0t ,此时必定两个显示较高的温度大于等于0t ,即(4)(3)0.T T t ≥≥ 所以说断电事件就是{}(3)0T t ≥三【详解】本题属于二阶常系数非齐次线性微分方程,对于二阶常系数非齐次线性微分方程得求解,首先需要求出对应的齐次微分方程的通解,再求出非齐次方程的特解,再利用线性方程解的解构,从而得到对应方程的通解.本题对应的齐次微分方程为 20y y '''-=, 其特征方程为 220r r -=,特征根为120,2r r ==. 于是齐次方程的通解为 212.xY C C e =+ 由于2λ=是特征方程的单根,所以设 2x y A x e *=求得 22222;44xx xxy A e A x e y A e Ax e **'''=+=+ 代入原方程,得 222224424x x xx x A eA x e A e A x e e +--=,即222x x Ae e =约去2xe ,再比较等式左、右两边,得121,2A A == 故得特解212x y xe *=,非齐次方程的通解为 22121.2x x y Y y C C e xe *=+=++ 再由初始条件(0)1y =,得:121C C += (1)由(0)1y '=,得2222212220111221222xxxxxx x C C e xeC e e xeC =='⎛⎫⎛⎫++=++=+= ⎪ ⎪⎝⎭⎝⎭(2)联立(1)与(2)得 1231,44C C == 则满足初始条件的通解为2311()442x y x e =++.四【详解】画出积分区域D . 由被积函数的形式以及积分区域形状, 易见采用极坐标更为方便. 将曲线y a =-化为:222()()x y a a y a ++=≥-,极坐标方程为2sin (0)r a θπθ=--≤≤,再D 区域是由曲线0)y a a =->和直线y x =-围成的区域,于是04πθ-≤≤,极半径02sin r a θ≤≤-,则202sin 04.a DI d θπσθ--==⎰⎰令2sin r a t =,有0r =时0t =;2sin r a θ=-时,t θ=-.2024sin 42cos 2cos tI d a a tdt a t θπθ--=⎰⎰022044sin d a tdt θπθ--=⎰⎰242(1cos 2)d a t dt θπθ--=-⎰⎰240sin 222t a d t dt θπθ--⎛⎫=- ⎪⎝⎭⎰ 02412(sin 2)2a d πθθθ-=-+⎰022412cos 224a πθθ-⎛⎫=⋅-- ⎪⎝⎭221()162a π=-五【定理】简单极值问题(无条件极值):设(,)z f x y =在开区域D 内可偏导,又根据实际问题可知,它在D 内有最大值或最小值,于是只需在0,0f fx y∂∂==∂∂的点中找到(,)f x y 的最大值点或最小值点【详解】记总利润函数为L ,总收益函数为R ,则总利润=总收益-总成本1122(25)L R C p Q p Q Q =-=+-+112212[2()5]p Q p Q Q Q =+-++ 112212(182)(12)[2()5]Q Q Q Q Q Q =-+--++2211221218212225Q Q Q Q Q Q =-+----221212216105Q Q Q Q =--++-其中,120,0Q Q >>,12Q Q Q =+为销售总量.(1)令121241602100L LQ Q Q Q ∂∂=-+==-+=∂∂,,解得1245Q Q ==,. 而11182P Q =-,2212,P Q =- 故相应地1210,7.p p ==在120,0Q Q >>的范围内驻点唯一,且实际问题在120,0Q Q >>范围内必有最大值,故在1245Q Q ==,处L 为最大值.22max 245164105552()L =-⨯-+⨯+⨯-=万元.(2) 若两地的销售单价无差别, 即12p p =,于是1218212Q Q -=-, 得1226Q Q -=, 在此约束条件下求L 的最值,以下用两个方法:方法1: 若求函数(,)z f x y =在条件(,)0x y ϕ=的最大值或最小值,用拉格朗日乘数法:先构造辅助函数(,,)(,)(,)F x y f x y x y λλϕ=+,然后解方程组00(,)0F f x x x F fy yy Fx y ϕλϕλϕλ⎧∂∂∂=+=⎪∂∂∂⎪∂∂∂⎪=+=⎨∂∂∂⎪⎪∂==⎪∂⎩ 所有满足此方程组的解(,,)x y λ中的(,)x y 是(,)z f x y =在条件(,)0x y ϕ=的可能极值点,在可能极值点中求得最大值点或最小值点.故用拉格朗日乘数法,其中1212(,)260Q Q Q Q ϕ=--=,构造函数2212121212(,,)216105(26),F Q Q Q Q Q Q Q Q λλ=--++-+--令112212416202100260FQ Q FQ Q FQ Q λλλ∂⎧=-++=⎪∂⎪∂⎪=-+-=⎨∂⎪⎪∂=--=⎪∂⎩ 解得1254Q Q ==,,在120,0Q Q >>的范围内驻点唯一,且实际问题在120,0Q Q >>范围内必有最大值,故在1245Q Q ==,处L 为最大值.得22max 254165104549()L =-⨯-+⨯+⨯-=万元.方法2:由1226Q Q -=代入221212216105L Q Q Q Q =--++-消去一个变量得211660101L Q Q =-+-这样就变成了简单极值问题(无条件极值),按(1)的做法:令1112600,dLQ dQ =-+= 得15Q =,为L 的唯一驻点.当11050dL Q dQ <<>时(说明在这个区间上函数单调递增);当15Q >时10dLdQ < (说明在这个区间上函数单调递减)故,15Q =为L 的唯一极大值点,所以是最大值点,而1226Q Q -=⇒24Q =, 故2211max 6601016560510149()L Q Q =-+-=-⨯+⨯-=万元.六【渐近线】水平渐近线:若有lim ()x f x a →∞=,则y a =为水平渐近线;铅直渐近线:若有lim ()x af x →=∞,则x a =为铅直渐近线;斜渐近线:若有()lim,lim[()]x x f x a b f x ax x→∞→∞==-存在且不为∞,则y a x b =+为斜渐近线.【详解】原函数对x 求导,所以 arctan arctan 22(1)(arctan )2xxy ex x eπππ++''=+-⋅+arctan arctan 2221(1)1xx e x e x ππ++=+-⋅⋅+2arctan 221x x x e x π++=+令0y '=,得驻点120,1x x ==-.列表注:+表示函数值大于0,-表示函数值小于0; 表示在这区间内单调递增; 表示在这区间内单调递减.所以由以上表格可以得出函数的大概形状,有严格单调增的区间为(),1-∞-与()0,+∞;严格单调减的区间为()1,0-.2(0)f e π=-为极小值,4(1)2f e π-=-为极大值.以下求渐近线. 通过对函数大概形状的估计,arctan 2lim ()lim(1)lim(1)xx x x f x x e e x ππ+→∞→∞→∞=-=-=∞所以此函数无水平渐近线;同理,也没有铅直渐近线. 所以令111()lim,lim [()]2;x x f x a e b f x a x e xππ→+∞→+∞===-=-222()lim1,lim [()] 2.x x f x a b f x a x x→-∞→-∞===-=-所以,渐近线为11(2)y a x b e x π=+=-及222y a x b x =+=-,共两条.七【概念】幂级数的收敛半径:若1lim lim n x nx a a ρ+→∞→∞=,其中1,n n a a +是幂级数nn n a x ∞=∑的相邻两项的系数,则这幂级数的收敛半径1, 0,, 0, 0, .R ρρρρ≠⎧⎪=+∞=⎨⎪=+∞⎩【详解】先计算出积分n I 的具体表达式,再求和144001sin sin sin12nn nnI xcosxdx xd xnππ+⎛===+⎝⎭⎰⎰则100112nnn nIn+∞∞==⎛⎫= ⎪⎪+⎝⎭∑∑.考虑幂级数11(),1nnS x xn∞+==+∑求出幂级数的和函数,代入2x=即可得出答案,按通常求收敛半径的办法.所以111lim lim lim111nx x xna nna nnρ+→∞→∞→∞+====+得到本题中幂级数的收敛半径()11,11Rρ==-在,内,先微分再积分,在收敛域内幂级数仍收敛,有11000111()111n n nn n nS x x x xn n x∞∞∞++===''⎛⎫⎛⎫'====⎪⎪++-⎝⎭⎝⎭∑∑∑,所以001()(0)()0ln11x xS x S S x dx dx xx'=+=+=---⎰⎰以()1,1x=-代入,得ln(1ln(2S=-=+.即l n(22)nnI∞==∑.八【证明】方法1:令()(),0xF x f t dt xπ=≤≤⎰,有(0)0,F=由题设有()0Fπ=.又由题设()cos0f x xdxπ=⎰,用分部积分,有000()cos cos()f x xdx xdF xππ==⎰⎰00()cos()sinF x x F x xdxππ=+⎰0()sinF x xdxπ=⎰由积分中值定理知,存在(0,)ξπ∈使0()sin ()sin (0)F x xdx F πξξπ==⋅-⎰因为(0,)ξπ∈,sin 0ξ≠,所以推知存在(0,),ξπ∈使得()0F ξ=. 再在区间[0,]ξ与[,]ξπ上对()F x 用罗尔定理,推知存在1(0,)ξξ∈,2(,)ξξπ∈使12()0,()0F F ξξ''==,即 12()0,()0f f ξξ==方法2:由()0f x d x π=⎰及积分中值定理知,存在1(0,)ξπ∈,使1()0f ξ=. 若在区间(0,)π内()f x 仅有一个零点1ξ,则在区间1(0,)ξ与1(,)ξπ内()f x 异号. 不妨设在1(0,)ξ内()0f x >,在1(,)ξπ内()0f x <. 于是由()0,()cos 0f x dx f x xdx ππ==⎰⎰,有111101100()cos ()cos ()(cos cos )()(cos cos )()(cos cos )f x xdx f x dx f x x dxf x x dx f x x dxπππξπξξξξξ=-=-=-+-⎰⎰⎰⎰⎰当10x ξ<<时,1c o s c o s x ξ>,1()(cos cos )0f x x ξ->;当1x ξπ<<时,1c o s c o s x ξ<,仍有1()(cos cos )0f x x ξ->,得到:00>. 矛盾,此矛盾证明了()f x 在(0,)π仅有1个零点的假设不正确,故在(0,)π内()f x 至少有2个不同的零点.九【详解】方法1:设方程组112233x x x αααβ++= ①对方程组的增广矩阵作初等行变换,化成阶梯形矩阵,有[]123211211,,21121011054104304a ab a bc a c αααβ----⎡⎤⎡⎤⎢⎥⎢⎥=→+-+⎢⎥⎢⎥⎢⎥⎢⎥+-+⎣⎦⎣⎦211210140031aa b a c b -⎡⎤⎢⎥→+-+⎢⎥⎢⎥+-+⎣⎦(1) 当4a ≠-时,[][]1231233r ,,r ,,,ααααααβ==. 方程组①唯一解,即β可由123,,ααα线性表出,且表出唯一.(2) 当4a =-,但310c b -+≠时,[][]12312323r ,,r ,,,ααααααβ=≠=方程组①无解,β不可由123,,ααα线性表出(3) 当4a =-,且310c b -+=时,[][]1231232r ,,r ,,,ααααααβ==方程组①有无穷多解,此时有[]1234211,,21010000b αααβ--⎡⎤⎢⎥→--+⎢⎥⎢⎥⎣⎦得对应齐次方程组的基础解系为:()120T,,ξ=-(取自由未知量11x =,回代得2320x ,x =-=),非齐次方程的一个特解是()()0121T*,b ,b η=-++⎡⎤⎣⎦,故通解为()1021021k b ,b ⎡⎤⎡⎤⎢⎥⎢⎥-+-+⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦其中k 是任意常数. 方法2:设方程组112233x x x αααβ++= ①因为①是三个方程的三个未知量的线性非齐次方程组,故也可由系数行列式讨论,()1232121211211141054001a a A ,,a ααα----⎡⎤⎡⎤⎢⎥⎢⎥====-+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦因此知道:(1) 当4a ≠-时,0A ≠,方程组有唯一解,β可由123,,ααα线性表出,且表出唯一.(2) 当4a =-时,(有可能无解或无穷多解)对增广矩阵作初等行变换,得[]12342112111,,2110012110540015b b c c b αααβ--⎡⎤⎡⎤⎢⎥⎢⎥=→+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦21110012100031b c b ⎡⎤⎢⎥→+⎢⎥⎢⎥-+⎣⎦(i) 当4a =-时,且但310c b -+≠时,有[][]12312323r ,,r ,,,ααααααβ=≠=方程组①无解.(ii) 当4a =-,且310c b -+=时,[][]1231232r ,,r ,,,ααααααβ==方程组①有无穷多解,其通解为()1021021k b ,b ⎡⎤⎡⎤⎢⎥⎢⎥-+-+⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦其中k 是任意常数.十【详解】方法1:用正定性的定义判别.已知对任意的12n x ,x ,x 均有()120n f x ,x ,x ≥ ,其中等号成立当且仅当 1122231110000n n n n n x a x x a x x a x x a x --+=⎧⎪+=⎪⎪⎨⎪+=⎪+=⎪⎩ ①方程组①仅有零解的充分必要条件是其系数行列式()12112110000100001001100001001n n n na a B a a a a a +-==+-≠即当()121nn a a a ⋅≠- 时,方程组①只有零解,此时()120n f x ,x ,x = . 若对任意的非零向量()120n X x ,x ,x ,=≠ ①中总有一个方程不为零,则有()222212112223111()()()()0n n n n n n f x ,x ,x x a x x a x x a x x a x --=++++++++>所以,根据正定二次型的定义,对任意的向量()12n x ,x ,x ,如果()120n f x ,x ,x ≥ ,则二次型正定. 由以上证明题中12(,,,)n f x x x 是正定二次型. 方法2: 将二次型表示成矩阵形式,有()222212112223111()()()()n n n n n n f x ,x ,x x a x x a x x a x x a x --=++++++++[]112223112223111111n n n n n n n n n n x a x x a x x a x ,x a x ,,x a x ,x a x x a x x a x ----+⎡⎤⎢⎥+⎢⎥⎢⎥=++++⎢⎥+⎢⎥⎢⎥+⎣⎦[]111222121110001000100001000100001000001000010001001n n n n n n a a x a a x a x ,x ,x a a a x --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦记 1122110000100001000001001n n n a x a x B ,X a a x -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦则 ()()120TT Tn f x ,x ,x X B BX BX BX ==≥当()12112110000100001001100001001n n n na a B a a a a a +-==+-≠即当()121nn a a a ⋅≠- 时,0BX =只有零解,故当任意的0X ≠时,均有()()120Tn f x ,x ,x BX BX => ,从而由正定二次型的定义,对任意的向量()12n x ,x ,x ,如果()120n f x ,x ,x > ,则()12n f x ,x ,x 是正定二次型.十一【详解】ln Y X =⇒YX e =. 题设条件Y 为正态,故()()Y E X E e =可用函数的期望的公式求得. 将X 的样本可以转化成Y 的样本,从而对正态(,1)Y N μ 中的μ求得置信区间. 最后,再从μ的置信区间转得b 的置信区间.(1) 由正态分布密度函数的定义知,Y 的概率密度为2()2(),,y f y y μ--=-∞<<+∞于是 2()2()()y Y y b E X E e e edy μ--+∞-∞===⋅⎰令t y μ=-,有 ()221111222t t t b ee dt ee dt μμ+∞+∞-+--+-∞-∞=⋅=⎰12eμ+=.(2) 当置信度10.95α-=时,0.05α=.查表可知标准正态分布的双侧分位数等于1.96.故由1(,)4Y N μ ,其中Y 表示总体Y 的样本均值,11(ln 0.50ln 0.80ln1.25ln 2.00)ln10.44Y =+++== Y 是μ的无偏估计,且2σ(0,1).N所以,按标准正态分布的α分位点的定义,有 /21,P Z αα⎫⎪<=-⎬⎪⎭即/2/21.P Y Y Z ααμα⎧⎫<<=-⎨⎬⎩⎭这样,我们就得到了μ的一个置信水平为1α-的置信区间/2/2,Y Y Z αα⎛⎫⎪⎝⎭在此题中,1,4σμ==,0Y =,所以参数μ的置信度为0.95的置信区间为( 1.96 1.96(0.98,0.98).Y Y -+=- (3) 由指数函数xe 的严格单调递增性,有{}10.980.980.48 1.482P P μμ⎧⎫-<<=-<+<⎨⎬⎩⎭10.48 1.482P e e e μ+-⎧⎫=<<⎨⎬⎩⎭{}0.48 1.48P e b e -=<<0.95=因此b 的置信度为0.95的置信区间为()0.481.48,.ee -十二【分析】随机变量X Y 和不相关(,)0Cov X Y ⇔=.事件A B 与相互独立()()()P AB P A P B ⇔=.要找出这二者之间的联系就应从(,)()()()Cov X Y E XY E X E Y =-入手.【详解】{}(){}{}()1121E X P A P A P A =⋅+-⋅=-,同理,{}()2 1.E Y P B =- 现在求()E XY ,由于XY 只有两个可能值1和1-,所以{}(){}()1111,E XY P XY P XY =⋅=+-⋅=-其中 {}{}{}{}{}11,11,1P XY P X Y P X Y P AB P AB ====+=-=-=+{}{}{}{}{}121P AB P A B P AB P A P B =+-=--+和 {}{}{}{}{}11,11,1P X Y P X Y P X Y P A B P A B=-===-+=-==+{}{}{}2P A P B P AB =+-( 或者 {}{}{}{}{}1112P X Y P X Y P A P B P A B =-=-==+- )所以 {}{}()11E XY P XY P XY ==-=-{}{}{}4221P AB P A P B =--+ 由协方差公式,()()()()Cov XY E XY E X E Y =-{}{}{}{}{}42212121P AB P A P B P A P B =--+--⋅-⎡⎤⎡⎤⎣⎦⎣⎦ {}{}{}4P AB P A P B =-⎡⎤⎣⎦因此,()0Cov XY =当且仅当{}{}{}P AB P A P B =,即X Y 和不相关的充分必要条件是A B 与相互独立.。

2000年考研数学三真题及答案

2000年考研数学三真题及答案

2000年考研数学三真题及答案2000年的考研数学三真题是许多考生备考过程中关注的一个重要内容,以下将为您提供2000年考研数学三真题及答案的详细内容。

为了您的方便阅读,我们将按照试卷中出现的题目顺序依次给出题目及答案。

一、选择题1. 设函数f(x) = x^3 - 3x^2 + 2x - 1,对f(x)进行因式分解,正确的是()a) f(x) = (x-1)(x-1)(x+1)b) f(x) = (x+1)(x-1)(x-1)c) f(x) = (x-1)(x+1)(x+1)d) f(x) = (x+1)(x+1)(x-1)答案:a) f(x) = (x-1)(x-1)(x+1)2. 设函数f(x) = 2x^4 - 3x^2 + 1,则f'(1)的值为()a) 0b) 1c) -2d) 3答案:d) 33. 已知等差数列{an}满足a1=1,a2=2,an+2 = 3an+1 - 2an+2,那么数列{an}的通项公式为()a) an = 2^nb) an = (-1)^nc) an = nd) an = n+1答案:b) an = (-1)^n4. 设A为n阶矩阵,且对任意整数k,都有A^k = A,则A的特征值满足的条件是()a) 所有特征值都为0b) 所有特征值都为1c) 所有特征值都为-1d) 不存在特征值答案:b) 所有特征值都为1二、计算题1. 求函数f(x) = sin^3(x)在区间[0, π/2]上的平均值。

解:根据定积分的定义,函数f(x)在区间[a, b]上的平均值M等于1/(b-a)乘积分号下限a、上限b的定积分。

因此,可以计算出函数f(x)在区间[0, π/2]上的平均值为:M = (1/π/2 - 0) * ∫[0, π/2] sin^3(x) dx= (2/π) * ∫[0, π/2] sin^3(x) dx= (2/π) * (2/3 - 0)= 4/3π因此,函数f(x) = sin^3(x)在区间[0, π/2]上的平均值为4/3π。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2003年全国硕士研究生入学统一考试数学三试题一、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则λ的取值范围是_____.(2)已知曲线b x a x y +-=233与x 轴相切,则2b 可以通过a 表示为=2b ________. (3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(=_______.(4)设n 维向量0,),0,,0,(<=a a a T α;E 为n 阶单位矩阵,矩阵 T E A αα-=, T aE B αα1+=, 其中A 的逆矩阵为B ,则a=______.(5)设随机变量X 和Y 的相关系数为0.9, 若4.0-=X Z ,则Y 与Z 的相关系数为________.(6)设总体X 服从参数为2的指数分布,n X X X ,,,21 为来自总体X 的简单随机样本,则当∞→n 时,∑==ni i n X n Y 121依概率收敛于______.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=[ ] (A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0.(C) 在x=0处右极限不存在. (D) 有可去间断点x=0. (2)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是 [ ] (A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零.(C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在. (3)设2nn n a a p +=,2nn n a a q -=, ,2,1=n ,则下列命题正确的是 [ ](A) 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq都收敛.(B) 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq都收敛.(C) 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定.(D) 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定.(4)设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若A 的伴随矩阵的秩为1,则必有 [ ] (A) a=b 或a+2b=0. (B) a=b 或a+2b ≠0.(C) a ≠b 且a+2b=0. (D) a ≠b 且a+2b ≠0.(5)设s ααα,,,21 均为n 维向量,下列结论不正确的是 [ ](A) 若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 线性无关.(B) 若s ααα,,,21 线性相关,则对于任意一组不全为零的数s k k k ,,,21 ,都有.02211=+++s s k k k ααα(C) s ααα,,,21 线性无关的充分必要条件是此向量组的秩为s.(D) s ααα,,,21 线性无关的必要条件是其中任意两个向量线性无关.(6)将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件 [ ](A) 321,,A A A 相互独立. (B) 432,,A A A 相互独立.(C) 321,,A A A 两两独立. (D) 432,,A A A 两两独立. 三、(本题满分8分) 设: ).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ 试补充定义f(1)使得f(x)在]1,21[上连续.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂v f u f ,又)](21,[),(22y x xy f y x g -=,求.2222y gx g ∂∂+∂∂ 五、(本题满分8分) 计算二重积分 .)sin(22)(22dxdy y x e I Dy x +=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y x y x六、(本题满分9分)求幂级数∑∞=<-+12)1(2)1(1n nnx n x 的和函数f(x)及其极值.七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在),(+∞-∞内满足以下条件: )()(x g x f =',)()(x f x g =',且f(0)=0, .2)()(x e x g x f =+(1) 求F(x)所满足的一阶微分方程; (2) 求出F(x)的表达式. 八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在)3,0(∈ξ,使.0)(='ξf九、(本题满分13分) 已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a 其中.01≠∑=ni ia试讨论n a a a ,,,21 和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系. 十、(本题满分13分)设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T 中二次型的矩阵A 的特征值之和为1,特征值之积为-12. (1) 求a,b 的值;(2) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵. 十一、(本题满分13分) 设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x fF(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.十二、(本题满分13分)设随机变量X 与Y 独立,其中X 的概率分布为⎪⎪⎭⎫⎝⎛7.03.021~X ,而Y 的概率密度为f(y),求随机变量U=X+Y 的概率密度g(u).2003年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则λ的取值范围是2>λ. 【分析】 当≠x 0可直接按公式求导,当x=0时要求用定义求导.【详解】 当1>λ时,有,0,0,0,1sin 1cos )(21=≠⎪⎩⎪⎨⎧+='--x x xx x x x f 若若λλλ 显然当2>λ时,有)0(0)(lim 0f x f x '=='→,即其导函数在x=0处连续.(2)已知曲线b x a x y +-=233与x 轴相切,则2b 可以通过a 表示为=2b 64a . 【分析】 曲线在切点的斜率为0,即0='y ,由此可确定切点的坐标应满足的条件,再根据在切点处纵坐标为零,即可找到2b 与a 的关系.【详解】 由题设,在切点处有03322=-='a x y ,有 .220a x =又在此点y 坐标为0,于是有0300230=+-=b x a x ,故 .44)3(6422202202a a a x a x b =⋅=-=【评注】 有关切线问题应注意斜率所满足的条件,同时切点还应满足曲线方程. (3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(= 2a .【分析】 本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,因此实际上只需在满足此不等式的区域内积分即可.【详解】 ⎰⎰-=Ddxdy x y g x f I )()(=dxdy a x y x ⎰⎰≤-≤≤≤10,102=.])1[(212112a dx x x a dy dx a x x=-+=⎰⎰⎰+【评注】 若被积函数只在某区域内不为零,则二重积分的计算只需在积分区域与被积函数不为零的区域的公共部分上积分即可.(4)设n 维向量0,),0,,0,(<=a a a T α;E 为n 阶单位矩阵,矩阵T E A αα-=, T aE B αα1+=, 其中A 的逆矩阵为B ,则a= -1 .【分析】 这里T αα为n 阶矩阵,而22a T =αα为数,直接通过E AB =进行计算并注意利用乘法的结合律即可.【详解】 由题设,有)1)((T T a E E AB αααα+-= =T T T T a a E αααααααα⋅-+-11=T T T T a a E αααααααα)(11-+-=T T T a a E αααααα21-+-=E aa E T =+--+αα)121(,于是有 0121=+--aa ,即 0122=-+a a ,解得 .1,21-==a a 由于A<0 ,故a=-1.(5)设随机变量X 和Y 的相关系数为0.9, 若4.0-=X Z ,则Y 与Z 的相关系数为0.9 .【分析】 利用相关系数的计算公式即可. 【详解】 因为)4.0()()]4.0([()4.0,cov(),cov(---=-=X E Y E X Y E X Y Z Y =)(4.0)()()(4.0)(Y E X E Y E Y E XY E +-- =E(XY) – E(X)E(Y)=cov(X,Y), 且.DX DZ =于是有 cov(Y,Z)=DZDY Z Y ),cov(=.9.0),cov(==XY DYDX Y X ρ【评注】 注意以下运算公式:DX a X D =+)(,).,cov(),cov(Y X a Y X =+ (6)设总体X 服从参数为2的指数分布,n X X X ,,,21 为来自总体X 的简单随机样本,则当∞→n 时,∑==ni i n X n Y 121依概率收敛于 21 .【分析】 本题考查大数定律:一组相互独立且具有有限期望与方差的随机变量n X X X ,,,21 ,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值: ).(1111∞→→∑∑==n EX n X n ni i pn i i【详解】 这里22221,,,nX X X 满足大数定律的条件,且22)(i i i EX DX EX +==21)21(412=+,因此根据大数定律有 ∑==n i i n X n Y 121依概率收敛于.21112=∑=n i i EX n二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=(A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0.(C) 在x=0处右极限不存在. (D) 有可去间断点x=0. [ D ] 【分析】 由题设,可推出f(0)=0 , 再利用在点x=0处的导数定义进行讨论即可. 【详解】 显然x=0为g(x)的间断点,且由f(x)为不恒等于零的奇函数知,f(0)=0. 于是有 )0(0)0()(lim )(lim)(lim 00f x f x f x x f xg x x x '=--==→→→存在,故x=0为可去间断点. 【评注1】 本题也可用反例排除,例如f(x)=x, 则此时g(x)=,0,0,0,1=≠⎩⎨⎧=x x x x 可排除(A),(B),(C) 三项,故应选(D).【评注2】 若f(x)在0x x =处连续,则.)(,0)()(lim000A x f x f A x x x f x x ='=⇔=-→.(2)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是(A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零. (C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在. [ A ] 【分析】 可微必有偏导数存在,再根据取极值的必要条件即可得结论.【详解】 可微函数f(x,y)在点),(00y x 取得极小值,根据取极值的必要条件知0),(00='y x f y ,即),(0y x f 在0y y =处的导数等于零, 故应选(A).【评注1】 本题考查了偏导数的定义,),(0y x f 在0y y =处的导数即),(00y x f y ';而),(0y x f 在0x x =处的导数即).,(00y x f x '【评注2】 本题也可用排除法分析,取22),(y x y x f +=,在(0,0)处可微且取得极小值,并且有2),0(y y f =,可排除(B),(C),(D), 故正确选项为(A).(3)设2nn n a a p +=,2nn n a a q -=, ,2,1=n ,则下列命题正确的是(A) 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq都收敛.(B) 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq都收敛.(C) 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定.(D) 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定. [ B ]【分析】 根据绝对收敛与条件收敛的关系以及收敛级数的运算性质即可找出答案. 【详解】 若∑∞=1n na绝对收敛,即∑∞=1n na收敛,当然也有级数∑∞=1n na收敛,再根据2nn n a a p +=,2nn n a a q -=及收敛级数的运算性质知,∑∞=1n np与∑∞=1n nq都收敛,故应选(B).(4)设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若A 的伴随矩阵的秩为1,则必有 (A) a=b 或a+2b=0. (B) a=b 或a+2b ≠0.(C) a ≠b 且a+2b=0. (D) a ≠b 且a+2b ≠0. [ C ]【分析】 A 的伴随矩阵的秩为1, 说明A 的秩为2,由此可确定a,b 应满足的条件. 【详解】 根据A 与其伴随矩阵A*秩之间的关系知,秩(A)=2,故有0))(2(2=-+=b a b a ab b b a b bb a ,即有02=+b a 或a=b.但当a=b 时,显然秩(A)2≠, 故必有 a ≠b 且a+2b=0. 应选(C).【评注】 n (n )2≥阶矩阵A 与其伴随矩阵A*的秩之间有下列关系:.1)(,1)(,)(,0,1,*)(-<-==⎪⎩⎪⎨⎧=n A r n A r n A r n A r(5)设s ααα,,,21 均为n 维向量,下列结论不正确的是(A) 若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 线性无关.(B) 若s ααα,,,21 线性相关,则对于任意一组不全为零的数s k k k ,,,21 ,都有.02211=+++s s k k k ααα(C) s ααα,,,21 线性无关的充分必要条件是此向量组的秩为s.(D) s ααα,,,21 线性无关的必要条件是其中任意两个向量线性无关. [ B ] 【分析】 本题涉及到线性相关、线性无关概念的理解,以及线性相关、线性无关的等价表现形式. 应注意是寻找不正确的命题.【详解】(A): 若对于任意一组不全为零的数s k k k ,,,21 ,都有 02211≠+++s s k k k ααα ,则s ααα,,,21 必线性无关,因为若s ααα,,,21 线性相关,则存在一组不全为零的数s k k k ,,,21 ,使得 02211=+++s s k k k ααα ,矛盾. 可见(A )成立.(B): 若s ααα,,,21 线性相关,则存在一组,而不是对任意一组不全为零的数s k k k ,,,21 ,都有.02211=+++s s k k k ααα (B)不成立.(C) s ααα,,,21 线性无关,则此向量组的秩为s ;反过来,若向量组s ααα,,,21 的秩为s ,则s ααα,,,21 线性无关,因此(C)成立.(D) s ααα,,,21 线性无关,则其任一部分组线性无关,当然其中任意两个向量线性无关,可见(D)也成立.综上所述,应选(B).【评注】 原命题与其逆否命题是等价的. 例如,原命题:若存在一组不全为零的数s k k k ,,,21 ,使得02211=+++s s k k k ααα 成立,则s ααα,,,21 线性相关. 其逆否命题为:若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 线性无关. 在平时的学习过程中,应经常注意这种原命题与其逆否命题的等价性.(6)将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件(A) 321,,A A A 相互独立. (B) 432,,A A A 相互独立.(C) 321,,A A A 两两独立. (D) 432,,A A A 两两独立. [ C ] 【分析】按照相互独立与两两独立的定义进行验算即可,注意应先检查两两独立,若成立,再检验是否相互独立.【详解】 因为21)(1=A P ,21)(2=A P ,21)(3=A P ,41)(4=A P ,且 41)(21=A A P ,41)(31=A A P ,41)(32=A A P ,41)(42=A A P 0)(321=A A A P ,可见有)()()(2121A P A P A A P =,)()()(3131A P A P A A P =,)()()(3232A P A P A A P =,)()()()(321321A P A P A P A A A P ≠,)()()(4242A P A P A A P ≠.故321,,A A A 两两独立但不相互独立;432,,A A A 不两两独立更不相互独立,应选(C).【评注】 本题严格地说应假定硬币是均匀的,否则结论不一定成立.三 、(本题满分8分) 设 ).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ 试补充定义f(1)使得f(x)在]1,21[上连续.【分析】 只需求出极限)(lim 1x f x -→,然后定义f(1)为此极限值即可. 【详解】 因为)(lim 1x f x -→=])1(1sin 11[lim 1x x x x --+-→πππ =xx xx x πππππsin )1(sin )1(lim 111---+-→=xx x xx ππππππππcos )1(sin cos lim 111-+---+-→=xx x x xx ππππππππππsin )1(cos cos sin lim 11221----+-→ =.1π由于f(x)在)1,21[上连续,因此定义π1)1(=f ,使f(x)在]1,21[上连续.【评注】 本题实质上是一求极限问题,但以这种形式表现出来,还考查了连续的概念.在计算过程中,也可先作变量代换y=1-x ,转化为求+→0y 的极限,可以适当简化.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂v f u f ,又)](21,[),(22y x xy f y x g -=,求.2222ygx g ∂∂+∂∂ 【分析】 本题是典型的复合函数求偏导问题:),(v u f g =,)(21,22y x v xy u -==,直接利用复合函数求偏导公式即可,注意利用.22uv fv u f ∂∂∂=∂∂∂【详解】v f x u f y x g ∂∂+∂∂=∂∂, .vf y u f x yg ∂∂-∂∂=∂∂ 故 v f vf x v u f xy u f y xg ∂∂+∂∂+∂∂∂+∂∂=∂∂2222222222, .2222222222v f vf y u v f xy u f x yg ∂∂-∂∂+∂∂∂-∂∂=∂∂ 所以 222222222222)()(vf y x u f y x yg x g ∂∂++∂∂+=∂∂+∂∂ =.22y x +【评注】 本题考查半抽象复合函数求二阶偏导. 五 、(本题满分8分) 计算二重积分 .)sin(22)(22dxdy y x e I Dy x +=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y x y x【分析】 从被积函数与积分区域可以看出,应该利用极坐标进行计算. 【详解】 作极坐标变换:θθsin ,cos r y r x ==,有 dxdy y x e e I Dy x )sin(22)(22+=⎰⎰+-π=.sin 2022dr r re d e r ⎰⎰-πππθ令2r t =,则 tdt e e I t sin 0⎰-=πππ.记 tdt e A t sin 0⎰-=π,则t t de e A --⎰-=int 0π=]cos sin [0⎰----ππtdt e t e t t=⎰--πcos t tde=]sin cos [0tdt e t e t t ⎰--+-ππ=.1A e -+-π 因此 )1(21π-+=e A , ).1(2)1(2πππππe e e I +=+=-【评注】 本题属常规题型,明显地应该选用极坐标进行计算,在将二重积分化为定积分后,再通过换元与分步积分(均为最基础的要求),即可得出结果,综合考查了二重积分、换元积分与分步积分等多个基础知识点.六、(本题满分9分)求幂级数∑∞=<-+12)1(2)1(1n n nx n x 的和函数f(x)及其极值.【分析】 先通过逐项求导后求和,再积分即可得和函数,注意当x=0时和为1. 求出和函数后,再按通常方法求极值.【详解】.1)1()(1212∑∞=-+-=-='n n n x xx x f 上式两边从0到x 积分,得).1ln(211)0()(202x dt t t f x f x+-=+-=-⎰ 由f(0)=1, 得).1(),1ln(211)(2<+-=x x x f 令0)(='x f ,求得唯一驻点x=0. 由于,)1(1)(222x x x f +--=''01)0(<-=''f ,可见f(x)在x=0处取得极大值,且极大值为 f(0)=1.【评注】 求和函数一般都是先通过逐项求导、逐项积分等转化为可直接求和的几何级数情形,然后再通过逐项积分、逐项求导等逆运算最终确定和函数.七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在),(+∞-∞内满足以下条件:)()(x g x f =',)()(x f x g =',且f(0)=0, .2)()(x e x g x f =+(3) 求F(x)所满足的一阶微分方程; (4) 求出F(x)的表达式.【分析】 F(x)所满足的微分方程自然应含有其导函数,提示应先对F(x)求导,并将其余部分转化为用F(x)表示,导出相应的微分方程,然后再求解相应的微分方程.【详解】 (1) 由)()()()()(x g x f x g x f x F '+'='=)()(22x f x g +=)()(2)]()([2x g x f x g x f -+ =(22)x e -2F(x), 可见F(x)所满足的一阶微分方程为.4)(2)(2x e x F x F =+'(2) ]4[)(222C dx e e e x F dxx dx +⎰⋅⎰=⎰-=]4[42C dx e e x x +⎰-=.22x x Ce e -+ 将F(0)=f(0)g(0)=0代入上式,得 C=-1. 于是.)(22x x e e x F --=【评注】 本题没有直接告知微分方程,要求先通过求导以及恒等变形引出微分方程的形式,从题型来说比较新颖,但具体到微分方程的求解则并不复杂,仍然是基本要求的范围.八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在)3,0(∈ξ,使.0)(='ξf【分析】 根据罗尔定理,只需再证明存在一点c )3,0[∈,使得)3(1)(f c f ==,然后在[c,3]上应用罗尔定理即可. 条件f(0)+f(1)+f(2)=3等价于13)2()1()0(=++f f f ,问题转化为1介于f(x)的最值之间,最终用介值定理可以达到目的.【详解】 因为f(x)在[0,3]上连续,所以f(x)在[0,2]上连续,且在[0,2]上必有最大值M 和最小值m ,于是M f m ≤≤)0(, M f m ≤≤)1(, M f m ≤≤)2(. 故.3)2()1()0(M f f f m ≤++≤由介值定理知,至少存在一点]2,0[∈c ,使.13)2()1()0()(=++=f f f c f因为f(c)=1=f(3), 且f(x)在[c,3]上连续,在(c,3)内可导,所以由罗尔定理知,必存在)3,0()3,(⊂∈c ξ,使.0)(='ξf【评注】 介值定理、微分中值定理与积分中值定理都是常考知识点,且一般是两两结合起来考. 本题是典型的结合介值定理与微分中值定理的情形.九、(本题满分13分) 已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a 其中.01≠∑=ni ia试讨论n a a a ,,,21 和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系.【分析】方程的个数与未知量的个数相同,问题转化为系数矩阵行列式是否为零,而系数行列式的计算具有明显的特征:所有列对应元素相加后相等. 可先将所有列对应元素相加,然后提出公因式,再将第一行的(-1)倍加到其余各行,即可计算出行列式的值.【详解】 方程组的系数行列式ba a a a a ba a a a ab a a a a a b a A n n n n++++= 321321321321 =).(11∑=-+ni i n a b b(1) 当0≠b 时且01≠+∑=ni iab 时,秩(A)=n ,方程组仅有零解.(2) 当b=0 时,原方程组的同解方程组为 .02211=+++n n x a x a x a 由01≠∑=ni ia可知,),,2,1(n i a i =不全为零. 不妨设01≠a ,得原方程组的一个基础解系为T a a )0,,0,1,(121 -=α,T a a )0,,1,0,(132 -=α,.)1,,0,0,(,1T n n a a-=α当∑=-=ni iab 1时,有0≠b ,原方程组的系数矩阵可化为⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑∑∑∑====n i i n nni inni inni ia a a a a a a a a a a a a a a a a a a a 1321132131213211(将第1行的-1倍加到其余各行,再从第2行到第n 行同乘以∑=-ni ia11倍)→ ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑=1001010100113211 n ni ia a a a a( 将第n 行n a -倍到第2行的2a -倍加到第1行,再将第1行移到最后一行)→ .0000100101010011⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---由此得原方程组的同解方程组为12x x =,13x x =,1,x x n = . 原方程组的一个基础解系为 .)1,,1,1(T =α【评注】 本题的难点在∑=-=ni iab 1时的讨论,事实上也可这样分析:此时系数矩阵的秩为 n-1(存在n-1阶子式不为零),且显然T )1,,1,1( =α为方程组的一个非零解,即可作为基础解系.十、(本题满分13分) 设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T ,中二次型的矩阵A 的特征值之和为1,特征值之积为-12. (3) 求a,b 的值;(4) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵. 【分析】 特征值之和为A 的主对角线上元素之和,特征值之积为A 的行列式,由此可求出a,b 的值;进一步求出A 的特征值和特征向量,并将相同特征值的特征向量正交化(若有必要),然后将特征向量单位化并以此为列所构造的矩阵即为所求的正交矩阵.【详解】 (1)二次型f 的矩阵为.200200⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=b b a A 设A 的特征值为).3,2,1(=i i λ 由题设,有1)2(2321=-++=++a λλλ,.12242002002321-=--=-=b a b ba λλλ解得 a=1,b= -2.(2) 由矩阵A 的特征多项式)3()2(2020202012+-=+----=-λλλλλλA E , 得A 的特征值.3,2321-===λλλ对于,221==λλ解齐次线性方程组0)2(=-x A E ,得其基础解系 T )1,0,2(1=ξ,.)0,1,0(2T =ξ对于33-=λ,解齐次线性方程组0)3(=--x A E ,得基础解系 .)2,0,1(3T -=ξ由于321,,ξξξ已是正交向量组,为了得到规范正交向量组,只需将321,,ξξξ单位化,由此得T )51,0,52(1=η,T )0,1,0(2=η,.)52,0,51(3T -=η令矩阵[]⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==5205101051052321ηηηQ ,则Q 为正交矩阵. 在正交变换X=QY 下,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020002AQ Q T ,且二次型的标准形为.322232221y y y f -+=【评注】 本题求a,b ,也可先计算特征多项式,再利用根与系数的关系确定:二次型f 的矩阵A 对应特征多项式为)].2()2()[2(2020022b a a bbaA E +----=+----=-λλλλλλλ 设A 的特征值为321,,λλλ,则).2(,2,2232321b a a +-=-=+=λλλλλ由题设得1)2(2321=-+=++a λλλ,.12)2(22321-=+-=b a λλλ解得a=1,b=2.十一、(本题满分13分) 设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x fF(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.【分析】 先求出分布函数F(x) 的具体形式,从而可确定Y=F(X) ,然后按定义求Y 的分布函数即可.注意应先确定Y=F(X)的值域范围)1)(0(≤≤X F ,再对y 分段讨论.【详解】 易见,当x<1时,F(x)=0; 当x>8 时,F(x)=1. 对于]8,1[∈x ,有 .131)(3132-==⎰x dt t x F x设G(y)是随机变量Y=F(X)的分布函数. 显然,当0<y 时,G(y)=0;当1≥y 时,G(y)=1. 对于)1,0[∈y ,有})({}{)(y X F P y Y P y G ≤=≤= =})1({}1{33+≤=≤-y X P y X P =.])1[(3y y F =+于是,Y=F(X)的分布函数为.1,10,0,1,,0)(≥<≤<⎪⎩⎪⎨⎧=y y y y y G 若若若【评注】 事实上,本题X 为任意连续型随机变量均可,此时Y=F(X)仍服从均匀分布: 当y<0时,G(y)=0; 当 1≥y 时,G(y)=1;当 01<≤y 时,})({}{)(y X F P y Y P y G ≤=≤= =)}({1y F X P -≤ =.))((1y y F F =-十二、(本题满分13分)设随机变量X 与Y 独立,其中X 的概率分布为 ⎪⎪⎭⎫⎝⎛7.03.021~X ,而Y 的概率密度为f(y),求随机变量U=X+Y 的概率密度g(u).【分析】求二维随机变量函数的分布,一般用分布函数法转化为求相应的概率. 注意X 只有两个可能的取值,求概率时可用全概率公式进行计算.【详解】 设F(y)是Y 的分布函数,则由全概率公式,知U=X+Y 的分布函数为 }{)(u Y X P u G ≤+==}2{7.0}1{3.0=≤++=≤+X u Y X P X u Y X P =}22{7.0}11{3.0=-≤+=-≤X u Y P X u Y P . 由于X 和Y 独立,可见G(u)= }2{7.0}1{3.0-≤+-≤u Y P u Y P=).2(7.0)1(3.0-+-u F u F 由此,得U 的概率密度)2(7.0)1(3.0)()(-'+-'='=u F u F u G u g =).2(7.0)1(3.0-+-u f u f【评注】 本题属新题型,求两个随机变量和的分布,其中一个是连续型一个是离散型,要求用全概率公式进行计算,类似问题以前从未出现过,具有一定的难度和综合性.2004年全国硕士研究生入学统一考试数学三试题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若5)(cos sin lim0=--→b x ae xx x ,则a =______,b =______. (2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则2fu v∂=∂∂.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则212(1)f x dx -=⎰.(4) 二次型213232221321)()()(),,(x x x x x x x x x f ++-++=的秩为 . (5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P _______.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X 和2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则12221112()()2n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎢⎥⎣⎦∑∑.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. [ ] (A) (-1 , 0).(B) (0 , 1).(C) (1 , 2).(D) (2 , 3).(8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim , ⎪⎩⎪⎨⎧=≠=0,00,)1()(x x x f x g ,则 [ ](A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. (9) 设f (x ) = |x (1 - x )|,则 [ ](A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点.(C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点.(10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim 1>+∞→nn n u u ,则∑∞=1n n u 发散.(4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是 [ ] (A) (1) (2). (B) (2) (3). (C) (3) (4). (D) (1) (4).(11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是[ ] (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.(12) 设n 阶矩阵A 与B 等价, 则必有 [ ](A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B .(13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系[ ] (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量.(14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于[ ] (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1.三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分)求)cos sin 1(lim 2220xxx x -→.(16) (本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D 22122=所围成的 平面区域(如图).(17) (本题满分8分) 设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥x axadt t g dt t f )()(,x ∈ [a , b ),⎰⎰=bab adt t g dt t f )()(.证明:⎰⎰≤babadx x xg dx x xf )()(.(18) (本题满分9分) 设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时, 降低价格反而使收益增加. (19) (本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x 的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式. (20)(本题满分13分)设T α)0,2,1(1=, T ααα)3,2,1(2-+=, T b αb α)2,2,1(3+---=, T β)3,3,1(-=, 试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式. (21) (本题满分13分) 设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=111 b b b bb b A . (Ⅰ) 求A 的特征值和特征向量;(Ⅱ) 求可逆矩阵P , 使得AP P 1-为对角矩阵. (22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=AB P , 21)|(=B A P , 令 ⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y X Z +=的概率分布.(23) (本题满分13分)设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量;(Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.2004年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若5)(cos sin lim0=--→b x ae xx x ,则a =1,b =4-.【分析】本题属于已知极限求参数的反问题. 【详解】因为5)(cos sin lim0=--→b x ae xx x ,且0)(cos sin lim 0=-⋅→b x x x ,所以 0)(lim 0=-→a e x x ,得a = 1. 极限化为 51)(cos lim )(cos sin lim00=-=-=--→→b b x x xb x a e x x x x ,得b = -4.因此,a = 1,b = -4.【评注】一般地,已知)()(limx g x f = A , (1) 若g (x ) → 0,则f (x ) → 0;(2) 若f (x ) → 0,且A ≠ 0,则g (x ) → 0.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则)()(22v g v g vu f '-=∂∂∂.【分析】令u = xg (y ),v = y ,可得到f (u , v )的表达式,再求偏导数即可. 【详解】令u = xg (y ),v = y ,则f (u , v ) =)()(v g v g u+,所以,)(1v g u f =∂∂,)()(22v g v g v u f '-=∂∂∂.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则21)1(221-=-⎰dx x f . 【分析】本题属于求分段函数的定积分,先换元:x - 1 = t ,再利用对称区间上奇偶函数的积分性质即可.【详解】令x - 1 = t ,⎰⎰⎰--==-121121221)()()1(dt x f dt t f dx x f=21)21(0)1(12121212-=-+=-+⎰⎰-dx dx xe x .【评注】一般地,对于分段函数的定积分,按分界点划分积分区间进行求解. (4) 二次型213232221321)()()(),,(x x x x x x x x x f ++-++=的秩为 2 .【分析】二次型的秩即对应的矩阵的秩, 亦即标准型中平方项的项数, 于是利用初等变换或配方法均可得到答案. 【详解一】因为213232221321)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=于是二次型的矩阵为 ⎪⎪⎪⎭⎫ ⎝⎛--=211121112A ,由初等变换得 ⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→000330211330330211A ,从而 2)(=A r , 即二次型的秩为2.【详解二】因为213232221321)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++= 2322321)(23)2121(2x x x x x -+++= 2221232y y +=,其中 ,21213211x x x y ++= 322x x y -=.所以二次型的秩为2.(5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X Pe1.【分析】 根据指数分布的分布函数和方差立即得正确答案. 【详解】 由于21λDX =, X 的分布函数为 ⎩⎨⎧≤>-=-.0,0,0,1)(x x e x F x λ故=>}{DX X P =≤-}{1DX X P =≤-}1{1λX P )1(1λF -e1=. 【评注】本题是对重要分布, 即指数分布的考查, 属基本题型.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X 和 2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则22121212)()(21σn n Y Y X X E n j j n i i =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+-+-∑∑==.【分析】利用正态总体下常用统计量的数字特征即可得答案.【详解】因为 2121])(11[1σX X n E n i i =--∑=, 2122])(11[2σY Y n E n j j =--∑=, 故应填 2σ.【评注】本题是对常用统计量的数字特征的考查.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (-1 , 0).(B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ A ]【分析】如f (x )在(a , b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在(a , b )内有界.【详解】当x ≠ 0 , 1 , 2时,f (x )连续,而183sin )(lim 1-=+-→x f x ,42sin )(lim 0-=-→x f x ,42sin )(lim 0=+→x f x ,∞=→)(lim 1x f x ,∞=→)(lim 2x f x ,所以,函数f (x )在(-1 , 0)内有界,故选(A).【评注】一般地,如函数f (x )在闭区间[a , b ]上连续,则f (x )在闭区间[a , b ]上有界;如函数f (x )在开区间(a , b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在开区间(a , b )内有界.(8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg ,则 (A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ D ] 【分析】考查极限)(lim 0x g x →是否存在,如存在,是否等于g (0)即可,通过换元xu 1=, 可将极限)(lim 0x g x →转化为)(lim x f x ∞→.【详解】因为)(lim )1(lim )(lim 0u f x f x g u x x ∞→→→=== a (令xu 1=),又g (0) = 0,所以,当a = 0时,)0()(lim 0g x g x =→,即g (x )在点x = 0处连续,当a ≠ 0时,)0()(lim 0g x g x ≠→,即x = 0是g (x )的第一类间断点,因此,g (x )在点x = 0处的连续性与a 的取值有关,故选(D).【评注】本题属于基本题型,主要考查分段函数在分界点处的连续性. (9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ C ] 【分析】由于f (x )在x = 0处的一、二阶导数不存在,可利用定义判断极值情况,考查f (x )在x = 0的左、右两侧的二阶导数的符号,判断拐点情况.【详解】设0 < δ < 1,当x ∈ (-δ , 0) ⋃ (0 , δ)时,f (x ) > 0,而f (0) = 0,所以x = 0是f (x )的极小值点. 显然,x = 0是f (x )的不可导点. 当x ∈ (-δ , 0)时,f (x ) = -x (1 - x ),02)(>=''x f , 当x ∈ (0 , δ)时,f (x ) = x (1 - x ),02)(<-=''x f ,所以(0 , 0)是曲线y = f (x )的拐点. 故选(C).【评注】对于极值情况,也可考查f (x )在x = 0的某空心邻域内的一阶导数的符号来判断. (10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim 1>+∞→nn n u u ,则∑∞=1n n u 发散.(4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是 (A) (1) (2). (B) (2) (3). (C) (3) (4). (D) (1) (4). [ B ]【分析】可以通过举反例及级数的性质来说明4个命题的正确性. 【详解】(1)是错误的,如令nn u )1(-=,显然,∑∞=1n n u 分散,而∑∞=-+1212)(n n n u u 收敛.(2)是正确的,因为改变、增加或减少级数的有限项,不改变级数的收敛性.(3)是正确的,因为由1lim 1>+∞→nn n u u 可得到n u 不趋向于零(n → ∞),所以∑∞=1n n u 发散.(4)是错误的,如令n v n u n n 1,1-==,显然,∑∞=1n n u ,∑∞=1n n v 都发散,而∑∞=+1)(n n n v u 收敛. 故选(B).【评注】本题主要考查级数的性质与收敛性的判别法,属于基本题型.(11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ]【分析】利用介值定理与极限的保号性可得到三个正确的选项,由排除法可选出错误选项. 【详解】首先,由已知)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则由介值定理,至少存在一点),(0b a x ∈,使得0)(0='x f ;另外,0)()(lim )(>--='+→ax a f x f a f a x ,由极限的保号性,至少存在一点),(0b a x ∈使得0)()(00>--ax a f x f ,即)()(0a f x f >. 同理,至少存在一点),(0b a x ∈使得)()(0b f x f >. 所以,(A) (B) (C)都正确,故选(D).【评注】 本题综合考查了介值定理与极限的保号性,有一定的难度. (12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||.(C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ D ]。

相关文档
最新文档